//===- MicrosoftDemangle.cpp ----------------------------------------------===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// // // This file defines a demangler for MSVC-style mangled symbols. // // This file has no dependencies on the rest of LLVM so that it can be // easily reused in other programs such as libcxxabi. // //===----------------------------------------------------------------------===// #include "llvm/Demangle/MicrosoftDemangle.h" #include "llvm/Demangle/Demangle.h" #include "llvm/Demangle/MicrosoftDemangleNodes.h" #include "llvm/Demangle/DemangleConfig.h" #include "llvm/Demangle/StringView.h" #include "llvm/Demangle/Utility.h" #include #include #include #include using namespace llvm; using namespace ms_demangle; static bool startsWithDigit(StringView S) { return !S.empty() && std::isdigit(S.front()); } struct NodeList { Node *N = nullptr; NodeList *Next = nullptr; }; static bool isMemberPointer(StringView MangledName, bool &Error) { Error = false; switch (MangledName.popFront()) { case '$': // This is probably an rvalue reference (e.g. $$Q), and you cannot have an // rvalue reference to a member. return false; case 'A': // 'A' indicates a reference, and you cannot have a reference to a member // function or member. return false; case 'P': case 'Q': case 'R': case 'S': // These 4 values indicate some kind of pointer, but we still don't know // what. break; default: // isMemberPointer() is called only if isPointerType() returns true, // and it rejects other prefixes. DEMANGLE_UNREACHABLE; } // If it starts with a number, then 6 indicates a non-member function // pointer, and 8 indicates a member function pointer. if (startsWithDigit(MangledName)) { if (MangledName[0] != '6' && MangledName[0] != '8') { Error = true; return false; } return (MangledName[0] == '8'); } // Remove ext qualifiers since those can appear on either type and are // therefore not indicative. MangledName.consumeFront('E'); // 64-bit MangledName.consumeFront('I'); // restrict MangledName.consumeFront('F'); // unaligned if (MangledName.empty()) { Error = true; return false; } // The next value should be either ABCD (non-member) or QRST (member). switch (MangledName.front()) { case 'A': case 'B': case 'C': case 'D': return false; case 'Q': case 'R': case 'S': case 'T': return true; default: Error = true; return false; } } static SpecialIntrinsicKind consumeSpecialIntrinsicKind(StringView &MangledName) { if (MangledName.consumeFront("?_7")) return SpecialIntrinsicKind::Vftable; if (MangledName.consumeFront("?_8")) return SpecialIntrinsicKind::Vbtable; if (MangledName.consumeFront("?_9")) return SpecialIntrinsicKind::VcallThunk; if (MangledName.consumeFront("?_A")) return SpecialIntrinsicKind::Typeof; if (MangledName.consumeFront("?_B")) return SpecialIntrinsicKind::LocalStaticGuard; if (MangledName.consumeFront("?_C")) return SpecialIntrinsicKind::StringLiteralSymbol; if (MangledName.consumeFront("?_P")) return SpecialIntrinsicKind::UdtReturning; if (MangledName.consumeFront("?_R0")) return SpecialIntrinsicKind::RttiTypeDescriptor; if (MangledName.consumeFront("?_R1")) return SpecialIntrinsicKind::RttiBaseClassDescriptor; if (MangledName.consumeFront("?_R2")) return SpecialIntrinsicKind::RttiBaseClassArray; if (MangledName.consumeFront("?_R3")) return SpecialIntrinsicKind::RttiClassHierarchyDescriptor; if (MangledName.consumeFront("?_R4")) return SpecialIntrinsicKind::RttiCompleteObjLocator; if (MangledName.consumeFront("?_S")) return SpecialIntrinsicKind::LocalVftable; if (MangledName.consumeFront("?__E")) return SpecialIntrinsicKind::DynamicInitializer; if (MangledName.consumeFront("?__F")) return SpecialIntrinsicKind::DynamicAtexitDestructor; if (MangledName.consumeFront("?__J")) return SpecialIntrinsicKind::LocalStaticThreadGuard; return SpecialIntrinsicKind::None; } static bool startsWithLocalScopePattern(StringView S) { if (!S.consumeFront('?')) return false; size_t End = S.find('?'); if (End == StringView::npos) return false; StringView Candidate = S.substr(0, End); if (Candidate.empty()) return false; // \?[0-9]\? // ?@? is the discriminator 0. if (Candidate.size() == 1) return Candidate[0] == '@' || (Candidate[0] >= '0' && Candidate[0] <= '9'); // If it's not 0-9, then it's an encoded number terminated with an @ if (Candidate.back() != '@') return false; Candidate = Candidate.dropBack(); // An encoded number starts with B-P and all subsequent digits are in A-P. // Note that the reason the first digit cannot be A is two fold. First, it // would create an ambiguity with ?A which delimits the beginning of an // anonymous namespace. Second, A represents 0, and you don't start a multi // digit number with a leading 0. Presumably the anonymous namespace // ambiguity is also why single digit encoded numbers use 0-9 rather than A-J. if (Candidate[0] < 'B' || Candidate[0] > 'P') return false; Candidate = Candidate.dropFront(); while (!Candidate.empty()) { if (Candidate[0] < 'A' || Candidate[0] > 'P') return false; Candidate = Candidate.dropFront(); } return true; } static bool isTagType(StringView S) { switch (S.front()) { case 'T': // union case 'U': // struct case 'V': // class case 'W': // enum return true; } return false; } static bool isCustomType(StringView S) { return S[0] == '?'; } static bool isPointerType(StringView S) { if (S.startsWith("$$Q")) // foo && return true; switch (S.front()) { case 'A': // foo & case 'P': // foo * case 'Q': // foo *const case 'R': // foo *volatile case 'S': // foo *const volatile return true; } return false; } static bool isArrayType(StringView S) { return S[0] == 'Y'; } static bool isFunctionType(StringView S) { return S.startsWith("$$A8@@") || S.startsWith("$$A6"); } static FunctionRefQualifier demangleFunctionRefQualifier(StringView &MangledName) { if (MangledName.consumeFront('G')) return FunctionRefQualifier::Reference; else if (MangledName.consumeFront('H')) return FunctionRefQualifier::RValueReference; return FunctionRefQualifier::None; } static std::pair demanglePointerCVQualifiers(StringView &MangledName) { if (MangledName.consumeFront("$$Q")) return std::make_pair(Q_None, PointerAffinity::RValueReference); switch (MangledName.popFront()) { case 'A': return std::make_pair(Q_None, PointerAffinity::Reference); case 'P': return std::make_pair(Q_None, PointerAffinity::Pointer); case 'Q': return std::make_pair(Q_Const, PointerAffinity::Pointer); case 'R': return std::make_pair(Q_Volatile, PointerAffinity::Pointer); case 'S': return std::make_pair(Qualifiers(Q_Const | Q_Volatile), PointerAffinity::Pointer); } // This function is only called if isPointerType() returns true, // and it only returns true for the six cases listed above. DEMANGLE_UNREACHABLE; } StringView Demangler::copyString(StringView Borrowed) { char *Stable = Arena.allocUnalignedBuffer(Borrowed.size() + 1); std::strcpy(Stable, Borrowed.begin()); return {Stable, Borrowed.size()}; } SpecialTableSymbolNode * Demangler::demangleSpecialTableSymbolNode(StringView &MangledName, SpecialIntrinsicKind K) { NamedIdentifierNode *NI = Arena.alloc(); switch (K) { case SpecialIntrinsicKind::Vftable: NI->Name = "`vftable'"; break; case SpecialIntrinsicKind::Vbtable: NI->Name = "`vbtable'"; break; case SpecialIntrinsicKind::LocalVftable: NI->Name = "`local vftable'"; break; case SpecialIntrinsicKind::RttiCompleteObjLocator: NI->Name = "`RTTI Complete Object Locator'"; break; default: DEMANGLE_UNREACHABLE; } QualifiedNameNode *QN = demangleNameScopeChain(MangledName, NI); SpecialTableSymbolNode *STSN = Arena.alloc(); STSN->Name = QN; bool IsMember = false; if (MangledName.empty()) { Error = true; return nullptr; } char Front = MangledName.popFront(); if (Front != '6' && Front != '7') { Error = true; return nullptr; } std::tie(STSN->Quals, IsMember) = demangleQualifiers(MangledName); if (!MangledName.consumeFront('@')) STSN->TargetName = demangleFullyQualifiedTypeName(MangledName); return STSN; } LocalStaticGuardVariableNode * Demangler::demangleLocalStaticGuard(StringView &MangledName, bool IsThread) { LocalStaticGuardIdentifierNode *LSGI = Arena.alloc(); LSGI->IsThread = IsThread; QualifiedNameNode *QN = demangleNameScopeChain(MangledName, LSGI); LocalStaticGuardVariableNode *LSGVN = Arena.alloc(); LSGVN->Name = QN; if (MangledName.consumeFront("4IA")) LSGVN->IsVisible = false; else if (MangledName.consumeFront("5")) LSGVN->IsVisible = true; else { Error = true; return nullptr; } if (!MangledName.empty()) LSGI->ScopeIndex = demangleUnsigned(MangledName); return LSGVN; } static NamedIdentifierNode *synthesizeNamedIdentifier(ArenaAllocator &Arena, StringView Name) { NamedIdentifierNode *Id = Arena.alloc(); Id->Name = Name; return Id; } static QualifiedNameNode *synthesizeQualifiedName(ArenaAllocator &Arena, IdentifierNode *Identifier) { QualifiedNameNode *QN = Arena.alloc(); QN->Components = Arena.alloc(); QN->Components->Count = 1; QN->Components->Nodes = Arena.allocArray(1); QN->Components->Nodes[0] = Identifier; return QN; } static QualifiedNameNode *synthesizeQualifiedName(ArenaAllocator &Arena, StringView Name) { NamedIdentifierNode *Id = synthesizeNamedIdentifier(Arena, Name); return synthesizeQualifiedName(Arena, Id); } static VariableSymbolNode *synthesizeVariable(ArenaAllocator &Arena, TypeNode *Type, StringView VariableName) { VariableSymbolNode *VSN = Arena.alloc(); VSN->Type = Type; VSN->Name = synthesizeQualifiedName(Arena, VariableName); return VSN; } VariableSymbolNode *Demangler::demangleUntypedVariable( ArenaAllocator &Arena, StringView &MangledName, StringView VariableName) { NamedIdentifierNode *NI = synthesizeNamedIdentifier(Arena, VariableName); QualifiedNameNode *QN = demangleNameScopeChain(MangledName, NI); VariableSymbolNode *VSN = Arena.alloc(); VSN->Name = QN; if (MangledName.consumeFront("8")) return VSN; Error = true; return nullptr; } VariableSymbolNode * Demangler::demangleRttiBaseClassDescriptorNode(ArenaAllocator &Arena, StringView &MangledName) { RttiBaseClassDescriptorNode *RBCDN = Arena.alloc(); RBCDN->NVOffset = demangleUnsigned(MangledName); RBCDN->VBPtrOffset = demangleSigned(MangledName); RBCDN->VBTableOffset = demangleUnsigned(MangledName); RBCDN->Flags = demangleUnsigned(MangledName); if (Error) return nullptr; VariableSymbolNode *VSN = Arena.alloc(); VSN->Name = demangleNameScopeChain(MangledName, RBCDN); MangledName.consumeFront('8'); return VSN; } FunctionSymbolNode *Demangler::demangleInitFiniStub(StringView &MangledName, bool IsDestructor) { DynamicStructorIdentifierNode *DSIN = Arena.alloc(); DSIN->IsDestructor = IsDestructor; bool IsKnownStaticDataMember = false; if (MangledName.consumeFront('?')) IsKnownStaticDataMember = true; SymbolNode *Symbol = demangleDeclarator(MangledName); if (Error) return nullptr; FunctionSymbolNode *FSN = nullptr; if (Symbol->kind() == NodeKind::VariableSymbol) { DSIN->Variable = static_cast(Symbol); // Older versions of clang mangled this type of symbol incorrectly. They // would omit the leading ? and they would only emit a single @ at the end. // The correct mangling is a leading ? and 2 trailing @ signs. Handle // both cases. int AtCount = IsKnownStaticDataMember ? 2 : 1; for (int I = 0; I < AtCount; ++I) { if (MangledName.consumeFront('@')) continue; Error = true; return nullptr; } FSN = demangleFunctionEncoding(MangledName); if (FSN) FSN->Name = synthesizeQualifiedName(Arena, DSIN); } else { if (IsKnownStaticDataMember) { // This was supposed to be a static data member, but we got a function. Error = true; return nullptr; } FSN = static_cast(Symbol); DSIN->Name = Symbol->Name; FSN->Name = synthesizeQualifiedName(Arena, DSIN); } return FSN; } SymbolNode *Demangler::demangleSpecialIntrinsic(StringView &MangledName) { SpecialIntrinsicKind SIK = consumeSpecialIntrinsicKind(MangledName); switch (SIK) { case SpecialIntrinsicKind::None: return nullptr; case SpecialIntrinsicKind::StringLiteralSymbol: return demangleStringLiteral(MangledName); case SpecialIntrinsicKind::Vftable: case SpecialIntrinsicKind::Vbtable: case SpecialIntrinsicKind::LocalVftable: case SpecialIntrinsicKind::RttiCompleteObjLocator: return demangleSpecialTableSymbolNode(MangledName, SIK); case SpecialIntrinsicKind::VcallThunk: return demangleVcallThunkNode(MangledName); case SpecialIntrinsicKind::LocalStaticGuard: return demangleLocalStaticGuard(MangledName, /*IsThread=*/false); case SpecialIntrinsicKind::LocalStaticThreadGuard: return demangleLocalStaticGuard(MangledName, /*IsThread=*/true); case SpecialIntrinsicKind::RttiTypeDescriptor: { TypeNode *T = demangleType(MangledName, QualifierMangleMode::Result); if (Error) break; if (!MangledName.consumeFront("@8")) break; if (!MangledName.empty()) break; return synthesizeVariable(Arena, T, "`RTTI Type Descriptor'"); } case SpecialIntrinsicKind::RttiBaseClassArray: return demangleUntypedVariable(Arena, MangledName, "`RTTI Base Class Array'"); case SpecialIntrinsicKind::RttiClassHierarchyDescriptor: return demangleUntypedVariable(Arena, MangledName, "`RTTI Class Hierarchy Descriptor'"); case SpecialIntrinsicKind::RttiBaseClassDescriptor: return demangleRttiBaseClassDescriptorNode(Arena, MangledName); case SpecialIntrinsicKind::DynamicInitializer: return demangleInitFiniStub(MangledName, /*IsDestructor=*/false); case SpecialIntrinsicKind::DynamicAtexitDestructor: return demangleInitFiniStub(MangledName, /*IsDestructor=*/true); case SpecialIntrinsicKind::Typeof: case SpecialIntrinsicKind::UdtReturning: // It's unclear which tools produces these manglings, so demangling // support is not (yet?) implemented. break; case SpecialIntrinsicKind::Unknown: DEMANGLE_UNREACHABLE; // Never returned by consumeSpecialIntrinsicKind. } Error = true; return nullptr; } IdentifierNode * Demangler::demangleFunctionIdentifierCode(StringView &MangledName) { assert(MangledName.startsWith('?')); MangledName = MangledName.dropFront(); if (MangledName.empty()) { Error = true; return nullptr; } if (MangledName.consumeFront("__")) return demangleFunctionIdentifierCode( MangledName, FunctionIdentifierCodeGroup::DoubleUnder); if (MangledName.consumeFront("_")) return demangleFunctionIdentifierCode(MangledName, FunctionIdentifierCodeGroup::Under); return demangleFunctionIdentifierCode(MangledName, FunctionIdentifierCodeGroup::Basic); } StructorIdentifierNode * Demangler::demangleStructorIdentifier(StringView &MangledName, bool IsDestructor) { StructorIdentifierNode *N = Arena.alloc(); N->IsDestructor = IsDestructor; return N; } ConversionOperatorIdentifierNode * Demangler::demangleConversionOperatorIdentifier(StringView &MangledName) { ConversionOperatorIdentifierNode *N = Arena.alloc(); return N; } LiteralOperatorIdentifierNode * Demangler::demangleLiteralOperatorIdentifier(StringView &MangledName) { LiteralOperatorIdentifierNode *N = Arena.alloc(); N->Name = demangleSimpleString(MangledName, /*Memorize=*/false); return N; } IntrinsicFunctionKind Demangler::translateIntrinsicFunctionCode(char CH, FunctionIdentifierCodeGroup Group) { using IFK = IntrinsicFunctionKind; if (!(CH >= '0' && CH <= '9') && !(CH >= 'A' && CH <= 'Z')) { Error = true; return IFK::None; } // Not all ? identifiers are intrinsics *functions*. This function only maps // operator codes for the special functions, all others are handled elsewhere, // hence the IFK::None entries in the table. static IFK Basic[36] = { IFK::None, // ?0 # Foo::Foo() IFK::None, // ?1 # Foo::~Foo() IFK::New, // ?2 # operator new IFK::Delete, // ?3 # operator delete IFK::Assign, // ?4 # operator= IFK::RightShift, // ?5 # operator>> IFK::LeftShift, // ?6 # operator<< IFK::LogicalNot, // ?7 # operator! IFK::Equals, // ?8 # operator== IFK::NotEquals, // ?9 # operator!= IFK::ArraySubscript, // ?A # operator[] IFK::None, // ?B # Foo::operator () IFK::Pointer, // ?C # operator-> IFK::Dereference, // ?D # operator* IFK::Increment, // ?E # operator++ IFK::Decrement, // ?F # operator-- IFK::Minus, // ?G # operator- IFK::Plus, // ?H # operator+ IFK::BitwiseAnd, // ?I # operator& IFK::MemberPointer, // ?J # operator->* IFK::Divide, // ?K # operator/ IFK::Modulus, // ?L # operator% IFK::LessThan, // ?M operator< IFK::LessThanEqual, // ?N operator<= IFK::GreaterThan, // ?O operator> IFK::GreaterThanEqual, // ?P operator>= IFK::Comma, // ?Q operator, IFK::Parens, // ?R operator() IFK::BitwiseNot, // ?S operator~ IFK::BitwiseXor, // ?T operator^ IFK::BitwiseOr, // ?U operator| IFK::LogicalAnd, // ?V operator&& IFK::LogicalOr, // ?W operator|| IFK::TimesEqual, // ?X operator*= IFK::PlusEqual, // ?Y operator+= IFK::MinusEqual, // ?Z operator-= }; static IFK Under[36] = { IFK::DivEqual, // ?_0 operator/= IFK::ModEqual, // ?_1 operator%= IFK::RshEqual, // ?_2 operator>>= IFK::LshEqual, // ?_3 operator<<= IFK::BitwiseAndEqual, // ?_4 operator&= IFK::BitwiseOrEqual, // ?_5 operator|= IFK::BitwiseXorEqual, // ?_6 operator^= IFK::None, // ?_7 # vftable IFK::None, // ?_8 # vbtable IFK::None, // ?_9 # vcall IFK::None, // ?_A # typeof IFK::None, // ?_B # local static guard IFK::None, // ?_C # string literal IFK::VbaseDtor, // ?_D # vbase destructor IFK::VecDelDtor, // ?_E # vector deleting destructor IFK::DefaultCtorClosure, // ?_F # default constructor closure IFK::ScalarDelDtor, // ?_G # scalar deleting destructor IFK::VecCtorIter, // ?_H # vector constructor iterator IFK::VecDtorIter, // ?_I # vector destructor iterator IFK::VecVbaseCtorIter, // ?_J # vector vbase constructor iterator IFK::VdispMap, // ?_K # virtual displacement map IFK::EHVecCtorIter, // ?_L # eh vector constructor iterator IFK::EHVecDtorIter, // ?_M # eh vector destructor iterator IFK::EHVecVbaseCtorIter, // ?_N # eh vector vbase constructor iterator IFK::CopyCtorClosure, // ?_O # copy constructor closure IFK::None, // ?_P # udt returning IFK::None, // ?_Q # IFK::None, // ?_R0 - ?_R4 # RTTI Codes IFK::None, // ?_S # local vftable IFK::LocalVftableCtorClosure, // ?_T # local vftable constructor closure IFK::ArrayNew, // ?_U operator new[] IFK::ArrayDelete, // ?_V operator delete[] IFK::None, // ?_W IFK::None, // ?_X IFK::None, // ?_Y IFK::None, // ?_Z }; static IFK DoubleUnder[36] = { IFK::None, // ?__0 IFK::None, // ?__1 IFK::None, // ?__2 IFK::None, // ?__3 IFK::None, // ?__4 IFK::None, // ?__5 IFK::None, // ?__6 IFK::None, // ?__7 IFK::None, // ?__8 IFK::None, // ?__9 IFK::ManVectorCtorIter, // ?__A managed vector ctor iterator IFK::ManVectorDtorIter, // ?__B managed vector dtor iterator IFK::EHVectorCopyCtorIter, // ?__C EH vector copy ctor iterator IFK::EHVectorVbaseCopyCtorIter, // ?__D EH vector vbase copy ctor iter IFK::None, // ?__E dynamic initializer for `T' IFK::None, // ?__F dynamic atexit destructor for `T' IFK::VectorCopyCtorIter, // ?__G vector copy constructor iter IFK::VectorVbaseCopyCtorIter, // ?__H vector vbase copy ctor iter IFK::ManVectorVbaseCopyCtorIter, // ?__I managed vector vbase copy ctor // iter IFK::None, // ?__J local static thread guard IFK::None, // ?__K operator ""_name IFK::CoAwait, // ?__L operator co_await IFK::Spaceship, // ?__M operator<=> IFK::None, // ?__N IFK::None, // ?__O IFK::None, // ?__P IFK::None, // ?__Q IFK::None, // ?__R IFK::None, // ?__S IFK::None, // ?__T IFK::None, // ?__U IFK::None, // ?__V IFK::None, // ?__W IFK::None, // ?__X IFK::None, // ?__Y IFK::None, // ?__Z }; int Index = (CH >= '0' && CH <= '9') ? (CH - '0') : (CH - 'A' + 10); switch (Group) { case FunctionIdentifierCodeGroup::Basic: return Basic[Index]; case FunctionIdentifierCodeGroup::Under: return Under[Index]; case FunctionIdentifierCodeGroup::DoubleUnder: return DoubleUnder[Index]; } DEMANGLE_UNREACHABLE; } IdentifierNode * Demangler::demangleFunctionIdentifierCode(StringView &MangledName, FunctionIdentifierCodeGroup Group) { if (MangledName.empty()) { Error = true; return nullptr; } switch (Group) { case FunctionIdentifierCodeGroup::Basic: switch (char CH = MangledName.popFront()) { case '0': case '1': return demangleStructorIdentifier(MangledName, CH == '1'); case 'B': return demangleConversionOperatorIdentifier(MangledName); default: return Arena.alloc( translateIntrinsicFunctionCode(CH, Group)); } case FunctionIdentifierCodeGroup::Under: return Arena.alloc( translateIntrinsicFunctionCode(MangledName.popFront(), Group)); case FunctionIdentifierCodeGroup::DoubleUnder: switch (char CH = MangledName.popFront()) { case 'K': return demangleLiteralOperatorIdentifier(MangledName); default: return Arena.alloc( translateIntrinsicFunctionCode(CH, Group)); } } DEMANGLE_UNREACHABLE; } SymbolNode *Demangler::demangleEncodedSymbol(StringView &MangledName, QualifiedNameNode *Name) { if (MangledName.empty()) { Error = true; return nullptr; } // Read a variable. switch (MangledName.front()) { case '0': case '1': case '2': case '3': case '4': { StorageClass SC = demangleVariableStorageClass(MangledName); return demangleVariableEncoding(MangledName, SC); } } FunctionSymbolNode *FSN = demangleFunctionEncoding(MangledName); IdentifierNode *UQN = Name->getUnqualifiedIdentifier(); if (UQN->kind() == NodeKind::ConversionOperatorIdentifier) { ConversionOperatorIdentifierNode *COIN = static_cast(UQN); if (FSN) COIN->TargetType = FSN->Signature->ReturnType; } return FSN; } SymbolNode *Demangler::demangleDeclarator(StringView &MangledName) { // What follows is a main symbol name. This may include namespaces or class // back references. QualifiedNameNode *QN = demangleFullyQualifiedSymbolName(MangledName); if (Error) return nullptr; SymbolNode *Symbol = demangleEncodedSymbol(MangledName, QN); if (Error) return nullptr; Symbol->Name = QN; IdentifierNode *UQN = QN->getUnqualifiedIdentifier(); if (UQN->kind() == NodeKind::ConversionOperatorIdentifier) { ConversionOperatorIdentifierNode *COIN = static_cast(UQN); if (!COIN->TargetType) { Error = true; return nullptr; } } return Symbol; } SymbolNode *Demangler::demangleMD5Name(StringView &MangledName) { assert(MangledName.startsWith("??@")); // This is an MD5 mangled name. We can't demangle it, just return the // mangled name. // An MD5 mangled name is ??@ followed by 32 characters and a terminating @. size_t MD5Last = MangledName.find('@', strlen("??@")); if (MD5Last == StringView::npos) { Error = true; return nullptr; } const char *Start = MangledName.begin(); MangledName = MangledName.dropFront(MD5Last + 1); // There are two additional special cases for MD5 names: // 1. For complete object locators where the object name is long enough // for the object to have an MD5 name, the complete object locator is // called ??@...@??_R4@ (with a trailing "??_R4@" instead of the usual // leading "??_R4". This is handled here. // 2. For catchable types, in versions of MSVC before 2015 (<1900) or after // 2017.2 (>= 1914), the catchable type mangling is _CT??@...@??@...@8 // instead of_CT??@...@8 with just one MD5 name. Since we don't yet // demangle catchable types anywhere, this isn't handled for MD5 names // either. MangledName.consumeFront("??_R4@"); StringView MD5(Start, MangledName.begin()); SymbolNode *S = Arena.alloc(NodeKind::Md5Symbol); S->Name = synthesizeQualifiedName(Arena, MD5); return S; } SymbolNode *Demangler::demangleTypeinfoName(StringView &MangledName) { assert(MangledName.startsWith('.')); MangledName.consumeFront('.'); TypeNode *T = demangleType(MangledName, QualifierMangleMode::Result); if (Error || !MangledName.empty()) { Error = true; return nullptr; } return synthesizeVariable(Arena, T, "`RTTI Type Descriptor Name'"); } // Parser entry point. SymbolNode *Demangler::parse(StringView &MangledName) { // Typeinfo names are strings stored in RTTI data. They're not symbol names. // It's still useful to demangle them. They're the only demangled entity // that doesn't start with a "?" but a ".". if (MangledName.startsWith('.')) return demangleTypeinfoName(MangledName); if (MangledName.startsWith("??@")) return demangleMD5Name(MangledName); // MSVC-style mangled symbols must start with '?'. if (!MangledName.startsWith('?')) { Error = true; return nullptr; } MangledName.consumeFront('?'); // ?$ is a template instantiation, but all other names that start with ? are // operators / special names. if (SymbolNode *SI = demangleSpecialIntrinsic(MangledName)) return SI; return demangleDeclarator(MangledName); } TagTypeNode *Demangler::parseTagUniqueName(StringView &MangledName) { if (!MangledName.consumeFront(".?A")) return nullptr; MangledName.consumeFront(".?A"); if (MangledName.empty()) return nullptr; return demangleClassType(MangledName); } // ::= // ::= 0 # private static member // ::= 1 # protected static member // ::= 2 # public static member // ::= 3 # global // ::= 4 # static local VariableSymbolNode *Demangler::demangleVariableEncoding(StringView &MangledName, StorageClass SC) { VariableSymbolNode *VSN = Arena.alloc(); VSN->Type = demangleType(MangledName, QualifierMangleMode::Drop); VSN->SC = SC; if (Error) return nullptr; // ::= // ::= # pointers, references switch (VSN->Type->kind()) { case NodeKind::PointerType: { PointerTypeNode *PTN = static_cast(VSN->Type); Qualifiers ExtraChildQuals = Q_None; PTN->Quals = Qualifiers(VSN->Type->Quals | demanglePointerExtQualifiers(MangledName)); bool IsMember = false; std::tie(ExtraChildQuals, IsMember) = demangleQualifiers(MangledName); if (PTN->ClassParent) { QualifiedNameNode *BackRefName = demangleFullyQualifiedTypeName(MangledName); (void)BackRefName; } PTN->Pointee->Quals = Qualifiers(PTN->Pointee->Quals | ExtraChildQuals); break; } default: VSN->Type->Quals = demangleQualifiers(MangledName).first; break; } return VSN; } // Sometimes numbers are encoded in mangled symbols. For example, // "int (*x)[20]" is a valid C type (x is a pointer to an array of // length 20), so we need some way to embed numbers as part of symbols. // This function parses it. // // ::= [?] // // ::= # when 1 <= Number <= 10 // ::= + @ # when Number == 0 or >= 10 // // ::= [A-P] # A = 0, B = 1, ... std::pair Demangler::demangleNumber(StringView &MangledName) { bool IsNegative = MangledName.consumeFront('?'); if (startsWithDigit(MangledName)) { uint64_t Ret = MangledName[0] - '0' + 1; MangledName = MangledName.dropFront(1); return {Ret, IsNegative}; } uint64_t Ret = 0; for (size_t i = 0; i < MangledName.size(); ++i) { char C = MangledName[i]; if (C == '@') { MangledName = MangledName.dropFront(i + 1); return {Ret, IsNegative}; } if ('A' <= C && C <= 'P') { Ret = (Ret << 4) + (C - 'A'); continue; } break; } Error = true; return {0ULL, false}; } uint64_t Demangler::demangleUnsigned(StringView &MangledName) { bool IsNegative = false; uint64_t Number = 0; std::tie(Number, IsNegative) = demangleNumber(MangledName); if (IsNegative) Error = true; return Number; } int64_t Demangler::demangleSigned(StringView &MangledName) { bool IsNegative = false; uint64_t Number = 0; std::tie(Number, IsNegative) = demangleNumber(MangledName); if (Number > INT64_MAX) Error = true; int64_t I = static_cast(Number); return IsNegative ? -I : I; } // First 10 strings can be referenced by special BackReferences ?0, ?1, ..., ?9. // Memorize it. void Demangler::memorizeString(StringView S) { if (Backrefs.NamesCount >= BackrefContext::Max) return; for (size_t i = 0; i < Backrefs.NamesCount; ++i) if (S == Backrefs.Names[i]->Name) return; NamedIdentifierNode *N = Arena.alloc(); N->Name = S; Backrefs.Names[Backrefs.NamesCount++] = N; } NamedIdentifierNode *Demangler::demangleBackRefName(StringView &MangledName) { assert(startsWithDigit(MangledName)); size_t I = MangledName[0] - '0'; if (I >= Backrefs.NamesCount) { Error = true; return nullptr; } MangledName = MangledName.dropFront(); return Backrefs.Names[I]; } void Demangler::memorizeIdentifier(IdentifierNode *Identifier) { // Render this class template name into a string buffer so that we can // memorize it for the purpose of back-referencing. OutputStream OS; if (!initializeOutputStream(nullptr, nullptr, OS, 1024)) // FIXME: Propagate out-of-memory as an error? std::terminate(); Identifier->output(OS, OF_Default); OS << '\0'; char *Name = OS.getBuffer(); StringView Owned = copyString(Name); memorizeString(Owned); std::free(Name); } IdentifierNode * Demangler::demangleTemplateInstantiationName(StringView &MangledName, NameBackrefBehavior NBB) { assert(MangledName.startsWith("?$")); MangledName.consumeFront("?$"); BackrefContext OuterContext; std::swap(OuterContext, Backrefs); IdentifierNode *Identifier = demangleUnqualifiedSymbolName(MangledName, NBB_Simple); if (!Error) Identifier->TemplateParams = demangleTemplateParameterList(MangledName); std::swap(OuterContext, Backrefs); if (Error) return nullptr; if (NBB & NBB_Template) { // NBB_Template is only set for types and non-leaf names ("a::" in "a::b"). // Structors and conversion operators only makes sense in a leaf name, so // reject them in NBB_Template contexts. if (Identifier->kind() == NodeKind::ConversionOperatorIdentifier || Identifier->kind() == NodeKind::StructorIdentifier) { Error = true; return nullptr; } memorizeIdentifier(Identifier); } return Identifier; } NamedIdentifierNode *Demangler::demangleSimpleName(StringView &MangledName, bool Memorize) { StringView S = demangleSimpleString(MangledName, Memorize); if (Error) return nullptr; NamedIdentifierNode *Name = Arena.alloc(); Name->Name = S; return Name; } static bool isRebasedHexDigit(char C) { return (C >= 'A' && C <= 'P'); } static uint8_t rebasedHexDigitToNumber(char C) { assert(isRebasedHexDigit(C)); return (C <= 'J') ? (C - 'A') : (10 + C - 'K'); } uint8_t Demangler::demangleCharLiteral(StringView &MangledName) { assert(!MangledName.empty()); if (!MangledName.startsWith('?')) return MangledName.popFront(); MangledName = MangledName.dropFront(); if (MangledName.empty()) goto CharLiteralError; if (MangledName.consumeFront('$')) { // Two hex digits if (MangledName.size() < 2) goto CharLiteralError; StringView Nibbles = MangledName.substr(0, 2); if (!isRebasedHexDigit(Nibbles[0]) || !isRebasedHexDigit(Nibbles[1])) goto CharLiteralError; // Don't append the null terminator. uint8_t C1 = rebasedHexDigitToNumber(Nibbles[0]); uint8_t C2 = rebasedHexDigitToNumber(Nibbles[1]); MangledName = MangledName.dropFront(2); return (C1 << 4) | C2; } if (startsWithDigit(MangledName)) { const char *Lookup = ",/\\:. \n\t'-"; char C = Lookup[MangledName[0] - '0']; MangledName = MangledName.dropFront(); return C; } if (MangledName[0] >= 'a' && MangledName[0] <= 'z') { char Lookup[26] = {'\xE1', '\xE2', '\xE3', '\xE4', '\xE5', '\xE6', '\xE7', '\xE8', '\xE9', '\xEA', '\xEB', '\xEC', '\xED', '\xEE', '\xEF', '\xF0', '\xF1', '\xF2', '\xF3', '\xF4', '\xF5', '\xF6', '\xF7', '\xF8', '\xF9', '\xFA'}; char C = Lookup[MangledName[0] - 'a']; MangledName = MangledName.dropFront(); return C; } if (MangledName[0] >= 'A' && MangledName[0] <= 'Z') { char Lookup[26] = {'\xC1', '\xC2', '\xC3', '\xC4', '\xC5', '\xC6', '\xC7', '\xC8', '\xC9', '\xCA', '\xCB', '\xCC', '\xCD', '\xCE', '\xCF', '\xD0', '\xD1', '\xD2', '\xD3', '\xD4', '\xD5', '\xD6', '\xD7', '\xD8', '\xD9', '\xDA'}; char C = Lookup[MangledName[0] - 'A']; MangledName = MangledName.dropFront(); return C; } CharLiteralError: Error = true; return '\0'; } wchar_t Demangler::demangleWcharLiteral(StringView &MangledName) { uint8_t C1, C2; C1 = demangleCharLiteral(MangledName); if (Error || MangledName.empty()) goto WCharLiteralError; C2 = demangleCharLiteral(MangledName); if (Error) goto WCharLiteralError; return ((wchar_t)C1 << 8) | (wchar_t)C2; WCharLiteralError: Error = true; return L'\0'; } static void writeHexDigit(char *Buffer, uint8_t Digit) { assert(Digit <= 15); *Buffer = (Digit < 10) ? ('0' + Digit) : ('A' + Digit - 10); } static void outputHex(OutputStream &OS, unsigned C) { assert (C != 0); // It's easier to do the math if we can work from right to left, but we need // to print the numbers from left to right. So render this into a temporary // buffer first, then output the temporary buffer. Each byte is of the form // \xAB, which means that each byte needs 4 characters. Since there are at // most 4 bytes, we need a 4*4+1 = 17 character temporary buffer. char TempBuffer[17]; ::memset(TempBuffer, 0, sizeof(TempBuffer)); constexpr int MaxPos = sizeof(TempBuffer) - 1; int Pos = MaxPos - 1; // TempBuffer[MaxPos] is the terminating \0. while (C != 0) { for (int I = 0; I < 2; ++I) { writeHexDigit(&TempBuffer[Pos--], C % 16); C /= 16; } } TempBuffer[Pos--] = 'x'; assert(Pos >= 0); TempBuffer[Pos--] = '\\'; OS << StringView(&TempBuffer[Pos + 1]); } static void outputEscapedChar(OutputStream &OS, unsigned C) { switch (C) { case '\0': // nul OS << "\\0"; return; case '\'': // single quote OS << "\\\'"; return; case '\"': // double quote OS << "\\\""; return; case '\\': // backslash OS << "\\\\"; return; case '\a': // bell OS << "\\a"; return; case '\b': // backspace OS << "\\b"; return; case '\f': // form feed OS << "\\f"; return; case '\n': // new line OS << "\\n"; return; case '\r': // carriage return OS << "\\r"; return; case '\t': // tab OS << "\\t"; return; case '\v': // vertical tab OS << "\\v"; return; default: break; } if (C > 0x1F && C < 0x7F) { // Standard ascii char. OS << (char)C; return; } outputHex(OS, C); } static unsigned countTrailingNullBytes(const uint8_t *StringBytes, int Length) { const uint8_t *End = StringBytes + Length - 1; unsigned Count = 0; while (Length > 0 && *End == 0) { --Length; --End; ++Count; } return Count; } static unsigned countEmbeddedNulls(const uint8_t *StringBytes, unsigned Length) { unsigned Result = 0; for (unsigned I = 0; I < Length; ++I) { if (*StringBytes++ == 0) ++Result; } return Result; } // A mangled (non-wide) string literal stores the total length of the string it // refers to (passed in NumBytes), and it contains up to 32 bytes of actual text // (passed in StringBytes, NumChars). static unsigned guessCharByteSize(const uint8_t *StringBytes, unsigned NumChars, uint64_t NumBytes) { assert(NumBytes > 0); // If the number of bytes is odd, this is guaranteed to be a char string. if (NumBytes % 2 == 1) return 1; // All strings can encode at most 32 bytes of data. If it's less than that, // then we encoded the entire string. In this case we check for a 1-byte, // 2-byte, or 4-byte null terminator. if (NumBytes < 32) { unsigned TrailingNulls = countTrailingNullBytes(StringBytes, NumChars); if (TrailingNulls >= 4 && NumBytes % 4 == 0) return 4; if (TrailingNulls >= 2) return 2; return 1; } // The whole string was not able to be encoded. Try to look at embedded null // terminators to guess. The heuristic is that we count all embedded null // terminators. If more than 2/3 are null, it's a char32. If more than 1/3 // are null, it's a char16. Otherwise it's a char8. This obviously isn't // perfect and is biased towards languages that have ascii alphabets, but this // was always going to be best effort since the encoding is lossy. unsigned Nulls = countEmbeddedNulls(StringBytes, NumChars); if (Nulls >= 2 * NumChars / 3 && NumBytes % 4 == 0) return 4; if (Nulls >= NumChars / 3) return 2; return 1; } static unsigned decodeMultiByteChar(const uint8_t *StringBytes, unsigned CharIndex, unsigned CharBytes) { assert(CharBytes == 1 || CharBytes == 2 || CharBytes == 4); unsigned Offset = CharIndex * CharBytes; unsigned Result = 0; StringBytes = StringBytes + Offset; for (unsigned I = 0; I < CharBytes; ++I) { unsigned C = static_cast(StringBytes[I]); Result |= C << (8 * I); } return Result; } FunctionSymbolNode *Demangler::demangleVcallThunkNode(StringView &MangledName) { FunctionSymbolNode *FSN = Arena.alloc(); VcallThunkIdentifierNode *VTIN = Arena.alloc(); FSN->Signature = Arena.alloc(); FSN->Signature->FunctionClass = FC_NoParameterList; FSN->Name = demangleNameScopeChain(MangledName, VTIN); if (!Error) Error = !MangledName.consumeFront("$B"); if (!Error) VTIN->OffsetInVTable = demangleUnsigned(MangledName); if (!Error) Error = !MangledName.consumeFront('A'); if (!Error) FSN->Signature->CallConvention = demangleCallingConvention(MangledName); return (Error) ? nullptr : FSN; } EncodedStringLiteralNode * Demangler::demangleStringLiteral(StringView &MangledName) { // This function uses goto, so declare all variables up front. OutputStream OS; StringView CRC; uint64_t StringByteSize; bool IsWcharT = false; bool IsNegative = false; size_t CrcEndPos = 0; char *ResultBuffer = nullptr; EncodedStringLiteralNode *Result = Arena.alloc(); // Must happen before the first `goto StringLiteralError`. if (!initializeOutputStream(nullptr, nullptr, OS, 1024)) // FIXME: Propagate out-of-memory as an error? std::terminate(); // Prefix indicating the beginning of a string literal if (!MangledName.consumeFront("@_")) goto StringLiteralError; if (MangledName.empty()) goto StringLiteralError; // Char Type (regular or wchar_t) switch (MangledName.popFront()) { case '1': IsWcharT = true; DEMANGLE_FALLTHROUGH; case '0': break; default: goto StringLiteralError; } // Encoded Length std::tie(StringByteSize, IsNegative) = demangleNumber(MangledName); if (Error || IsNegative || StringByteSize < (IsWcharT ? 2 : 1)) goto StringLiteralError; // CRC 32 (always 8 characters plus a terminator) CrcEndPos = MangledName.find('@'); if (CrcEndPos == StringView::npos) goto StringLiteralError; CRC = MangledName.substr(0, CrcEndPos); MangledName = MangledName.dropFront(CrcEndPos + 1); if (MangledName.empty()) goto StringLiteralError; if (IsWcharT) { Result->Char = CharKind::Wchar; if (StringByteSize > 64) Result->IsTruncated = true; while (!MangledName.consumeFront('@')) { if (MangledName.size() < 2) goto StringLiteralError; wchar_t W = demangleWcharLiteral(MangledName); if (StringByteSize != 2 || Result->IsTruncated) outputEscapedChar(OS, W); StringByteSize -= 2; if (Error) goto StringLiteralError; } } else { // The max byte length is actually 32, but some compilers mangled strings // incorrectly, so we have to assume it can go higher. constexpr unsigned MaxStringByteLength = 32 * 4; uint8_t StringBytes[MaxStringByteLength]; unsigned BytesDecoded = 0; while (!MangledName.consumeFront('@')) { if (MangledName.size() < 1 || BytesDecoded >= MaxStringByteLength) goto StringLiteralError; StringBytes[BytesDecoded++] = demangleCharLiteral(MangledName); } if (StringByteSize > BytesDecoded) Result->IsTruncated = true; unsigned CharBytes = guessCharByteSize(StringBytes, BytesDecoded, StringByteSize); assert(StringByteSize % CharBytes == 0); switch (CharBytes) { case 1: Result->Char = CharKind::Char; break; case 2: Result->Char = CharKind::Char16; break; case 4: Result->Char = CharKind::Char32; break; default: DEMANGLE_UNREACHABLE; } const unsigned NumChars = BytesDecoded / CharBytes; for (unsigned CharIndex = 0; CharIndex < NumChars; ++CharIndex) { unsigned NextChar = decodeMultiByteChar(StringBytes, CharIndex, CharBytes); if (CharIndex + 1 < NumChars || Result->IsTruncated) outputEscapedChar(OS, NextChar); } } OS << '\0'; ResultBuffer = OS.getBuffer(); Result->DecodedString = copyString(ResultBuffer); std::free(ResultBuffer); return Result; StringLiteralError: Error = true; std::free(OS.getBuffer()); return nullptr; } // Returns MangledName's prefix before the first '@', or an error if // MangledName contains no '@' or the prefix has length 0. StringView Demangler::demangleSimpleString(StringView &MangledName, bool Memorize) { StringView S; for (size_t i = 0; i < MangledName.size(); ++i) { if (MangledName[i] != '@') continue; if (i == 0) break; S = MangledName.substr(0, i); MangledName = MangledName.dropFront(i + 1); if (Memorize) memorizeString(S); return S; } Error = true; return {}; } NamedIdentifierNode * Demangler::demangleAnonymousNamespaceName(StringView &MangledName) { assert(MangledName.startsWith("?A")); MangledName.consumeFront("?A"); NamedIdentifierNode *Node = Arena.alloc(); Node->Name = "`anonymous namespace'"; size_t EndPos = MangledName.find('@'); if (EndPos == StringView::npos) { Error = true; return nullptr; } StringView NamespaceKey = MangledName.substr(0, EndPos); memorizeString(NamespaceKey); MangledName = MangledName.substr(EndPos + 1); return Node; } NamedIdentifierNode * Demangler::demangleLocallyScopedNamePiece(StringView &MangledName) { assert(startsWithLocalScopePattern(MangledName)); NamedIdentifierNode *Identifier = Arena.alloc(); MangledName.consumeFront('?'); uint64_t Number = 0; bool IsNegative = false; std::tie(Number, IsNegative) = demangleNumber(MangledName); assert(!IsNegative); // One ? to terminate the number MangledName.consumeFront('?'); assert(!Error); Node *Scope = parse(MangledName); if (Error) return nullptr; // Render the parent symbol's name into a buffer. OutputStream OS; if (!initializeOutputStream(nullptr, nullptr, OS, 1024)) // FIXME: Propagate out-of-memory as an error? std::terminate(); OS << '`'; Scope->output(OS, OF_Default); OS << '\''; OS << "::`" << Number << "'"; OS << '\0'; char *Result = OS.getBuffer(); Identifier->Name = copyString(Result); std::free(Result); return Identifier; } // Parses a type name in the form of A@B@C@@ which represents C::B::A. QualifiedNameNode * Demangler::demangleFullyQualifiedTypeName(StringView &MangledName) { IdentifierNode *Identifier = demangleUnqualifiedTypeName(MangledName, /*Memorize=*/true); if (Error) return nullptr; assert(Identifier); QualifiedNameNode *QN = demangleNameScopeChain(MangledName, Identifier); if (Error) return nullptr; assert(QN); return QN; } // Parses a symbol name in the form of A@B@C@@ which represents C::B::A. // Symbol names have slightly different rules regarding what can appear // so we separate out the implementations for flexibility. QualifiedNameNode * Demangler::demangleFullyQualifiedSymbolName(StringView &MangledName) { // This is the final component of a symbol name (i.e. the leftmost component // of a mangled name. Since the only possible template instantiation that // can appear in this context is a function template, and since those are // not saved for the purposes of name backreferences, only backref simple // names. IdentifierNode *Identifier = demangleUnqualifiedSymbolName(MangledName, NBB_Simple); if (Error) return nullptr; QualifiedNameNode *QN = demangleNameScopeChain(MangledName, Identifier); if (Error) return nullptr; if (Identifier->kind() == NodeKind::StructorIdentifier) { if (QN->Components->Count < 2) { Error = true; return nullptr; } StructorIdentifierNode *SIN = static_cast(Identifier); Node *ClassNode = QN->Components->Nodes[QN->Components->Count - 2]; SIN->Class = static_cast(ClassNode); } assert(QN); return QN; } IdentifierNode *Demangler::demangleUnqualifiedTypeName(StringView &MangledName, bool Memorize) { // An inner-most name can be a back-reference, because a fully-qualified name // (e.g. Scope + Inner) can contain other fully qualified names inside of // them (for example template parameters), and these nested parameters can // refer to previously mangled types. if (startsWithDigit(MangledName)) return demangleBackRefName(MangledName); if (MangledName.startsWith("?$")) return demangleTemplateInstantiationName(MangledName, NBB_Template); return demangleSimpleName(MangledName, Memorize); } IdentifierNode * Demangler::demangleUnqualifiedSymbolName(StringView &MangledName, NameBackrefBehavior NBB) { if (startsWithDigit(MangledName)) return demangleBackRefName(MangledName); if (MangledName.startsWith("?$")) return demangleTemplateInstantiationName(MangledName, NBB); if (MangledName.startsWith('?')) return demangleFunctionIdentifierCode(MangledName); return demangleSimpleName(MangledName, /*Memorize=*/(NBB & NBB_Simple) != 0); } IdentifierNode *Demangler::demangleNameScopePiece(StringView &MangledName) { if (startsWithDigit(MangledName)) return demangleBackRefName(MangledName); if (MangledName.startsWith("?$")) return demangleTemplateInstantiationName(MangledName, NBB_Template); if (MangledName.startsWith("?A")) return demangleAnonymousNamespaceName(MangledName); if (startsWithLocalScopePattern(MangledName)) return demangleLocallyScopedNamePiece(MangledName); return demangleSimpleName(MangledName, /*Memorize=*/true); } static NodeArrayNode *nodeListToNodeArray(ArenaAllocator &Arena, NodeList *Head, size_t Count) { NodeArrayNode *N = Arena.alloc(); N->Count = Count; N->Nodes = Arena.allocArray(Count); for (size_t I = 0; I < Count; ++I) { N->Nodes[I] = Head->N; Head = Head->Next; } return N; } QualifiedNameNode * Demangler::demangleNameScopeChain(StringView &MangledName, IdentifierNode *UnqualifiedName) { NodeList *Head = Arena.alloc(); Head->N = UnqualifiedName; size_t Count = 1; while (!MangledName.consumeFront("@")) { ++Count; NodeList *NewHead = Arena.alloc(); NewHead->Next = Head; Head = NewHead; if (MangledName.empty()) { Error = true; return nullptr; } assert(!Error); IdentifierNode *Elem = demangleNameScopePiece(MangledName); if (Error) return nullptr; Head->N = Elem; } QualifiedNameNode *QN = Arena.alloc(); QN->Components = nodeListToNodeArray(Arena, Head, Count); return QN; } FuncClass Demangler::demangleFunctionClass(StringView &MangledName) { switch (MangledName.popFront()) { case '9': return FuncClass(FC_ExternC | FC_NoParameterList); case 'A': return FC_Private; case 'B': return FuncClass(FC_Private | FC_Far); case 'C': return FuncClass(FC_Private | FC_Static); case 'D': return FuncClass(FC_Private | FC_Static | FC_Far); case 'E': return FuncClass(FC_Private | FC_Virtual); case 'F': return FuncClass(FC_Private | FC_Virtual | FC_Far); case 'G': return FuncClass(FC_Private | FC_StaticThisAdjust); case 'H': return FuncClass(FC_Private | FC_StaticThisAdjust | FC_Far); case 'I': return FuncClass(FC_Protected); case 'J': return FuncClass(FC_Protected | FC_Far); case 'K': return FuncClass(FC_Protected | FC_Static); case 'L': return FuncClass(FC_Protected | FC_Static | FC_Far); case 'M': return FuncClass(FC_Protected | FC_Virtual); case 'N': return FuncClass(FC_Protected | FC_Virtual | FC_Far); case 'O': return FuncClass(FC_Protected | FC_Virtual | FC_StaticThisAdjust); case 'P': return FuncClass(FC_Protected | FC_Virtual | FC_StaticThisAdjust | FC_Far); case 'Q': return FuncClass(FC_Public); case 'R': return FuncClass(FC_Public | FC_Far); case 'S': return FuncClass(FC_Public | FC_Static); case 'T': return FuncClass(FC_Public | FC_Static | FC_Far); case 'U': return FuncClass(FC_Public | FC_Virtual); case 'V': return FuncClass(FC_Public | FC_Virtual | FC_Far); case 'W': return FuncClass(FC_Public | FC_Virtual | FC_StaticThisAdjust); case 'X': return FuncClass(FC_Public | FC_Virtual | FC_StaticThisAdjust | FC_Far); case 'Y': return FuncClass(FC_Global); case 'Z': return FuncClass(FC_Global | FC_Far); case '$': { FuncClass VFlag = FC_VirtualThisAdjust; if (MangledName.consumeFront('R')) VFlag = FuncClass(VFlag | FC_VirtualThisAdjustEx); if (MangledName.empty()) break; switch (MangledName.popFront()) { case '0': return FuncClass(FC_Private | FC_Virtual | VFlag); case '1': return FuncClass(FC_Private | FC_Virtual | VFlag | FC_Far); case '2': return FuncClass(FC_Protected | FC_Virtual | VFlag); case '3': return FuncClass(FC_Protected | FC_Virtual | VFlag | FC_Far); case '4': return FuncClass(FC_Public | FC_Virtual | VFlag); case '5': return FuncClass(FC_Public | FC_Virtual | VFlag | FC_Far); } } } Error = true; return FC_Public; } CallingConv Demangler::demangleCallingConvention(StringView &MangledName) { if (MangledName.empty()) { Error = true; return CallingConv::None; } switch (MangledName.popFront()) { case 'A': case 'B': return CallingConv::Cdecl; case 'C': case 'D': return CallingConv::Pascal; case 'E': case 'F': return CallingConv::Thiscall; case 'G': case 'H': return CallingConv::Stdcall; case 'I': case 'J': return CallingConv::Fastcall; case 'M': case 'N': return CallingConv::Clrcall; case 'O': case 'P': return CallingConv::Eabi; case 'Q': return CallingConv::Vectorcall; case 'S': return CallingConv::Swift; } return CallingConv::None; } StorageClass Demangler::demangleVariableStorageClass(StringView &MangledName) { assert(MangledName.front() >= '0' && MangledName.front() <= '4'); switch (MangledName.popFront()) { case '0': return StorageClass::PrivateStatic; case '1': return StorageClass::ProtectedStatic; case '2': return StorageClass::PublicStatic; case '3': return StorageClass::Global; case '4': return StorageClass::FunctionLocalStatic; } DEMANGLE_UNREACHABLE; } std::pair Demangler::demangleQualifiers(StringView &MangledName) { if (MangledName.empty()) { Error = true; return std::make_pair(Q_None, false); } switch (MangledName.popFront()) { // Member qualifiers case 'Q': return std::make_pair(Q_None, true); case 'R': return std::make_pair(Q_Const, true); case 'S': return std::make_pair(Q_Volatile, true); case 'T': return std::make_pair(Qualifiers(Q_Const | Q_Volatile), true); // Non-Member qualifiers case 'A': return std::make_pair(Q_None, false); case 'B': return std::make_pair(Q_Const, false); case 'C': return std::make_pair(Q_Volatile, false); case 'D': return std::make_pair(Qualifiers(Q_Const | Q_Volatile), false); } Error = true; return std::make_pair(Q_None, false); } // ::= // ::= # pointers, references TypeNode *Demangler::demangleType(StringView &MangledName, QualifierMangleMode QMM) { Qualifiers Quals = Q_None; bool IsMember = false; if (QMM == QualifierMangleMode::Mangle) { std::tie(Quals, IsMember) = demangleQualifiers(MangledName); } else if (QMM == QualifierMangleMode::Result) { if (MangledName.consumeFront('?')) std::tie(Quals, IsMember) = demangleQualifiers(MangledName); } if (MangledName.empty()) { Error = true; return nullptr; } TypeNode *Ty = nullptr; if (isTagType(MangledName)) Ty = demangleClassType(MangledName); else if (isPointerType(MangledName)) { if (isMemberPointer(MangledName, Error)) Ty = demangleMemberPointerType(MangledName); else if (!Error) Ty = demanglePointerType(MangledName); else return nullptr; } else if (isArrayType(MangledName)) Ty = demangleArrayType(MangledName); else if (isFunctionType(MangledName)) { if (MangledName.consumeFront("$$A8@@")) Ty = demangleFunctionType(MangledName, true); else { assert(MangledName.startsWith("$$A6")); MangledName.consumeFront("$$A6"); Ty = demangleFunctionType(MangledName, false); } } else if (isCustomType(MangledName)) { Ty = demangleCustomType(MangledName); } else { Ty = demanglePrimitiveType(MangledName); } if (!Ty || Error) return Ty; Ty->Quals = Qualifiers(Ty->Quals | Quals); return Ty; } bool Demangler::demangleThrowSpecification(StringView &MangledName) { if (MangledName.consumeFront("_E")) return true; if (MangledName.consumeFront('Z')) return false; Error = true; return false; } FunctionSignatureNode *Demangler::demangleFunctionType(StringView &MangledName, bool HasThisQuals) { FunctionSignatureNode *FTy = Arena.alloc(); if (HasThisQuals) { FTy->Quals = demanglePointerExtQualifiers(MangledName); FTy->RefQualifier = demangleFunctionRefQualifier(MangledName); FTy->Quals = Qualifiers(FTy->Quals | demangleQualifiers(MangledName).first); } // Fields that appear on both member and non-member functions. FTy->CallConvention = demangleCallingConvention(MangledName); // ::= // ::= @ # structors (they have no declared return type) bool IsStructor = MangledName.consumeFront('@'); if (!IsStructor) FTy->ReturnType = demangleType(MangledName, QualifierMangleMode::Result); FTy->Params = demangleFunctionParameterList(MangledName, FTy->IsVariadic); FTy->IsNoexcept = demangleThrowSpecification(MangledName); return FTy; } FunctionSymbolNode * Demangler::demangleFunctionEncoding(StringView &MangledName) { FuncClass ExtraFlags = FC_None; if (MangledName.consumeFront("$$J0")) ExtraFlags = FC_ExternC; if (MangledName.empty()) { Error = true; return nullptr; } FuncClass FC = demangleFunctionClass(MangledName); FC = FuncClass(ExtraFlags | FC); FunctionSignatureNode *FSN = nullptr; ThunkSignatureNode *TTN = nullptr; if (FC & FC_StaticThisAdjust) { TTN = Arena.alloc(); TTN->ThisAdjust.StaticOffset = demangleSigned(MangledName); } else if (FC & FC_VirtualThisAdjust) { TTN = Arena.alloc(); if (FC & FC_VirtualThisAdjustEx) { TTN->ThisAdjust.VBPtrOffset = demangleSigned(MangledName); TTN->ThisAdjust.VBOffsetOffset = demangleSigned(MangledName); } TTN->ThisAdjust.VtordispOffset = demangleSigned(MangledName); TTN->ThisAdjust.StaticOffset = demangleSigned(MangledName); } if (FC & FC_NoParameterList) { // This is an extern "C" function whose full signature hasn't been mangled. // This happens when we need to mangle a local symbol inside of an extern // "C" function. FSN = Arena.alloc(); } else { bool HasThisQuals = !(FC & (FC_Global | FC_Static)); FSN = demangleFunctionType(MangledName, HasThisQuals); } if (Error) return nullptr; if (TTN) { *static_cast(TTN) = *FSN; FSN = TTN; } FSN->FunctionClass = FC; FunctionSymbolNode *Symbol = Arena.alloc(); Symbol->Signature = FSN; return Symbol; } CustomTypeNode *Demangler::demangleCustomType(StringView &MangledName) { assert(MangledName.startsWith('?')); MangledName.popFront(); CustomTypeNode *CTN = Arena.alloc(); CTN->Identifier = demangleUnqualifiedTypeName(MangledName, /*Memorize=*/true); if (!MangledName.consumeFront('@')) Error = true; if (Error) return nullptr; return CTN; } // Reads a primitive type. PrimitiveTypeNode *Demangler::demanglePrimitiveType(StringView &MangledName) { if (MangledName.consumeFront("$$T")) return Arena.alloc(PrimitiveKind::Nullptr); switch (MangledName.popFront()) { case 'X': return Arena.alloc(PrimitiveKind::Void); case 'D': return Arena.alloc(PrimitiveKind::Char); case 'C': return Arena.alloc(PrimitiveKind::Schar); case 'E': return Arena.alloc(PrimitiveKind::Uchar); case 'F': return Arena.alloc(PrimitiveKind::Short); case 'G': return Arena.alloc(PrimitiveKind::Ushort); case 'H': return Arena.alloc(PrimitiveKind::Int); case 'I': return Arena.alloc(PrimitiveKind::Uint); case 'J': return Arena.alloc(PrimitiveKind::Long); case 'K': return Arena.alloc(PrimitiveKind::Ulong); case 'M': return Arena.alloc(PrimitiveKind::Float); case 'N': return Arena.alloc(PrimitiveKind::Double); case 'O': return Arena.alloc(PrimitiveKind::Ldouble); case '_': { if (MangledName.empty()) { Error = true; return nullptr; } switch (MangledName.popFront()) { case 'N': return Arena.alloc(PrimitiveKind::Bool); case 'J': return Arena.alloc(PrimitiveKind::Int64); case 'K': return Arena.alloc(PrimitiveKind::Uint64); case 'W': return Arena.alloc(PrimitiveKind::Wchar); case 'Q': return Arena.alloc(PrimitiveKind::Char8); case 'S': return Arena.alloc(PrimitiveKind::Char16); case 'U': return Arena.alloc(PrimitiveKind::Char32); } break; } } Error = true; return nullptr; } TagTypeNode *Demangler::demangleClassType(StringView &MangledName) { TagTypeNode *TT = nullptr; switch (MangledName.popFront()) { case 'T': TT = Arena.alloc(TagKind::Union); break; case 'U': TT = Arena.alloc(TagKind::Struct); break; case 'V': TT = Arena.alloc(TagKind::Class); break; case 'W': if (!MangledName.consumeFront('4')) { Error = true; return nullptr; } TT = Arena.alloc(TagKind::Enum); break; default: assert(false); } TT->QualifiedName = demangleFullyQualifiedTypeName(MangledName); return TT; } // ::= E? // # the E is required for 64-bit non-static pointers PointerTypeNode *Demangler::demanglePointerType(StringView &MangledName) { PointerTypeNode *Pointer = Arena.alloc(); std::tie(Pointer->Quals, Pointer->Affinity) = demanglePointerCVQualifiers(MangledName); if (MangledName.consumeFront("6")) { Pointer->Pointee = demangleFunctionType(MangledName, false); return Pointer; } Qualifiers ExtQuals = demanglePointerExtQualifiers(MangledName); Pointer->Quals = Qualifiers(Pointer->Quals | ExtQuals); Pointer->Pointee = demangleType(MangledName, QualifierMangleMode::Mangle); return Pointer; } PointerTypeNode *Demangler::demangleMemberPointerType(StringView &MangledName) { PointerTypeNode *Pointer = Arena.alloc(); std::tie(Pointer->Quals, Pointer->Affinity) = demanglePointerCVQualifiers(MangledName); assert(Pointer->Affinity == PointerAffinity::Pointer); Qualifiers ExtQuals = demanglePointerExtQualifiers(MangledName); Pointer->Quals = Qualifiers(Pointer->Quals | ExtQuals); // isMemberPointer() only returns true if there is at least one character // after the qualifiers. if (MangledName.consumeFront("8")) { Pointer->ClassParent = demangleFullyQualifiedTypeName(MangledName); Pointer->Pointee = demangleFunctionType(MangledName, true); } else { Qualifiers PointeeQuals = Q_None; bool IsMember = false; std::tie(PointeeQuals, IsMember) = demangleQualifiers(MangledName); assert(IsMember || Error); Pointer->ClassParent = demangleFullyQualifiedTypeName(MangledName); Pointer->Pointee = demangleType(MangledName, QualifierMangleMode::Drop); if (Pointer->Pointee) Pointer->Pointee->Quals = PointeeQuals; } return Pointer; } Qualifiers Demangler::demanglePointerExtQualifiers(StringView &MangledName) { Qualifiers Quals = Q_None; if (MangledName.consumeFront('E')) Quals = Qualifiers(Quals | Q_Pointer64); if (MangledName.consumeFront('I')) Quals = Qualifiers(Quals | Q_Restrict); if (MangledName.consumeFront('F')) Quals = Qualifiers(Quals | Q_Unaligned); return Quals; } ArrayTypeNode *Demangler::demangleArrayType(StringView &MangledName) { assert(MangledName.front() == 'Y'); MangledName.popFront(); uint64_t Rank = 0; bool IsNegative = false; std::tie(Rank, IsNegative) = demangleNumber(MangledName); if (IsNegative || Rank == 0) { Error = true; return nullptr; } ArrayTypeNode *ATy = Arena.alloc(); NodeList *Head = Arena.alloc(); NodeList *Tail = Head; for (uint64_t I = 0; I < Rank; ++I) { uint64_t D = 0; std::tie(D, IsNegative) = demangleNumber(MangledName); if (Error || IsNegative) { Error = true; return nullptr; } Tail->N = Arena.alloc(D, IsNegative); if (I + 1 < Rank) { Tail->Next = Arena.alloc(); Tail = Tail->Next; } } ATy->Dimensions = nodeListToNodeArray(Arena, Head, Rank); if (MangledName.consumeFront("$$C")) { bool IsMember = false; std::tie(ATy->Quals, IsMember) = demangleQualifiers(MangledName); if (IsMember) { Error = true; return nullptr; } } ATy->ElementType = demangleType(MangledName, QualifierMangleMode::Drop); return ATy; } // Reads a function's parameters. NodeArrayNode *Demangler::demangleFunctionParameterList(StringView &MangledName, bool &IsVariadic) { // Empty parameter list. if (MangledName.consumeFront('X')) return nullptr; NodeList *Head = Arena.alloc(); NodeList **Current = &Head; size_t Count = 0; while (!Error && !MangledName.startsWith('@') && !MangledName.startsWith('Z')) { ++Count; if (startsWithDigit(MangledName)) { size_t N = MangledName[0] - '0'; if (N >= Backrefs.FunctionParamCount) { Error = true; return nullptr; } MangledName = MangledName.dropFront(); *Current = Arena.alloc(); (*Current)->N = Backrefs.FunctionParams[N]; Current = &(*Current)->Next; continue; } size_t OldSize = MangledName.size(); *Current = Arena.alloc(); TypeNode *TN = demangleType(MangledName, QualifierMangleMode::Drop); if (!TN || Error) return nullptr; (*Current)->N = TN; size_t CharsConsumed = OldSize - MangledName.size(); assert(CharsConsumed != 0); // Single-letter types are ignored for backreferences because memorizing // them doesn't save anything. if (Backrefs.FunctionParamCount <= 9 && CharsConsumed > 1) Backrefs.FunctionParams[Backrefs.FunctionParamCount++] = TN; Current = &(*Current)->Next; } if (Error) return nullptr; NodeArrayNode *NA = nodeListToNodeArray(Arena, Head, Count); // A non-empty parameter list is terminated by either 'Z' (variadic) parameter // list or '@' (non variadic). Careful not to consume "@Z", as in that case // the following Z could be a throw specifier. if (MangledName.consumeFront('@')) return NA; if (MangledName.consumeFront('Z')) { IsVariadic = true; return NA; } DEMANGLE_UNREACHABLE; } NodeArrayNode * Demangler::demangleTemplateParameterList(StringView &MangledName) { NodeList *Head = nullptr; NodeList **Current = &Head; size_t Count = 0; while (!MangledName.startsWith('@')) { if (MangledName.consumeFront("$S") || MangledName.consumeFront("$$V") || MangledName.consumeFront("$$$V") || MangledName.consumeFront("$$Z")) { // parameter pack separator continue; } ++Count; // Template parameter lists don't participate in back-referencing. *Current = Arena.alloc(); NodeList &TP = **Current; TemplateParameterReferenceNode *TPRN = nullptr; if (MangledName.consumeFront("$$Y")) { // Template alias TP.N = demangleFullyQualifiedTypeName(MangledName); } else if (MangledName.consumeFront("$$B")) { // Array TP.N = demangleType(MangledName, QualifierMangleMode::Drop); } else if (MangledName.consumeFront("$$C")) { // Type has qualifiers. TP.N = demangleType(MangledName, QualifierMangleMode::Mangle); } else if (MangledName.startsWith("$1") || MangledName.startsWith("$H") || MangledName.startsWith("$I") || MangledName.startsWith("$J")) { // Pointer to member TP.N = TPRN = Arena.alloc(); TPRN->IsMemberPointer = true; MangledName = MangledName.dropFront(); // 1 - single inheritance // H - multiple inheritance // I - virtual inheritance // J - unspecified inheritance char InheritanceSpecifier = MangledName.popFront(); SymbolNode *S = nullptr; if (MangledName.startsWith('?')) { S = parse(MangledName); if (Error || !S->Name) { Error = true; return nullptr; } memorizeIdentifier(S->Name->getUnqualifiedIdentifier()); } switch (InheritanceSpecifier) { case 'J': TPRN->ThunkOffsets[TPRN->ThunkOffsetCount++] = demangleSigned(MangledName); DEMANGLE_FALLTHROUGH; case 'I': TPRN->ThunkOffsets[TPRN->ThunkOffsetCount++] = demangleSigned(MangledName); DEMANGLE_FALLTHROUGH; case 'H': TPRN->ThunkOffsets[TPRN->ThunkOffsetCount++] = demangleSigned(MangledName); DEMANGLE_FALLTHROUGH; case '1': break; default: DEMANGLE_UNREACHABLE; } TPRN->Affinity = PointerAffinity::Pointer; TPRN->Symbol = S; } else if (MangledName.startsWith("$E?")) { MangledName.consumeFront("$E"); // Reference to symbol TP.N = TPRN = Arena.alloc(); TPRN->Symbol = parse(MangledName); TPRN->Affinity = PointerAffinity::Reference; } else if (MangledName.startsWith("$F") || MangledName.startsWith("$G")) { TP.N = TPRN = Arena.alloc(); // Data member pointer. MangledName = MangledName.dropFront(); char InheritanceSpecifier = MangledName.popFront(); switch (InheritanceSpecifier) { case 'G': TPRN->ThunkOffsets[TPRN->ThunkOffsetCount++] = demangleSigned(MangledName); DEMANGLE_FALLTHROUGH; case 'F': TPRN->ThunkOffsets[TPRN->ThunkOffsetCount++] = demangleSigned(MangledName); TPRN->ThunkOffsets[TPRN->ThunkOffsetCount++] = demangleSigned(MangledName); break; default: DEMANGLE_UNREACHABLE; } TPRN->IsMemberPointer = true; } else if (MangledName.consumeFront("$0")) { // Integral non-type template parameter bool IsNegative = false; uint64_t Value = 0; std::tie(Value, IsNegative) = demangleNumber(MangledName); TP.N = Arena.alloc(Value, IsNegative); } else { TP.N = demangleType(MangledName, QualifierMangleMode::Drop); } if (Error) return nullptr; Current = &TP.Next; } // The loop above returns nullptr on Error. assert(!Error); // Template parameter lists cannot be variadic, so it can only be terminated // by @ (as opposed to 'Z' in the function parameter case). assert(MangledName.startsWith('@')); // The above loop exits only on '@'. MangledName.consumeFront('@'); return nodeListToNodeArray(Arena, Head, Count); } void Demangler::dumpBackReferences() { std::printf("%d function parameter backreferences\n", (int)Backrefs.FunctionParamCount); // Create an output stream so we can render each type. OutputStream OS; if (!initializeOutputStream(nullptr, nullptr, OS, 1024)) std::terminate(); for (size_t I = 0; I < Backrefs.FunctionParamCount; ++I) { OS.setCurrentPosition(0); TypeNode *T = Backrefs.FunctionParams[I]; T->output(OS, OF_Default); std::printf(" [%d] - %.*s\n", (int)I, (int)OS.getCurrentPosition(), OS.getBuffer()); } std::free(OS.getBuffer()); if (Backrefs.FunctionParamCount > 0) std::printf("\n"); std::printf("%d name backreferences\n", (int)Backrefs.NamesCount); for (size_t I = 0; I < Backrefs.NamesCount; ++I) { std::printf(" [%d] - %.*s\n", (int)I, (int)Backrefs.Names[I]->Name.size(), Backrefs.Names[I]->Name.begin()); } if (Backrefs.NamesCount > 0) std::printf("\n"); } char *llvm::microsoftDemangle(const char *MangledName, size_t *NMangled, char *Buf, size_t *N, int *Status, MSDemangleFlags Flags) { Demangler D; OutputStream S; StringView Name{MangledName}; SymbolNode *AST = D.parse(Name); if (!D.Error && NMangled) *NMangled = Name.begin() - MangledName; if (Flags & MSDF_DumpBackrefs) D.dumpBackReferences(); OutputFlags OF = OF_Default; if (Flags & MSDF_NoCallingConvention) OF = OutputFlags(OF | OF_NoCallingConvention); if (Flags & MSDF_NoAccessSpecifier) OF = OutputFlags(OF | OF_NoAccessSpecifier); if (Flags & MSDF_NoReturnType) OF = OutputFlags(OF | OF_NoReturnType); if (Flags & MSDF_NoMemberType) OF = OutputFlags(OF | OF_NoMemberType); int InternalStatus = demangle_success; if (D.Error) InternalStatus = demangle_invalid_mangled_name; else if (!initializeOutputStream(Buf, N, S, 1024)) InternalStatus = demangle_memory_alloc_failure; else { AST->output(S, OF); S += '\0'; if (N != nullptr) *N = S.getCurrentPosition(); Buf = S.getBuffer(); } if (Status) *Status = InternalStatus; return InternalStatus == demangle_success ? Buf : nullptr; }