//===-- X86JITInfo.cpp - Implement the JIT interfaces for the X86 target --===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file implements the JIT interfaces for the X86 target. // //===----------------------------------------------------------------------===// #define DEBUG_TYPE "jit" #include "X86JITInfo.h" #include "X86Relocations.h" #include "X86Subtarget.h" #include "llvm/CodeGen/MachineCodeEmitter.h" #include "llvm/Config/alloca.h" #include using namespace llvm; #ifdef _MSC_VER extern "C" void *_AddressOfReturnAddress(void); #pragma intrinsic(_AddressOfReturnAddress) #endif void X86JITInfo::replaceMachineCodeForFunction(void *Old, void *New) { unsigned char *OldByte = (unsigned char *)Old; *OldByte++ = 0xE9; // Emit JMP opcode. unsigned *OldWord = (unsigned *)OldByte; unsigned NewAddr = (intptr_t)New; unsigned OldAddr = (intptr_t)OldWord; *OldWord = NewAddr - OldAddr - 4; // Emit PC-relative addr of New code. } /// JITCompilerFunction - This contains the address of the JIT function used to /// compile a function lazily. static TargetJITInfo::JITCompilerFn JITCompilerFunction; // Get the ASMPREFIX for the current host. This is often '_'. #ifndef __USER_LABEL_PREFIX__ #define __USER_LABEL_PREFIX__ #endif #define GETASMPREFIX2(X) #X #define GETASMPREFIX(X) GETASMPREFIX2(X) #define ASMPREFIX GETASMPREFIX(__USER_LABEL_PREFIX__) // Provide a convenient way for disabling usage of CFI directives. // This is needed for old/broken assemblers (for example, gas on // Darwin is pretty old and doesn't support these directives) #if defined(__APPLE__) # define CFI(x) #else // FIXME: Disable this until we really want to use it. Also, we will // need to add some workarounds for compilers, which support // only subset of these directives. # define CFI(x) #endif // Provide a wrapper for X86CompilationCallback2 that saves non-traditional // callee saved registers, for the fastcc calling convention. extern "C" { #if defined(__x86_64__) // No need to save EAX/EDX for X86-64. void X86CompilationCallback(void); asm( ".text\n" ".align 8\n" ".globl " ASMPREFIX "X86CompilationCallback\n" ASMPREFIX "X86CompilationCallback:\n" CFI(".cfi_startproc\n") // Save RBP "pushq %rbp\n" CFI(".cfi_def_cfa_offset 16\n") CFI(".cfi_offset %rbp, -16\n") // Save RSP "movq %rsp, %rbp\n" CFI(".cfi_def_cfa_register %rbp\n") // Save all int arg registers "pushq %rdi\n" CFI(".cfi_rel_offset %rdi, 0\n") "pushq %rsi\n" CFI(".cfi_rel_offset %rsi, 8\n") "pushq %rdx\n" CFI(".cfi_rel_offset %rdx, 16\n") "pushq %rcx\n" CFI(".cfi_rel_offset %rcx, 24\n") "pushq %r8\n" CFI(".cfi_rel_offset %r8, 32\n") "pushq %r9\n" CFI(".cfi_rel_offset %r9, 40\n") // Align stack on 16-byte boundary. ESP might not be properly aligned // (8 byte) if this is called from an indirect stub. "andq $-16, %rsp\n" // Save all XMM arg registers "subq $128, %rsp\n" "movaps %xmm0, (%rsp)\n" "movaps %xmm1, 16(%rsp)\n" "movaps %xmm2, 32(%rsp)\n" "movaps %xmm3, 48(%rsp)\n" "movaps %xmm4, 64(%rsp)\n" "movaps %xmm5, 80(%rsp)\n" "movaps %xmm6, 96(%rsp)\n" "movaps %xmm7, 112(%rsp)\n" // JIT callee "movq %rbp, %rdi\n" // Pass prev frame and return address "movq 8(%rbp), %rsi\n" "call " ASMPREFIX "X86CompilationCallback2\n" // Restore all XMM arg registers "movaps 112(%rsp), %xmm7\n" "movaps 96(%rsp), %xmm6\n" "movaps 80(%rsp), %xmm5\n" "movaps 64(%rsp), %xmm4\n" "movaps 48(%rsp), %xmm3\n" "movaps 32(%rsp), %xmm2\n" "movaps 16(%rsp), %xmm1\n" "movaps (%rsp), %xmm0\n" // Restore RSP "movq %rbp, %rsp\n" CFI(".cfi_def_cfa_register %rsp\n") // Restore all int arg registers "subq $48, %rsp\n" CFI(".cfi_adjust_cfa_offset 48\n") "popq %r9\n" CFI(".cfi_adjust_cfa_offset -8\n") CFI(".cfi_restore %r9\n") "popq %r8\n" CFI(".cfi_adjust_cfa_offset -8\n") CFI(".cfi_restore %r8\n") "popq %rcx\n" CFI(".cfi_adjust_cfa_offset -8\n") CFI(".cfi_restore %rcx\n") "popq %rdx\n" CFI(".cfi_adjust_cfa_offset -8\n") CFI(".cfi_restore %rdx\n") "popq %rsi\n" CFI(".cfi_adjust_cfa_offset -8\n") CFI(".cfi_restore %rsi\n") "popq %rdi\n" CFI(".cfi_adjust_cfa_offset -8\n") CFI(".cfi_restore %rdi\n") // Restore RBP "popq %rbp\n" CFI(".cfi_adjust_cfa_offset -8\n") CFI(".cfi_restore %rbp\n") "ret\n" CFI(".cfi_endproc\n") ); #elif defined(__i386__) || defined(i386) || defined(_M_IX86) #ifndef _MSC_VER void X86CompilationCallback(void); asm( ".text\n" ".align 8\n" ".globl " ASMPREFIX "X86CompilationCallback\n" ASMPREFIX "X86CompilationCallback:\n" CFI(".cfi_startproc\n") "pushl %ebp\n" CFI(".cfi_def_cfa_offset 8\n") CFI(".cfi_offset %ebp, -8\n") "movl %esp, %ebp\n" // Standard prologue CFI(".cfi_def_cfa_register %ebp\n") "pushl %eax\n" CFI(".cfi_rel_offset %eax, 0\n") "pushl %edx\n" // Save EAX/EDX/ECX CFI(".cfi_rel_offset %edx, 4\n") "pushl %ecx\n" CFI(".cfi_rel_offset %ecx, 8\n") #if defined(__APPLE__) "andl $-16, %esp\n" // Align ESP on 16-byte boundary #endif "subl $16, %esp\n" "movl 4(%ebp), %eax\n" // Pass prev frame and return address "movl %eax, 4(%esp)\n" "movl %ebp, (%esp)\n" "call " ASMPREFIX "X86CompilationCallback2\n" "movl %ebp, %esp\n" // Restore ESP CFI(".cfi_def_cfa_register %esp\n") "subl $12, %esp\n" CFI(".cfi_adjust_cfa_offset 12\n") "popl %ecx\n" CFI(".cfi_adjust_cfa_offset -4\n") CFI(".cfi_restore %ecx\n") "popl %edx\n" CFI(".cfi_adjust_cfa_offset -4\n") CFI(".cfi_restore %edx\n") "popl %eax\n" CFI(".cfi_adjust_cfa_offset -4\n") CFI(".cfi_restore %eax\n") "popl %ebp\n" CFI(".cfi_adjust_cfa_offset -4\n") CFI(".cfi_restore %ebp\n") "ret\n" CFI(".cfi_endproc\n") ); // Same as X86CompilationCallback but also saves XMM argument registers. void X86CompilationCallback_SSE(void); asm( ".text\n" ".align 8\n" ".globl " ASMPREFIX "X86CompilationCallback_SSE\n" ASMPREFIX "X86CompilationCallback_SSE:\n" CFI(".cfi_startproc\n") "pushl %ebp\n" CFI(".cfi_def_cfa_offset 8\n") CFI(".cfi_offset %ebp, -8\n") "movl %esp, %ebp\n" // Standard prologue CFI(".cfi_def_cfa_register %ebp\n") "pushl %eax\n" CFI(".cfi_rel_offset %eax, 0\n") "pushl %edx\n" // Save EAX/EDX/ECX CFI(".cfi_rel_offset %edx, 4\n") "pushl %ecx\n" CFI(".cfi_rel_offset %ecx, 8\n") "andl $-16, %esp\n" // Align ESP on 16-byte boundary // Save all XMM arg registers "subl $64, %esp\n" // FIXME: provide frame move information for xmm registers. // This can be tricky, because CFA register is ebp (unaligned) // and we need to produce offsets relative to it. "movaps %xmm0, (%esp)\n" "movaps %xmm1, 16(%esp)\n" "movaps %xmm2, 32(%esp)\n" "movaps %xmm3, 48(%esp)\n" "subl $16, %esp\n" "movl 4(%ebp), %eax\n" // Pass prev frame and return address "movl %eax, 4(%esp)\n" "movl %ebp, (%esp)\n" "call " ASMPREFIX "X86CompilationCallback2\n" "addl $16, %esp\n" "movaps 48(%esp), %xmm3\n" CFI(".cfi_restore %xmm3\n") "movaps 32(%esp), %xmm2\n" CFI(".cfi_restore %xmm2\n") "movaps 16(%esp), %xmm1\n" CFI(".cfi_restore %xmm1\n") "movaps (%esp), %xmm0\n" CFI(".cfi_restore %xmm0\n") "movl %ebp, %esp\n" // Restore ESP CFI(".cfi_def_cfa_register esp\n") "subl $12, %esp\n" CFI(".cfi_adjust_cfa_offset 12\n") "popl %ecx\n" CFI(".cfi_adjust_cfa_offset -4\n") CFI(".cfi_restore %ecx\n") "popl %edx\n" CFI(".cfi_adjust_cfa_offset -4\n") CFI(".cfi_restore %edx\n") "popl %eax\n" CFI(".cfi_adjust_cfa_offset -4\n") CFI(".cfi_restore %eax\n") "popl %ebp\n" CFI(".cfi_adjust_cfa_offset -4\n") CFI(".cfi_restore %ebp\n") "ret\n" CFI(".cfi_endproc\n") ); #else void X86CompilationCallback2(void); _declspec(naked) void X86CompilationCallback(void) { __asm { push eax push edx push ecx call X86CompilationCallback2 pop ecx pop edx pop eax ret } } #endif // _MSC_VER #else // Not an i386 host void X86CompilationCallback() { assert(0 && "Cannot call X86CompilationCallback() on a non-x86 arch!\n"); abort(); } #endif } /// X86CompilationCallback - This is the target-specific function invoked by the /// function stub when we did not know the real target of a call. This function /// must locate the start of the stub or call site and pass it into the JIT /// compiler function. #ifdef _MSC_VER extern "C" void X86CompilationCallback2() { assert(sizeof(size_t) == 4); // FIXME: handle Win64 intptr_t *RetAddrLoc = (intptr_t *)_AddressOfReturnAddress(); RetAddrLoc += 4; // skip over ret addr, edx, eax, ecx intptr_t RetAddr = *RetAddrLoc; #else extern "C" void X86CompilationCallback2(intptr_t *StackPtr, intptr_t RetAddr) { intptr_t *RetAddrLoc = &StackPtr[1]; #endif assert(*RetAddrLoc == RetAddr && "Could not find return address on the stack!"); // It's a stub if there is an interrupt marker after the call. bool isStub = ((unsigned char*)RetAddr)[0] == 0xCD; // The call instruction should have pushed the return value onto the stack... #ifdef __x86_64__ RetAddr--; // Backtrack to the reference itself... #else RetAddr -= 4; // Backtrack to the reference itself... #endif #if 0 DOUT << "In callback! Addr=" << (void*)RetAddr << " ESP=" << (void*)StackPtr << ": Resolving call to function: " << TheVM->getFunctionReferencedName((void*)RetAddr) << "\n"; #endif // Sanity check to make sure this really is a call instruction. #ifdef __x86_64__ assert(((unsigned char*)RetAddr)[-2] == 0x41 &&"Not a call instr!"); assert(((unsigned char*)RetAddr)[-1] == 0xFF &&"Not a call instr!"); #else assert(((unsigned char*)RetAddr)[-1] == 0xE8 &&"Not a call instr!"); #endif intptr_t NewVal = (intptr_t)JITCompilerFunction((void*)RetAddr); // Rewrite the call target... so that we don't end up here every time we // execute the call. #ifdef __x86_64__ *(intptr_t *)(RetAddr - 0xa) = NewVal; #else *(intptr_t *)RetAddr = (intptr_t)(NewVal-RetAddr-4); #endif if (isStub) { // If this is a stub, rewrite the call into an unconditional branch // instruction so that two return addresses are not pushed onto the stack // when the requested function finally gets called. This also makes the // 0xCD byte (interrupt) dead, so the marker doesn't effect anything. #ifdef __x86_64__ ((unsigned char*)RetAddr)[0] = (2 | (4 << 3) | (3 << 6)); #else ((unsigned char*)RetAddr)[-1] = 0xE9; #endif } // Change the return address to reexecute the call instruction... #ifdef __x86_64__ *RetAddrLoc -= 0xd; #else *RetAddrLoc -= 5; #endif } TargetJITInfo::LazyResolverFn X86JITInfo::getLazyResolverFunction(JITCompilerFn F) { JITCompilerFunction = F; #if (defined(__i386__) || defined(i386) || defined(_M_IX86)) && \ !defined(_MSC_VER) && !defined(__x86_64__) unsigned EAX = 0, EBX = 0, ECX = 0, EDX = 0; union { unsigned u[3]; char c[12]; } text; if (!X86::GetCpuIDAndInfo(0, &EAX, text.u+0, text.u+2, text.u+1)) { // FIXME: support for AMD family of processors. if (memcmp(text.c, "GenuineIntel", 12) == 0) { X86::GetCpuIDAndInfo(0x1, &EAX, &EBX, &ECX, &EDX); if ((EDX >> 25) & 0x1) return X86CompilationCallback_SSE; } } #endif return X86CompilationCallback; } void *X86JITInfo::emitGlobalValueLazyPtr(void *GV, MachineCodeEmitter &MCE) { #ifdef __x86_64__ MCE.startFunctionStub(8, 8); MCE.emitWordLE(((unsigned *)&GV)[0]); MCE.emitWordLE(((unsigned *)&GV)[1]); #else MCE.startFunctionStub(4, 4); MCE.emitWordLE((unsigned)GV); #endif return MCE.finishFunctionStub(0); } void *X86JITInfo::emitFunctionStub(void *Fn, MachineCodeEmitter &MCE) { // Note, we cast to intptr_t here to silence a -pedantic warning that // complains about casting a function pointer to a normal pointer. #if (defined(__i386__) || defined(i386) || defined(_M_IX86)) && \ !defined(_MSC_VER) && !defined(__x86_64__) bool NotCC = (Fn != (void*)(intptr_t)X86CompilationCallback && Fn != (void*)(intptr_t)X86CompilationCallback_SSE); #else bool NotCC = Fn != (void*)(intptr_t)X86CompilationCallback; #endif if (NotCC) { #ifdef __x86_64__ MCE.startFunctionStub(13, 4); MCE.emitByte(0x49); // REX prefix MCE.emitByte(0xB8+2); // movabsq r10 MCE.emitWordLE(((unsigned *)&Fn)[0]); MCE.emitWordLE(((unsigned *)&Fn)[1]); MCE.emitByte(0x41); // REX prefix MCE.emitByte(0xFF); // jmpq *r10 MCE.emitByte(2 | (4 << 3) | (3 << 6)); #else MCE.startFunctionStub(5, 4); MCE.emitByte(0xE9); MCE.emitWordLE((intptr_t)Fn-MCE.getCurrentPCValue()-4); #endif return MCE.finishFunctionStub(0); } #ifdef __x86_64__ MCE.startFunctionStub(14, 4); MCE.emitByte(0x49); // REX prefix MCE.emitByte(0xB8+2); // movabsq r10 MCE.emitWordLE(((unsigned *)&Fn)[0]); MCE.emitWordLE(((unsigned *)&Fn)[1]); MCE.emitByte(0x41); // REX prefix MCE.emitByte(0xFF); // callq *r10 MCE.emitByte(2 | (2 << 3) | (3 << 6)); #else MCE.startFunctionStub(6, 4); MCE.emitByte(0xE8); // Call with 32 bit pc-rel destination... MCE.emitWordLE((intptr_t)Fn-MCE.getCurrentPCValue()-4); #endif MCE.emitByte(0xCD); // Interrupt - Just a marker identifying the stub! return MCE.finishFunctionStub(0); } /// getPICJumpTableEntry - Returns the value of the jumptable entry for the /// specific basic block. intptr_t X86JITInfo::getPICJumpTableEntry(intptr_t BB, intptr_t Entry) { return BB - PICBase; } /// relocate - Before the JIT can run a block of code that has been emitted, /// it must rewrite the code to contain the actual addresses of any /// referenced global symbols. void X86JITInfo::relocate(void *Function, MachineRelocation *MR, unsigned NumRelocs, unsigned char* GOTBase) { for (unsigned i = 0; i != NumRelocs; ++i, ++MR) { void *RelocPos = (char*)Function + MR->getMachineCodeOffset(); intptr_t ResultPtr = (intptr_t)MR->getResultPointer(); switch ((X86::RelocationType)MR->getRelocationType()) { case X86::reloc_pcrel_word: { // PC relative relocation, add the relocated value to the value already in // memory, after we adjust it for where the PC is. ResultPtr = ResultPtr -(intptr_t)RelocPos - 4 - MR->getConstantVal(); *((unsigned*)RelocPos) += (unsigned)ResultPtr; break; } case X86::reloc_picrel_word: { // PIC base relative relocation, add the relocated value to the value // already in memory, after we adjust it for where the PIC base is. ResultPtr = ResultPtr - ((intptr_t)Function + MR->getConstantVal()); *((unsigned*)RelocPos) += (unsigned)ResultPtr; break; } case X86::reloc_absolute_word: // Absolute relocation, just add the relocated value to the value already // in memory. *((unsigned*)RelocPos) += (unsigned)ResultPtr; break; case X86::reloc_absolute_dword: *((intptr_t*)RelocPos) += ResultPtr; break; } } }