; RUN: llc < %s -march=nvptx -mcpu=sm_20 | FileCheck %s target datalayout = "e-p:32:32:32-i1:8:8-i8:8:8-i16:16:16-i32:32:32-i64:64:64-f32:32:32-f64:64:64-v16:16:16-v32:32:32-v64:64:64-v128:128:128-n16:32:64" declare i16 @llvm.ctlz.i16(i16, i1) readnone declare i32 @llvm.ctlz.i32(i32, i1) readnone declare i64 @llvm.ctlz.i64(i64, i1) readnone ; There should be no difference between llvm.ctlz.i32(%a, true) and ; llvm.ctlz.i32(%a, false), as ptx's clz(0) is defined to return 0. ; CHECK-LABEL: myctlz( define i32 @myctlz(i32 %a) { ; CHECK: ld.param. ; CHECK-NEXT: clz.b32 ; CHECK-NEXT: st.param. ; CHECK-NEXT: ret; %val = call i32 @llvm.ctlz.i32(i32 %a, i1 false) readnone ret i32 %val } ; CHECK-LABEL: myctlz_2( define i32 @myctlz_2(i32 %a) { ; CHECK: ld.param. ; CHECK-NEXT: clz.b32 ; CHECK-NEXT: st.param. ; CHECK-NEXT: ret; %val = call i32 @llvm.ctlz.i32(i32 %a, i1 true) readnone ret i32 %val } ; PTX's clz.b64 returns a 32-bit value, but LLVM's intrinsic returns a 64-bit ; value, so here we have to zero-extend it. ; CHECK-LABEL: myctlz64( define i64 @myctlz64(i64 %a) { ; CHECK: ld.param. ; CHECK-NEXT: clz.b64 ; CHECK-NEXT: cvt.u64.u32 ; CHECK-NEXT: st.param. ; CHECK-NEXT: ret; %val = call i64 @llvm.ctlz.i64(i64 %a, i1 false) readnone ret i64 %val } ; CHECK-LABEL: myctlz64_2( define i64 @myctlz64_2(i64 %a) { ; CHECK: ld.param. ; CHECK-NEXT: clz.b64 ; CHECK-NEXT: cvt.u64.u32 ; CHECK-NEXT: st.param. ; CHECK-NEXT: ret; %val = call i64 @llvm.ctlz.i64(i64 %a, i1 true) readnone ret i64 %val } ; Here we truncate the 64-bit value of LLVM's ctlz intrinsic to 32 bits, the ; natural return width of ptx's clz.b64 instruction. No conversions should be ; necessary in the PTX. ; CHECK-LABEL: myctlz64_as_32( define i32 @myctlz64_as_32(i64 %a) { ; CHECK: ld.param. ; CHECK-NEXT: clz.b64 ; CHECK-NEXT: st.param. ; CHECK-NEXT: ret; %val = call i64 @llvm.ctlz.i64(i64 %a, i1 false) readnone %trunc = trunc i64 %val to i32 ret i32 %trunc } ; CHECK-LABEL: myctlz64_as_32_2( define i32 @myctlz64_as_32_2(i64 %a) { ; CHECK: ld.param. ; CHECK-NEXT: clz.b64 ; CHECK-NEXT: st.param. ; CHECK-NEXT: ret; %val = call i64 @llvm.ctlz.i64(i64 %a, i1 false) readnone %trunc = trunc i64 %val to i32 ret i32 %trunc } ; ctlz.i16 is implemented by extending the input to i32, computing the result, ; and then truncating the result back down to i16. But the NVPTX ABI ; zero-extends i16 return values to i32, so the final truncation doesn't appear ; in this function. ; CHECK-LABEL: myctlz_ret16( define i16 @myctlz_ret16(i16 %a) { ; CHECK: ld.param. ; CHECK-NEXT: cvt.u32.u16 ; CHECK-NEXT: clz.b32 ; CHECK-NEXT: sub. ; CHECK-NEXT: st.param. ; CHECK-NEXT: ret; %val = call i16 @llvm.ctlz.i16(i16 %a, i1 false) readnone ret i16 %val } ; CHECK-LABEL: myctlz_ret16_2( define i16 @myctlz_ret16_2(i16 %a) { ; CHECK: ld.param. ; CHECK-NEXT: cvt.u32.u16 ; CHECK-NEXT: clz.b32 ; CHECK-NEXT: sub. ; CHECK-NEXT: st.param. ; CHECK-NEXT: ret; %val = call i16 @llvm.ctlz.i16(i16 %a, i1 true) readnone ret i16 %val } ; Here we store the result of ctlz.16 into an i16 pointer, so the trunc should ; remain. ; CHECK-LABEL: myctlz_store16( define void @myctlz_store16(i16 %a, i16* %b) { ; CHECK: ld.param. ; CHECK-NEXT: cvt.u32.u16 ; CHECK-NET: clz.b32 ; CHECK-DAG: cvt.u16.u32 ; CHECK-DAG: sub. ; CHECK: st.{{[a-z]}}16 ; CHECK: ret; %val = call i16 @llvm.ctlz.i16(i16 %a, i1 false) readnone store i16 %val, i16* %b ret void } ; CHECK-LABEL: myctlz_store16_2( define void @myctlz_store16_2(i16 %a, i16* %b) { ; CHECK: ld.param. ; CHECK-NEXT: cvt.u32.u16 ; CHECK-NET: clz.b32 ; CHECK-DAG: cvt.u16.u32 ; CHECK-DAG: sub. ; CHECK: st.{{[a-z]}}16 ; CHECK: ret; %val = call i16 @llvm.ctlz.i16(i16 %a, i1 false) readnone store i16 %val, i16* %b ret void }