//===-- ELFDumper.cpp - ELF-specific dumper ---------------------*- C++ -*-===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// /// /// \file /// \brief This file implements the ELF-specific dumper for llvm-readobj. /// //===----------------------------------------------------------------------===// #include "llvm-readobj.h" #include "ARMAttributeParser.h" #include "ARMEHABIPrinter.h" #include "Error.h" #include "ObjDumper.h" #include "StackMapPrinter.h" #include "StreamWriter.h" #include "llvm/ADT/Optional.h" #include "llvm/ADT/SmallString.h" #include "llvm/ADT/StringExtras.h" #include "llvm/Object/ELFObjectFile.h" #include "llvm/Support/ARMBuildAttributes.h" #include "llvm/Support/Compiler.h" #include "llvm/Support/Format.h" #include "llvm/Support/MathExtras.h" #include "llvm/Support/MipsABIFlags.h" #include "llvm/Support/raw_ostream.h" using namespace llvm; using namespace llvm::object; using namespace ELF; #define LLVM_READOBJ_ENUM_CASE(ns, enum) \ case ns::enum: return #enum; namespace { template class ELFDumper : public ObjDumper { public: ELFDumper(const ELFFile *Obj, StreamWriter &Writer); void printFileHeaders() override; void printSections() override; void printRelocations() override; void printDynamicRelocations() override; void printSymbols() override; void printDynamicSymbols() override; void printUnwindInfo() override; void printDynamicTable() override; void printNeededLibraries() override; void printProgramHeaders() override; void printHashTable() override; void printGnuHashTable() override; void printLoadName() override; void printVersionInfo() override; void printAttributes() override; void printMipsPLTGOT() override; void printMipsABIFlags() override; void printMipsReginfo() override; void printStackMap() const override; private: typedef ELFFile ELFO; typedef typename ELFO::Elf_Shdr Elf_Shdr; typedef typename ELFO::Elf_Sym Elf_Sym; typedef typename ELFO::Elf_Dyn Elf_Dyn; typedef typename ELFO::Elf_Dyn_Range Elf_Dyn_Range; typedef typename ELFO::Elf_Rel Elf_Rel; typedef typename ELFO::Elf_Rela Elf_Rela; typedef typename ELFO::Elf_Rela_Range Elf_Rela_Range; typedef typename ELFO::Elf_Phdr Elf_Phdr; typedef typename ELFO::Elf_Half Elf_Half; typedef typename ELFO::Elf_Hash Elf_Hash; typedef typename ELFO::Elf_GnuHash Elf_GnuHash; typedef typename ELFO::Elf_Ehdr Elf_Ehdr; typedef typename ELFO::Elf_Word Elf_Word; typedef typename ELFO::uintX_t uintX_t; typedef typename ELFO::Elf_Versym Elf_Versym; typedef typename ELFO::Elf_Verneed Elf_Verneed; typedef typename ELFO::Elf_Vernaux Elf_Vernaux; typedef typename ELFO::Elf_Verdef Elf_Verdef; typedef typename ELFO::Elf_Verdaux Elf_Verdaux; /// \brief Represents a region described by entries in the .dynamic table. struct DynRegionInfo { DynRegionInfo() : Addr(nullptr), Size(0), EntSize(0) {} /// \brief Address in current address space. const void *Addr; /// \brief Size in bytes of the region. uintX_t Size; /// \brief Size of each entity in the region. uintX_t EntSize; }; void printSymbolsHelper(bool IsDynamic); void printSymbol(const Elf_Sym *Symbol, const Elf_Shdr *SymTab, StringRef StrTable, bool IsDynamic); void printRelocations(const Elf_Shdr *Sec); void printRelocation(Elf_Rela Rel, const Elf_Shdr *SymTab); void printValue(uint64_t Type, uint64_t Value); const Elf_Rela *dyn_rela_begin() const; const Elf_Rela *dyn_rela_end() const; Elf_Rela_Range dyn_relas() const; StringRef getDynamicString(uint64_t Offset) const; const Elf_Dyn *dynamic_table_begin() const { ErrorOr Ret = Obj->dynamic_table_begin(DynamicProgHeader); error(Ret.getError()); return *Ret; } const Elf_Dyn *dynamic_table_end() const { ErrorOr Ret = Obj->dynamic_table_end(DynamicProgHeader); error(Ret.getError()); return *Ret; } StringRef getSymbolVersion(StringRef StrTab, const Elf_Sym *symb, bool &IsDefault); void LoadVersionMap(); void LoadVersionNeeds(const Elf_Shdr *ec) const; void LoadVersionDefs(const Elf_Shdr *sec) const; const ELFO *Obj; DynRegionInfo DynRelaRegion; const Elf_Phdr *DynamicProgHeader = nullptr; StringRef DynamicStringTable; const Elf_Sym *DynSymStart = nullptr; StringRef SOName; const Elf_Hash *HashTable = nullptr; const Elf_GnuHash *GnuHashTable = nullptr; const Elf_Shdr *DotDynSymSec = nullptr; const Elf_Shdr *DotSymtabSec = nullptr; ArrayRef ShndxTable; const Elf_Shdr *dot_gnu_version_sec = nullptr; // .gnu.version const Elf_Shdr *dot_gnu_version_r_sec = nullptr; // .gnu.version_r const Elf_Shdr *dot_gnu_version_d_sec = nullptr; // .gnu.version_d // Records for each version index the corresponding Verdef or Vernaux entry. // This is filled the first time LoadVersionMap() is called. class VersionMapEntry : public PointerIntPair { public: // If the integer is 0, this is an Elf_Verdef*. // If the integer is 1, this is an Elf_Vernaux*. VersionMapEntry() : PointerIntPair(nullptr, 0) {} VersionMapEntry(const Elf_Verdef *verdef) : PointerIntPair(verdef, 0) {} VersionMapEntry(const Elf_Vernaux *vernaux) : PointerIntPair(vernaux, 1) {} bool isNull() const { return getPointer() == nullptr; } bool isVerdef() const { return !isNull() && getInt() == 0; } bool isVernaux() const { return !isNull() && getInt() == 1; } const Elf_Verdef *getVerdef() const { return isVerdef() ? (const Elf_Verdef *)getPointer() : nullptr; } const Elf_Vernaux *getVernaux() const { return isVernaux() ? (const Elf_Vernaux *)getPointer() : nullptr; } }; mutable SmallVector VersionMap; public: Elf_Dyn_Range dynamic_table() const { ErrorOr Ret = Obj->dynamic_table(DynamicProgHeader); error(Ret.getError()); return *Ret; } std::string getFullSymbolName(const Elf_Sym *Symbol, StringRef StrTable, bool IsDynamic); const Elf_Shdr *getDotDynSymSec() const { return DotDynSymSec; } const Elf_Shdr *getDotSymtabSec() const { return DotSymtabSec; } ArrayRef getShndxTable() { return ShndxTable; } }; template T errorOrDefault(ErrorOr Val, T Default = T()) { if (!Val) { error(Val.getError()); return Default; } return *Val; } } // namespace namespace llvm { template static std::error_code createELFDumper(const ELFFile *Obj, StreamWriter &Writer, std::unique_ptr &Result) { Result.reset(new ELFDumper(Obj, Writer)); return readobj_error::success; } std::error_code createELFDumper(const object::ObjectFile *Obj, StreamWriter &Writer, std::unique_ptr &Result) { // Little-endian 32-bit if (const ELF32LEObjectFile *ELFObj = dyn_cast(Obj)) return createELFDumper(ELFObj->getELFFile(), Writer, Result); // Big-endian 32-bit if (const ELF32BEObjectFile *ELFObj = dyn_cast(Obj)) return createELFDumper(ELFObj->getELFFile(), Writer, Result); // Little-endian 64-bit if (const ELF64LEObjectFile *ELFObj = dyn_cast(Obj)) return createELFDumper(ELFObj->getELFFile(), Writer, Result); // Big-endian 64-bit if (const ELF64BEObjectFile *ELFObj = dyn_cast(Obj)) return createELFDumper(ELFObj->getELFFile(), Writer, Result); return readobj_error::unsupported_obj_file_format; } } // namespace llvm // Iterate through the versions needed section, and place each Elf_Vernaux // in the VersionMap according to its index. template void ELFDumper::LoadVersionNeeds(const Elf_Shdr *sec) const { unsigned vn_size = sec->sh_size; // Size of section in bytes unsigned vn_count = sec->sh_info; // Number of Verneed entries const char *sec_start = (const char *)Obj->base() + sec->sh_offset; const char *sec_end = sec_start + vn_size; // The first Verneed entry is at the start of the section. const char *p = sec_start; for (unsigned i = 0; i < vn_count; i++) { if (p + sizeof(Elf_Verneed) > sec_end) report_fatal_error("Section ended unexpectedly while scanning " "version needed records."); const Elf_Verneed *vn = reinterpret_cast(p); if (vn->vn_version != ELF::VER_NEED_CURRENT) report_fatal_error("Unexpected verneed version"); // Iterate through the Vernaux entries const char *paux = p + vn->vn_aux; for (unsigned j = 0; j < vn->vn_cnt; j++) { if (paux + sizeof(Elf_Vernaux) > sec_end) report_fatal_error("Section ended unexpected while scanning auxiliary " "version needed records."); const Elf_Vernaux *vna = reinterpret_cast(paux); size_t index = vna->vna_other & ELF::VERSYM_VERSION; if (index >= VersionMap.size()) VersionMap.resize(index + 1); VersionMap[index] = VersionMapEntry(vna); paux += vna->vna_next; } p += vn->vn_next; } } // Iterate through the version definitions, and place each Elf_Verdef // in the VersionMap according to its index. template void ELFDumper::LoadVersionDefs(const Elf_Shdr *sec) const { unsigned vd_size = sec->sh_size; // Size of section in bytes unsigned vd_count = sec->sh_info; // Number of Verdef entries const char *sec_start = (const char *)Obj->base() + sec->sh_offset; const char *sec_end = sec_start + vd_size; // The first Verdef entry is at the start of the section. const char *p = sec_start; for (unsigned i = 0; i < vd_count; i++) { if (p + sizeof(Elf_Verdef) > sec_end) report_fatal_error("Section ended unexpectedly while scanning " "version definitions."); const Elf_Verdef *vd = reinterpret_cast(p); if (vd->vd_version != ELF::VER_DEF_CURRENT) report_fatal_error("Unexpected verdef version"); size_t index = vd->vd_ndx & ELF::VERSYM_VERSION; if (index >= VersionMap.size()) VersionMap.resize(index + 1); VersionMap[index] = VersionMapEntry(vd); p += vd->vd_next; } } template void ELFDumper::LoadVersionMap() { // If there is no dynamic symtab or version table, there is nothing to do. if (!DynSymStart || !dot_gnu_version_sec) return; // Has the VersionMap already been loaded? if (VersionMap.size() > 0) return; // The first two version indexes are reserved. // Index 0 is LOCAL, index 1 is GLOBAL. VersionMap.push_back(VersionMapEntry()); VersionMap.push_back(VersionMapEntry()); if (dot_gnu_version_d_sec) LoadVersionDefs(dot_gnu_version_d_sec); if (dot_gnu_version_r_sec) LoadVersionNeeds(dot_gnu_version_r_sec); } template static void printVersionSymbolSection(ELFDumper *Dumper, const ELFO *Obj, const typename ELFO::Elf_Shdr *Sec, StreamWriter &W) { DictScope SS(W, "Version symbols"); if (!Sec) return; StringRef Name = errorOrDefault(Obj->getSectionName(Sec)); W.printNumber("Section Name", Name, Sec->sh_name); W.printHex("Address", Sec->sh_addr); W.printHex("Offset", Sec->sh_offset); W.printNumber("Link", Sec->sh_link); const typename ELFO::Elf_Shdr *DynSymSec = Dumper->getDotDynSymSec(); const uint8_t *P = (const uint8_t *)Obj->base() + Sec->sh_offset; ErrorOr StrTableOrErr = Obj->getStringTableForSymtab(*DynSymSec); error(StrTableOrErr.getError()); // Same number of entries in the dynamic symbol table (DT_SYMTAB). ListScope Syms(W, "Symbols"); for (const typename ELFO::Elf_Sym &Sym : Obj->symbols(DynSymSec)) { DictScope S(W, "Symbol"); std::string FullSymbolName = Dumper->getFullSymbolName(&Sym, *StrTableOrErr, true /* IsDynamic */); W.printNumber("Version", *P); W.printString("Name", FullSymbolName); P += sizeof(typename ELFO::Elf_Half); } } template static void printVersionDefinitionSection(ELFDumper *Dumper, const ELFO *Obj, const typename ELFO::Elf_Shdr *Sec, StreamWriter &W) { DictScope SD(W, "Version definition"); if (!Sec) return; StringRef Name = errorOrDefault(Obj->getSectionName(Sec)); W.printNumber("Section Name", Name, Sec->sh_name); W.printHex("Address", Sec->sh_addr); W.printHex("Offset", Sec->sh_offset); W.printNumber("Link", Sec->sh_link); unsigned verdef_entries = 0; // The number of entries in the section SHT_GNU_verdef // is determined by DT_VERDEFNUM tag. for (const typename ELFO::Elf_Dyn &Dyn : Dumper->dynamic_table()) { if (Dyn.d_tag == DT_VERDEFNUM) verdef_entries = Dyn.d_un.d_val; } const uint8_t *SecStartAddress = (const uint8_t *)Obj->base() + Sec->sh_offset; const uint8_t *SecEndAddress = SecStartAddress + Sec->sh_size; const uint8_t *P = SecStartAddress; ErrorOr StrTabOrErr = Obj->getSection(Sec->sh_link); error(StrTabOrErr.getError()); ListScope Entries(W, "Entries"); for (unsigned i = 0; i < verdef_entries; ++i) { if (P + sizeof(typename ELFO::Elf_Verdef) > SecEndAddress) report_fatal_error("invalid offset in the section"); auto *VD = reinterpret_cast(P); DictScope Entry(W, "Entry"); W.printHex("Offset", (uintptr_t)P - (uintptr_t)SecStartAddress); W.printNumber("Rev", VD->vd_version); // FIXME: print something more readable. W.printNumber("Flags", VD->vd_flags); W.printNumber("Index", VD->vd_ndx); W.printNumber("Cnt", VD->vd_cnt); W.printString("Name", StringRef((const char *)(Obj->base() + (*StrTabOrErr)->sh_offset + VD->getAux()->vda_name))); P += VD->vd_next; } } template void ELFDumper::printVersionInfo() { // Dump version symbol section. printVersionSymbolSection(this, Obj, dot_gnu_version_sec, W); // Dump version definition section. printVersionDefinitionSection(this, Obj, dot_gnu_version_d_sec, W); } template StringRef ELFDumper::getSymbolVersion(StringRef StrTab, const Elf_Sym *symb, bool &IsDefault) { // This is a dynamic symbol. Look in the GNU symbol version table. if (!dot_gnu_version_sec) { // No version table. IsDefault = false; return StringRef(""); } // Determine the position in the symbol table of this entry. size_t entry_index = (reinterpret_cast(symb) - reinterpret_cast(DynSymStart)) / sizeof(Elf_Sym); // Get the corresponding version index entry const Elf_Versym *vs = Obj->template getEntry(dot_gnu_version_sec, entry_index); size_t version_index = vs->vs_index & ELF::VERSYM_VERSION; // Special markers for unversioned symbols. if (version_index == ELF::VER_NDX_LOCAL || version_index == ELF::VER_NDX_GLOBAL) { IsDefault = false; return StringRef(""); } // Lookup this symbol in the version table LoadVersionMap(); if (version_index >= VersionMap.size() || VersionMap[version_index].isNull()) reportError("Invalid version entry"); const VersionMapEntry &entry = VersionMap[version_index]; // Get the version name string size_t name_offset; if (entry.isVerdef()) { // The first Verdaux entry holds the name. name_offset = entry.getVerdef()->getAux()->vda_name; IsDefault = !(vs->vs_index & ELF::VERSYM_HIDDEN); } else { name_offset = entry.getVernaux()->vna_name; IsDefault = false; } if (name_offset >= StrTab.size()) reportError("Invalid string offset"); return StringRef(StrTab.data() + name_offset); } template std::string ELFDumper::getFullSymbolName(const Elf_Sym *Symbol, StringRef StrTable, bool IsDynamic) { StringRef SymbolName = errorOrDefault(Symbol->getName(StrTable)); if (!IsDynamic) return SymbolName; std::string FullSymbolName(SymbolName); bool IsDefault; StringRef Version = getSymbolVersion(StrTable, &*Symbol, IsDefault); FullSymbolName += (IsDefault ? "@@" : "@"); FullSymbolName += Version; return FullSymbolName; } template static void getSectionNameIndex(const ELFO &Obj, const typename ELFO::Elf_Sym *Symbol, const typename ELFO::Elf_Shdr *SymTab, ArrayRef ShndxTable, StringRef &SectionName, unsigned &SectionIndex) { SectionIndex = Symbol->st_shndx; if (Symbol->isUndefined()) SectionName = "Undefined"; else if (Symbol->isProcessorSpecific()) SectionName = "Processor Specific"; else if (Symbol->isOSSpecific()) SectionName = "Operating System Specific"; else if (Symbol->isAbsolute()) SectionName = "Absolute"; else if (Symbol->isCommon()) SectionName = "Common"; else if (Symbol->isReserved() && SectionIndex != SHN_XINDEX) SectionName = "Reserved"; else { if (SectionIndex == SHN_XINDEX) SectionIndex = Obj.getExtendedSymbolTableIndex(Symbol, SymTab, ShndxTable); ErrorOr Sec = Obj.getSection(SectionIndex); error(Sec.getError()); SectionName = errorOrDefault(Obj.getSectionName(*Sec)); } } template static const typename ELFO::Elf_Shdr *findSectionByAddress(const ELFO *Obj, uint64_t Addr) { for (const auto &Shdr : Obj->sections()) if (Shdr.sh_addr == Addr) return &Shdr; return nullptr; } template static const typename ELFO::Elf_Shdr *findSectionByName(const ELFO &Obj, StringRef Name) { for (const auto &Shdr : Obj.sections()) { if (Name == errorOrDefault(Obj.getSectionName(&Shdr))) return &Shdr; } return nullptr; } static const EnumEntry ElfClass[] = { { "None", ELF::ELFCLASSNONE }, { "32-bit", ELF::ELFCLASS32 }, { "64-bit", ELF::ELFCLASS64 }, }; static const EnumEntry ElfDataEncoding[] = { { "None", ELF::ELFDATANONE }, { "LittleEndian", ELF::ELFDATA2LSB }, { "BigEndian", ELF::ELFDATA2MSB }, }; static const EnumEntry ElfObjectFileType[] = { { "None", ELF::ET_NONE }, { "Relocatable", ELF::ET_REL }, { "Executable", ELF::ET_EXEC }, { "SharedObject", ELF::ET_DYN }, { "Core", ELF::ET_CORE }, }; static const EnumEntry ElfOSABI[] = { { "SystemV", ELF::ELFOSABI_NONE }, { "HPUX", ELF::ELFOSABI_HPUX }, { "NetBSD", ELF::ELFOSABI_NETBSD }, { "GNU/Linux", ELF::ELFOSABI_LINUX }, { "GNU/Hurd", ELF::ELFOSABI_HURD }, { "Solaris", ELF::ELFOSABI_SOLARIS }, { "AIX", ELF::ELFOSABI_AIX }, { "IRIX", ELF::ELFOSABI_IRIX }, { "FreeBSD", ELF::ELFOSABI_FREEBSD }, { "TRU64", ELF::ELFOSABI_TRU64 }, { "Modesto", ELF::ELFOSABI_MODESTO }, { "OpenBSD", ELF::ELFOSABI_OPENBSD }, { "OpenVMS", ELF::ELFOSABI_OPENVMS }, { "NSK", ELF::ELFOSABI_NSK }, { "AROS", ELF::ELFOSABI_AROS }, { "FenixOS", ELF::ELFOSABI_FENIXOS }, { "CloudABI", ELF::ELFOSABI_CLOUDABI }, { "C6000_ELFABI", ELF::ELFOSABI_C6000_ELFABI }, { "C6000_LINUX" , ELF::ELFOSABI_C6000_LINUX }, { "ARM", ELF::ELFOSABI_ARM }, { "Standalone" , ELF::ELFOSABI_STANDALONE } }; static const EnumEntry ElfMachineType[] = { LLVM_READOBJ_ENUM_ENT(ELF, EM_NONE ), LLVM_READOBJ_ENUM_ENT(ELF, EM_M32 ), LLVM_READOBJ_ENUM_ENT(ELF, EM_SPARC ), LLVM_READOBJ_ENUM_ENT(ELF, EM_386 ), LLVM_READOBJ_ENUM_ENT(ELF, EM_68K ), LLVM_READOBJ_ENUM_ENT(ELF, EM_88K ), LLVM_READOBJ_ENUM_ENT(ELF, EM_IAMCU ), LLVM_READOBJ_ENUM_ENT(ELF, EM_860 ), LLVM_READOBJ_ENUM_ENT(ELF, EM_MIPS ), LLVM_READOBJ_ENUM_ENT(ELF, EM_S370 ), LLVM_READOBJ_ENUM_ENT(ELF, EM_MIPS_RS3_LE ), LLVM_READOBJ_ENUM_ENT(ELF, EM_PARISC ), LLVM_READOBJ_ENUM_ENT(ELF, EM_VPP500 ), LLVM_READOBJ_ENUM_ENT(ELF, EM_SPARC32PLUS ), LLVM_READOBJ_ENUM_ENT(ELF, EM_960 ), LLVM_READOBJ_ENUM_ENT(ELF, EM_PPC ), LLVM_READOBJ_ENUM_ENT(ELF, EM_PPC64 ), LLVM_READOBJ_ENUM_ENT(ELF, EM_S390 ), LLVM_READOBJ_ENUM_ENT(ELF, EM_SPU ), LLVM_READOBJ_ENUM_ENT(ELF, EM_V800 ), LLVM_READOBJ_ENUM_ENT(ELF, EM_FR20 ), LLVM_READOBJ_ENUM_ENT(ELF, EM_RH32 ), LLVM_READOBJ_ENUM_ENT(ELF, EM_RCE ), LLVM_READOBJ_ENUM_ENT(ELF, EM_ARM ), LLVM_READOBJ_ENUM_ENT(ELF, EM_ALPHA ), LLVM_READOBJ_ENUM_ENT(ELF, EM_SH ), LLVM_READOBJ_ENUM_ENT(ELF, EM_SPARCV9 ), LLVM_READOBJ_ENUM_ENT(ELF, EM_TRICORE ), LLVM_READOBJ_ENUM_ENT(ELF, EM_ARC ), LLVM_READOBJ_ENUM_ENT(ELF, EM_H8_300 ), LLVM_READOBJ_ENUM_ENT(ELF, EM_H8_300H ), LLVM_READOBJ_ENUM_ENT(ELF, EM_H8S ), LLVM_READOBJ_ENUM_ENT(ELF, EM_H8_500 ), LLVM_READOBJ_ENUM_ENT(ELF, EM_IA_64 ), LLVM_READOBJ_ENUM_ENT(ELF, EM_MIPS_X ), LLVM_READOBJ_ENUM_ENT(ELF, EM_COLDFIRE ), LLVM_READOBJ_ENUM_ENT(ELF, EM_68HC12 ), LLVM_READOBJ_ENUM_ENT(ELF, EM_MMA ), LLVM_READOBJ_ENUM_ENT(ELF, EM_PCP ), LLVM_READOBJ_ENUM_ENT(ELF, EM_NCPU ), LLVM_READOBJ_ENUM_ENT(ELF, EM_NDR1 ), LLVM_READOBJ_ENUM_ENT(ELF, EM_STARCORE ), LLVM_READOBJ_ENUM_ENT(ELF, EM_ME16 ), LLVM_READOBJ_ENUM_ENT(ELF, EM_ST100 ), LLVM_READOBJ_ENUM_ENT(ELF, EM_TINYJ ), LLVM_READOBJ_ENUM_ENT(ELF, EM_X86_64 ), LLVM_READOBJ_ENUM_ENT(ELF, EM_PDSP ), LLVM_READOBJ_ENUM_ENT(ELF, EM_PDP10 ), LLVM_READOBJ_ENUM_ENT(ELF, EM_PDP11 ), LLVM_READOBJ_ENUM_ENT(ELF, EM_FX66 ), LLVM_READOBJ_ENUM_ENT(ELF, EM_ST9PLUS ), LLVM_READOBJ_ENUM_ENT(ELF, EM_ST7 ), LLVM_READOBJ_ENUM_ENT(ELF, EM_68HC16 ), LLVM_READOBJ_ENUM_ENT(ELF, EM_68HC11 ), LLVM_READOBJ_ENUM_ENT(ELF, EM_68HC08 ), LLVM_READOBJ_ENUM_ENT(ELF, EM_68HC05 ), LLVM_READOBJ_ENUM_ENT(ELF, EM_SVX ), LLVM_READOBJ_ENUM_ENT(ELF, EM_ST19 ), LLVM_READOBJ_ENUM_ENT(ELF, EM_VAX ), LLVM_READOBJ_ENUM_ENT(ELF, EM_CRIS ), LLVM_READOBJ_ENUM_ENT(ELF, EM_JAVELIN ), LLVM_READOBJ_ENUM_ENT(ELF, EM_FIREPATH ), LLVM_READOBJ_ENUM_ENT(ELF, EM_ZSP ), LLVM_READOBJ_ENUM_ENT(ELF, EM_MMIX ), LLVM_READOBJ_ENUM_ENT(ELF, EM_HUANY ), LLVM_READOBJ_ENUM_ENT(ELF, EM_PRISM ), LLVM_READOBJ_ENUM_ENT(ELF, EM_AVR ), LLVM_READOBJ_ENUM_ENT(ELF, EM_FR30 ), LLVM_READOBJ_ENUM_ENT(ELF, EM_D10V ), LLVM_READOBJ_ENUM_ENT(ELF, EM_D30V ), LLVM_READOBJ_ENUM_ENT(ELF, EM_V850 ), LLVM_READOBJ_ENUM_ENT(ELF, EM_M32R ), LLVM_READOBJ_ENUM_ENT(ELF, EM_MN10300 ), LLVM_READOBJ_ENUM_ENT(ELF, EM_MN10200 ), LLVM_READOBJ_ENUM_ENT(ELF, EM_PJ ), LLVM_READOBJ_ENUM_ENT(ELF, EM_OPENRISC ), LLVM_READOBJ_ENUM_ENT(ELF, EM_ARC_COMPACT ), LLVM_READOBJ_ENUM_ENT(ELF, EM_XTENSA ), LLVM_READOBJ_ENUM_ENT(ELF, EM_VIDEOCORE ), LLVM_READOBJ_ENUM_ENT(ELF, EM_TMM_GPP ), LLVM_READOBJ_ENUM_ENT(ELF, EM_NS32K ), LLVM_READOBJ_ENUM_ENT(ELF, EM_TPC ), LLVM_READOBJ_ENUM_ENT(ELF, EM_SNP1K ), LLVM_READOBJ_ENUM_ENT(ELF, EM_ST200 ), LLVM_READOBJ_ENUM_ENT(ELF, EM_IP2K ), LLVM_READOBJ_ENUM_ENT(ELF, EM_MAX ), LLVM_READOBJ_ENUM_ENT(ELF, EM_CR ), LLVM_READOBJ_ENUM_ENT(ELF, EM_F2MC16 ), LLVM_READOBJ_ENUM_ENT(ELF, EM_MSP430 ), LLVM_READOBJ_ENUM_ENT(ELF, EM_BLACKFIN ), LLVM_READOBJ_ENUM_ENT(ELF, EM_SE_C33 ), LLVM_READOBJ_ENUM_ENT(ELF, EM_SEP ), LLVM_READOBJ_ENUM_ENT(ELF, EM_ARCA ), LLVM_READOBJ_ENUM_ENT(ELF, EM_UNICORE ), LLVM_READOBJ_ENUM_ENT(ELF, EM_EXCESS ), LLVM_READOBJ_ENUM_ENT(ELF, EM_DXP ), LLVM_READOBJ_ENUM_ENT(ELF, EM_ALTERA_NIOS2 ), LLVM_READOBJ_ENUM_ENT(ELF, EM_CRX ), LLVM_READOBJ_ENUM_ENT(ELF, EM_XGATE ), LLVM_READOBJ_ENUM_ENT(ELF, EM_C166 ), LLVM_READOBJ_ENUM_ENT(ELF, EM_M16C ), LLVM_READOBJ_ENUM_ENT(ELF, EM_DSPIC30F ), LLVM_READOBJ_ENUM_ENT(ELF, EM_CE ), LLVM_READOBJ_ENUM_ENT(ELF, EM_M32C ), LLVM_READOBJ_ENUM_ENT(ELF, EM_TSK3000 ), LLVM_READOBJ_ENUM_ENT(ELF, EM_RS08 ), LLVM_READOBJ_ENUM_ENT(ELF, EM_SHARC ), LLVM_READOBJ_ENUM_ENT(ELF, EM_ECOG2 ), LLVM_READOBJ_ENUM_ENT(ELF, EM_SCORE7 ), LLVM_READOBJ_ENUM_ENT(ELF, EM_DSP24 ), LLVM_READOBJ_ENUM_ENT(ELF, EM_VIDEOCORE3 ), LLVM_READOBJ_ENUM_ENT(ELF, EM_LATTICEMICO32), LLVM_READOBJ_ENUM_ENT(ELF, EM_SE_C17 ), LLVM_READOBJ_ENUM_ENT(ELF, EM_TI_C6000 ), LLVM_READOBJ_ENUM_ENT(ELF, EM_TI_C2000 ), LLVM_READOBJ_ENUM_ENT(ELF, EM_TI_C5500 ), LLVM_READOBJ_ENUM_ENT(ELF, EM_MMDSP_PLUS ), LLVM_READOBJ_ENUM_ENT(ELF, EM_CYPRESS_M8C ), LLVM_READOBJ_ENUM_ENT(ELF, EM_R32C ), LLVM_READOBJ_ENUM_ENT(ELF, EM_TRIMEDIA ), LLVM_READOBJ_ENUM_ENT(ELF, EM_HEXAGON ), LLVM_READOBJ_ENUM_ENT(ELF, EM_8051 ), LLVM_READOBJ_ENUM_ENT(ELF, EM_STXP7X ), LLVM_READOBJ_ENUM_ENT(ELF, EM_NDS32 ), LLVM_READOBJ_ENUM_ENT(ELF, EM_ECOG1 ), LLVM_READOBJ_ENUM_ENT(ELF, EM_ECOG1X ), LLVM_READOBJ_ENUM_ENT(ELF, EM_MAXQ30 ), LLVM_READOBJ_ENUM_ENT(ELF, EM_XIMO16 ), LLVM_READOBJ_ENUM_ENT(ELF, EM_MANIK ), LLVM_READOBJ_ENUM_ENT(ELF, EM_CRAYNV2 ), LLVM_READOBJ_ENUM_ENT(ELF, EM_RX ), LLVM_READOBJ_ENUM_ENT(ELF, EM_METAG ), LLVM_READOBJ_ENUM_ENT(ELF, EM_MCST_ELBRUS ), LLVM_READOBJ_ENUM_ENT(ELF, EM_ECOG16 ), LLVM_READOBJ_ENUM_ENT(ELF, EM_CR16 ), LLVM_READOBJ_ENUM_ENT(ELF, EM_ETPU ), LLVM_READOBJ_ENUM_ENT(ELF, EM_SLE9X ), LLVM_READOBJ_ENUM_ENT(ELF, EM_L10M ), LLVM_READOBJ_ENUM_ENT(ELF, EM_K10M ), LLVM_READOBJ_ENUM_ENT(ELF, EM_AARCH64 ), LLVM_READOBJ_ENUM_ENT(ELF, EM_AVR32 ), LLVM_READOBJ_ENUM_ENT(ELF, EM_STM8 ), LLVM_READOBJ_ENUM_ENT(ELF, EM_TILE64 ), LLVM_READOBJ_ENUM_ENT(ELF, EM_TILEPRO ), LLVM_READOBJ_ENUM_ENT(ELF, EM_CUDA ), LLVM_READOBJ_ENUM_ENT(ELF, EM_TILEGX ), LLVM_READOBJ_ENUM_ENT(ELF, EM_CLOUDSHIELD ), LLVM_READOBJ_ENUM_ENT(ELF, EM_COREA_1ST ), LLVM_READOBJ_ENUM_ENT(ELF, EM_COREA_2ND ), LLVM_READOBJ_ENUM_ENT(ELF, EM_ARC_COMPACT2 ), LLVM_READOBJ_ENUM_ENT(ELF, EM_OPEN8 ), LLVM_READOBJ_ENUM_ENT(ELF, EM_RL78 ), LLVM_READOBJ_ENUM_ENT(ELF, EM_VIDEOCORE5 ), LLVM_READOBJ_ENUM_ENT(ELF, EM_78KOR ), LLVM_READOBJ_ENUM_ENT(ELF, EM_56800EX ), LLVM_READOBJ_ENUM_ENT(ELF, EM_AMDGPU ) }; static const EnumEntry ElfSymbolBindings[] = { { "Local", ELF::STB_LOCAL }, { "Global", ELF::STB_GLOBAL }, { "Weak", ELF::STB_WEAK }, { "Unique", ELF::STB_GNU_UNIQUE } }; static const EnumEntry ElfSymbolTypes[] = { { "None", ELF::STT_NOTYPE }, { "Object", ELF::STT_OBJECT }, { "Function", ELF::STT_FUNC }, { "Section", ELF::STT_SECTION }, { "File", ELF::STT_FILE }, { "Common", ELF::STT_COMMON }, { "TLS", ELF::STT_TLS }, { "GNU_IFunc", ELF::STT_GNU_IFUNC } }; static const EnumEntry AMDGPUSymbolTypes[] = { { "AMDGPU_HSA_KERNEL", ELF::STT_AMDGPU_HSA_KERNEL }, { "AMDGPU_HSA_INDIRECT_FUNCTION", ELF::STT_AMDGPU_HSA_INDIRECT_FUNCTION }, { "AMDGPU_HSA_METADATA", ELF::STT_AMDGPU_HSA_METADATA } }; static const char *getElfSectionType(unsigned Arch, unsigned Type) { switch (Arch) { case ELF::EM_ARM: switch (Type) { LLVM_READOBJ_ENUM_CASE(ELF, SHT_ARM_EXIDX); LLVM_READOBJ_ENUM_CASE(ELF, SHT_ARM_PREEMPTMAP); LLVM_READOBJ_ENUM_CASE(ELF, SHT_ARM_ATTRIBUTES); LLVM_READOBJ_ENUM_CASE(ELF, SHT_ARM_DEBUGOVERLAY); LLVM_READOBJ_ENUM_CASE(ELF, SHT_ARM_OVERLAYSECTION); } case ELF::EM_HEXAGON: switch (Type) { LLVM_READOBJ_ENUM_CASE(ELF, SHT_HEX_ORDERED); } case ELF::EM_X86_64: switch (Type) { LLVM_READOBJ_ENUM_CASE(ELF, SHT_X86_64_UNWIND); } case ELF::EM_MIPS: case ELF::EM_MIPS_RS3_LE: switch (Type) { LLVM_READOBJ_ENUM_CASE(ELF, SHT_MIPS_REGINFO); LLVM_READOBJ_ENUM_CASE(ELF, SHT_MIPS_OPTIONS); LLVM_READOBJ_ENUM_CASE(ELF, SHT_MIPS_ABIFLAGS); } } switch (Type) { LLVM_READOBJ_ENUM_CASE(ELF, SHT_NULL ); LLVM_READOBJ_ENUM_CASE(ELF, SHT_PROGBITS ); LLVM_READOBJ_ENUM_CASE(ELF, SHT_SYMTAB ); LLVM_READOBJ_ENUM_CASE(ELF, SHT_STRTAB ); LLVM_READOBJ_ENUM_CASE(ELF, SHT_RELA ); LLVM_READOBJ_ENUM_CASE(ELF, SHT_HASH ); LLVM_READOBJ_ENUM_CASE(ELF, SHT_DYNAMIC ); LLVM_READOBJ_ENUM_CASE(ELF, SHT_NOTE ); LLVM_READOBJ_ENUM_CASE(ELF, SHT_NOBITS ); LLVM_READOBJ_ENUM_CASE(ELF, SHT_REL ); LLVM_READOBJ_ENUM_CASE(ELF, SHT_SHLIB ); LLVM_READOBJ_ENUM_CASE(ELF, SHT_DYNSYM ); LLVM_READOBJ_ENUM_CASE(ELF, SHT_INIT_ARRAY ); LLVM_READOBJ_ENUM_CASE(ELF, SHT_FINI_ARRAY ); LLVM_READOBJ_ENUM_CASE(ELF, SHT_PREINIT_ARRAY ); LLVM_READOBJ_ENUM_CASE(ELF, SHT_GROUP ); LLVM_READOBJ_ENUM_CASE(ELF, SHT_SYMTAB_SHNDX ); LLVM_READOBJ_ENUM_CASE(ELF, SHT_GNU_ATTRIBUTES ); LLVM_READOBJ_ENUM_CASE(ELF, SHT_GNU_HASH ); LLVM_READOBJ_ENUM_CASE(ELF, SHT_GNU_verdef ); LLVM_READOBJ_ENUM_CASE(ELF, SHT_GNU_verneed ); LLVM_READOBJ_ENUM_CASE(ELF, SHT_GNU_versym ); default: return ""; } } static const EnumEntry ElfSectionFlags[] = { LLVM_READOBJ_ENUM_ENT(ELF, SHF_WRITE ), LLVM_READOBJ_ENUM_ENT(ELF, SHF_ALLOC ), LLVM_READOBJ_ENUM_ENT(ELF, SHF_EXCLUDE ), LLVM_READOBJ_ENUM_ENT(ELF, SHF_EXECINSTR ), LLVM_READOBJ_ENUM_ENT(ELF, SHF_MERGE ), LLVM_READOBJ_ENUM_ENT(ELF, SHF_STRINGS ), LLVM_READOBJ_ENUM_ENT(ELF, SHF_INFO_LINK ), LLVM_READOBJ_ENUM_ENT(ELF, SHF_LINK_ORDER ), LLVM_READOBJ_ENUM_ENT(ELF, SHF_OS_NONCONFORMING), LLVM_READOBJ_ENUM_ENT(ELF, SHF_GROUP ), LLVM_READOBJ_ENUM_ENT(ELF, SHF_TLS ), LLVM_READOBJ_ENUM_ENT(ELF, XCORE_SHF_CP_SECTION), LLVM_READOBJ_ENUM_ENT(ELF, XCORE_SHF_DP_SECTION), LLVM_READOBJ_ENUM_ENT(ELF, SHF_MIPS_NOSTRIP ), LLVM_READOBJ_ENUM_ENT(ELF, SHF_AMDGPU_HSA_GLOBAL), LLVM_READOBJ_ENUM_ENT(ELF, SHF_AMDGPU_HSA_READONLY), LLVM_READOBJ_ENUM_ENT(ELF, SHF_AMDGPU_HSA_CODE), LLVM_READOBJ_ENUM_ENT(ELF, SHF_AMDGPU_HSA_AGENT) }; static const char *getElfSegmentType(unsigned Arch, unsigned Type) { // Check potentially overlapped processor-specific // program header type. switch (Arch) { case ELF::EM_AMDGPU: switch (Type) { LLVM_READOBJ_ENUM_CASE(ELF, PT_AMDGPU_HSA_LOAD_GLOBAL_PROGRAM); LLVM_READOBJ_ENUM_CASE(ELF, PT_AMDGPU_HSA_LOAD_GLOBAL_AGENT); LLVM_READOBJ_ENUM_CASE(ELF, PT_AMDGPU_HSA_LOAD_READONLY_AGENT); LLVM_READOBJ_ENUM_CASE(ELF, PT_AMDGPU_HSA_LOAD_CODE_AGENT); } case ELF::EM_ARM: switch (Type) { LLVM_READOBJ_ENUM_CASE(ELF, PT_ARM_EXIDX); } case ELF::EM_MIPS: case ELF::EM_MIPS_RS3_LE: switch (Type) { LLVM_READOBJ_ENUM_CASE(ELF, PT_MIPS_REGINFO); LLVM_READOBJ_ENUM_CASE(ELF, PT_MIPS_RTPROC); LLVM_READOBJ_ENUM_CASE(ELF, PT_MIPS_OPTIONS); LLVM_READOBJ_ENUM_CASE(ELF, PT_MIPS_ABIFLAGS); } } switch (Type) { LLVM_READOBJ_ENUM_CASE(ELF, PT_NULL ); LLVM_READOBJ_ENUM_CASE(ELF, PT_LOAD ); LLVM_READOBJ_ENUM_CASE(ELF, PT_DYNAMIC); LLVM_READOBJ_ENUM_CASE(ELF, PT_INTERP ); LLVM_READOBJ_ENUM_CASE(ELF, PT_NOTE ); LLVM_READOBJ_ENUM_CASE(ELF, PT_SHLIB ); LLVM_READOBJ_ENUM_CASE(ELF, PT_PHDR ); LLVM_READOBJ_ENUM_CASE(ELF, PT_TLS ); LLVM_READOBJ_ENUM_CASE(ELF, PT_GNU_EH_FRAME); LLVM_READOBJ_ENUM_CASE(ELF, PT_SUNW_UNWIND); LLVM_READOBJ_ENUM_CASE(ELF, PT_GNU_STACK); LLVM_READOBJ_ENUM_CASE(ELF, PT_GNU_RELRO); default: return ""; } } static const EnumEntry ElfSegmentFlags[] = { LLVM_READOBJ_ENUM_ENT(ELF, PF_X), LLVM_READOBJ_ENUM_ENT(ELF, PF_W), LLVM_READOBJ_ENUM_ENT(ELF, PF_R) }; static const EnumEntry ElfHeaderMipsFlags[] = { LLVM_READOBJ_ENUM_ENT(ELF, EF_MIPS_NOREORDER), LLVM_READOBJ_ENUM_ENT(ELF, EF_MIPS_PIC), LLVM_READOBJ_ENUM_ENT(ELF, EF_MIPS_CPIC), LLVM_READOBJ_ENUM_ENT(ELF, EF_MIPS_ABI2), LLVM_READOBJ_ENUM_ENT(ELF, EF_MIPS_32BITMODE), LLVM_READOBJ_ENUM_ENT(ELF, EF_MIPS_FP64), LLVM_READOBJ_ENUM_ENT(ELF, EF_MIPS_NAN2008), LLVM_READOBJ_ENUM_ENT(ELF, EF_MIPS_ABI_O32), LLVM_READOBJ_ENUM_ENT(ELF, EF_MIPS_ABI_O64), LLVM_READOBJ_ENUM_ENT(ELF, EF_MIPS_ABI_EABI32), LLVM_READOBJ_ENUM_ENT(ELF, EF_MIPS_ABI_EABI64), LLVM_READOBJ_ENUM_ENT(ELF, EF_MIPS_MACH_3900), LLVM_READOBJ_ENUM_ENT(ELF, EF_MIPS_MACH_4010), LLVM_READOBJ_ENUM_ENT(ELF, EF_MIPS_MACH_4100), LLVM_READOBJ_ENUM_ENT(ELF, EF_MIPS_MACH_4650), LLVM_READOBJ_ENUM_ENT(ELF, EF_MIPS_MACH_4120), LLVM_READOBJ_ENUM_ENT(ELF, EF_MIPS_MACH_4111), LLVM_READOBJ_ENUM_ENT(ELF, EF_MIPS_MACH_SB1), LLVM_READOBJ_ENUM_ENT(ELF, EF_MIPS_MACH_OCTEON), LLVM_READOBJ_ENUM_ENT(ELF, EF_MIPS_MACH_XLR), LLVM_READOBJ_ENUM_ENT(ELF, EF_MIPS_MACH_OCTEON2), LLVM_READOBJ_ENUM_ENT(ELF, EF_MIPS_MACH_OCTEON3), LLVM_READOBJ_ENUM_ENT(ELF, EF_MIPS_MACH_5400), LLVM_READOBJ_ENUM_ENT(ELF, EF_MIPS_MACH_5900), LLVM_READOBJ_ENUM_ENT(ELF, EF_MIPS_MACH_5500), LLVM_READOBJ_ENUM_ENT(ELF, EF_MIPS_MACH_9000), LLVM_READOBJ_ENUM_ENT(ELF, EF_MIPS_MACH_LS2E), LLVM_READOBJ_ENUM_ENT(ELF, EF_MIPS_MACH_LS2F), LLVM_READOBJ_ENUM_ENT(ELF, EF_MIPS_MACH_LS3A), LLVM_READOBJ_ENUM_ENT(ELF, EF_MIPS_MICROMIPS), LLVM_READOBJ_ENUM_ENT(ELF, EF_MIPS_ARCH_ASE_M16), LLVM_READOBJ_ENUM_ENT(ELF, EF_MIPS_ARCH_ASE_MDMX), LLVM_READOBJ_ENUM_ENT(ELF, EF_MIPS_ARCH_1), LLVM_READOBJ_ENUM_ENT(ELF, EF_MIPS_ARCH_2), LLVM_READOBJ_ENUM_ENT(ELF, EF_MIPS_ARCH_3), LLVM_READOBJ_ENUM_ENT(ELF, EF_MIPS_ARCH_4), LLVM_READOBJ_ENUM_ENT(ELF, EF_MIPS_ARCH_5), LLVM_READOBJ_ENUM_ENT(ELF, EF_MIPS_ARCH_32), LLVM_READOBJ_ENUM_ENT(ELF, EF_MIPS_ARCH_64), LLVM_READOBJ_ENUM_ENT(ELF, EF_MIPS_ARCH_32R2), LLVM_READOBJ_ENUM_ENT(ELF, EF_MIPS_ARCH_64R2), LLVM_READOBJ_ENUM_ENT(ELF, EF_MIPS_ARCH_32R6), LLVM_READOBJ_ENUM_ENT(ELF, EF_MIPS_ARCH_64R6) }; template ELFDumper::ELFDumper(const ELFFile *Obj, StreamWriter &Writer) : ObjDumper(Writer), Obj(Obj) { SmallVector LoadSegments; for (const Elf_Phdr &Phdr : Obj->program_headers()) { if (Phdr.p_type == ELF::PT_DYNAMIC) { DynamicProgHeader = &Phdr; continue; } if (Phdr.p_type != ELF::PT_LOAD || Phdr.p_filesz == 0) continue; LoadSegments.push_back(&Phdr); } auto toMappedAddr = [&](uint64_t VAddr) -> const uint8_t * { const Elf_Phdr **I = std::upper_bound( LoadSegments.begin(), LoadSegments.end(), VAddr, compareAddr); if (I == LoadSegments.begin()) report_fatal_error("Virtual address is not in any segment"); --I; const Elf_Phdr &Phdr = **I; uint64_t Delta = VAddr - Phdr.p_vaddr; if (Delta >= Phdr.p_filesz) report_fatal_error("Virtual address is not in any segment"); return Obj->base() + Phdr.p_offset + Delta; }; uint64_t SONameOffset = 0; const char *StringTableBegin = nullptr; uint64_t StringTableSize = 0; for (const Elf_Dyn &Dyn : dynamic_table()) { switch (Dyn.d_tag) { case ELF::DT_HASH: HashTable = reinterpret_cast(toMappedAddr(Dyn.getPtr())); break; case ELF::DT_GNU_HASH: GnuHashTable = reinterpret_cast(toMappedAddr(Dyn.getPtr())); break; case ELF::DT_RELA: DynRelaRegion.Addr = toMappedAddr(Dyn.getPtr()); break; case ELF::DT_RELASZ: DynRelaRegion.Size = Dyn.getVal(); break; case ELF::DT_RELAENT: DynRelaRegion.EntSize = Dyn.getVal(); break; case ELF::DT_SONAME: SONameOffset = Dyn.getVal(); break; case ELF::DT_STRTAB: StringTableBegin = (const char *)toMappedAddr(Dyn.getPtr()); break; case ELF::DT_STRSZ: StringTableSize = Dyn.getVal(); break; case ELF::DT_SYMTAB: DynSymStart = reinterpret_cast(toMappedAddr(Dyn.getPtr())); break; } } if (StringTableBegin) DynamicStringTable = StringRef(StringTableBegin, StringTableSize); if (SONameOffset) SOName = getDynamicString(SONameOffset); for (const Elf_Shdr &Sec : Obj->sections()) { switch (Sec.sh_type) { case ELF::SHT_GNU_versym: if (dot_gnu_version_sec != nullptr) reportError("Multiple SHT_GNU_versym"); dot_gnu_version_sec = &Sec; break; case ELF::SHT_GNU_verdef: if (dot_gnu_version_d_sec != nullptr) reportError("Multiple SHT_GNU_verdef"); dot_gnu_version_d_sec = &Sec; break; case ELF::SHT_GNU_verneed: if (dot_gnu_version_r_sec != nullptr) reportError("Multilpe SHT_GNU_verneed"); dot_gnu_version_r_sec = &Sec; break; case ELF::SHT_DYNSYM: if (DotDynSymSec != nullptr) reportError("Multilpe SHT_DYNSYM"); DotDynSymSec = &Sec; break; case ELF::SHT_SYMTAB: if (DotSymtabSec != nullptr) reportError("Multilpe SHT_SYMTAB"); DotSymtabSec = &Sec; break; case ELF::SHT_SYMTAB_SHNDX: { ErrorOr> TableOrErr = Obj->getSHNDXTable(Sec); error(TableOrErr.getError()); ShndxTable = *TableOrErr; break; } } } } template const typename ELFDumper::Elf_Rela * ELFDumper::dyn_rela_begin() const { if (DynRelaRegion.Size && DynRelaRegion.EntSize != sizeof(Elf_Rela)) report_fatal_error("Invalid relocation entry size"); return reinterpret_cast(DynRelaRegion.Addr); } template const typename ELFDumper::Elf_Rela * ELFDumper::dyn_rela_end() const { uint64_t Size = DynRelaRegion.Size; if (Size % sizeof(Elf_Rela)) report_fatal_error("Invalid relocation table size"); return dyn_rela_begin() + Size / sizeof(Elf_Rela); } template typename ELFDumper::Elf_Rela_Range ELFDumper::dyn_relas() const { return make_range(dyn_rela_begin(), dyn_rela_end()); } template void ELFDumper::printFileHeaders() { const Elf_Ehdr *Header = Obj->getHeader(); { DictScope D(W, "ElfHeader"); { DictScope D(W, "Ident"); W.printBinary("Magic", makeArrayRef(Header->e_ident).slice(ELF::EI_MAG0, 4)); W.printEnum ("Class", Header->e_ident[ELF::EI_CLASS], makeArrayRef(ElfClass)); W.printEnum ("DataEncoding", Header->e_ident[ELF::EI_DATA], makeArrayRef(ElfDataEncoding)); W.printNumber("FileVersion", Header->e_ident[ELF::EI_VERSION]); // Handle architecture specific OS/ABI values. if (Header->e_machine == ELF::EM_AMDGPU && Header->e_ident[ELF::EI_OSABI] == ELF::ELFOSABI_AMDGPU_HSA) W.printHex("OS/ABI", "AMDGPU_HSA", ELF::ELFOSABI_AMDGPU_HSA); else W.printEnum ("OS/ABI", Header->e_ident[ELF::EI_OSABI], makeArrayRef(ElfOSABI)); W.printNumber("ABIVersion", Header->e_ident[ELF::EI_ABIVERSION]); W.printBinary("Unused", makeArrayRef(Header->e_ident).slice(ELF::EI_PAD)); } W.printEnum ("Type", Header->e_type, makeArrayRef(ElfObjectFileType)); W.printEnum ("Machine", Header->e_machine, makeArrayRef(ElfMachineType)); W.printNumber("Version", Header->e_version); W.printHex ("Entry", Header->e_entry); W.printHex ("ProgramHeaderOffset", Header->e_phoff); W.printHex ("SectionHeaderOffset", Header->e_shoff); if (Header->e_machine == EM_MIPS) W.printFlags("Flags", Header->e_flags, makeArrayRef(ElfHeaderMipsFlags), unsigned(ELF::EF_MIPS_ARCH), unsigned(ELF::EF_MIPS_ABI), unsigned(ELF::EF_MIPS_MACH)); else W.printFlags("Flags", Header->e_flags); W.printNumber("HeaderSize", Header->e_ehsize); W.printNumber("ProgramHeaderEntrySize", Header->e_phentsize); W.printNumber("ProgramHeaderCount", Header->e_phnum); W.printNumber("SectionHeaderEntrySize", Header->e_shentsize); W.printNumber("SectionHeaderCount", Header->e_shnum); W.printNumber("StringTableSectionIndex", Header->e_shstrndx); } } template void ELFDumper::printSections() { ListScope SectionsD(W, "Sections"); int SectionIndex = -1; for (const Elf_Shdr &Sec : Obj->sections()) { ++SectionIndex; StringRef Name = errorOrDefault(Obj->getSectionName(&Sec)); DictScope SectionD(W, "Section"); W.printNumber("Index", SectionIndex); W.printNumber("Name", Name, Sec.sh_name); W.printHex("Type", getElfSectionType(Obj->getHeader()->e_machine, Sec.sh_type), Sec.sh_type); W.printFlags("Flags", Sec.sh_flags, makeArrayRef(ElfSectionFlags)); W.printHex("Address", Sec.sh_addr); W.printHex("Offset", Sec.sh_offset); W.printNumber("Size", Sec.sh_size); W.printNumber("Link", Sec.sh_link); W.printNumber("Info", Sec.sh_info); W.printNumber("AddressAlignment", Sec.sh_addralign); W.printNumber("EntrySize", Sec.sh_entsize); if (opts::SectionRelocations) { ListScope D(W, "Relocations"); printRelocations(&Sec); } if (opts::SectionSymbols) { ListScope D(W, "Symbols"); const Elf_Shdr *Symtab = DotSymtabSec; ErrorOr StrTableOrErr = Obj->getStringTableForSymtab(*Symtab); error(StrTableOrErr.getError()); StringRef StrTable = *StrTableOrErr; for (const Elf_Sym &Sym : Obj->symbols(Symtab)) { ErrorOr SymSec = Obj->getSection(&Sym, Symtab, ShndxTable); if (!SymSec) continue; if (*SymSec == &Sec) printSymbol(&Sym, Symtab, StrTable, false); } } if (opts::SectionData && Sec.sh_type != ELF::SHT_NOBITS) { ArrayRef Data = errorOrDefault(Obj->getSectionContents(&Sec)); W.printBinaryBlock("SectionData", StringRef((const char *)Data.data(), Data.size())); } } } template void ELFDumper::printRelocations() { ListScope D(W, "Relocations"); int SectionNumber = -1; for (const Elf_Shdr &Sec : Obj->sections()) { ++SectionNumber; if (Sec.sh_type != ELF::SHT_REL && Sec.sh_type != ELF::SHT_RELA) continue; StringRef Name = errorOrDefault(Obj->getSectionName(&Sec)); W.startLine() << "Section (" << SectionNumber << ") " << Name << " {\n"; W.indent(); printRelocations(&Sec); W.unindent(); W.startLine() << "}\n"; } } template void ELFDumper::printDynamicRelocations() { W.startLine() << "Dynamic Relocations {\n"; W.indent(); for (const Elf_Rela &Rel : dyn_relas()) { SmallString<32> RelocName; Obj->getRelocationTypeName(Rel.getType(Obj->isMips64EL()), RelocName); StringRef SymbolName; uint32_t SymIndex = Rel.getSymbol(Obj->isMips64EL()); const Elf_Sym *Sym = DynSymStart + SymIndex; SymbolName = errorOrDefault(Sym->getName(DynamicStringTable)); if (opts::ExpandRelocs) { DictScope Group(W, "Relocation"); W.printHex("Offset", Rel.r_offset); W.printNumber("Type", RelocName, (int)Rel.getType(Obj->isMips64EL())); W.printString("Symbol", SymbolName.size() > 0 ? SymbolName : "-"); W.printHex("Addend", Rel.r_addend); } else { raw_ostream& OS = W.startLine(); OS << W.hex(Rel.r_offset) << " " << RelocName << " " << (SymbolName.size() > 0 ? SymbolName : "-") << " " << W.hex(Rel.r_addend) << "\n"; } } W.unindent(); W.startLine() << "}\n"; } template void ELFDumper::printRelocations(const Elf_Shdr *Sec) { ErrorOr SymTabOrErr = Obj->getSection(Sec->sh_link); error(SymTabOrErr.getError()); const Elf_Shdr *SymTab = *SymTabOrErr; switch (Sec->sh_type) { case ELF::SHT_REL: for (const Elf_Rel &R : Obj->rels(Sec)) { Elf_Rela Rela; Rela.r_offset = R.r_offset; Rela.r_info = R.r_info; Rela.r_addend = 0; printRelocation(Rela, SymTab); } break; case ELF::SHT_RELA: for (const Elf_Rela &R : Obj->relas(Sec)) printRelocation(R, SymTab); break; } } template void ELFDumper::printRelocation(Elf_Rela Rel, const Elf_Shdr *SymTab) { SmallString<32> RelocName; Obj->getRelocationTypeName(Rel.getType(Obj->isMips64EL()), RelocName); StringRef TargetName; const Elf_Sym *Sym = Obj->getRelocationSymbol(&Rel, SymTab); if (Sym && Sym->getType() == ELF::STT_SECTION) { ErrorOr Sec = Obj->getSection(Sym, SymTab, ShndxTable); error(Sec.getError()); ErrorOr SecName = Obj->getSectionName(*Sec); if (SecName) TargetName = SecName.get(); } else if (Sym) { ErrorOr StrTableOrErr = Obj->getStringTableForSymtab(*SymTab); error(StrTableOrErr.getError()); TargetName = errorOrDefault(Sym->getName(*StrTableOrErr)); } if (opts::ExpandRelocs) { DictScope Group(W, "Relocation"); W.printHex("Offset", Rel.r_offset); W.printNumber("Type", RelocName, (int)Rel.getType(Obj->isMips64EL())); W.printNumber("Symbol", TargetName.size() > 0 ? TargetName : "-", Rel.getSymbol(Obj->isMips64EL())); W.printHex("Addend", Rel.r_addend); } else { raw_ostream& OS = W.startLine(); OS << W.hex(Rel.r_offset) << " " << RelocName << " " << (TargetName.size() > 0 ? TargetName : "-") << " " << W.hex(Rel.r_addend) << "\n"; } } template void ELFDumper::printSymbolsHelper(bool IsDynamic) { const Elf_Shdr *Symtab = (IsDynamic) ? DotDynSymSec : DotSymtabSec; if (!Symtab) return; ErrorOr StrTableOrErr = Obj->getStringTableForSymtab(*Symtab); error(StrTableOrErr.getError()); StringRef StrTable = *StrTableOrErr; for (const Elf_Sym &Sym : Obj->symbols(Symtab)) printSymbol(&Sym, Symtab, StrTable, IsDynamic); } template void ELFDumper::printSymbols() { ListScope Group(W, "Symbols"); printSymbolsHelper(false); } template void ELFDumper::printDynamicSymbols() { ListScope Group(W, "DynamicSymbols"); printSymbolsHelper(true); } template void ELFDumper::printSymbol(const Elf_Sym *Symbol, const Elf_Shdr *SymTab, StringRef StrTable, bool IsDynamic) { unsigned SectionIndex = 0; StringRef SectionName; getSectionNameIndex(*Obj, Symbol, SymTab, ShndxTable, SectionName, SectionIndex); std::string FullSymbolName = getFullSymbolName(Symbol, StrTable, IsDynamic); unsigned char SymbolType = Symbol->getType(); DictScope D(W, "Symbol"); W.printNumber("Name", FullSymbolName, Symbol->st_name); W.printHex ("Value", Symbol->st_value); W.printNumber("Size", Symbol->st_size); W.printEnum ("Binding", Symbol->getBinding(), makeArrayRef(ElfSymbolBindings)); if (Obj->getHeader()->e_machine == ELF::EM_AMDGPU && SymbolType >= ELF::STT_LOOS && SymbolType < ELF::STT_HIOS) W.printEnum ("Type", SymbolType, makeArrayRef(AMDGPUSymbolTypes)); else W.printEnum ("Type", SymbolType, makeArrayRef(ElfSymbolTypes)); W.printNumber("Other", Symbol->st_other); W.printHex("Section", SectionName, SectionIndex); } #define LLVM_READOBJ_TYPE_CASE(name) \ case DT_##name: return #name static const char *getTypeString(uint64_t Type) { switch (Type) { LLVM_READOBJ_TYPE_CASE(BIND_NOW); LLVM_READOBJ_TYPE_CASE(DEBUG); LLVM_READOBJ_TYPE_CASE(FINI); LLVM_READOBJ_TYPE_CASE(FINI_ARRAY); LLVM_READOBJ_TYPE_CASE(FINI_ARRAYSZ); LLVM_READOBJ_TYPE_CASE(FLAGS); LLVM_READOBJ_TYPE_CASE(FLAGS_1); LLVM_READOBJ_TYPE_CASE(HASH); LLVM_READOBJ_TYPE_CASE(INIT); LLVM_READOBJ_TYPE_CASE(INIT_ARRAY); LLVM_READOBJ_TYPE_CASE(INIT_ARRAYSZ); LLVM_READOBJ_TYPE_CASE(PREINIT_ARRAY); LLVM_READOBJ_TYPE_CASE(PREINIT_ARRAYSZ); LLVM_READOBJ_TYPE_CASE(JMPREL); LLVM_READOBJ_TYPE_CASE(NEEDED); LLVM_READOBJ_TYPE_CASE(NULL); LLVM_READOBJ_TYPE_CASE(PLTGOT); LLVM_READOBJ_TYPE_CASE(PLTREL); LLVM_READOBJ_TYPE_CASE(PLTRELSZ); LLVM_READOBJ_TYPE_CASE(REL); LLVM_READOBJ_TYPE_CASE(RELA); LLVM_READOBJ_TYPE_CASE(RELENT); LLVM_READOBJ_TYPE_CASE(RELSZ); LLVM_READOBJ_TYPE_CASE(RELAENT); LLVM_READOBJ_TYPE_CASE(RELASZ); LLVM_READOBJ_TYPE_CASE(RPATH); LLVM_READOBJ_TYPE_CASE(RUNPATH); LLVM_READOBJ_TYPE_CASE(SONAME); LLVM_READOBJ_TYPE_CASE(STRSZ); LLVM_READOBJ_TYPE_CASE(STRTAB); LLVM_READOBJ_TYPE_CASE(SYMBOLIC); LLVM_READOBJ_TYPE_CASE(SYMENT); LLVM_READOBJ_TYPE_CASE(SYMTAB); LLVM_READOBJ_TYPE_CASE(TEXTREL); LLVM_READOBJ_TYPE_CASE(VERDEF); LLVM_READOBJ_TYPE_CASE(VERDEFNUM); LLVM_READOBJ_TYPE_CASE(VERNEED); LLVM_READOBJ_TYPE_CASE(VERNEEDNUM); LLVM_READOBJ_TYPE_CASE(VERSYM); LLVM_READOBJ_TYPE_CASE(RELCOUNT); LLVM_READOBJ_TYPE_CASE(GNU_HASH); LLVM_READOBJ_TYPE_CASE(MIPS_RLD_VERSION); LLVM_READOBJ_TYPE_CASE(MIPS_RLD_MAP_REL); LLVM_READOBJ_TYPE_CASE(MIPS_FLAGS); LLVM_READOBJ_TYPE_CASE(MIPS_BASE_ADDRESS); LLVM_READOBJ_TYPE_CASE(MIPS_LOCAL_GOTNO); LLVM_READOBJ_TYPE_CASE(MIPS_SYMTABNO); LLVM_READOBJ_TYPE_CASE(MIPS_UNREFEXTNO); LLVM_READOBJ_TYPE_CASE(MIPS_GOTSYM); LLVM_READOBJ_TYPE_CASE(MIPS_RLD_MAP); LLVM_READOBJ_TYPE_CASE(MIPS_PLTGOT); LLVM_READOBJ_TYPE_CASE(MIPS_OPTIONS); default: return "unknown"; } } #undef LLVM_READOBJ_TYPE_CASE #define LLVM_READOBJ_DT_FLAG_ENT(prefix, enum) \ { #enum, prefix##_##enum } static const EnumEntry ElfDynamicDTFlags[] = { LLVM_READOBJ_DT_FLAG_ENT(DF, ORIGIN), LLVM_READOBJ_DT_FLAG_ENT(DF, SYMBOLIC), LLVM_READOBJ_DT_FLAG_ENT(DF, TEXTREL), LLVM_READOBJ_DT_FLAG_ENT(DF, BIND_NOW), LLVM_READOBJ_DT_FLAG_ENT(DF, STATIC_TLS) }; static const EnumEntry ElfDynamicDTFlags1[] = { LLVM_READOBJ_DT_FLAG_ENT(DF_1, NOW), LLVM_READOBJ_DT_FLAG_ENT(DF_1, GLOBAL), LLVM_READOBJ_DT_FLAG_ENT(DF_1, GROUP), LLVM_READOBJ_DT_FLAG_ENT(DF_1, NODELETE), LLVM_READOBJ_DT_FLAG_ENT(DF_1, LOADFLTR), LLVM_READOBJ_DT_FLAG_ENT(DF_1, INITFIRST), LLVM_READOBJ_DT_FLAG_ENT(DF_1, NOOPEN), LLVM_READOBJ_DT_FLAG_ENT(DF_1, ORIGIN), LLVM_READOBJ_DT_FLAG_ENT(DF_1, DIRECT), LLVM_READOBJ_DT_FLAG_ENT(DF_1, TRANS), LLVM_READOBJ_DT_FLAG_ENT(DF_1, INTERPOSE), LLVM_READOBJ_DT_FLAG_ENT(DF_1, NODEFLIB), LLVM_READOBJ_DT_FLAG_ENT(DF_1, NODUMP), LLVM_READOBJ_DT_FLAG_ENT(DF_1, CONFALT), LLVM_READOBJ_DT_FLAG_ENT(DF_1, ENDFILTEE), LLVM_READOBJ_DT_FLAG_ENT(DF_1, DISPRELDNE), LLVM_READOBJ_DT_FLAG_ENT(DF_1, NODIRECT), LLVM_READOBJ_DT_FLAG_ENT(DF_1, IGNMULDEF), LLVM_READOBJ_DT_FLAG_ENT(DF_1, NOKSYMS), LLVM_READOBJ_DT_FLAG_ENT(DF_1, NOHDR), LLVM_READOBJ_DT_FLAG_ENT(DF_1, EDITED), LLVM_READOBJ_DT_FLAG_ENT(DF_1, NORELOC), LLVM_READOBJ_DT_FLAG_ENT(DF_1, SYMINTPOSE), LLVM_READOBJ_DT_FLAG_ENT(DF_1, GLOBAUDIT), LLVM_READOBJ_DT_FLAG_ENT(DF_1, SINGLETON) }; static const EnumEntry ElfDynamicDTMipsFlags[] = { LLVM_READOBJ_DT_FLAG_ENT(RHF, NONE), LLVM_READOBJ_DT_FLAG_ENT(RHF, QUICKSTART), LLVM_READOBJ_DT_FLAG_ENT(RHF, NOTPOT), LLVM_READOBJ_DT_FLAG_ENT(RHS, NO_LIBRARY_REPLACEMENT), LLVM_READOBJ_DT_FLAG_ENT(RHF, NO_MOVE), LLVM_READOBJ_DT_FLAG_ENT(RHF, SGI_ONLY), LLVM_READOBJ_DT_FLAG_ENT(RHF, GUARANTEE_INIT), LLVM_READOBJ_DT_FLAG_ENT(RHF, DELTA_C_PLUS_PLUS), LLVM_READOBJ_DT_FLAG_ENT(RHF, GUARANTEE_START_INIT), LLVM_READOBJ_DT_FLAG_ENT(RHF, PIXIE), LLVM_READOBJ_DT_FLAG_ENT(RHF, DEFAULT_DELAY_LOAD), LLVM_READOBJ_DT_FLAG_ENT(RHF, REQUICKSTART), LLVM_READOBJ_DT_FLAG_ENT(RHF, REQUICKSTARTED), LLVM_READOBJ_DT_FLAG_ENT(RHF, CORD), LLVM_READOBJ_DT_FLAG_ENT(RHF, NO_UNRES_UNDEF), LLVM_READOBJ_DT_FLAG_ENT(RHF, RLD_ORDER_SAFE) }; #undef LLVM_READOBJ_DT_FLAG_ENT template void printFlags(T Value, ArrayRef> Flags, raw_ostream &OS) { typedef EnumEntry FlagEntry; typedef SmallVector FlagVector; FlagVector SetFlags; for (const auto &Flag : Flags) { if (Flag.Value == 0) continue; if ((Value & Flag.Value) == Flag.Value) SetFlags.push_back(Flag); } for (const auto &Flag : SetFlags) { OS << Flag.Name << " "; } } template StringRef ELFDumper::getDynamicString(uint64_t Value) const { if (Value >= DynamicStringTable.size()) reportError("Invalid dynamic string table reference"); return StringRef(DynamicStringTable.data() + Value); } template void ELFDumper::printValue(uint64_t Type, uint64_t Value) { raw_ostream &OS = W.getOStream(); switch (Type) { case DT_PLTREL: if (Value == DT_REL) { OS << "REL"; break; } else if (Value == DT_RELA) { OS << "RELA"; break; } // Fallthrough. case DT_PLTGOT: case DT_HASH: case DT_STRTAB: case DT_SYMTAB: case DT_RELA: case DT_INIT: case DT_FINI: case DT_REL: case DT_JMPREL: case DT_INIT_ARRAY: case DT_FINI_ARRAY: case DT_PREINIT_ARRAY: case DT_DEBUG: case DT_VERDEF: case DT_VERNEED: case DT_VERSYM: case DT_GNU_HASH: case DT_NULL: case DT_MIPS_BASE_ADDRESS: case DT_MIPS_GOTSYM: case DT_MIPS_RLD_MAP: case DT_MIPS_RLD_MAP_REL: case DT_MIPS_PLTGOT: case DT_MIPS_OPTIONS: OS << format("0x%" PRIX64, Value); break; case DT_RELCOUNT: case DT_VERDEFNUM: case DT_VERNEEDNUM: case DT_MIPS_RLD_VERSION: case DT_MIPS_LOCAL_GOTNO: case DT_MIPS_SYMTABNO: case DT_MIPS_UNREFEXTNO: OS << Value; break; case DT_PLTRELSZ: case DT_RELASZ: case DT_RELAENT: case DT_STRSZ: case DT_SYMENT: case DT_RELSZ: case DT_RELENT: case DT_INIT_ARRAYSZ: case DT_FINI_ARRAYSZ: case DT_PREINIT_ARRAYSZ: OS << Value << " (bytes)"; break; case DT_NEEDED: OS << "SharedLibrary (" << getDynamicString(Value) << ")"; break; case DT_SONAME: OS << "LibrarySoname (" << getDynamicString(Value) << ")"; break; case DT_RPATH: case DT_RUNPATH: OS << getDynamicString(Value); break; case DT_MIPS_FLAGS: printFlags(Value, makeArrayRef(ElfDynamicDTMipsFlags), OS); break; case DT_FLAGS: printFlags(Value, makeArrayRef(ElfDynamicDTFlags), OS); break; case DT_FLAGS_1: printFlags(Value, makeArrayRef(ElfDynamicDTFlags1), OS); break; default: OS << format("0x%" PRIX64, Value); break; } } template void ELFDumper::printUnwindInfo() { W.startLine() << "UnwindInfo not implemented.\n"; } namespace { template <> void ELFDumper>::printUnwindInfo() { const unsigned Machine = Obj->getHeader()->e_machine; if (Machine == EM_ARM) { ARM::EHABI::PrinterContext> Ctx( W, Obj, DotSymtabSec); return Ctx.PrintUnwindInformation(); } W.startLine() << "UnwindInfo not implemented.\n"; } } template void ELFDumper::printDynamicTable() { auto I = dynamic_table_begin(); auto E = dynamic_table_end(); if (I == E) return; --E; while (I != E && E->getTag() == ELF::DT_NULL) --E; if (E->getTag() != ELF::DT_NULL) ++E; ++E; ptrdiff_t Total = std::distance(I, E); if (Total == 0) return; raw_ostream &OS = W.getOStream(); W.startLine() << "DynamicSection [ (" << Total << " entries)\n"; bool Is64 = ELFT::Is64Bits; W.startLine() << " Tag" << (Is64 ? " " : " ") << "Type" << " " << "Name/Value\n"; while (I != E) { const Elf_Dyn &Entry = *I; uintX_t Tag = Entry.getTag(); ++I; W.startLine() << " " << format_hex(Tag, Is64 ? 18 : 10, true) << " " << format("%-21s", getTypeString(Tag)); printValue(Tag, Entry.getVal()); OS << "\n"; } W.startLine() << "]\n"; } template void ELFDumper::printNeededLibraries() { ListScope D(W, "NeededLibraries"); typedef std::vector LibsTy; LibsTy Libs; for (const auto &Entry : dynamic_table()) if (Entry.d_tag == ELF::DT_NEEDED) Libs.push_back(getDynamicString(Entry.d_un.d_val)); std::stable_sort(Libs.begin(), Libs.end()); for (const auto &L : Libs) { outs() << " " << L << "\n"; } } template void ELFDumper::printProgramHeaders() { ListScope L(W, "ProgramHeaders"); for (const Elf_Phdr &Phdr : Obj->program_headers()) { DictScope P(W, "ProgramHeader"); W.printHex("Type", getElfSegmentType(Obj->getHeader()->e_machine, Phdr.p_type), Phdr.p_type); W.printHex("Offset", Phdr.p_offset); W.printHex("VirtualAddress", Phdr.p_vaddr); W.printHex("PhysicalAddress", Phdr.p_paddr); W.printNumber("FileSize", Phdr.p_filesz); W.printNumber("MemSize", Phdr.p_memsz); W.printFlags("Flags", Phdr.p_flags, makeArrayRef(ElfSegmentFlags)); W.printNumber("Alignment", Phdr.p_align); } } template void ELFDumper::printHashTable() { DictScope D(W, "HashTable"); if (!HashTable) return; W.printNumber("Num Buckets", HashTable->nbucket); W.printNumber("Num Chains", HashTable->nchain); W.printList("Buckets", HashTable->buckets()); W.printList("Chains", HashTable->chains()); } template void ELFDumper::printGnuHashTable() { DictScope D(W, "GnuHashTable"); if (!GnuHashTable) return; W.printNumber("Num Buckets", GnuHashTable->nbuckets); W.printNumber("First Hashed Symbol Index", GnuHashTable->symndx); W.printNumber("Num Mask Words", GnuHashTable->maskwords); W.printNumber("Shift Count", GnuHashTable->shift2); W.printHexList("Bloom Filter", GnuHashTable->filter()); W.printList("Buckets", GnuHashTable->buckets()); if (!DotDynSymSec) reportError("No dynamic symbol section"); W.printHexList("Values", GnuHashTable->values(DotDynSymSec->getEntityCount())); } template void ELFDumper::printLoadName() { outs() << "LoadName: " << SOName << '\n'; } template void ELFDumper::printAttributes() { W.startLine() << "Attributes not implemented.\n"; } namespace { template <> void ELFDumper>::printAttributes() { if (Obj->getHeader()->e_machine != EM_ARM) { W.startLine() << "Attributes not implemented.\n"; return; } DictScope BA(W, "BuildAttributes"); for (const ELFO::Elf_Shdr &Sec : Obj->sections()) { if (Sec.sh_type != ELF::SHT_ARM_ATTRIBUTES) continue; ErrorOr> Contents = Obj->getSectionContents(&Sec); if (!Contents) continue; if ((*Contents)[0] != ARMBuildAttrs::Format_Version) { errs() << "unrecognised FormatVersion: 0x" << utohexstr((*Contents)[0]) << '\n'; continue; } W.printHex("FormatVersion", (*Contents)[0]); if (Contents->size() == 1) continue; ARMAttributeParser(W).Parse(*Contents); } } } namespace { template class MipsGOTParser { public: typedef object::ELFFile ELFO; typedef typename ELFO::Elf_Shdr Elf_Shdr; typedef typename ELFO::Elf_Sym Elf_Sym; typedef typename ELFO::Elf_Dyn_Range Elf_Dyn_Range; typedef typename ELFO::Elf_Addr GOTEntry; typedef typename ELFO::Elf_Rel Elf_Rel; typedef typename ELFO::Elf_Rela Elf_Rela; MipsGOTParser(ELFDumper *Dumper, const ELFO *Obj, Elf_Dyn_Range DynTable, StreamWriter &W); void parseGOT(); void parsePLT(); private: ELFDumper *Dumper; const ELFO *Obj; StreamWriter &W; llvm::Optional DtPltGot; llvm::Optional DtLocalGotNum; llvm::Optional DtGotSym; llvm::Optional DtMipsPltGot; llvm::Optional DtJmpRel; std::size_t getGOTTotal(ArrayRef GOT) const; const GOTEntry *makeGOTIter(ArrayRef GOT, std::size_t EntryNum); void printGotEntry(uint64_t GotAddr, const GOTEntry *BeginIt, const GOTEntry *It); void printGlobalGotEntry(uint64_t GotAddr, const GOTEntry *BeginIt, const GOTEntry *It, const Elf_Sym *Sym, StringRef StrTable, bool IsDynamic); void printPLTEntry(uint64_t PLTAddr, const GOTEntry *BeginIt, const GOTEntry *It, StringRef Purpose); void printPLTEntry(uint64_t PLTAddr, const GOTEntry *BeginIt, const GOTEntry *It, StringRef StrTable, const Elf_Sym *Sym); }; } template MipsGOTParser::MipsGOTParser(ELFDumper *Dumper, const ELFO *Obj, Elf_Dyn_Range DynTable, StreamWriter &W) : Dumper(Dumper), Obj(Obj), W(W) { for (const auto &Entry : DynTable) { switch (Entry.getTag()) { case ELF::DT_PLTGOT: DtPltGot = Entry.getVal(); break; case ELF::DT_MIPS_LOCAL_GOTNO: DtLocalGotNum = Entry.getVal(); break; case ELF::DT_MIPS_GOTSYM: DtGotSym = Entry.getVal(); break; case ELF::DT_MIPS_PLTGOT: DtMipsPltGot = Entry.getVal(); break; case ELF::DT_JMPREL: DtJmpRel = Entry.getVal(); break; } } } template void MipsGOTParser::parseGOT() { // See "Global Offset Table" in Chapter 5 in the following document // for detailed GOT description. // ftp://www.linux-mips.org/pub/linux/mips/doc/ABI/mipsabi.pdf if (!DtPltGot) { W.startLine() << "Cannot find PLTGOT dynamic table tag.\n"; return; } if (!DtLocalGotNum) { W.startLine() << "Cannot find MIPS_LOCAL_GOTNO dynamic table tag.\n"; return; } if (!DtGotSym) { W.startLine() << "Cannot find MIPS_GOTSYM dynamic table tag.\n"; return; } const Elf_Shdr *GOTShdr = findSectionByAddress(Obj, *DtPltGot); if (!GOTShdr) { W.startLine() << "There is no .got section in the file.\n"; return; } ErrorOr> GOT = Obj->getSectionContents(GOTShdr); if (!GOT) { W.startLine() << "The .got section is empty.\n"; return; } if (*DtLocalGotNum > getGOTTotal(*GOT)) { W.startLine() << "MIPS_LOCAL_GOTNO exceeds a number of GOT entries.\n"; return; } const Elf_Shdr *DynSymSec = Dumper->getDotDynSymSec(); ErrorOr StrTable = Obj->getStringTableForSymtab(*DynSymSec); error(StrTable.getError()); const Elf_Sym *DynSymBegin = Obj->symbol_begin(DynSymSec); const Elf_Sym *DynSymEnd = Obj->symbol_end(DynSymSec); std::size_t DynSymTotal = std::size_t(std::distance(DynSymBegin, DynSymEnd)); if (*DtGotSym > DynSymTotal) { W.startLine() << "MIPS_GOTSYM exceeds a number of dynamic symbols.\n"; return; } std::size_t GlobalGotNum = DynSymTotal - *DtGotSym; if (*DtLocalGotNum + GlobalGotNum > getGOTTotal(*GOT)) { W.startLine() << "Number of global GOT entries exceeds the size of GOT.\n"; return; } const GOTEntry *GotBegin = makeGOTIter(*GOT, 0); const GOTEntry *GotLocalEnd = makeGOTIter(*GOT, *DtLocalGotNum); const GOTEntry *It = GotBegin; DictScope GS(W, "Primary GOT"); W.printHex("Canonical gp value", GOTShdr->sh_addr + 0x7ff0); { ListScope RS(W, "Reserved entries"); { DictScope D(W, "Entry"); printGotEntry(GOTShdr->sh_addr, GotBegin, It++); W.printString("Purpose", StringRef("Lazy resolver")); } if (It != GotLocalEnd && (*It >> (sizeof(GOTEntry) * 8 - 1)) != 0) { DictScope D(W, "Entry"); printGotEntry(GOTShdr->sh_addr, GotBegin, It++); W.printString("Purpose", StringRef("Module pointer (GNU extension)")); } } { ListScope LS(W, "Local entries"); for (; It != GotLocalEnd; ++It) { DictScope D(W, "Entry"); printGotEntry(GOTShdr->sh_addr, GotBegin, It); } } { ListScope GS(W, "Global entries"); const GOTEntry *GotGlobalEnd = makeGOTIter(*GOT, *DtLocalGotNum + GlobalGotNum); const Elf_Sym *GotDynSym = DynSymBegin + *DtGotSym; for (; It != GotGlobalEnd; ++It) { DictScope D(W, "Entry"); printGlobalGotEntry(GOTShdr->sh_addr, GotBegin, It, GotDynSym++, *StrTable, true); } } std::size_t SpecGotNum = getGOTTotal(*GOT) - *DtLocalGotNum - GlobalGotNum; W.printNumber("Number of TLS and multi-GOT entries", uint64_t(SpecGotNum)); } template void MipsGOTParser::parsePLT() { if (!DtMipsPltGot) { W.startLine() << "Cannot find MIPS_PLTGOT dynamic table tag.\n"; return; } if (!DtJmpRel) { W.startLine() << "Cannot find JMPREL dynamic table tag.\n"; return; } const Elf_Shdr *PLTShdr = findSectionByAddress(Obj, *DtMipsPltGot); if (!PLTShdr) { W.startLine() << "There is no .got.plt section in the file.\n"; return; } ErrorOr> PLT = Obj->getSectionContents(PLTShdr); if (!PLT) { W.startLine() << "The .got.plt section is empty.\n"; return; } const Elf_Shdr *PLTRelShdr = findSectionByAddress(Obj, *DtJmpRel); if (!PLTShdr) { W.startLine() << "There is no .rel.plt section in the file.\n"; return; } ErrorOr SymTableOrErr = Obj->getSection(PLTRelShdr->sh_link); error(SymTableOrErr.getError()); const Elf_Shdr *SymTable = *SymTableOrErr; ErrorOr StrTable = Obj->getStringTableForSymtab(*SymTable); error(StrTable.getError()); const GOTEntry *PLTBegin = makeGOTIter(*PLT, 0); const GOTEntry *PLTEnd = makeGOTIter(*PLT, getGOTTotal(*PLT)); const GOTEntry *It = PLTBegin; DictScope GS(W, "PLT GOT"); { ListScope RS(W, "Reserved entries"); printPLTEntry(PLTShdr->sh_addr, PLTBegin, It++, "PLT lazy resolver"); if (It != PLTEnd) printPLTEntry(PLTShdr->sh_addr, PLTBegin, It++, "Module pointer"); } { ListScope GS(W, "Entries"); switch (PLTRelShdr->sh_type) { case ELF::SHT_REL: for (const Elf_Rel *RI = Obj->rel_begin(PLTRelShdr), *RE = Obj->rel_end(PLTRelShdr); RI != RE && It != PLTEnd; ++RI, ++It) { const Elf_Sym *Sym = Obj->getRelocationSymbol(&*RI, SymTable); printPLTEntry(PLTShdr->sh_addr, PLTBegin, It, *StrTable, Sym); } break; case ELF::SHT_RELA: for (const Elf_Rela *RI = Obj->rela_begin(PLTRelShdr), *RE = Obj->rela_end(PLTRelShdr); RI != RE && It != PLTEnd; ++RI, ++It) { const Elf_Sym *Sym = Obj->getRelocationSymbol(&*RI, SymTable); printPLTEntry(PLTShdr->sh_addr, PLTBegin, It, *StrTable, Sym); } break; } } } template std::size_t MipsGOTParser::getGOTTotal(ArrayRef GOT) const { return GOT.size() / sizeof(GOTEntry); } template const typename MipsGOTParser::GOTEntry * MipsGOTParser::makeGOTIter(ArrayRef GOT, std::size_t EntryNum) { const char *Data = reinterpret_cast(GOT.data()); return reinterpret_cast(Data + EntryNum * sizeof(GOTEntry)); } template void MipsGOTParser::printGotEntry(uint64_t GotAddr, const GOTEntry *BeginIt, const GOTEntry *It) { int64_t Offset = std::distance(BeginIt, It) * sizeof(GOTEntry); W.printHex("Address", GotAddr + Offset); W.printNumber("Access", Offset - 0x7ff0); W.printHex("Initial", *It); } template void MipsGOTParser::printGlobalGotEntry( uint64_t GotAddr, const GOTEntry *BeginIt, const GOTEntry *It, const Elf_Sym *Sym, StringRef StrTable, bool IsDynamic) { printGotEntry(GotAddr, BeginIt, It); W.printHex("Value", Sym->st_value); W.printEnum("Type", Sym->getType(), makeArrayRef(ElfSymbolTypes)); unsigned SectionIndex = 0; StringRef SectionName; getSectionNameIndex(*Obj, Sym, Dumper->getDotDynSymSec(), Dumper->getShndxTable(), SectionName, SectionIndex); W.printHex("Section", SectionName, SectionIndex); std::string FullSymbolName = Dumper->getFullSymbolName(Sym, StrTable, IsDynamic); W.printNumber("Name", FullSymbolName, Sym->st_name); } template void MipsGOTParser::printPLTEntry(uint64_t PLTAddr, const GOTEntry *BeginIt, const GOTEntry *It, StringRef Purpose) { DictScope D(W, "Entry"); int64_t Offset = std::distance(BeginIt, It) * sizeof(GOTEntry); W.printHex("Address", PLTAddr + Offset); W.printHex("Initial", *It); W.printString("Purpose", Purpose); } template void MipsGOTParser::printPLTEntry(uint64_t PLTAddr, const GOTEntry *BeginIt, const GOTEntry *It, StringRef StrTable, const Elf_Sym *Sym) { DictScope D(W, "Entry"); int64_t Offset = std::distance(BeginIt, It) * sizeof(GOTEntry); W.printHex("Address", PLTAddr + Offset); W.printHex("Initial", *It); W.printHex("Value", Sym->st_value); W.printEnum("Type", Sym->getType(), makeArrayRef(ElfSymbolTypes)); unsigned SectionIndex = 0; StringRef SectionName; getSectionNameIndex(*Obj, Sym, Dumper->getDotDynSymSec(), Dumper->getShndxTable(), SectionName, SectionIndex); W.printHex("Section", SectionName, SectionIndex); std::string FullSymbolName = Dumper->getFullSymbolName(Sym, StrTable, true); W.printNumber("Name", FullSymbolName, Sym->st_name); } template void ELFDumper::printMipsPLTGOT() { if (Obj->getHeader()->e_machine != EM_MIPS) { W.startLine() << "MIPS PLT GOT is available for MIPS targets only.\n"; return; } MipsGOTParser GOTParser(this, Obj, dynamic_table(), W); GOTParser.parseGOT(); GOTParser.parsePLT(); } static const EnumEntry ElfMipsISAExtType[] = { {"None", Mips::AFL_EXT_NONE}, {"Broadcom SB-1", Mips::AFL_EXT_SB1}, {"Cavium Networks Octeon", Mips::AFL_EXT_OCTEON}, {"Cavium Networks Octeon2", Mips::AFL_EXT_OCTEON2}, {"Cavium Networks OcteonP", Mips::AFL_EXT_OCTEONP}, {"Cavium Networks Octeon3", Mips::AFL_EXT_OCTEON3}, {"LSI R4010", Mips::AFL_EXT_4010}, {"Loongson 2E", Mips::AFL_EXT_LOONGSON_2E}, {"Loongson 2F", Mips::AFL_EXT_LOONGSON_2F}, {"Loongson 3A", Mips::AFL_EXT_LOONGSON_3A}, {"MIPS R4650", Mips::AFL_EXT_4650}, {"MIPS R5900", Mips::AFL_EXT_5900}, {"MIPS R10000", Mips::AFL_EXT_10000}, {"NEC VR4100", Mips::AFL_EXT_4100}, {"NEC VR4111/VR4181", Mips::AFL_EXT_4111}, {"NEC VR4120", Mips::AFL_EXT_4120}, {"NEC VR5400", Mips::AFL_EXT_5400}, {"NEC VR5500", Mips::AFL_EXT_5500}, {"RMI Xlr", Mips::AFL_EXT_XLR}, {"Toshiba R3900", Mips::AFL_EXT_3900} }; static const EnumEntry ElfMipsASEFlags[] = { {"DSP", Mips::AFL_ASE_DSP}, {"DSPR2", Mips::AFL_ASE_DSPR2}, {"Enhanced VA Scheme", Mips::AFL_ASE_EVA}, {"MCU", Mips::AFL_ASE_MCU}, {"MDMX", Mips::AFL_ASE_MDMX}, {"MIPS-3D", Mips::AFL_ASE_MIPS3D}, {"MT", Mips::AFL_ASE_MT}, {"SmartMIPS", Mips::AFL_ASE_SMARTMIPS}, {"VZ", Mips::AFL_ASE_VIRT}, {"MSA", Mips::AFL_ASE_MSA}, {"MIPS16", Mips::AFL_ASE_MIPS16}, {"microMIPS", Mips::AFL_ASE_MICROMIPS}, {"XPA", Mips::AFL_ASE_XPA} }; static const EnumEntry ElfMipsFpABIType[] = { {"Hard or soft float", Mips::Val_GNU_MIPS_ABI_FP_ANY}, {"Hard float (double precision)", Mips::Val_GNU_MIPS_ABI_FP_DOUBLE}, {"Hard float (single precision)", Mips::Val_GNU_MIPS_ABI_FP_SINGLE}, {"Soft float", Mips::Val_GNU_MIPS_ABI_FP_SOFT}, {"Hard float (MIPS32r2 64-bit FPU 12 callee-saved)", Mips::Val_GNU_MIPS_ABI_FP_OLD_64}, {"Hard float (32-bit CPU, Any FPU)", Mips::Val_GNU_MIPS_ABI_FP_XX}, {"Hard float (32-bit CPU, 64-bit FPU)", Mips::Val_GNU_MIPS_ABI_FP_64}, {"Hard float compat (32-bit CPU, 64-bit FPU)", Mips::Val_GNU_MIPS_ABI_FP_64A} }; static const EnumEntry ElfMipsFlags1[] { {"ODDSPREG", Mips::AFL_FLAGS1_ODDSPREG}, }; static int getMipsRegisterSize(uint8_t Flag) { switch (Flag) { case Mips::AFL_REG_NONE: return 0; case Mips::AFL_REG_32: return 32; case Mips::AFL_REG_64: return 64; case Mips::AFL_REG_128: return 128; default: return -1; } } template void ELFDumper::printMipsABIFlags() { const Elf_Shdr *Shdr = findSectionByName(*Obj, ".MIPS.abiflags"); if (!Shdr) { W.startLine() << "There is no .MIPS.abiflags section in the file.\n"; return; } ErrorOr> Sec = Obj->getSectionContents(Shdr); if (!Sec) { W.startLine() << "The .MIPS.abiflags section is empty.\n"; return; } if (Sec->size() != sizeof(Elf_Mips_ABIFlags)) { W.startLine() << "The .MIPS.abiflags section has a wrong size.\n"; return; } auto *Flags = reinterpret_cast *>(Sec->data()); raw_ostream &OS = W.getOStream(); DictScope GS(W, "MIPS ABI Flags"); W.printNumber("Version", Flags->version); W.startLine() << "ISA: "; if (Flags->isa_rev <= 1) OS << format("MIPS%u", Flags->isa_level); else OS << format("MIPS%ur%u", Flags->isa_level, Flags->isa_rev); OS << "\n"; W.printEnum("ISA Extension", Flags->isa_ext, makeArrayRef(ElfMipsISAExtType)); W.printFlags("ASEs", Flags->ases, makeArrayRef(ElfMipsASEFlags)); W.printEnum("FP ABI", Flags->fp_abi, makeArrayRef(ElfMipsFpABIType)); W.printNumber("GPR size", getMipsRegisterSize(Flags->gpr_size)); W.printNumber("CPR1 size", getMipsRegisterSize(Flags->cpr1_size)); W.printNumber("CPR2 size", getMipsRegisterSize(Flags->cpr2_size)); W.printFlags("Flags 1", Flags->flags1, makeArrayRef(ElfMipsFlags1)); W.printHex("Flags 2", Flags->flags2); } template void ELFDumper::printMipsReginfo() { const Elf_Shdr *Shdr = findSectionByName(*Obj, ".reginfo"); if (!Shdr) { W.startLine() << "There is no .reginfo section in the file.\n"; return; } ErrorOr> Sec = Obj->getSectionContents(Shdr); if (!Sec) { W.startLine() << "The .reginfo section is empty.\n"; return; } if (Sec->size() != sizeof(Elf_Mips_RegInfo)) { W.startLine() << "The .reginfo section has a wrong size.\n"; return; } auto *Reginfo = reinterpret_cast *>(Sec->data()); DictScope GS(W, "MIPS RegInfo"); W.printHex("GP", Reginfo->ri_gp_value); W.printHex("General Mask", Reginfo->ri_gprmask); W.printHex("Co-Proc Mask0", Reginfo->ri_cprmask[0]); W.printHex("Co-Proc Mask1", Reginfo->ri_cprmask[1]); W.printHex("Co-Proc Mask2", Reginfo->ri_cprmask[2]); W.printHex("Co-Proc Mask3", Reginfo->ri_cprmask[3]); } template void ELFDumper::printStackMap() const { const Elf_Shdr *StackMapSection = nullptr; for (const auto &Sec : Obj->sections()) { ErrorOr Name = Obj->getSectionName(&Sec); if (*Name == ".llvm_stackmaps") { StackMapSection = &Sec; break; } } if (!StackMapSection) return; StringRef StackMapContents; ErrorOr> StackMapContentsArray = Obj->getSectionContents(StackMapSection); prettyPrintStackMap( llvm::outs(), StackMapV1Parser(*StackMapContentsArray)); }