//===- llvm/unittest/IR/InstructionsTest.cpp - Instructions unit tests ----===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// #include "llvm/AsmParser/Parser.h" #include "llvm/IR/Instructions.h" #include "llvm/ADT/STLExtras.h" #include "llvm/Analysis/ValueTracking.h" #include "llvm/IR/BasicBlock.h" #include "llvm/IR/Constants.h" #include "llvm/IR/DataLayout.h" #include "llvm/IR/DerivedTypes.h" #include "llvm/IR/Function.h" #include "llvm/IR/IRBuilder.h" #include "llvm/IR/LLVMContext.h" #include "llvm/IR/MDBuilder.h" #include "llvm/IR/Module.h" #include "llvm/IR/NoFolder.h" #include "llvm/IR/Operator.h" #include "llvm/Support/SourceMgr.h" #include "gmock/gmock-matchers.h" #include "gtest/gtest.h" #include namespace llvm { namespace { static std::unique_ptr parseIR(LLVMContext &C, const char *IR) { SMDiagnostic Err; std::unique_ptr Mod = parseAssemblyString(IR, Err, C); if (!Mod) Err.print("InstructionsTests", errs()); return Mod; } TEST(InstructionsTest, ReturnInst) { LLVMContext C; // test for PR6589 const ReturnInst* r0 = ReturnInst::Create(C); EXPECT_EQ(r0->getNumOperands(), 0U); EXPECT_EQ(r0->op_begin(), r0->op_end()); IntegerType* Int1 = IntegerType::get(C, 1); Constant* One = ConstantInt::get(Int1, 1, true); const ReturnInst* r1 = ReturnInst::Create(C, One); EXPECT_EQ(1U, r1->getNumOperands()); User::const_op_iterator b(r1->op_begin()); EXPECT_NE(r1->op_end(), b); EXPECT_EQ(One, *b); EXPECT_EQ(One, r1->getOperand(0)); ++b; EXPECT_EQ(r1->op_end(), b); // clean up delete r0; delete r1; } // Test fixture that provides a module and a single function within it. Useful // for tests that need to refer to the function in some way. class ModuleWithFunctionTest : public testing::Test { protected: ModuleWithFunctionTest() : M(new Module("MyModule", Ctx)) { FArgTypes.push_back(Type::getInt8Ty(Ctx)); FArgTypes.push_back(Type::getInt32Ty(Ctx)); FArgTypes.push_back(Type::getInt64Ty(Ctx)); FunctionType *FTy = FunctionType::get(Type::getVoidTy(Ctx), FArgTypes, false); F = Function::Create(FTy, Function::ExternalLinkage, "", M.get()); } LLVMContext Ctx; std::unique_ptr M; SmallVector FArgTypes; Function *F; }; TEST_F(ModuleWithFunctionTest, CallInst) { Value *Args[] = {ConstantInt::get(Type::getInt8Ty(Ctx), 20), ConstantInt::get(Type::getInt32Ty(Ctx), 9999), ConstantInt::get(Type::getInt64Ty(Ctx), 42)}; std::unique_ptr Call(CallInst::Create(F, Args)); // Make sure iteration over a call's arguments works as expected. unsigned Idx = 0; for (Value *Arg : Call->arg_operands()) { EXPECT_EQ(FArgTypes[Idx], Arg->getType()); EXPECT_EQ(Call->getArgOperand(Idx)->getType(), Arg->getType()); Idx++; } } TEST_F(ModuleWithFunctionTest, InvokeInst) { BasicBlock *BB1 = BasicBlock::Create(Ctx, "", F); BasicBlock *BB2 = BasicBlock::Create(Ctx, "", F); Value *Args[] = {ConstantInt::get(Type::getInt8Ty(Ctx), 20), ConstantInt::get(Type::getInt32Ty(Ctx), 9999), ConstantInt::get(Type::getInt64Ty(Ctx), 42)}; std::unique_ptr Invoke(InvokeInst::Create(F, BB1, BB2, Args)); // Make sure iteration over invoke's arguments works as expected. unsigned Idx = 0; for (Value *Arg : Invoke->arg_operands()) { EXPECT_EQ(FArgTypes[Idx], Arg->getType()); EXPECT_EQ(Invoke->getArgOperand(Idx)->getType(), Arg->getType()); Idx++; } } TEST(InstructionsTest, BranchInst) { LLVMContext C; // Make a BasicBlocks BasicBlock* bb0 = BasicBlock::Create(C); BasicBlock* bb1 = BasicBlock::Create(C); // Mandatory BranchInst const BranchInst* b0 = BranchInst::Create(bb0); EXPECT_TRUE(b0->isUnconditional()); EXPECT_FALSE(b0->isConditional()); EXPECT_EQ(1U, b0->getNumSuccessors()); // check num operands EXPECT_EQ(1U, b0->getNumOperands()); EXPECT_NE(b0->op_begin(), b0->op_end()); EXPECT_EQ(b0->op_end(), std::next(b0->op_begin())); EXPECT_EQ(b0->op_end(), std::next(b0->op_begin())); IntegerType* Int1 = IntegerType::get(C, 1); Constant* One = ConstantInt::get(Int1, 1, true); // Conditional BranchInst BranchInst* b1 = BranchInst::Create(bb0, bb1, One); EXPECT_FALSE(b1->isUnconditional()); EXPECT_TRUE(b1->isConditional()); EXPECT_EQ(2U, b1->getNumSuccessors()); // check num operands EXPECT_EQ(3U, b1->getNumOperands()); User::const_op_iterator b(b1->op_begin()); // check COND EXPECT_NE(b, b1->op_end()); EXPECT_EQ(One, *b); EXPECT_EQ(One, b1->getOperand(0)); EXPECT_EQ(One, b1->getCondition()); ++b; // check ELSE EXPECT_EQ(bb1, *b); EXPECT_EQ(bb1, b1->getOperand(1)); EXPECT_EQ(bb1, b1->getSuccessor(1)); ++b; // check THEN EXPECT_EQ(bb0, *b); EXPECT_EQ(bb0, b1->getOperand(2)); EXPECT_EQ(bb0, b1->getSuccessor(0)); ++b; EXPECT_EQ(b1->op_end(), b); // clean up delete b0; delete b1; delete bb0; delete bb1; } TEST(InstructionsTest, CastInst) { LLVMContext C; Type *Int8Ty = Type::getInt8Ty(C); Type *Int16Ty = Type::getInt16Ty(C); Type *Int32Ty = Type::getInt32Ty(C); Type *Int64Ty = Type::getInt64Ty(C); Type *V8x8Ty = VectorType::get(Int8Ty, 8); Type *V8x64Ty = VectorType::get(Int64Ty, 8); Type *X86MMXTy = Type::getX86_MMXTy(C); Type *HalfTy = Type::getHalfTy(C); Type *FloatTy = Type::getFloatTy(C); Type *DoubleTy = Type::getDoubleTy(C); Type *V2Int32Ty = VectorType::get(Int32Ty, 2); Type *V2Int64Ty = VectorType::get(Int64Ty, 2); Type *V4Int16Ty = VectorType::get(Int16Ty, 4); Type *Int32PtrTy = PointerType::get(Int32Ty, 0); Type *Int64PtrTy = PointerType::get(Int64Ty, 0); Type *Int32PtrAS1Ty = PointerType::get(Int32Ty, 1); Type *Int64PtrAS1Ty = PointerType::get(Int64Ty, 1); Type *V2Int32PtrAS1Ty = VectorType::get(Int32PtrAS1Ty, 2); Type *V2Int64PtrAS1Ty = VectorType::get(Int64PtrAS1Ty, 2); Type *V4Int32PtrAS1Ty = VectorType::get(Int32PtrAS1Ty, 4); Type *V4Int64PtrAS1Ty = VectorType::get(Int64PtrAS1Ty, 4); Type *V2Int64PtrTy = VectorType::get(Int64PtrTy, 2); Type *V2Int32PtrTy = VectorType::get(Int32PtrTy, 2); Type *V4Int32PtrTy = VectorType::get(Int32PtrTy, 4); const Constant* c8 = Constant::getNullValue(V8x8Ty); const Constant* c64 = Constant::getNullValue(V8x64Ty); const Constant *v2ptr32 = Constant::getNullValue(V2Int32PtrTy); EXPECT_TRUE(CastInst::isCastable(V8x8Ty, X86MMXTy)); EXPECT_TRUE(CastInst::isCastable(X86MMXTy, V8x8Ty)); EXPECT_FALSE(CastInst::isCastable(Int64Ty, X86MMXTy)); EXPECT_TRUE(CastInst::isCastable(V8x64Ty, V8x8Ty)); EXPECT_TRUE(CastInst::isCastable(V8x8Ty, V8x64Ty)); EXPECT_EQ(CastInst::Trunc, CastInst::getCastOpcode(c64, true, V8x8Ty, true)); EXPECT_EQ(CastInst::SExt, CastInst::getCastOpcode(c8, true, V8x64Ty, true)); EXPECT_FALSE(CastInst::isBitCastable(V8x8Ty, X86MMXTy)); EXPECT_FALSE(CastInst::isBitCastable(X86MMXTy, V8x8Ty)); EXPECT_FALSE(CastInst::isBitCastable(Int64Ty, X86MMXTy)); EXPECT_FALSE(CastInst::isBitCastable(V8x64Ty, V8x8Ty)); EXPECT_FALSE(CastInst::isBitCastable(V8x8Ty, V8x64Ty)); // Check address space casts are rejected since we don't know the sizes here EXPECT_FALSE(CastInst::isBitCastable(Int32PtrTy, Int32PtrAS1Ty)); EXPECT_FALSE(CastInst::isBitCastable(Int32PtrAS1Ty, Int32PtrTy)); EXPECT_FALSE(CastInst::isBitCastable(V2Int32PtrTy, V2Int32PtrAS1Ty)); EXPECT_FALSE(CastInst::isBitCastable(V2Int32PtrAS1Ty, V2Int32PtrTy)); EXPECT_TRUE(CastInst::isBitCastable(V2Int32PtrAS1Ty, V2Int64PtrAS1Ty)); EXPECT_TRUE(CastInst::isCastable(V2Int32PtrAS1Ty, V2Int32PtrTy)); EXPECT_EQ(CastInst::AddrSpaceCast, CastInst::getCastOpcode(v2ptr32, true, V2Int32PtrAS1Ty, true)); // Test mismatched number of elements for pointers EXPECT_FALSE(CastInst::isBitCastable(V2Int32PtrAS1Ty, V4Int64PtrAS1Ty)); EXPECT_FALSE(CastInst::isBitCastable(V4Int64PtrAS1Ty, V2Int32PtrAS1Ty)); EXPECT_FALSE(CastInst::isBitCastable(V2Int32PtrAS1Ty, V4Int32PtrAS1Ty)); EXPECT_FALSE(CastInst::isBitCastable(Int32PtrTy, V2Int32PtrTy)); EXPECT_FALSE(CastInst::isBitCastable(V2Int32PtrTy, Int32PtrTy)); EXPECT_TRUE(CastInst::isBitCastable(Int32PtrTy, Int64PtrTy)); EXPECT_FALSE(CastInst::isBitCastable(DoubleTy, FloatTy)); EXPECT_FALSE(CastInst::isBitCastable(FloatTy, DoubleTy)); EXPECT_TRUE(CastInst::isBitCastable(FloatTy, FloatTy)); EXPECT_TRUE(CastInst::isBitCastable(FloatTy, FloatTy)); EXPECT_TRUE(CastInst::isBitCastable(FloatTy, Int32Ty)); EXPECT_TRUE(CastInst::isBitCastable(Int16Ty, HalfTy)); EXPECT_TRUE(CastInst::isBitCastable(Int32Ty, FloatTy)); EXPECT_TRUE(CastInst::isBitCastable(V2Int32Ty, Int64Ty)); EXPECT_TRUE(CastInst::isBitCastable(V2Int32Ty, V4Int16Ty)); EXPECT_FALSE(CastInst::isBitCastable(Int32Ty, Int64Ty)); EXPECT_FALSE(CastInst::isBitCastable(Int64Ty, Int32Ty)); EXPECT_FALSE(CastInst::isBitCastable(V2Int32PtrTy, Int64Ty)); EXPECT_FALSE(CastInst::isBitCastable(Int64Ty, V2Int32PtrTy)); EXPECT_TRUE(CastInst::isBitCastable(V2Int64PtrTy, V2Int32PtrTy)); EXPECT_TRUE(CastInst::isBitCastable(V2Int32PtrTy, V2Int64PtrTy)); EXPECT_FALSE(CastInst::isBitCastable(V2Int32Ty, V2Int64Ty)); EXPECT_FALSE(CastInst::isBitCastable(V2Int64Ty, V2Int32Ty)); EXPECT_FALSE(CastInst::castIsValid(Instruction::BitCast, Constant::getNullValue(V4Int32PtrTy), V2Int32PtrTy)); EXPECT_FALSE(CastInst::castIsValid(Instruction::BitCast, Constant::getNullValue(V2Int32PtrTy), V4Int32PtrTy)); EXPECT_FALSE(CastInst::castIsValid(Instruction::AddrSpaceCast, Constant::getNullValue(V4Int32PtrAS1Ty), V2Int32PtrTy)); EXPECT_FALSE(CastInst::castIsValid(Instruction::AddrSpaceCast, Constant::getNullValue(V2Int32PtrTy), V4Int32PtrAS1Ty)); // Check that assertion is not hit when creating a cast with a vector of // pointers // First form BasicBlock *BB = BasicBlock::Create(C); Constant *NullV2I32Ptr = Constant::getNullValue(V2Int32PtrTy); auto Inst1 = CastInst::CreatePointerCast(NullV2I32Ptr, V2Int32Ty, "foo", BB); // Second form auto Inst2 = CastInst::CreatePointerCast(NullV2I32Ptr, V2Int32Ty); delete Inst2; Inst1->eraseFromParent(); delete BB; } TEST(InstructionsTest, VectorGep) { LLVMContext C; // Type Definitions Type *I8Ty = IntegerType::get(C, 8); Type *I32Ty = IntegerType::get(C, 32); PointerType *Ptri8Ty = PointerType::get(I8Ty, 0); PointerType *Ptri32Ty = PointerType::get(I32Ty, 0); VectorType *V2xi8PTy = VectorType::get(Ptri8Ty, 2); VectorType *V2xi32PTy = VectorType::get(Ptri32Ty, 2); // Test different aspects of the vector-of-pointers type // and GEPs which use this type. ConstantInt *Ci32a = ConstantInt::get(C, APInt(32, 1492)); ConstantInt *Ci32b = ConstantInt::get(C, APInt(32, 1948)); std::vector ConstVa(2, Ci32a); std::vector ConstVb(2, Ci32b); Constant *C2xi32a = ConstantVector::get(ConstVa); Constant *C2xi32b = ConstantVector::get(ConstVb); CastInst *PtrVecA = new IntToPtrInst(C2xi32a, V2xi32PTy); CastInst *PtrVecB = new IntToPtrInst(C2xi32b, V2xi32PTy); ICmpInst *ICmp0 = new ICmpInst(ICmpInst::ICMP_SGT, PtrVecA, PtrVecB); ICmpInst *ICmp1 = new ICmpInst(ICmpInst::ICMP_ULT, PtrVecA, PtrVecB); EXPECT_NE(ICmp0, ICmp1); // suppress warning. BasicBlock* BB0 = BasicBlock::Create(C); // Test InsertAtEnd ICmpInst constructor. ICmpInst *ICmp2 = new ICmpInst(*BB0, ICmpInst::ICMP_SGE, PtrVecA, PtrVecB); EXPECT_NE(ICmp0, ICmp2); // suppress warning. GetElementPtrInst *Gep0 = GetElementPtrInst::Create(I32Ty, PtrVecA, C2xi32a); GetElementPtrInst *Gep1 = GetElementPtrInst::Create(I32Ty, PtrVecA, C2xi32b); GetElementPtrInst *Gep2 = GetElementPtrInst::Create(I32Ty, PtrVecB, C2xi32a); GetElementPtrInst *Gep3 = GetElementPtrInst::Create(I32Ty, PtrVecB, C2xi32b); CastInst *BTC0 = new BitCastInst(Gep0, V2xi8PTy); CastInst *BTC1 = new BitCastInst(Gep1, V2xi8PTy); CastInst *BTC2 = new BitCastInst(Gep2, V2xi8PTy); CastInst *BTC3 = new BitCastInst(Gep3, V2xi8PTy); Value *S0 = BTC0->stripPointerCasts(); Value *S1 = BTC1->stripPointerCasts(); Value *S2 = BTC2->stripPointerCasts(); Value *S3 = BTC3->stripPointerCasts(); EXPECT_NE(S0, Gep0); EXPECT_NE(S1, Gep1); EXPECT_NE(S2, Gep2); EXPECT_NE(S3, Gep3); int64_t Offset; DataLayout TD("e-p:64:64:64-i1:8:8-i8:8:8-i16:16:16-i32:32:32-i64:64:64-f3" "2:32:32-f64:64:64-v64:64:64-v128:128:128-a:0:64-s:64:64-f80" ":128:128-n8:16:32:64-S128"); // Make sure we don't crash GetPointerBaseWithConstantOffset(Gep0, Offset, TD); GetPointerBaseWithConstantOffset(Gep1, Offset, TD); GetPointerBaseWithConstantOffset(Gep2, Offset, TD); GetPointerBaseWithConstantOffset(Gep3, Offset, TD); // Gep of Geps GetElementPtrInst *GepII0 = GetElementPtrInst::Create(I32Ty, Gep0, C2xi32b); GetElementPtrInst *GepII1 = GetElementPtrInst::Create(I32Ty, Gep1, C2xi32a); GetElementPtrInst *GepII2 = GetElementPtrInst::Create(I32Ty, Gep2, C2xi32b); GetElementPtrInst *GepII3 = GetElementPtrInst::Create(I32Ty, Gep3, C2xi32a); EXPECT_EQ(GepII0->getNumIndices(), 1u); EXPECT_EQ(GepII1->getNumIndices(), 1u); EXPECT_EQ(GepII2->getNumIndices(), 1u); EXPECT_EQ(GepII3->getNumIndices(), 1u); EXPECT_FALSE(GepII0->hasAllZeroIndices()); EXPECT_FALSE(GepII1->hasAllZeroIndices()); EXPECT_FALSE(GepII2->hasAllZeroIndices()); EXPECT_FALSE(GepII3->hasAllZeroIndices()); delete GepII0; delete GepII1; delete GepII2; delete GepII3; delete BTC0; delete BTC1; delete BTC2; delete BTC3; delete Gep0; delete Gep1; delete Gep2; delete Gep3; ICmp2->eraseFromParent(); delete BB0; delete ICmp0; delete ICmp1; delete PtrVecA; delete PtrVecB; } TEST(InstructionsTest, FPMathOperator) { LLVMContext Context; IRBuilder<> Builder(Context); MDBuilder MDHelper(Context); Instruction *I = Builder.CreatePHI(Builder.getDoubleTy(), 0); MDNode *MD1 = MDHelper.createFPMath(1.0); Value *V1 = Builder.CreateFAdd(I, I, "", MD1); EXPECT_TRUE(isa(V1)); FPMathOperator *O1 = cast(V1); EXPECT_EQ(O1->getFPAccuracy(), 1.0); V1->deleteValue(); I->deleteValue(); } TEST(InstructionsTest, isEliminableCastPair) { LLVMContext C; Type* Int16Ty = Type::getInt16Ty(C); Type* Int32Ty = Type::getInt32Ty(C); Type* Int64Ty = Type::getInt64Ty(C); Type* Int64PtrTy = Type::getInt64PtrTy(C); // Source and destination pointers have same size -> bitcast. EXPECT_EQ(CastInst::isEliminableCastPair(CastInst::PtrToInt, CastInst::IntToPtr, Int64PtrTy, Int64Ty, Int64PtrTy, Int32Ty, nullptr, Int32Ty), CastInst::BitCast); // Source and destination have unknown sizes, but the same address space and // the intermediate int is the maximum pointer size -> bitcast EXPECT_EQ(CastInst::isEliminableCastPair(CastInst::PtrToInt, CastInst::IntToPtr, Int64PtrTy, Int64Ty, Int64PtrTy, nullptr, nullptr, nullptr), CastInst::BitCast); // Source and destination have unknown sizes, but the same address space and // the intermediate int is not the maximum pointer size -> nothing EXPECT_EQ(CastInst::isEliminableCastPair(CastInst::PtrToInt, CastInst::IntToPtr, Int64PtrTy, Int32Ty, Int64PtrTy, nullptr, nullptr, nullptr), 0U); // Middle pointer big enough -> bitcast. EXPECT_EQ(CastInst::isEliminableCastPair(CastInst::IntToPtr, CastInst::PtrToInt, Int64Ty, Int64PtrTy, Int64Ty, nullptr, Int64Ty, nullptr), CastInst::BitCast); // Middle pointer too small -> fail. EXPECT_EQ(CastInst::isEliminableCastPair(CastInst::IntToPtr, CastInst::PtrToInt, Int64Ty, Int64PtrTy, Int64Ty, nullptr, Int32Ty, nullptr), 0U); // Test that we don't eliminate bitcasts between different address spaces, // or if we don't have available pointer size information. DataLayout DL("e-p:32:32:32-p1:16:16:16-p2:64:64:64-i1:8:8-i8:8:8-i16:16:16" "-i32:32:32-i64:64:64-f32:32:32-f64:64:64-v64:64:64" "-v128:128:128-a:0:64-s:64:64-f80:128:128-n8:16:32:64-S128"); Type* Int64PtrTyAS1 = Type::getInt64PtrTy(C, 1); Type* Int64PtrTyAS2 = Type::getInt64PtrTy(C, 2); IntegerType *Int16SizePtr = DL.getIntPtrType(C, 1); IntegerType *Int64SizePtr = DL.getIntPtrType(C, 2); // Cannot simplify inttoptr, addrspacecast EXPECT_EQ(CastInst::isEliminableCastPair(CastInst::IntToPtr, CastInst::AddrSpaceCast, Int16Ty, Int64PtrTyAS1, Int64PtrTyAS2, nullptr, Int16SizePtr, Int64SizePtr), 0U); // Cannot simplify addrspacecast, ptrtoint EXPECT_EQ(CastInst::isEliminableCastPair(CastInst::AddrSpaceCast, CastInst::PtrToInt, Int64PtrTyAS1, Int64PtrTyAS2, Int16Ty, Int64SizePtr, Int16SizePtr, nullptr), 0U); // Pass since the bitcast address spaces are the same EXPECT_EQ(CastInst::isEliminableCastPair(CastInst::IntToPtr, CastInst::BitCast, Int16Ty, Int64PtrTyAS1, Int64PtrTyAS1, nullptr, nullptr, nullptr), CastInst::IntToPtr); } TEST(InstructionsTest, CloneCall) { LLVMContext C; Type *Int32Ty = Type::getInt32Ty(C); Type *ArgTys[] = {Int32Ty, Int32Ty, Int32Ty}; FunctionType *FnTy = FunctionType::get(Int32Ty, ArgTys, /*isVarArg=*/false); Value *Callee = Constant::getNullValue(FnTy->getPointerTo()); Value *Args[] = { ConstantInt::get(Int32Ty, 1), ConstantInt::get(Int32Ty, 2), ConstantInt::get(Int32Ty, 3) }; std::unique_ptr Call( CallInst::Create(FnTy, Callee, Args, "result")); // Test cloning the tail call kind. CallInst::TailCallKind Kinds[] = {CallInst::TCK_None, CallInst::TCK_Tail, CallInst::TCK_MustTail}; for (CallInst::TailCallKind TCK : Kinds) { Call->setTailCallKind(TCK); std::unique_ptr Clone(cast(Call->clone())); EXPECT_EQ(Call->getTailCallKind(), Clone->getTailCallKind()); } Call->setTailCallKind(CallInst::TCK_None); // Test cloning an attribute. { AttrBuilder AB; AB.addAttribute(Attribute::ReadOnly); Call->setAttributes( AttributeList::get(C, AttributeList::FunctionIndex, AB)); std::unique_ptr Clone(cast(Call->clone())); EXPECT_TRUE(Clone->onlyReadsMemory()); } } TEST(InstructionsTest, AlterCallBundles) { LLVMContext C; Type *Int32Ty = Type::getInt32Ty(C); FunctionType *FnTy = FunctionType::get(Int32Ty, Int32Ty, /*isVarArg=*/false); Value *Callee = Constant::getNullValue(FnTy->getPointerTo()); Value *Args[] = {ConstantInt::get(Int32Ty, 42)}; OperandBundleDef OldBundle("before", UndefValue::get(Int32Ty)); std::unique_ptr Call( CallInst::Create(FnTy, Callee, Args, OldBundle, "result")); Call->setTailCallKind(CallInst::TailCallKind::TCK_NoTail); AttrBuilder AB; AB.addAttribute(Attribute::Cold); Call->setAttributes(AttributeList::get(C, AttributeList::FunctionIndex, AB)); Call->setDebugLoc(DebugLoc(MDNode::get(C, None))); OperandBundleDef NewBundle("after", ConstantInt::get(Int32Ty, 7)); std::unique_ptr Clone(CallInst::Create(Call.get(), NewBundle)); EXPECT_EQ(Call->getNumArgOperands(), Clone->getNumArgOperands()); EXPECT_EQ(Call->getArgOperand(0), Clone->getArgOperand(0)); EXPECT_EQ(Call->getCallingConv(), Clone->getCallingConv()); EXPECT_EQ(Call->getTailCallKind(), Clone->getTailCallKind()); EXPECT_TRUE(Clone->hasFnAttr(Attribute::AttrKind::Cold)); EXPECT_EQ(Call->getDebugLoc(), Clone->getDebugLoc()); EXPECT_EQ(Clone->getNumOperandBundles(), 1U); EXPECT_TRUE(Clone->getOperandBundle("after").hasValue()); } TEST(InstructionsTest, AlterInvokeBundles) { LLVMContext C; Type *Int32Ty = Type::getInt32Ty(C); FunctionType *FnTy = FunctionType::get(Int32Ty, Int32Ty, /*isVarArg=*/false); Value *Callee = Constant::getNullValue(FnTy->getPointerTo()); Value *Args[] = {ConstantInt::get(Int32Ty, 42)}; std::unique_ptr NormalDest(BasicBlock::Create(C)); std::unique_ptr UnwindDest(BasicBlock::Create(C)); OperandBundleDef OldBundle("before", UndefValue::get(Int32Ty)); std::unique_ptr Invoke( InvokeInst::Create(FnTy, Callee, NormalDest.get(), UnwindDest.get(), Args, OldBundle, "result")); AttrBuilder AB; AB.addAttribute(Attribute::Cold); Invoke->setAttributes( AttributeList::get(C, AttributeList::FunctionIndex, AB)); Invoke->setDebugLoc(DebugLoc(MDNode::get(C, None))); OperandBundleDef NewBundle("after", ConstantInt::get(Int32Ty, 7)); std::unique_ptr Clone( InvokeInst::Create(Invoke.get(), NewBundle)); EXPECT_EQ(Invoke->getNormalDest(), Clone->getNormalDest()); EXPECT_EQ(Invoke->getUnwindDest(), Clone->getUnwindDest()); EXPECT_EQ(Invoke->getNumArgOperands(), Clone->getNumArgOperands()); EXPECT_EQ(Invoke->getArgOperand(0), Clone->getArgOperand(0)); EXPECT_EQ(Invoke->getCallingConv(), Clone->getCallingConv()); EXPECT_TRUE(Clone->hasFnAttr(Attribute::AttrKind::Cold)); EXPECT_EQ(Invoke->getDebugLoc(), Clone->getDebugLoc()); EXPECT_EQ(Clone->getNumOperandBundles(), 1U); EXPECT_TRUE(Clone->getOperandBundle("after").hasValue()); } TEST_F(ModuleWithFunctionTest, DropPoisonGeneratingFlags) { auto *OnlyBB = BasicBlock::Create(Ctx, "bb", F); auto *Arg0 = &*F->arg_begin(); IRBuilder B(Ctx); B.SetInsertPoint(OnlyBB); { auto *UI = cast(B.CreateUDiv(Arg0, Arg0, "", /*isExact*/ true)); ASSERT_TRUE(UI->isExact()); UI->dropPoisonGeneratingFlags(); ASSERT_FALSE(UI->isExact()); } { auto *ShrI = cast(B.CreateLShr(Arg0, Arg0, "", /*isExact*/ true)); ASSERT_TRUE(ShrI->isExact()); ShrI->dropPoisonGeneratingFlags(); ASSERT_FALSE(ShrI->isExact()); } { auto *AI = cast( B.CreateAdd(Arg0, Arg0, "", /*HasNUW*/ true, /*HasNSW*/ false)); ASSERT_TRUE(AI->hasNoUnsignedWrap()); AI->dropPoisonGeneratingFlags(); ASSERT_FALSE(AI->hasNoUnsignedWrap()); ASSERT_FALSE(AI->hasNoSignedWrap()); } { auto *SI = cast( B.CreateAdd(Arg0, Arg0, "", /*HasNUW*/ false, /*HasNSW*/ true)); ASSERT_TRUE(SI->hasNoSignedWrap()); SI->dropPoisonGeneratingFlags(); ASSERT_FALSE(SI->hasNoUnsignedWrap()); ASSERT_FALSE(SI->hasNoSignedWrap()); } { auto *ShlI = cast( B.CreateShl(Arg0, Arg0, "", /*HasNUW*/ true, /*HasNSW*/ true)); ASSERT_TRUE(ShlI->hasNoSignedWrap()); ASSERT_TRUE(ShlI->hasNoUnsignedWrap()); ShlI->dropPoisonGeneratingFlags(); ASSERT_FALSE(ShlI->hasNoUnsignedWrap()); ASSERT_FALSE(ShlI->hasNoSignedWrap()); } { Value *GEPBase = Constant::getNullValue(B.getInt8PtrTy()); auto *GI = cast( B.CreateInBoundsGEP(B.getInt8Ty(), GEPBase, Arg0)); ASSERT_TRUE(GI->isInBounds()); GI->dropPoisonGeneratingFlags(); ASSERT_FALSE(GI->isInBounds()); } } TEST(InstructionsTest, GEPIndices) { LLVMContext Context; IRBuilder Builder(Context); Type *ElementTy = Builder.getInt8Ty(); Type *ArrTy = ArrayType::get(ArrayType::get(ElementTy, 64), 64); Value *Indices[] = { Builder.getInt32(0), Builder.getInt32(13), Builder.getInt32(42) }; Value *V = Builder.CreateGEP(ArrTy, UndefValue::get(PointerType::getUnqual(ArrTy)), Indices); ASSERT_TRUE(isa(V)); auto *GEPI = cast(V); ASSERT_NE(GEPI->idx_begin(), GEPI->idx_end()); ASSERT_EQ(GEPI->idx_end(), std::next(GEPI->idx_begin(), 3)); EXPECT_EQ(Indices[0], GEPI->idx_begin()[0]); EXPECT_EQ(Indices[1], GEPI->idx_begin()[1]); EXPECT_EQ(Indices[2], GEPI->idx_begin()[2]); EXPECT_EQ(GEPI->idx_begin(), GEPI->indices().begin()); EXPECT_EQ(GEPI->idx_end(), GEPI->indices().end()); const auto *CGEPI = GEPI; ASSERT_NE(CGEPI->idx_begin(), CGEPI->idx_end()); ASSERT_EQ(CGEPI->idx_end(), std::next(CGEPI->idx_begin(), 3)); EXPECT_EQ(Indices[0], CGEPI->idx_begin()[0]); EXPECT_EQ(Indices[1], CGEPI->idx_begin()[1]); EXPECT_EQ(Indices[2], CGEPI->idx_begin()[2]); EXPECT_EQ(CGEPI->idx_begin(), CGEPI->indices().begin()); EXPECT_EQ(CGEPI->idx_end(), CGEPI->indices().end()); delete GEPI; } TEST(InstructionsTest, SwitchInst) { LLVMContext C; std::unique_ptr BB1, BB2, BB3; BB1.reset(BasicBlock::Create(C)); BB2.reset(BasicBlock::Create(C)); BB3.reset(BasicBlock::Create(C)); // We create block 0 after the others so that it gets destroyed first and // clears the uses of the other basic blocks. std::unique_ptr BB0(BasicBlock::Create(C)); auto *Int32Ty = Type::getInt32Ty(C); SwitchInst *SI = SwitchInst::Create(UndefValue::get(Int32Ty), BB0.get(), 3, BB0.get()); SI->addCase(ConstantInt::get(Int32Ty, 1), BB1.get()); SI->addCase(ConstantInt::get(Int32Ty, 2), BB2.get()); SI->addCase(ConstantInt::get(Int32Ty, 3), BB3.get()); auto CI = SI->case_begin(); ASSERT_NE(CI, SI->case_end()); EXPECT_EQ(1, CI->getCaseValue()->getSExtValue()); EXPECT_EQ(BB1.get(), CI->getCaseSuccessor()); EXPECT_EQ(2, (CI + 1)->getCaseValue()->getSExtValue()); EXPECT_EQ(BB2.get(), (CI + 1)->getCaseSuccessor()); EXPECT_EQ(3, (CI + 2)->getCaseValue()->getSExtValue()); EXPECT_EQ(BB3.get(), (CI + 2)->getCaseSuccessor()); EXPECT_EQ(CI + 1, std::next(CI)); EXPECT_EQ(CI + 2, std::next(CI, 2)); EXPECT_EQ(CI + 3, std::next(CI, 3)); EXPECT_EQ(SI->case_end(), CI + 3); EXPECT_EQ(0, CI - CI); EXPECT_EQ(1, (CI + 1) - CI); EXPECT_EQ(2, (CI + 2) - CI); EXPECT_EQ(3, SI->case_end() - CI); EXPECT_EQ(3, std::distance(CI, SI->case_end())); auto CCI = const_cast(SI)->case_begin(); SwitchInst::ConstCaseIt CCE = SI->case_end(); ASSERT_NE(CCI, SI->case_end()); EXPECT_EQ(1, CCI->getCaseValue()->getSExtValue()); EXPECT_EQ(BB1.get(), CCI->getCaseSuccessor()); EXPECT_EQ(2, (CCI + 1)->getCaseValue()->getSExtValue()); EXPECT_EQ(BB2.get(), (CCI + 1)->getCaseSuccessor()); EXPECT_EQ(3, (CCI + 2)->getCaseValue()->getSExtValue()); EXPECT_EQ(BB3.get(), (CCI + 2)->getCaseSuccessor()); EXPECT_EQ(CCI + 1, std::next(CCI)); EXPECT_EQ(CCI + 2, std::next(CCI, 2)); EXPECT_EQ(CCI + 3, std::next(CCI, 3)); EXPECT_EQ(CCE, CCI + 3); EXPECT_EQ(0, CCI - CCI); EXPECT_EQ(1, (CCI + 1) - CCI); EXPECT_EQ(2, (CCI + 2) - CCI); EXPECT_EQ(3, CCE - CCI); EXPECT_EQ(3, std::distance(CCI, CCE)); // Make sure that the const iterator is compatible with a const auto ref. const auto &Handle = *CCI; EXPECT_EQ(1, Handle.getCaseValue()->getSExtValue()); EXPECT_EQ(BB1.get(), Handle.getCaseSuccessor()); } TEST(InstructionsTest, SwitchInstProfUpdateWrapper) { LLVMContext C; std::unique_ptr BB1, BB2, BB3; BB1.reset(BasicBlock::Create(C)); BB2.reset(BasicBlock::Create(C)); BB3.reset(BasicBlock::Create(C)); // We create block 0 after the others so that it gets destroyed first and // clears the uses of the other basic blocks. std::unique_ptr BB0(BasicBlock::Create(C)); auto *Int32Ty = Type::getInt32Ty(C); SwitchInst *SI = SwitchInst::Create(UndefValue::get(Int32Ty), BB0.get(), 4, BB0.get()); SI->addCase(ConstantInt::get(Int32Ty, 1), BB1.get()); SI->addCase(ConstantInt::get(Int32Ty, 2), BB2.get()); SI->setMetadata(LLVMContext::MD_prof, MDBuilder(C).createBranchWeights({ 9, 1, 22 })); { SwitchInstProfUpdateWrapper SIW(*SI); EXPECT_EQ(*SIW.getSuccessorWeight(0), 9u); EXPECT_EQ(*SIW.getSuccessorWeight(1), 1u); EXPECT_EQ(*SIW.getSuccessorWeight(2), 22u); SIW.setSuccessorWeight(0, 99u); SIW.setSuccessorWeight(1, 11u); EXPECT_EQ(*SIW.getSuccessorWeight(0), 99u); EXPECT_EQ(*SIW.getSuccessorWeight(1), 11u); EXPECT_EQ(*SIW.getSuccessorWeight(2), 22u); } { // Create another wrapper and check that the data persist. SwitchInstProfUpdateWrapper SIW(*SI); EXPECT_EQ(*SIW.getSuccessorWeight(0), 99u); EXPECT_EQ(*SIW.getSuccessorWeight(1), 11u); EXPECT_EQ(*SIW.getSuccessorWeight(2), 22u); } } TEST(InstructionsTest, CommuteShuffleMask) { SmallVector Indices({-1, 0, 7}); ShuffleVectorInst::commuteShuffleMask(Indices, 4); EXPECT_THAT(Indices, testing::ContainerEq(ArrayRef({-1, 4, 3}))); } TEST(InstructionsTest, ShuffleMaskQueries) { // Create the elements for various constant vectors. LLVMContext Ctx; Type *Int32Ty = Type::getInt32Ty(Ctx); Constant *CU = UndefValue::get(Int32Ty); Constant *C0 = ConstantInt::get(Int32Ty, 0); Constant *C1 = ConstantInt::get(Int32Ty, 1); Constant *C2 = ConstantInt::get(Int32Ty, 2); Constant *C3 = ConstantInt::get(Int32Ty, 3); Constant *C4 = ConstantInt::get(Int32Ty, 4); Constant *C5 = ConstantInt::get(Int32Ty, 5); Constant *C6 = ConstantInt::get(Int32Ty, 6); Constant *C7 = ConstantInt::get(Int32Ty, 7); Constant *Identity = ConstantVector::get({C0, CU, C2, C3, C4}); EXPECT_TRUE(ShuffleVectorInst::isIdentityMask(Identity)); EXPECT_FALSE(ShuffleVectorInst::isSelectMask(Identity)); // identity is distinguished from select EXPECT_FALSE(ShuffleVectorInst::isReverseMask(Identity)); EXPECT_TRUE(ShuffleVectorInst::isSingleSourceMask(Identity)); // identity is always single source EXPECT_FALSE(ShuffleVectorInst::isZeroEltSplatMask(Identity)); EXPECT_FALSE(ShuffleVectorInst::isTransposeMask(Identity)); Constant *Select = ConstantVector::get({CU, C1, C5}); EXPECT_FALSE(ShuffleVectorInst::isIdentityMask(Select)); EXPECT_TRUE(ShuffleVectorInst::isSelectMask(Select)); EXPECT_FALSE(ShuffleVectorInst::isReverseMask(Select)); EXPECT_FALSE(ShuffleVectorInst::isSingleSourceMask(Select)); EXPECT_FALSE(ShuffleVectorInst::isZeroEltSplatMask(Select)); EXPECT_FALSE(ShuffleVectorInst::isTransposeMask(Select)); Constant *Reverse = ConstantVector::get({C3, C2, C1, CU}); EXPECT_FALSE(ShuffleVectorInst::isIdentityMask(Reverse)); EXPECT_FALSE(ShuffleVectorInst::isSelectMask(Reverse)); EXPECT_TRUE(ShuffleVectorInst::isReverseMask(Reverse)); EXPECT_TRUE(ShuffleVectorInst::isSingleSourceMask(Reverse)); // reverse is always single source EXPECT_FALSE(ShuffleVectorInst::isZeroEltSplatMask(Reverse)); EXPECT_FALSE(ShuffleVectorInst::isTransposeMask(Reverse)); Constant *SingleSource = ConstantVector::get({C2, C2, C0, CU}); EXPECT_FALSE(ShuffleVectorInst::isIdentityMask(SingleSource)); EXPECT_FALSE(ShuffleVectorInst::isSelectMask(SingleSource)); EXPECT_FALSE(ShuffleVectorInst::isReverseMask(SingleSource)); EXPECT_TRUE(ShuffleVectorInst::isSingleSourceMask(SingleSource)); EXPECT_FALSE(ShuffleVectorInst::isZeroEltSplatMask(SingleSource)); EXPECT_FALSE(ShuffleVectorInst::isTransposeMask(SingleSource)); Constant *ZeroEltSplat = ConstantVector::get({C0, C0, CU, C0}); EXPECT_FALSE(ShuffleVectorInst::isIdentityMask(ZeroEltSplat)); EXPECT_FALSE(ShuffleVectorInst::isSelectMask(ZeroEltSplat)); EXPECT_FALSE(ShuffleVectorInst::isReverseMask(ZeroEltSplat)); EXPECT_TRUE(ShuffleVectorInst::isSingleSourceMask(ZeroEltSplat)); // 0-splat is always single source EXPECT_TRUE(ShuffleVectorInst::isZeroEltSplatMask(ZeroEltSplat)); EXPECT_FALSE(ShuffleVectorInst::isTransposeMask(ZeroEltSplat)); Constant *Transpose = ConstantVector::get({C0, C4, C2, C6}); EXPECT_FALSE(ShuffleVectorInst::isIdentityMask(Transpose)); EXPECT_FALSE(ShuffleVectorInst::isSelectMask(Transpose)); EXPECT_FALSE(ShuffleVectorInst::isReverseMask(Transpose)); EXPECT_FALSE(ShuffleVectorInst::isSingleSourceMask(Transpose)); EXPECT_FALSE(ShuffleVectorInst::isZeroEltSplatMask(Transpose)); EXPECT_TRUE(ShuffleVectorInst::isTransposeMask(Transpose)); // More tests to make sure the logic is/stays correct... EXPECT_TRUE(ShuffleVectorInst::isIdentityMask(ConstantVector::get({CU, C1, CU, C3}))); EXPECT_TRUE(ShuffleVectorInst::isIdentityMask(ConstantVector::get({C4, CU, C6, CU}))); EXPECT_TRUE(ShuffleVectorInst::isSelectMask(ConstantVector::get({C4, C1, C6, CU}))); EXPECT_TRUE(ShuffleVectorInst::isSelectMask(ConstantVector::get({CU, C1, C6, C3}))); EXPECT_TRUE(ShuffleVectorInst::isReverseMask(ConstantVector::get({C7, C6, CU, C4}))); EXPECT_TRUE(ShuffleVectorInst::isReverseMask(ConstantVector::get({C3, CU, C1, CU}))); EXPECT_TRUE(ShuffleVectorInst::isSingleSourceMask(ConstantVector::get({C7, C5, CU, C7}))); EXPECT_TRUE(ShuffleVectorInst::isSingleSourceMask(ConstantVector::get({C3, C0, CU, C3}))); EXPECT_TRUE(ShuffleVectorInst::isZeroEltSplatMask(ConstantVector::get({C4, CU, CU, C4}))); EXPECT_TRUE(ShuffleVectorInst::isZeroEltSplatMask(ConstantVector::get({CU, C0, CU, C0}))); EXPECT_TRUE(ShuffleVectorInst::isTransposeMask(ConstantVector::get({C1, C5, C3, C7}))); EXPECT_TRUE(ShuffleVectorInst::isTransposeMask(ConstantVector::get({C1, C3}))); // Nothing special about the values here - just re-using inputs to reduce code. Constant *V0 = ConstantVector::get({C0, C1, C2, C3}); Constant *V1 = ConstantVector::get({C3, C2, C1, C0}); // Identity with undef elts. ShuffleVectorInst *Id1 = new ShuffleVectorInst(V0, V1, ConstantVector::get({C0, C1, CU, CU})); EXPECT_TRUE(Id1->isIdentity()); EXPECT_FALSE(Id1->isIdentityWithPadding()); EXPECT_FALSE(Id1->isIdentityWithExtract()); EXPECT_FALSE(Id1->isConcat()); delete Id1; // Result has less elements than operands. ShuffleVectorInst *Id2 = new ShuffleVectorInst(V0, V1, ConstantVector::get({C0, C1, C2})); EXPECT_FALSE(Id2->isIdentity()); EXPECT_FALSE(Id2->isIdentityWithPadding()); EXPECT_TRUE(Id2->isIdentityWithExtract()); EXPECT_FALSE(Id2->isConcat()); delete Id2; // Result has less elements than operands; choose from Op1. ShuffleVectorInst *Id3 = new ShuffleVectorInst(V0, V1, ConstantVector::get({C4, CU, C6})); EXPECT_FALSE(Id3->isIdentity()); EXPECT_FALSE(Id3->isIdentityWithPadding()); EXPECT_TRUE(Id3->isIdentityWithExtract()); EXPECT_FALSE(Id3->isConcat()); delete Id3; // Result has less elements than operands; choose from Op0 and Op1 is not identity. ShuffleVectorInst *Id4 = new ShuffleVectorInst(V0, V1, ConstantVector::get({C4, C1, C6})); EXPECT_FALSE(Id4->isIdentity()); EXPECT_FALSE(Id4->isIdentityWithPadding()); EXPECT_FALSE(Id4->isIdentityWithExtract()); EXPECT_FALSE(Id4->isConcat()); delete Id4; // Result has more elements than operands, and extra elements are undef. ShuffleVectorInst *Id5 = new ShuffleVectorInst(V0, V1, ConstantVector::get({CU, C1, C2, C3, CU, CU})); EXPECT_FALSE(Id5->isIdentity()); EXPECT_TRUE(Id5->isIdentityWithPadding()); EXPECT_FALSE(Id5->isIdentityWithExtract()); EXPECT_FALSE(Id5->isConcat()); delete Id5; // Result has more elements than operands, and extra elements are undef; choose from Op1. ShuffleVectorInst *Id6 = new ShuffleVectorInst(V0, V1, ConstantVector::get({C4, C5, C6, CU, CU, CU})); EXPECT_FALSE(Id6->isIdentity()); EXPECT_TRUE(Id6->isIdentityWithPadding()); EXPECT_FALSE(Id6->isIdentityWithExtract()); EXPECT_FALSE(Id6->isConcat()); delete Id6; // Result has more elements than operands, but extra elements are not undef. ShuffleVectorInst *Id7 = new ShuffleVectorInst(V0, V1, ConstantVector::get({C0, C1, C2, C3, CU, C1})); EXPECT_FALSE(Id7->isIdentity()); EXPECT_FALSE(Id7->isIdentityWithPadding()); EXPECT_FALSE(Id7->isIdentityWithExtract()); EXPECT_FALSE(Id7->isConcat()); delete Id7; // Result has more elements than operands; choose from Op0 and Op1 is not identity. ShuffleVectorInst *Id8 = new ShuffleVectorInst(V0, V1, ConstantVector::get({C4, CU, C2, C3, CU, CU})); EXPECT_FALSE(Id8->isIdentity()); EXPECT_FALSE(Id8->isIdentityWithPadding()); EXPECT_FALSE(Id8->isIdentityWithExtract()); EXPECT_FALSE(Id8->isConcat()); delete Id8; // Result has twice as many elements as operands; choose consecutively from Op0 and Op1 is concat. ShuffleVectorInst *Id9 = new ShuffleVectorInst(V0, V1, ConstantVector::get({C0, CU, C2, C3, CU, CU, C6, C7})); EXPECT_FALSE(Id9->isIdentity()); EXPECT_FALSE(Id9->isIdentityWithPadding()); EXPECT_FALSE(Id9->isIdentityWithExtract()); EXPECT_TRUE(Id9->isConcat()); delete Id9; // Result has less than twice as many elements as operands, so not a concat. ShuffleVectorInst *Id10 = new ShuffleVectorInst(V0, V1, ConstantVector::get({C0, CU, C2, C3, CU, CU, C6})); EXPECT_FALSE(Id10->isIdentity()); EXPECT_FALSE(Id10->isIdentityWithPadding()); EXPECT_FALSE(Id10->isIdentityWithExtract()); EXPECT_FALSE(Id10->isConcat()); delete Id10; // Result has more than twice as many elements as operands, so not a concat. ShuffleVectorInst *Id11 = new ShuffleVectorInst(V0, V1, ConstantVector::get({C0, CU, C2, C3, CU, CU, C6, C7, CU})); EXPECT_FALSE(Id11->isIdentity()); EXPECT_FALSE(Id11->isIdentityWithPadding()); EXPECT_FALSE(Id11->isIdentityWithExtract()); EXPECT_FALSE(Id11->isConcat()); delete Id11; // If an input is undef, it's not a concat. // TODO: IdentityWithPadding should be true here even though the high mask values are not undef. ShuffleVectorInst *Id12 = new ShuffleVectorInst(V0, ConstantVector::get({CU, CU, CU, CU}), ConstantVector::get({C0, CU, C2, C3, CU, CU, C6, C7})); EXPECT_FALSE(Id12->isIdentity()); EXPECT_FALSE(Id12->isIdentityWithPadding()); EXPECT_FALSE(Id12->isIdentityWithExtract()); EXPECT_FALSE(Id12->isConcat()); delete Id12; } TEST(InstructionsTest, GetSplat) { // Create the elements for various constant vectors. LLVMContext Ctx; Type *Int32Ty = Type::getInt32Ty(Ctx); Constant *CU = UndefValue::get(Int32Ty); Constant *C0 = ConstantInt::get(Int32Ty, 0); Constant *C1 = ConstantInt::get(Int32Ty, 1); Constant *Splat0 = ConstantVector::get({C0, C0, C0, C0}); Constant *Splat1 = ConstantVector::get({C1, C1, C1, C1 ,C1}); Constant *Splat0Undef = ConstantVector::get({C0, CU, C0, CU}); Constant *Splat1Undef = ConstantVector::get({CU, CU, C1, CU}); Constant *NotSplat = ConstantVector::get({C1, C1, C0, C1 ,C1}); Constant *NotSplatUndef = ConstantVector::get({CU, C1, CU, CU ,C0}); // Default - undefs are not allowed. EXPECT_EQ(Splat0->getSplatValue(), C0); EXPECT_EQ(Splat1->getSplatValue(), C1); EXPECT_EQ(Splat0Undef->getSplatValue(), nullptr); EXPECT_EQ(Splat1Undef->getSplatValue(), nullptr); EXPECT_EQ(NotSplat->getSplatValue(), nullptr); EXPECT_EQ(NotSplatUndef->getSplatValue(), nullptr); // Disallow undefs explicitly. EXPECT_EQ(Splat0->getSplatValue(false), C0); EXPECT_EQ(Splat1->getSplatValue(false), C1); EXPECT_EQ(Splat0Undef->getSplatValue(false), nullptr); EXPECT_EQ(Splat1Undef->getSplatValue(false), nullptr); EXPECT_EQ(NotSplat->getSplatValue(false), nullptr); EXPECT_EQ(NotSplatUndef->getSplatValue(false), nullptr); // Allow undefs. EXPECT_EQ(Splat0->getSplatValue(true), C0); EXPECT_EQ(Splat1->getSplatValue(true), C1); EXPECT_EQ(Splat0Undef->getSplatValue(true), C0); EXPECT_EQ(Splat1Undef->getSplatValue(true), C1); EXPECT_EQ(NotSplat->getSplatValue(true), nullptr); EXPECT_EQ(NotSplatUndef->getSplatValue(true), nullptr); } TEST(InstructionsTest, SkipDebug) { LLVMContext C; std::unique_ptr M = parseIR(C, R"( declare void @llvm.dbg.value(metadata, metadata, metadata) define void @f() { entry: call void @llvm.dbg.value(metadata i32 0, metadata !11, metadata !DIExpression()), !dbg !13 ret void } !llvm.dbg.cu = !{!0} !llvm.module.flags = !{!3, !4} !0 = distinct !DICompileUnit(language: DW_LANG_C99, file: !1, producer: "clang version 6.0.0", isOptimized: false, runtimeVersion: 0, emissionKind: FullDebug, enums: !2) !1 = !DIFile(filename: "t2.c", directory: "foo") !2 = !{} !3 = !{i32 2, !"Dwarf Version", i32 4} !4 = !{i32 2, !"Debug Info Version", i32 3} !8 = distinct !DISubprogram(name: "f", scope: !1, file: !1, line: 1, type: !9, isLocal: false, isDefinition: true, scopeLine: 1, isOptimized: false, unit: !0, retainedNodes: !2) !9 = !DISubroutineType(types: !10) !10 = !{null} !11 = !DILocalVariable(name: "x", scope: !8, file: !1, line: 2, type: !12) !12 = !DIBasicType(name: "int", size: 32, encoding: DW_ATE_signed) !13 = !DILocation(line: 2, column: 7, scope: !8) )"); ASSERT_TRUE(M); Function *F = cast(M->getNamedValue("f")); BasicBlock &BB = F->front(); // The first non-debug instruction is the terminator. auto *Term = BB.getTerminator(); EXPECT_EQ(Term, BB.begin()->getNextNonDebugInstruction()); EXPECT_EQ(Term->getIterator(), skipDebugIntrinsics(BB.begin())); // After the terminator, there are no non-debug instructions. EXPECT_EQ(nullptr, Term->getNextNonDebugInstruction()); } TEST(InstructionsTest, PhiMightNotBeFPMathOperator) { LLVMContext Context; IRBuilder<> Builder(Context); MDBuilder MDHelper(Context); Instruction *I = Builder.CreatePHI(Builder.getInt32Ty(), 0); EXPECT_FALSE(isa(I)); I->deleteValue(); Instruction *FP = Builder.CreatePHI(Builder.getDoubleTy(), 0); EXPECT_TRUE(isa(FP)); FP->deleteValue(); } TEST(InstructionsTest, FPCallIsFPMathOperator) { LLVMContext C; Type *ITy = Type::getInt32Ty(C); FunctionType *IFnTy = FunctionType::get(ITy, {}); Value *ICallee = Constant::getNullValue(IFnTy->getPointerTo()); std::unique_ptr ICall(CallInst::Create(IFnTy, ICallee, {}, "")); EXPECT_FALSE(isa(ICall)); Type *VITy = VectorType::get(ITy, 2); FunctionType *VIFnTy = FunctionType::get(VITy, {}); Value *VICallee = Constant::getNullValue(VIFnTy->getPointerTo()); std::unique_ptr VICall(CallInst::Create(VIFnTy, VICallee, {}, "")); EXPECT_FALSE(isa(VICall)); Type *AITy = ArrayType::get(ITy, 2); FunctionType *AIFnTy = FunctionType::get(AITy, {}); Value *AICallee = Constant::getNullValue(AIFnTy->getPointerTo()); std::unique_ptr AICall(CallInst::Create(AIFnTy, AICallee, {}, "")); EXPECT_FALSE(isa(AICall)); Type *FTy = Type::getFloatTy(C); FunctionType *FFnTy = FunctionType::get(FTy, {}); Value *FCallee = Constant::getNullValue(FFnTy->getPointerTo()); std::unique_ptr FCall(CallInst::Create(FFnTy, FCallee, {}, "")); EXPECT_TRUE(isa(FCall)); Type *VFTy = VectorType::get(FTy, 2); FunctionType *VFFnTy = FunctionType::get(VFTy, {}); Value *VFCallee = Constant::getNullValue(VFFnTy->getPointerTo()); std::unique_ptr VFCall(CallInst::Create(VFFnTy, VFCallee, {}, "")); EXPECT_TRUE(isa(VFCall)); Type *AFTy = ArrayType::get(FTy, 2); FunctionType *AFFnTy = FunctionType::get(AFTy, {}); Value *AFCallee = Constant::getNullValue(AFFnTy->getPointerTo()); std::unique_ptr AFCall(CallInst::Create(AFFnTy, AFCallee, {}, "")); EXPECT_TRUE(isa(AFCall)); Type *AVFTy = ArrayType::get(VFTy, 2); FunctionType *AVFFnTy = FunctionType::get(AVFTy, {}); Value *AVFCallee = Constant::getNullValue(AVFFnTy->getPointerTo()); std::unique_ptr AVFCall( CallInst::Create(AVFFnTy, AVFCallee, {}, "")); EXPECT_TRUE(isa(AVFCall)); Type *AAVFTy = ArrayType::get(AVFTy, 2); FunctionType *AAVFFnTy = FunctionType::get(AAVFTy, {}); Value *AAVFCallee = Constant::getNullValue(AAVFFnTy->getPointerTo()); std::unique_ptr AAVFCall( CallInst::Create(AAVFFnTy, AAVFCallee, {}, "")); EXPECT_TRUE(isa(AAVFCall)); } TEST(InstructionsTest, FNegInstruction) { LLVMContext Context; Type *FltTy = Type::getFloatTy(Context); Constant *One = ConstantFP::get(FltTy, 1.0); BinaryOperator *FAdd = BinaryOperator::CreateFAdd(One, One); FAdd->setHasNoNaNs(true); UnaryOperator *FNeg = UnaryOperator::CreateFNegFMF(One, FAdd); EXPECT_TRUE(FNeg->hasNoNaNs()); EXPECT_FALSE(FNeg->hasNoInfs()); EXPECT_FALSE(FNeg->hasNoSignedZeros()); EXPECT_FALSE(FNeg->hasAllowReciprocal()); EXPECT_FALSE(FNeg->hasAllowContract()); EXPECT_FALSE(FNeg->hasAllowReassoc()); EXPECT_FALSE(FNeg->hasApproxFunc()); FAdd->deleteValue(); FNeg->deleteValue(); } TEST(InstructionsTest, CallBrInstruction) { LLVMContext Context; std::unique_ptr M = parseIR(Context, R"( define void @foo() { entry: callbr void asm sideeffect "// XXX: ${0:l}", "X"(i8* blockaddress(@foo, %branch_test.exit)) to label %land.rhs.i [label %branch_test.exit] land.rhs.i: br label %branch_test.exit branch_test.exit: %0 = phi i1 [ true, %entry ], [ false, %land.rhs.i ] br i1 %0, label %if.end, label %if.then if.then: ret void if.end: ret void } )"); Function *Foo = M->getFunction("foo"); auto BBs = Foo->getBasicBlockList().begin(); CallBrInst &CBI = cast(BBs->front()); ++BBs; ++BBs; BasicBlock &BranchTestExit = *BBs; ++BBs; BasicBlock &IfThen = *BBs; // Test that setting the first indirect destination of callbr updates the dest EXPECT_EQ(&BranchTestExit, CBI.getIndirectDest(0)); CBI.setIndirectDest(0, &IfThen); EXPECT_EQ(&IfThen, CBI.getIndirectDest(0)); // Further, test that changing the indirect destination updates the arg // operand to use the block address of the new indirect destination basic // block. This is a critical invariant of CallBrInst. BlockAddress *IndirectBA = BlockAddress::get(CBI.getIndirectDest(0)); BlockAddress *ArgBA = cast(CBI.getArgOperand(0)); EXPECT_EQ(IndirectBA, ArgBA) << "After setting the indirect destination, callbr had an indirect " "destination of '" << CBI.getIndirectDest(0)->getName() << "', but a argument of '" << ArgBA->getBasicBlock()->getName() << "'. These should always match:\n" << CBI; EXPECT_EQ(IndirectBA->getBasicBlock(), &IfThen); EXPECT_EQ(ArgBA->getBasicBlock(), &IfThen); } TEST(InstructionsTest, UnaryOperator) { LLVMContext Context; IRBuilder<> Builder(Context); Instruction *I = Builder.CreatePHI(Builder.getDoubleTy(), 0); Value *F = Builder.CreateFNeg(I); EXPECT_TRUE(isa(F)); EXPECT_TRUE(isa(F)); EXPECT_TRUE(isa(F)); EXPECT_TRUE(isa(F)); EXPECT_FALSE(isa(F)); F->deleteValue(); I->deleteValue(); } } // end anonymous namespace } // end namespace llvm