//===- MemorySSAUpdater.h - Memory SSA Updater-------------------*- C++ -*-===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // \file // An automatic updater for MemorySSA that handles arbitrary insertion, // deletion, and moves. It performs phi insertion where necessary, and // automatically updates the MemorySSA IR to be correct. // While updating loads or removing instructions is often easy enough to not // need this, updating stores should generally not be attemped outside this // API. // // Basic API usage: // Create the memory access you want for the instruction (this is mainly so // we know where it is, without having to duplicate the entire set of create // functions MemorySSA supports). // Call insertDef or insertUse depending on whether it's a MemoryUse or a // MemoryDef. // That's it. // // For moving, first, move the instruction itself using the normal SSA // instruction moving API, then just call moveBefore, moveAfter,or moveTo with // the right arguments. // //===----------------------------------------------------------------------===// #ifndef LLVM_ANALYSIS_MEMORYSSAUPDATER_H #define LLVM_ANALYSIS_MEMORYSSAUPDATER_H #include "llvm/ADT/SmallPtrSet.h" #include "llvm/ADT/SmallSet.h" #include "llvm/ADT/SmallVector.h" #include "llvm/Analysis/MemorySSA.h" #include "llvm/IR/BasicBlock.h" #include "llvm/IR/Dominators.h" #include "llvm/IR/Module.h" #include "llvm/IR/OperandTraits.h" #include "llvm/IR/Type.h" #include "llvm/IR/Use.h" #include "llvm/IR/User.h" #include "llvm/IR/Value.h" #include "llvm/IR/ValueHandle.h" #include "llvm/Pass.h" #include "llvm/Support/Casting.h" #include "llvm/Support/ErrorHandling.h" namespace llvm { class Function; class Instruction; class MemoryAccess; class LLVMContext; class raw_ostream; class MemorySSAUpdater { private: MemorySSA *MSSA; SmallVector InsertedPHIs; SmallPtrSet VisitedBlocks; SmallSet, 8> NonOptPhis; public: MemorySSAUpdater(MemorySSA *MSSA) : MSSA(MSSA) {} /// Insert a definition into the MemorySSA IR. RenameUses will rename any use /// below the new def block (and any inserted phis). RenameUses should be set /// to true if the definition may cause new aliases for loads below it. This /// is not the case for hoisting or sinking or other forms of code *movement*. /// It *is* the case for straight code insertion. /// For example: /// store a /// if (foo) { } /// load a /// /// Moving the store into the if block, and calling insertDef, does not /// require RenameUses. /// However, changing it to: /// store a /// if (foo) { store b } /// load a /// Where a mayalias b, *does* require RenameUses be set to true. void insertDef(MemoryDef *Def, bool RenameUses = false); void insertUse(MemoryUse *Use); void moveBefore(MemoryUseOrDef *What, MemoryUseOrDef *Where); void moveAfter(MemoryUseOrDef *What, MemoryUseOrDef *Where); void moveToPlace(MemoryUseOrDef *What, BasicBlock *BB, MemorySSA::InsertionPlace Where); /// `From` block was spliced into `From` and `To`. /// Move all accesses from `From` to `To` starting at instruction `Start`. /// `To` is newly created BB, so empty of MemorySSA::MemoryAccesses. /// Edges are already updated, so successors of `To` with MPhi nodes need to /// update incoming block. /// |------| |------| /// | From | | From | /// | | |------| /// | | || /// | | => \/ /// | | |------| <- Start /// | | | To | /// |------| |------| void moveAllAfterSpliceBlocks(BasicBlock *From, BasicBlock *To, Instruction *Start); /// `From` block was merged into `To`. All instructions were moved and /// `From` is an empty block with successor edges; `From` is about to be /// deleted. Move all accesses from `From` to `To` starting at instruction /// `Start`. `To` may have multiple successors, `From` has a single /// predecessor. `From` may have successors with MPhi nodes, replace their /// incoming block with `To`. /// |------| |------| /// | To | | To | /// |------| | | /// || => | | /// \/ | | /// |------| | | <- Start /// | From | | | /// |------| |------| void moveAllAfterMergeBlocks(BasicBlock *From, BasicBlock *To, Instruction *Start); // The below are utility functions. Other than creation of accesses to pass // to insertDef, and removeAccess to remove accesses, you should generally // not attempt to update memoryssa yourself. It is very non-trivial to get // the edge cases right, and the above calls already operate in near-optimal // time bounds. /// Create a MemoryAccess in MemorySSA at a specified point in a block, /// with a specified clobbering definition. /// /// Returns the new MemoryAccess. /// This should be called when a memory instruction is created that is being /// used to replace an existing memory instruction. It will *not* create PHI /// nodes, or verify the clobbering definition. The insertion place is used /// solely to determine where in the memoryssa access lists the instruction /// will be placed. The caller is expected to keep ordering the same as /// instructions. /// It will return the new MemoryAccess. /// Note: If a MemoryAccess already exists for I, this function will make it /// inaccessible and it *must* have removeMemoryAccess called on it. MemoryAccess *createMemoryAccessInBB(Instruction *I, MemoryAccess *Definition, const BasicBlock *BB, MemorySSA::InsertionPlace Point); /// Create a MemoryAccess in MemorySSA before or after an existing /// MemoryAccess. /// /// Returns the new MemoryAccess. /// This should be called when a memory instruction is created that is being /// used to replace an existing memory instruction. It will *not* create PHI /// nodes, or verify the clobbering definition. /// /// Note: If a MemoryAccess already exists for I, this function will make it /// inaccessible and it *must* have removeMemoryAccess called on it. MemoryUseOrDef *createMemoryAccessBefore(Instruction *I, MemoryAccess *Definition, MemoryUseOrDef *InsertPt); MemoryUseOrDef *createMemoryAccessAfter(Instruction *I, MemoryAccess *Definition, MemoryAccess *InsertPt); /// Remove a MemoryAccess from MemorySSA, including updating all /// definitions and uses. /// This should be called when a memory instruction that has a MemoryAccess /// associated with it is erased from the program. For example, if a store or /// load is simply erased (not replaced), removeMemoryAccess should be called /// on the MemoryAccess for that store/load. void removeMemoryAccess(MemoryAccess *); /// Remove MemoryAccess for a given instruction, if a MemoryAccess exists. /// This should be called when an instruction (load/store) is deleted from /// the program. void removeMemoryAccess(const Instruction *I) { if (MemoryAccess *MA = MSSA->getMemoryAccess(I)) removeMemoryAccess(MA); } /// Remove all MemoryAcceses in a set of BasicBlocks about to be deleted. /// Assumption we make here: all uses of deleted defs and phi must either /// occur in blocks about to be deleted (thus will be deleted as well), or /// they occur in phis that will simply lose an incoming value. /// Deleted blocks still have successor info, but their predecessor edges and /// Phi nodes may already be updated. Instructions in DeadBlocks should be /// deleted after this call. void removeBlocks(const SmallPtrSetImpl &DeadBlocks); /// Get handle on MemorySSA. MemorySSA* getMemorySSA() const { return MSSA; } private: // Move What before Where in the MemorySSA IR. template void moveTo(MemoryUseOrDef *What, BasicBlock *BB, WhereType Where); // Move all memory accesses from `From` to `To` starting at `Start`. // Restrictions apply, see public wrappers of this method. void moveAllAccesses(BasicBlock *From, BasicBlock *To, Instruction *Start); MemoryAccess *getPreviousDef(MemoryAccess *); MemoryAccess *getPreviousDefInBlock(MemoryAccess *); MemoryAccess * getPreviousDefFromEnd(BasicBlock *, DenseMap> &); MemoryAccess * getPreviousDefRecursive(BasicBlock *, DenseMap> &); MemoryAccess *recursePhi(MemoryAccess *Phi); template MemoryAccess *tryRemoveTrivialPhi(MemoryPhi *Phi, RangeType &Operands); void fixupDefs(const SmallVectorImpl &); }; } // end namespace llvm #endif // LLVM_ANALYSIS_MEMORYSSAUPDATER_H