//===- unittests/Support/EndianTest.cpp - Endian.h tests ------------------===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// #include "llvm/Support/Endian.h" #include "llvm/Support/DataTypes.h" #include "gtest/gtest.h" #include #include using namespace llvm; using namespace support; #undef max namespace { TEST(Endian, Read) { // These are 5 bytes so we can be sure at least one of the reads is unaligned. unsigned char bigval[] = {0x00, 0x01, 0x02, 0x03, 0x04}; unsigned char littleval[] = {0x00, 0x04, 0x03, 0x02, 0x01}; int32_t BigAsHost = 0x00010203; EXPECT_EQ(BigAsHost, (endian::read(bigval))); int32_t LittleAsHost = 0x02030400; EXPECT_EQ(LittleAsHost,(endian::read(littleval))); EXPECT_EQ((endian::read(bigval + 1)), (endian::read(littleval + 1))); } TEST(Endian, ReadBitAligned) { // Simple test to make sure we properly pull out the 0x0 word. unsigned char littleval[] = {0x3f, 0x00, 0x00, 0x00, 0xc0, 0xff, 0xff, 0xff}; unsigned char bigval[] = {0x00, 0x00, 0x00, 0x3f, 0xff, 0xff, 0xff, 0xc0}; EXPECT_EQ( (endian::readAtBitAlignment(&littleval[0], 6)), 0x0); EXPECT_EQ((endian::readAtBitAlignment(&bigval[0], 6)), 0x0); // Test to make sure that signed right shift of 0xf0000000 is masked // properly. unsigned char littleval2[] = {0x00, 0x00, 0x00, 0xf0, 0x00, 0x00, 0x00, 0x00}; unsigned char bigval2[] = {0xf0, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00}; EXPECT_EQ( (endian::readAtBitAlignment(&littleval2[0], 4)), 0x0f000000); EXPECT_EQ((endian::readAtBitAlignment(&bigval2[0], 4)), 0x0f000000); // Test to make sure left shift of start bit doesn't overflow. EXPECT_EQ( (endian::readAtBitAlignment(&littleval2[0], 1)), 0x78000000); EXPECT_EQ((endian::readAtBitAlignment(&bigval2[0], 1)), 0x78000000); // Test to make sure 64-bit int doesn't overflow. unsigned char littleval3[] = {0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0xf0, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00}; unsigned char bigval3[] = {0xf0, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00}; EXPECT_EQ((endian::readAtBitAlignment( &littleval3[0], 4)), 0x0f00000000000000); EXPECT_EQ( (endian::readAtBitAlignment(&bigval3[0], 4)), 0x0f00000000000000); } TEST(Endian, WriteBitAligned) { // This test ensures that signed right shift of 0xffffaa is masked // properly. unsigned char bigval[8] = {0x00}; endian::writeAtBitAlignment(bigval, (int)0xffffaaaa, 4); EXPECT_EQ(bigval[0], 0xff); EXPECT_EQ(bigval[1], 0xfa); EXPECT_EQ(bigval[2], 0xaa); EXPECT_EQ(bigval[3], 0xa0); EXPECT_EQ(bigval[4], 0x00); EXPECT_EQ(bigval[5], 0x00); EXPECT_EQ(bigval[6], 0x00); EXPECT_EQ(bigval[7], 0x0f); unsigned char littleval[8] = {0x00}; endian::writeAtBitAlignment(littleval, (int)0xffffaaaa, 4); EXPECT_EQ(littleval[0], 0xa0); EXPECT_EQ(littleval[1], 0xaa); EXPECT_EQ(littleval[2], 0xfa); EXPECT_EQ(littleval[3], 0xff); EXPECT_EQ(littleval[4], 0x0f); EXPECT_EQ(littleval[5], 0x00); EXPECT_EQ(littleval[6], 0x00); EXPECT_EQ(littleval[7], 0x00); // This test makes sure 1<<31 doesn't overflow. // Test to make sure left shift of start bit doesn't overflow. unsigned char bigval2[8] = {0x00}; endian::writeAtBitAlignment(bigval2, (int)0xffffffff, 1); EXPECT_EQ(bigval2[0], 0xff); EXPECT_EQ(bigval2[1], 0xff); EXPECT_EQ(bigval2[2], 0xff); EXPECT_EQ(bigval2[3], 0xfe); EXPECT_EQ(bigval2[4], 0x00); EXPECT_EQ(bigval2[5], 0x00); EXPECT_EQ(bigval2[6], 0x00); EXPECT_EQ(bigval2[7], 0x01); unsigned char littleval2[8] = {0x00}; endian::writeAtBitAlignment(littleval2, (int)0xffffffff, 1); EXPECT_EQ(littleval2[0], 0xfe); EXPECT_EQ(littleval2[1], 0xff); EXPECT_EQ(littleval2[2], 0xff); EXPECT_EQ(littleval2[3], 0xff); EXPECT_EQ(littleval2[4], 0x01); EXPECT_EQ(littleval2[5], 0x00); EXPECT_EQ(littleval2[6], 0x00); EXPECT_EQ(littleval2[7], 0x00); // Test to make sure 64-bit int doesn't overflow. unsigned char bigval64[16] = {0x00}; endian::writeAtBitAlignment( bigval64, (int64_t)0xffffffffffffffff, 1); EXPECT_EQ(bigval64[0], 0xff); EXPECT_EQ(bigval64[1], 0xff); EXPECT_EQ(bigval64[2], 0xff); EXPECT_EQ(bigval64[3], 0xff); EXPECT_EQ(bigval64[4], 0xff); EXPECT_EQ(bigval64[5], 0xff); EXPECT_EQ(bigval64[6], 0xff); EXPECT_EQ(bigval64[7], 0xfe); EXPECT_EQ(bigval64[8], 0x00); EXPECT_EQ(bigval64[9], 0x00); EXPECT_EQ(bigval64[10], 0x00); EXPECT_EQ(bigval64[11], 0x00); EXPECT_EQ(bigval64[12], 0x00); EXPECT_EQ(bigval64[13], 0x00); EXPECT_EQ(bigval64[14], 0x00); EXPECT_EQ(bigval64[15], 0x01); unsigned char littleval64[16] = {0x00}; endian::writeAtBitAlignment( littleval64, (int64_t)0xffffffffffffffff, 1); EXPECT_EQ(littleval64[0], 0xfe); EXPECT_EQ(littleval64[1], 0xff); EXPECT_EQ(littleval64[2], 0xff); EXPECT_EQ(littleval64[3], 0xff); EXPECT_EQ(littleval64[4], 0xff); EXPECT_EQ(littleval64[5], 0xff); EXPECT_EQ(littleval64[6], 0xff); EXPECT_EQ(littleval64[7], 0xff); EXPECT_EQ(littleval64[8], 0x01); EXPECT_EQ(littleval64[9], 0x00); EXPECT_EQ(littleval64[10], 0x00); EXPECT_EQ(littleval64[11], 0x00); EXPECT_EQ(littleval64[12], 0x00); EXPECT_EQ(littleval64[13], 0x00); EXPECT_EQ(littleval64[14], 0x00); EXPECT_EQ(littleval64[15], 0x00); } TEST(Endian, Write) { unsigned char data[5]; endian::write(data, -1362446643); EXPECT_EQ(data[0], 0xAE); EXPECT_EQ(data[1], 0xCA); EXPECT_EQ(data[2], 0xB6); EXPECT_EQ(data[3], 0xCD); endian::write(data + 1, -1362446643); EXPECT_EQ(data[1], 0xAE); EXPECT_EQ(data[2], 0xCA); EXPECT_EQ(data[3], 0xB6); EXPECT_EQ(data[4], 0xCD); endian::write(data, -1362446643); EXPECT_EQ(data[0], 0xCD); EXPECT_EQ(data[1], 0xB6); EXPECT_EQ(data[2], 0xCA); EXPECT_EQ(data[3], 0xAE); endian::write(data + 1, -1362446643); EXPECT_EQ(data[1], 0xCD); EXPECT_EQ(data[2], 0xB6); EXPECT_EQ(data[3], 0xCA); EXPECT_EQ(data[4], 0xAE); } TEST(Endian, PackedEndianSpecificIntegral) { // These are 5 bytes so we can be sure at least one of the reads is unaligned. unsigned char big[] = {0x00, 0x01, 0x02, 0x03, 0x04}; unsigned char little[] = {0x00, 0x04, 0x03, 0x02, 0x01}; big32_t *big_val = reinterpret_cast(big + 1); little32_t *little_val = reinterpret_cast(little + 1); EXPECT_EQ(*big_val, *little_val); } TEST(Endian, PacketEndianSpecificIntegralAsEnum) { enum class Test : uint16_t { ONETWO = 0x0102, TWOONE = 0x0201 }; unsigned char bytes[] = {0x01, 0x02}; using LittleTest = little_t; using BigTest = big_t; EXPECT_EQ(Test::TWOONE, *reinterpret_cast(bytes)); EXPECT_EQ(Test::ONETWO, *reinterpret_cast(bytes)); } } // end anon namespace