//===- CallSiteSplitting.cpp ----------------------------------------------===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// // // This file implements a transformation that tries to split a call-site to pass // more constrained arguments if its argument is predicated in the control flow // so that we can expose better context to the later passes (e.g, inliner, jump // threading, or IPA-CP based function cloning, etc.). // As of now we support two cases : // // 1) Try to a split call-site with constrained arguments, if any constraints // on any argument can be found by following the single predecessors of the // all site's predecessors. Currently this pass only handles call-sites with 2 // predecessors. For example, in the code below, we try to split the call-site // since we can predicate the argument(ptr) based on the OR condition. // // Split from : // if (!ptr || c) // callee(ptr); // to : // if (!ptr) // callee(null) // set the known constant value // else if (c) // callee(nonnull ptr) // set non-null attribute in the argument // // 2) We can also split a call-site based on constant incoming values of a PHI // For example, // from : // Header: // %c = icmp eq i32 %i1, %i2 // br i1 %c, label %Tail, label %TBB // TBB: // br label Tail% // Tail: // %p = phi i32 [ 0, %Header], [ 1, %TBB] // call void @bar(i32 %p) // to // Header: // %c = icmp eq i32 %i1, %i2 // br i1 %c, label %Tail-split0, label %TBB // TBB: // br label %Tail-split1 // Tail-split0: // call void @bar(i32 0) // br label %Tail // Tail-split1: // call void @bar(i32 1) // br label %Tail // Tail: // %p = phi i32 [ 0, %Tail-split0 ], [ 1, %Tail-split1 ] // //===----------------------------------------------------------------------===// #include "llvm/Transforms/Scalar/CallSiteSplitting.h" #include "llvm/ADT/Statistic.h" #include "llvm/Analysis/TargetLibraryInfo.h" #include "llvm/Analysis/TargetTransformInfo.h" #include "llvm/IR/IntrinsicInst.h" #include "llvm/IR/PatternMatch.h" #include "llvm/InitializePasses.h" #include "llvm/Support/CommandLine.h" #include "llvm/Support/Debug.h" #include "llvm/Transforms/Scalar.h" #include "llvm/Transforms/Utils/BasicBlockUtils.h" #include "llvm/Transforms/Utils/Cloning.h" #include "llvm/Transforms/Utils/Local.h" using namespace llvm; using namespace PatternMatch; #define DEBUG_TYPE "callsite-splitting" STATISTIC(NumCallSiteSplit, "Number of call-site split"); /// Only allow instructions before a call, if their CodeSize cost is below /// DuplicationThreshold. Those instructions need to be duplicated in all /// split blocks. static cl::opt DuplicationThreshold("callsite-splitting-duplication-threshold", cl::Hidden, cl::desc("Only allow instructions before a call, if " "their cost is below DuplicationThreshold"), cl::init(5)); static void addNonNullAttribute(CallBase &CB, Value *Op) { unsigned ArgNo = 0; for (auto &I : CB.args()) { if (&*I == Op) CB.addParamAttr(ArgNo, Attribute::NonNull); ++ArgNo; } } static void setConstantInArgument(CallBase &CB, Value *Op, Constant *ConstValue) { unsigned ArgNo = 0; for (auto &I : CB.args()) { if (&*I == Op) { // It is possible we have already added the non-null attribute to the // parameter by using an earlier constraining condition. CB.removeParamAttr(ArgNo, Attribute::NonNull); CB.setArgOperand(ArgNo, ConstValue); } ++ArgNo; } } static bool isCondRelevantToAnyCallArgument(ICmpInst *Cmp, CallBase &CB) { assert(isa(Cmp->getOperand(1)) && "Expected a constant operand."); Value *Op0 = Cmp->getOperand(0); unsigned ArgNo = 0; for (auto I = CB.arg_begin(), E = CB.arg_end(); I != E; ++I, ++ArgNo) { // Don't consider constant or arguments that are already known non-null. if (isa(*I) || CB.paramHasAttr(ArgNo, Attribute::NonNull)) continue; if (*I == Op0) return true; } return false; } typedef std::pair ConditionTy; typedef SmallVector ConditionsTy; /// If From has a conditional jump to To, add the condition to Conditions, /// if it is relevant to any argument at CB. static void recordCondition(CallBase &CB, BasicBlock *From, BasicBlock *To, ConditionsTy &Conditions) { auto *BI = dyn_cast(From->getTerminator()); if (!BI || !BI->isConditional()) return; CmpInst::Predicate Pred; Value *Cond = BI->getCondition(); if (!match(Cond, m_ICmp(Pred, m_Value(), m_Constant()))) return; ICmpInst *Cmp = cast(Cond); if (Pred == ICmpInst::ICMP_EQ || Pred == ICmpInst::ICMP_NE) if (isCondRelevantToAnyCallArgument(Cmp, CB)) Conditions.push_back({Cmp, From->getTerminator()->getSuccessor(0) == To ? Pred : Cmp->getInversePredicate()}); } /// Record ICmp conditions relevant to any argument in CB following Pred's /// single predecessors. If there are conflicting conditions along a path, like /// x == 1 and x == 0, the first condition will be used. We stop once we reach /// an edge to StopAt. static void recordConditions(CallBase &CB, BasicBlock *Pred, ConditionsTy &Conditions, BasicBlock *StopAt) { BasicBlock *From = Pred; BasicBlock *To = Pred; SmallPtrSet Visited; while (To != StopAt && !Visited.count(From->getSinglePredecessor()) && (From = From->getSinglePredecessor())) { recordCondition(CB, From, To, Conditions); Visited.insert(From); To = From; } } static void addConditions(CallBase &CB, const ConditionsTy &Conditions) { for (auto &Cond : Conditions) { Value *Arg = Cond.first->getOperand(0); Constant *ConstVal = cast(Cond.first->getOperand(1)); if (Cond.second == ICmpInst::ICMP_EQ) setConstantInArgument(CB, Arg, ConstVal); else if (ConstVal->getType()->isPointerTy() && ConstVal->isNullValue()) { assert(Cond.second == ICmpInst::ICMP_NE); addNonNullAttribute(CB, Arg); } } } static SmallVector getTwoPredecessors(BasicBlock *BB) { SmallVector Preds(predecessors((BB))); assert(Preds.size() == 2 && "Expected exactly 2 predecessors!"); return Preds; } static bool canSplitCallSite(CallBase &CB, TargetTransformInfo &TTI) { if (CB.isConvergent() || CB.cannotDuplicate()) return false; // FIXME: As of now we handle only CallInst. InvokeInst could be handled // without too much effort. if (!isa(CB)) return false; BasicBlock *CallSiteBB = CB.getParent(); // Need 2 predecessors and cannot split an edge from an IndirectBrInst. SmallVector Preds(predecessors(CallSiteBB)); if (Preds.size() != 2 || isa(Preds[0]->getTerminator()) || isa(Preds[1]->getTerminator())) return false; // BasicBlock::canSplitPredecessors is more aggressive, so checking for // BasicBlock::isEHPad as well. if (!CallSiteBB->canSplitPredecessors() || CallSiteBB->isEHPad()) return false; // Allow splitting a call-site only when the CodeSize cost of the // instructions before the call is less then DuplicationThreshold. The // instructions before the call will be duplicated in the split blocks and // corresponding uses will be updated. InstructionCost Cost = 0; for (auto &InstBeforeCall : llvm::make_range(CallSiteBB->begin(), CB.getIterator())) { Cost += TTI.getInstructionCost(&InstBeforeCall, TargetTransformInfo::TCK_CodeSize); if (Cost >= DuplicationThreshold) return false; } return true; } static Instruction *cloneInstForMustTail(Instruction *I, Instruction *Before, Value *V) { Instruction *Copy = I->clone(); Copy->setName(I->getName()); Copy->insertBefore(Before); if (V) Copy->setOperand(0, V); return Copy; } /// Copy mandatory `musttail` return sequence that follows original `CI`, and /// link it up to `NewCI` value instead: /// /// * (optional) `bitcast NewCI to ...` /// * `ret bitcast or NewCI` /// /// Insert this sequence right before `SplitBB`'s terminator, which will be /// cleaned up later in `splitCallSite` below. static void copyMustTailReturn(BasicBlock *SplitBB, Instruction *CI, Instruction *NewCI) { bool IsVoid = SplitBB->getParent()->getReturnType()->isVoidTy(); auto II = std::next(CI->getIterator()); BitCastInst* BCI = dyn_cast(&*II); if (BCI) ++II; ReturnInst* RI = dyn_cast(&*II); assert(RI && "`musttail` call must be followed by `ret` instruction"); Instruction *TI = SplitBB->getTerminator(); Value *V = NewCI; if (BCI) V = cloneInstForMustTail(BCI, TI, V); cloneInstForMustTail(RI, TI, IsVoid ? nullptr : V); // FIXME: remove TI here, `DuplicateInstructionsInSplitBetween` has a bug // that prevents doing this now. } /// For each (predecessor, conditions from predecessors) pair, it will split the /// basic block containing the call site, hook it up to the predecessor and /// replace the call instruction with new call instructions, which contain /// constraints based on the conditions from their predecessors. /// For example, in the IR below with an OR condition, the call-site can /// be split. In this case, Preds for Tail is [(Header, a == null), /// (TBB, a != null, b == null)]. Tail is replaced by 2 split blocks, containing /// CallInst1, which has constraints based on the conditions from Head and /// CallInst2, which has constraints based on the conditions coming from TBB. /// /// From : /// /// Header: /// %c = icmp eq i32* %a, null /// br i1 %c %Tail, %TBB /// TBB: /// %c2 = icmp eq i32* %b, null /// br i1 %c %Tail, %End /// Tail: /// %ca = call i1 @callee (i32* %a, i32* %b) /// /// to : /// /// Header: // PredBB1 is Header /// %c = icmp eq i32* %a, null /// br i1 %c %Tail-split1, %TBB /// TBB: // PredBB2 is TBB /// %c2 = icmp eq i32* %b, null /// br i1 %c %Tail-split2, %End /// Tail-split1: /// %ca1 = call @callee (i32* null, i32* %b) // CallInst1 /// br %Tail /// Tail-split2: /// %ca2 = call @callee (i32* nonnull %a, i32* null) // CallInst2 /// br %Tail /// Tail: /// %p = phi i1 [%ca1, %Tail-split1],[%ca2, %Tail-split2] /// /// Note that in case any arguments at the call-site are constrained by its /// predecessors, new call-sites with more constrained arguments will be /// created in createCallSitesOnPredicatedArgument(). static void splitCallSite( CallBase &CB, const SmallVectorImpl> &Preds, DomTreeUpdater &DTU) { BasicBlock *TailBB = CB.getParent(); bool IsMustTailCall = CB.isMustTailCall(); PHINode *CallPN = nullptr; // `musttail` calls must be followed by optional `bitcast`, and `ret`. The // split blocks will be terminated right after that so there're no users for // this phi in a `TailBB`. if (!IsMustTailCall && !CB.use_empty()) { CallPN = PHINode::Create(CB.getType(), Preds.size(), "phi.call"); CallPN->setDebugLoc(CB.getDebugLoc()); } LLVM_DEBUG(dbgs() << "split call-site : " << CB << " into \n"); assert(Preds.size() == 2 && "The ValueToValueMaps array has size 2."); // ValueToValueMapTy is neither copy nor moveable, so we use a simple array // here. ValueToValueMapTy ValueToValueMaps[2]; for (unsigned i = 0; i < Preds.size(); i++) { BasicBlock *PredBB = Preds[i].first; BasicBlock *SplitBlock = DuplicateInstructionsInSplitBetween( TailBB, PredBB, &*std::next(CB.getIterator()), ValueToValueMaps[i], DTU); assert(SplitBlock && "Unexpected new basic block split."); auto *NewCI = cast(&*std::prev(SplitBlock->getTerminator()->getIterator())); addConditions(*NewCI, Preds[i].second); // Handle PHIs used as arguments in the call-site. for (PHINode &PN : TailBB->phis()) { unsigned ArgNo = 0; for (auto &CI : CB.args()) { if (&*CI == &PN) { NewCI->setArgOperand(ArgNo, PN.getIncomingValueForBlock(SplitBlock)); } ++ArgNo; } } LLVM_DEBUG(dbgs() << " " << *NewCI << " in " << SplitBlock->getName() << "\n"); if (CallPN) CallPN->addIncoming(NewCI, SplitBlock); // Clone and place bitcast and return instructions before `TI` if (IsMustTailCall) copyMustTailReturn(SplitBlock, &CB, NewCI); } NumCallSiteSplit++; // FIXME: remove TI in `copyMustTailReturn` if (IsMustTailCall) { // Remove superfluous `br` terminators from the end of the Split blocks // NOTE: Removing terminator removes the SplitBlock from the TailBB's // predecessors. Therefore we must get complete list of Splits before // attempting removal. SmallVector Splits(predecessors((TailBB))); assert(Splits.size() == 2 && "Expected exactly 2 splits!"); for (unsigned i = 0; i < Splits.size(); i++) { Splits[i]->getTerminator()->eraseFromParent(); DTU.applyUpdatesPermissive({{DominatorTree::Delete, Splits[i], TailBB}}); } // Erase the tail block once done with musttail patching DTU.deleteBB(TailBB); return; } auto *OriginalBegin = &*TailBB->begin(); // Replace users of the original call with a PHI mering call-sites split. if (CallPN) { CallPN->insertBefore(OriginalBegin); CB.replaceAllUsesWith(CallPN); } // Remove instructions moved to split blocks from TailBB, from the duplicated // call instruction to the beginning of the basic block. If an instruction // has any uses, add a new PHI node to combine the values coming from the // split blocks. The new PHI nodes are placed before the first original // instruction, so we do not end up deleting them. By using reverse-order, we // do not introduce unnecessary PHI nodes for def-use chains from the call // instruction to the beginning of the block. auto I = CB.getReverseIterator(); while (I != TailBB->rend()) { Instruction *CurrentI = &*I++; if (!CurrentI->use_empty()) { // If an existing PHI has users after the call, there is no need to create // a new one. if (isa(CurrentI)) continue; PHINode *NewPN = PHINode::Create(CurrentI->getType(), Preds.size()); NewPN->setDebugLoc(CurrentI->getDebugLoc()); for (auto &Mapping : ValueToValueMaps) NewPN->addIncoming(Mapping[CurrentI], cast(Mapping[CurrentI])->getParent()); NewPN->insertBefore(&*TailBB->begin()); CurrentI->replaceAllUsesWith(NewPN); } CurrentI->eraseFromParent(); // We are done once we handled the first original instruction in TailBB. if (CurrentI == OriginalBegin) break; } } // Return true if the call-site has an argument which is a PHI with only // constant incoming values. static bool isPredicatedOnPHI(CallBase &CB) { BasicBlock *Parent = CB.getParent(); if (&CB != Parent->getFirstNonPHIOrDbg()) return false; for (auto &PN : Parent->phis()) { for (auto &Arg : CB.args()) { if (&*Arg != &PN) continue; assert(PN.getNumIncomingValues() == 2 && "Unexpected number of incoming values"); if (PN.getIncomingBlock(0) == PN.getIncomingBlock(1)) return false; if (PN.getIncomingValue(0) == PN.getIncomingValue(1)) continue; if (isa(PN.getIncomingValue(0)) && isa(PN.getIncomingValue(1))) return true; } } return false; } using PredsWithCondsTy = SmallVector, 2>; // Check if any of the arguments in CS are predicated on a PHI node and return // the set of predecessors we should use for splitting. static PredsWithCondsTy shouldSplitOnPHIPredicatedArgument(CallBase &CB) { if (!isPredicatedOnPHI(CB)) return {}; auto Preds = getTwoPredecessors(CB.getParent()); return {{Preds[0], {}}, {Preds[1], {}}}; } // Checks if any of the arguments in CS are predicated in a predecessor and // returns a list of predecessors with the conditions that hold on their edges // to CS. static PredsWithCondsTy shouldSplitOnPredicatedArgument(CallBase &CB, DomTreeUpdater &DTU) { auto Preds = getTwoPredecessors(CB.getParent()); if (Preds[0] == Preds[1]) return {}; // We can stop recording conditions once we reached the immediate dominator // for the block containing the call site. Conditions in predecessors of the // that node will be the same for all paths to the call site and splitting // is not beneficial. assert(DTU.hasDomTree() && "We need a DTU with a valid DT!"); auto *CSDTNode = DTU.getDomTree().getNode(CB.getParent()); BasicBlock *StopAt = CSDTNode ? CSDTNode->getIDom()->getBlock() : nullptr; SmallVector, 2> PredsCS; for (auto *Pred : make_range(Preds.rbegin(), Preds.rend())) { ConditionsTy Conditions; // Record condition on edge BB(CS) <- Pred recordCondition(CB, Pred, CB.getParent(), Conditions); // Record conditions following Pred's single predecessors. recordConditions(CB, Pred, Conditions, StopAt); PredsCS.push_back({Pred, Conditions}); } if (all_of(PredsCS, [](const std::pair &P) { return P.second.empty(); })) return {}; return PredsCS; } static bool tryToSplitCallSite(CallBase &CB, TargetTransformInfo &TTI, DomTreeUpdater &DTU) { // Check if we can split the call site. if (!CB.arg_size() || !canSplitCallSite(CB, TTI)) return false; auto PredsWithConds = shouldSplitOnPredicatedArgument(CB, DTU); if (PredsWithConds.empty()) PredsWithConds = shouldSplitOnPHIPredicatedArgument(CB); if (PredsWithConds.empty()) return false; splitCallSite(CB, PredsWithConds, DTU); return true; } static bool doCallSiteSplitting(Function &F, TargetLibraryInfo &TLI, TargetTransformInfo &TTI, DominatorTree &DT) { DomTreeUpdater DTU(&DT, DomTreeUpdater::UpdateStrategy::Lazy); bool Changed = false; for (Function::iterator BI = F.begin(), BE = F.end(); BI != BE;) { BasicBlock &BB = *BI++; auto II = BB.getFirstNonPHIOrDbg()->getIterator(); auto IE = BB.getTerminator()->getIterator(); // Iterate until we reach the terminator instruction. tryToSplitCallSite // can replace BB's terminator in case BB is a successor of itself. In that // case, IE will be invalidated and we also have to check the current // terminator. while (II != IE && &*II != BB.getTerminator()) { CallBase *CB = dyn_cast(&*II++); if (!CB || isa(CB) || isInstructionTriviallyDead(CB, &TLI)) continue; Function *Callee = CB->getCalledFunction(); if (!Callee || Callee->isDeclaration()) continue; // Successful musttail call-site splits result in erased CI and erased BB. // Check if such path is possible before attempting the splitting. bool IsMustTail = CB->isMustTailCall(); Changed |= tryToSplitCallSite(*CB, TTI, DTU); // There're no interesting instructions after this. The call site // itself might have been erased on splitting. if (IsMustTail) break; } } return Changed; } namespace { struct CallSiteSplittingLegacyPass : public FunctionPass { static char ID; CallSiteSplittingLegacyPass() : FunctionPass(ID) { initializeCallSiteSplittingLegacyPassPass(*PassRegistry::getPassRegistry()); } void getAnalysisUsage(AnalysisUsage &AU) const override { AU.addRequired(); AU.addRequired(); AU.addRequired(); AU.addPreserved(); FunctionPass::getAnalysisUsage(AU); } bool runOnFunction(Function &F) override { if (skipFunction(F)) return false; auto &TLI = getAnalysis().getTLI(F); auto &TTI = getAnalysis().getTTI(F); auto &DT = getAnalysis().getDomTree(); return doCallSiteSplitting(F, TLI, TTI, DT); } }; } // namespace char CallSiteSplittingLegacyPass::ID = 0; INITIALIZE_PASS_BEGIN(CallSiteSplittingLegacyPass, "callsite-splitting", "Call-site splitting", false, false) INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass) INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) INITIALIZE_PASS_END(CallSiteSplittingLegacyPass, "callsite-splitting", "Call-site splitting", false, false) FunctionPass *llvm::createCallSiteSplittingPass() { return new CallSiteSplittingLegacyPass(); } PreservedAnalyses CallSiteSplittingPass::run(Function &F, FunctionAnalysisManager &AM) { auto &TLI = AM.getResult(F); auto &TTI = AM.getResult(F); auto &DT = AM.getResult(F); if (!doCallSiteSplitting(F, TLI, TTI, DT)) return PreservedAnalyses::all(); PreservedAnalyses PA; PA.preserve(); return PA; }