//===- llvm/Analysis/LoopInfo.h - Natural Loop Calculator -------*- C++ -*-===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file defines the LoopInfo class that is used to identify natural loops // and determine the loop depth of various nodes of the CFG. A natural loop // has exactly one entry-point, which is called the header. Note that natural // loops may actually be several loops that share the same header node. // // This analysis calculates the nesting structure of loops in a function. For // each natural loop identified, this analysis identifies natural loops // contained entirely within the loop and the basic blocks the make up the loop. // // It can calculate on the fly various bits of information, for example: // // * whether there is a preheader for the loop // * the number of back edges to the header // * whether or not a particular block branches out of the loop // * the successor blocks of the loop // * the loop depth // * etc... // //===----------------------------------------------------------------------===// #ifndef LLVM_ANALYSIS_LOOPINFO_H #define LLVM_ANALYSIS_LOOPINFO_H #include "llvm/ADT/DenseMap.h" #include "llvm/ADT/DenseSet.h" #include "llvm/ADT/GraphTraits.h" #include "llvm/ADT/SmallPtrSet.h" #include "llvm/ADT/SmallVector.h" #include "llvm/IR/CFG.h" #include "llvm/IR/Instruction.h" #include "llvm/Pass.h" #include namespace llvm { // FIXME: Replace this brittle forward declaration with the include of the new // PassManager.h when doing so doesn't break the PassManagerBuilder. template class AnalysisManager; class PreservedAnalyses; template inline void RemoveFromVector(std::vector &V, T *N) { typename std::vector::iterator I = std::find(V.begin(), V.end(), N); assert(I != V.end() && "N is not in this list!"); V.erase(I); } class DominatorTree; class LoopInfo; class Loop; class MDNode; class PHINode; class raw_ostream; template class DominatorTreeBase; template class LoopInfoBase; template class LoopBase; //===----------------------------------------------------------------------===// /// LoopBase class - Instances of this class are used to represent loops that /// are detected in the flow graph /// template class LoopBase { LoopT *ParentLoop; // SubLoops - Loops contained entirely within this one. std::vector SubLoops; // Blocks - The list of blocks in this loop. First entry is the header node. std::vector Blocks; SmallPtrSet DenseBlockSet; LoopBase(const LoopBase &) = delete; const LoopBase& operator=(const LoopBase &) = delete; public: /// Loop ctor - This creates an empty loop. LoopBase() : ParentLoop(nullptr) {} ~LoopBase() { for (size_t i = 0, e = SubLoops.size(); i != e; ++i) delete SubLoops[i]; } /// getLoopDepth - Return the nesting level of this loop. An outer-most /// loop has depth 1, for consistency with loop depth values used for basic /// blocks, where depth 0 is used for blocks not inside any loops. unsigned getLoopDepth() const { unsigned D = 1; for (const LoopT *CurLoop = ParentLoop; CurLoop; CurLoop = CurLoop->ParentLoop) ++D; return D; } BlockT *getHeader() const { return Blocks.front(); } LoopT *getParentLoop() const { return ParentLoop; } /// setParentLoop is a raw interface for bypassing addChildLoop. void setParentLoop(LoopT *L) { ParentLoop = L; } /// contains - Return true if the specified loop is contained within in /// this loop. /// bool contains(const LoopT *L) const { if (L == this) return true; if (!L) return false; return contains(L->getParentLoop()); } /// contains - Return true if the specified basic block is in this loop. /// bool contains(const BlockT *BB) const { return DenseBlockSet.count(BB); } /// contains - Return true if the specified instruction is in this loop. /// template bool contains(const InstT *Inst) const { return contains(Inst->getParent()); } /// iterator/begin/end - Return the loops contained entirely within this loop. /// const std::vector &getSubLoops() const { return SubLoops; } std::vector &getSubLoopsVector() { return SubLoops; } typedef typename std::vector::const_iterator iterator; typedef typename std::vector::const_reverse_iterator reverse_iterator; iterator begin() const { return SubLoops.begin(); } iterator end() const { return SubLoops.end(); } reverse_iterator rbegin() const { return SubLoops.rbegin(); } reverse_iterator rend() const { return SubLoops.rend(); } bool empty() const { return SubLoops.empty(); } /// getBlocks - Get a list of the basic blocks which make up this loop. /// const std::vector &getBlocks() const { return Blocks; } typedef typename std::vector::const_iterator block_iterator; block_iterator block_begin() const { return Blocks.begin(); } block_iterator block_end() const { return Blocks.end(); } /// getNumBlocks - Get the number of blocks in this loop in constant time. unsigned getNumBlocks() const { return Blocks.size(); } /// isLoopExiting - True if terminator in the block can branch to another /// block that is outside of the current loop. /// bool isLoopExiting(const BlockT *BB) const { typedef GraphTraits BlockTraits; for (typename BlockTraits::ChildIteratorType SI = BlockTraits::child_begin(BB), SE = BlockTraits::child_end(BB); SI != SE; ++SI) { if (!contains(*SI)) return true; } return false; } /// getNumBackEdges - Calculate the number of back edges to the loop header /// unsigned getNumBackEdges() const { unsigned NumBackEdges = 0; BlockT *H = getHeader(); typedef GraphTraits > InvBlockTraits; for (typename InvBlockTraits::ChildIteratorType I = InvBlockTraits::child_begin(H), E = InvBlockTraits::child_end(H); I != E; ++I) if (contains(*I)) ++NumBackEdges; return NumBackEdges; } //===--------------------------------------------------------------------===// // APIs for simple analysis of the loop. // // Note that all of these methods can fail on general loops (ie, there may not // be a preheader, etc). For best success, the loop simplification and // induction variable canonicalization pass should be used to normalize loops // for easy analysis. These methods assume canonical loops. /// getExitingBlocks - Return all blocks inside the loop that have successors /// outside of the loop. These are the blocks _inside of the current loop_ /// which branch out. The returned list is always unique. /// void getExitingBlocks(SmallVectorImpl &ExitingBlocks) const; /// getExitingBlock - If getExitingBlocks would return exactly one block, /// return that block. Otherwise return null. BlockT *getExitingBlock() const; /// getExitBlocks - Return all of the successor blocks of this loop. These /// are the blocks _outside of the current loop_ which are branched to. /// void getExitBlocks(SmallVectorImpl &ExitBlocks) const; /// getExitBlock - If getExitBlocks would return exactly one block, /// return that block. Otherwise return null. BlockT *getExitBlock() const; /// Edge type. typedef std::pair Edge; /// getExitEdges - Return all pairs of (_inside_block_,_outside_block_). void getExitEdges(SmallVectorImpl &ExitEdges) const; /// getLoopPreheader - If there is a preheader for this loop, return it. A /// loop has a preheader if there is only one edge to the header of the loop /// from outside of the loop. If this is the case, the block branching to the /// header of the loop is the preheader node. /// /// This method returns null if there is no preheader for the loop. /// BlockT *getLoopPreheader() const; /// getLoopPredecessor - If the given loop's header has exactly one unique /// predecessor outside the loop, return it. Otherwise return null. /// This is less strict that the loop "preheader" concept, which requires /// the predecessor to have exactly one successor. /// BlockT *getLoopPredecessor() const; /// getLoopLatch - If there is a single latch block for this loop, return it. /// A latch block is a block that contains a branch back to the header. BlockT *getLoopLatch() const; /// getLoopLatches - Return all loop latch blocks of this loop. A latch block /// is a block that contains a branch back to the header. void getLoopLatches(SmallVectorImpl &LoopLatches) const { BlockT *H = getHeader(); typedef GraphTraits > InvBlockTraits; for (typename InvBlockTraits::ChildIteratorType I = InvBlockTraits::child_begin(H), E = InvBlockTraits::child_end(H); I != E; ++I) if (contains(*I)) LoopLatches.push_back(*I); } //===--------------------------------------------------------------------===// // APIs for updating loop information after changing the CFG // /// addBasicBlockToLoop - This method is used by other analyses to update loop /// information. NewBB is set to be a new member of the current loop. /// Because of this, it is added as a member of all parent loops, and is added /// to the specified LoopInfo object as being in the current basic block. It /// is not valid to replace the loop header with this method. /// void addBasicBlockToLoop(BlockT *NewBB, LoopInfoBase &LI); /// replaceChildLoopWith - This is used when splitting loops up. It replaces /// the OldChild entry in our children list with NewChild, and updates the /// parent pointer of OldChild to be null and the NewChild to be this loop. /// This updates the loop depth of the new child. void replaceChildLoopWith(LoopT *OldChild, LoopT *NewChild); /// addChildLoop - Add the specified loop to be a child of this loop. This /// updates the loop depth of the new child. /// void addChildLoop(LoopT *NewChild) { assert(!NewChild->ParentLoop && "NewChild already has a parent!"); NewChild->ParentLoop = static_cast(this); SubLoops.push_back(NewChild); } /// removeChildLoop - This removes the specified child from being a subloop of /// this loop. The loop is not deleted, as it will presumably be inserted /// into another loop. LoopT *removeChildLoop(iterator I) { assert(I != SubLoops.end() && "Cannot remove end iterator!"); LoopT *Child = *I; assert(Child->ParentLoop == this && "Child is not a child of this loop!"); SubLoops.erase(SubLoops.begin()+(I-begin())); Child->ParentLoop = nullptr; return Child; } /// addBlockEntry - This adds a basic block directly to the basic block list. /// This should only be used by transformations that create new loops. Other /// transformations should use addBasicBlockToLoop. void addBlockEntry(BlockT *BB) { Blocks.push_back(BB); DenseBlockSet.insert(BB); } /// reverseBlocks - interface to reverse Blocks[from, end of loop] in this loop void reverseBlock(unsigned from) { std::reverse(Blocks.begin() + from, Blocks.end()); } /// reserveBlocks- interface to do reserve() for Blocks void reserveBlocks(unsigned size) { Blocks.reserve(size); } /// moveToHeader - This method is used to move BB (which must be part of this /// loop) to be the loop header of the loop (the block that dominates all /// others). void moveToHeader(BlockT *BB) { if (Blocks[0] == BB) return; for (unsigned i = 0; ; ++i) { assert(i != Blocks.size() && "Loop does not contain BB!"); if (Blocks[i] == BB) { Blocks[i] = Blocks[0]; Blocks[0] = BB; return; } } } /// removeBlockFromLoop - This removes the specified basic block from the /// current loop, updating the Blocks as appropriate. This does not update /// the mapping in the LoopInfo class. void removeBlockFromLoop(BlockT *BB) { RemoveFromVector(Blocks, BB); DenseBlockSet.erase(BB); } /// verifyLoop - Verify loop structure void verifyLoop() const; /// verifyLoop - Verify loop structure of this loop and all nested loops. void verifyLoopNest(DenseSet *Loops) const; void print(raw_ostream &OS, unsigned Depth = 0) const; protected: friend class LoopInfoBase; explicit LoopBase(BlockT *BB) : ParentLoop(nullptr) { Blocks.push_back(BB); DenseBlockSet.insert(BB); } }; template raw_ostream& operator<<(raw_ostream &OS, const LoopBase &Loop) { Loop.print(OS); return OS; } // Implementation in LoopInfoImpl.h #ifdef __GNUC__ __extension__ extern template class LoopBase; #endif class Loop : public LoopBase { public: Loop() {} /// isLoopInvariant - Return true if the specified value is loop invariant /// bool isLoopInvariant(const Value *V) const; /// hasLoopInvariantOperands - Return true if all the operands of the /// specified instruction are loop invariant. bool hasLoopInvariantOperands(const Instruction *I) const; /// makeLoopInvariant - If the given value is an instruction inside of the /// loop and it can be hoisted, do so to make it trivially loop-invariant. /// Return true if the value after any hoisting is loop invariant. This /// function can be used as a slightly more aggressive replacement for /// isLoopInvariant. /// /// If InsertPt is specified, it is the point to hoist instructions to. /// If null, the terminator of the loop preheader is used. /// bool makeLoopInvariant(Value *V, bool &Changed, Instruction *InsertPt = nullptr) const; /// makeLoopInvariant - If the given instruction is inside of the /// loop and it can be hoisted, do so to make it trivially loop-invariant. /// Return true if the instruction after any hoisting is loop invariant. This /// function can be used as a slightly more aggressive replacement for /// isLoopInvariant. /// /// If InsertPt is specified, it is the point to hoist instructions to. /// If null, the terminator of the loop preheader is used. /// bool makeLoopInvariant(Instruction *I, bool &Changed, Instruction *InsertPt = nullptr) const; /// getCanonicalInductionVariable - Check to see if the loop has a canonical /// induction variable: an integer recurrence that starts at 0 and increments /// by one each time through the loop. If so, return the phi node that /// corresponds to it. /// /// The IndVarSimplify pass transforms loops to have a canonical induction /// variable. /// PHINode *getCanonicalInductionVariable() const; /// isLCSSAForm - Return true if the Loop is in LCSSA form bool isLCSSAForm(DominatorTree &DT) const; /// isLoopSimplifyForm - Return true if the Loop is in the form that /// the LoopSimplify form transforms loops to, which is sometimes called /// normal form. bool isLoopSimplifyForm() const; /// isSafeToClone - Return true if the loop body is safe to clone in practice. bool isSafeToClone() const; /// Returns true if the loop is annotated parallel. /// /// A parallel loop can be assumed to not contain any dependencies between /// iterations by the compiler. That is, any loop-carried dependency checking /// can be skipped completely when parallelizing the loop on the target /// machine. Thus, if the parallel loop information originates from the /// programmer, e.g. via the OpenMP parallel for pragma, it is the /// programmer's responsibility to ensure there are no loop-carried /// dependencies. The final execution order of the instructions across /// iterations is not guaranteed, thus, the end result might or might not /// implement actual concurrent execution of instructions across multiple /// iterations. bool isAnnotatedParallel() const; /// Return the llvm.loop loop id metadata node for this loop if it is present. /// /// If this loop contains the same llvm.loop metadata on each branch to the /// header then the node is returned. If any latch instruction does not /// contain llvm.loop or or if multiple latches contain different nodes then /// 0 is returned. MDNode *getLoopID() const; /// Set the llvm.loop loop id metadata for this loop. /// /// The LoopID metadata node will be added to each terminator instruction in /// the loop that branches to the loop header. /// /// The LoopID metadata node should have one or more operands and the first /// operand should should be the node itself. void setLoopID(MDNode *LoopID) const; /// hasDedicatedExits - Return true if no exit block for the loop /// has a predecessor that is outside the loop. bool hasDedicatedExits() const; /// getUniqueExitBlocks - Return all unique successor blocks of this loop. /// These are the blocks _outside of the current loop_ which are branched to. /// This assumes that loop exits are in canonical form. /// void getUniqueExitBlocks(SmallVectorImpl &ExitBlocks) const; /// getUniqueExitBlock - If getUniqueExitBlocks would return exactly one /// block, return that block. Otherwise return null. BasicBlock *getUniqueExitBlock() const; void dump() const; /// \brief Return the debug location of the start of this loop. /// This looks for a BB terminating instruction with a known debug /// location by looking at the preheader and header blocks. If it /// cannot find a terminating instruction with location information, /// it returns an unknown location. DebugLoc getStartLoc() const { BasicBlock *HeadBB; // Try the pre-header first. if ((HeadBB = getLoopPreheader()) != nullptr) if (DebugLoc DL = HeadBB->getTerminator()->getDebugLoc()) return DL; // If we have no pre-header or there are no instructions with debug // info in it, try the header. HeadBB = getHeader(); if (HeadBB) return HeadBB->getTerminator()->getDebugLoc(); return DebugLoc(); } private: friend class LoopInfoBase; explicit Loop(BasicBlock *BB) : LoopBase(BB) {} }; //===----------------------------------------------------------------------===// /// LoopInfo - This class builds and contains all of the top level loop /// structures in the specified function. /// template class LoopInfoBase { // BBMap - Mapping of basic blocks to the inner most loop they occur in DenseMap BBMap; std::vector TopLevelLoops; friend class LoopBase; friend class LoopInfo; void operator=(const LoopInfoBase &) = delete; LoopInfoBase(const LoopInfoBase &) = delete; public: LoopInfoBase() { } ~LoopInfoBase() { releaseMemory(); } LoopInfoBase(LoopInfoBase &&Arg) : BBMap(std::move(Arg.BBMap)), TopLevelLoops(std::move(Arg.TopLevelLoops)) { // We have to clear the arguments top level loops as we've taken ownership. Arg.TopLevelLoops.clear(); } LoopInfoBase &operator=(LoopInfoBase &&RHS) { BBMap = std::move(RHS.BBMap); for (auto *L : TopLevelLoops) delete L; TopLevelLoops = std::move(RHS.TopLevelLoops); RHS.TopLevelLoops.clear(); return *this; } void releaseMemory() { BBMap.clear(); for (auto *L : TopLevelLoops) delete L; TopLevelLoops.clear(); } /// iterator/begin/end - The interface to the top-level loops in the current /// function. /// typedef typename std::vector::const_iterator iterator; typedef typename std::vector::const_reverse_iterator reverse_iterator; iterator begin() const { return TopLevelLoops.begin(); } iterator end() const { return TopLevelLoops.end(); } reverse_iterator rbegin() const { return TopLevelLoops.rbegin(); } reverse_iterator rend() const { return TopLevelLoops.rend(); } bool empty() const { return TopLevelLoops.empty(); } /// getLoopFor - Return the inner most loop that BB lives in. If a basic /// block is in no loop (for example the entry node), null is returned. /// LoopT *getLoopFor(const BlockT *BB) const { return BBMap.lookup(const_cast(BB)); } /// operator[] - same as getLoopFor... /// const LoopT *operator[](const BlockT *BB) const { return getLoopFor(BB); } /// getLoopDepth - Return the loop nesting level of the specified block. A /// depth of 0 means the block is not inside any loop. /// unsigned getLoopDepth(const BlockT *BB) const { const LoopT *L = getLoopFor(BB); return L ? L->getLoopDepth() : 0; } // isLoopHeader - True if the block is a loop header node bool isLoopHeader(BlockT *BB) const { const LoopT *L = getLoopFor(BB); return L && L->getHeader() == BB; } /// removeLoop - This removes the specified top-level loop from this loop info /// object. The loop is not deleted, as it will presumably be inserted into /// another loop. LoopT *removeLoop(iterator I) { assert(I != end() && "Cannot remove end iterator!"); LoopT *L = *I; assert(!L->getParentLoop() && "Not a top-level loop!"); TopLevelLoops.erase(TopLevelLoops.begin() + (I-begin())); return L; } /// changeLoopFor - Change the top-level loop that contains BB to the /// specified loop. This should be used by transformations that restructure /// the loop hierarchy tree. void changeLoopFor(BlockT *BB, LoopT *L) { if (!L) { BBMap.erase(BB); return; } BBMap[BB] = L; } /// changeTopLevelLoop - Replace the specified loop in the top-level loops /// list with the indicated loop. void changeTopLevelLoop(LoopT *OldLoop, LoopT *NewLoop) { auto I = std::find(TopLevelLoops.begin(), TopLevelLoops.end(), OldLoop); assert(I != TopLevelLoops.end() && "Old loop not at top level!"); *I = NewLoop; assert(!NewLoop->ParentLoop && !OldLoop->ParentLoop && "Loops already embedded into a subloop!"); } /// addTopLevelLoop - This adds the specified loop to the collection of /// top-level loops. void addTopLevelLoop(LoopT *New) { assert(!New->getParentLoop() && "Loop already in subloop!"); TopLevelLoops.push_back(New); } /// removeBlock - This method completely removes BB from all data structures, /// including all of the Loop objects it is nested in and our mapping from /// BasicBlocks to loops. void removeBlock(BlockT *BB) { auto I = BBMap.find(BB); if (I != BBMap.end()) { for (LoopT *L = I->second; L; L = L->getParentLoop()) L->removeBlockFromLoop(BB); BBMap.erase(I); } } // Internals static bool isNotAlreadyContainedIn(const LoopT *SubLoop, const LoopT *ParentLoop) { if (!SubLoop) return true; if (SubLoop == ParentLoop) return false; return isNotAlreadyContainedIn(SubLoop->getParentLoop(), ParentLoop); } /// Create the loop forest using a stable algorithm. void Analyze(DominatorTreeBase &DomTree); // Debugging void print(raw_ostream &OS) const; void verify() const; }; // Implementation in LoopInfoImpl.h #ifdef __GNUC__ __extension__ extern template class LoopInfoBase; #endif class LoopInfo : public LoopInfoBase { typedef LoopInfoBase BaseT; friend class LoopBase; void operator=(const LoopInfo &) = delete; LoopInfo(const LoopInfo &) = delete; public: LoopInfo() {} LoopInfo(LoopInfo &&Arg) : BaseT(std::move(static_cast(Arg))) {} LoopInfo &operator=(LoopInfo &&RHS) { BaseT::operator=(std::move(static_cast(RHS))); return *this; } // Most of the public interface is provided via LoopInfoBase. /// updateUnloop - Update LoopInfo after removing the last backedge from a /// loop--now the "unloop". This updates the loop forest and parent loops for /// each block so that Unloop is no longer referenced, but the caller must /// actually delete the Unloop object. void updateUnloop(Loop *Unloop); /// replacementPreservesLCSSAForm - Returns true if replacing From with To /// everywhere is guaranteed to preserve LCSSA form. bool replacementPreservesLCSSAForm(Instruction *From, Value *To) { // Preserving LCSSA form is only problematic if the replacing value is an // instruction. Instruction *I = dyn_cast(To); if (!I) return true; // If both instructions are defined in the same basic block then replacement // cannot break LCSSA form. if (I->getParent() == From->getParent()) return true; // If the instruction is not defined in a loop then it can safely replace // anything. Loop *ToLoop = getLoopFor(I->getParent()); if (!ToLoop) return true; // If the replacing instruction is defined in the same loop as the original // instruction, or in a loop that contains it as an inner loop, then using // it as a replacement will not break LCSSA form. return ToLoop->contains(getLoopFor(From->getParent())); } }; // Allow clients to walk the list of nested loops... template <> struct GraphTraits { typedef const Loop NodeType; typedef LoopInfo::iterator ChildIteratorType; static NodeType *getEntryNode(const Loop *L) { return L; } static inline ChildIteratorType child_begin(NodeType *N) { return N->begin(); } static inline ChildIteratorType child_end(NodeType *N) { return N->end(); } }; template <> struct GraphTraits { typedef Loop NodeType; typedef LoopInfo::iterator ChildIteratorType; static NodeType *getEntryNode(Loop *L) { return L; } static inline ChildIteratorType child_begin(NodeType *N) { return N->begin(); } static inline ChildIteratorType child_end(NodeType *N) { return N->end(); } }; /// \brief Analysis pass that exposes the \c LoopInfo for a function. class LoopAnalysis { static char PassID; public: typedef LoopInfo Result; /// \brief Opaque, unique identifier for this analysis pass. static void *ID() { return (void *)&PassID; } /// \brief Provide a name for the analysis for debugging and logging. static StringRef name() { return "LoopAnalysis"; } LoopAnalysis() {} LoopAnalysis(const LoopAnalysis &Arg) {} LoopAnalysis(LoopAnalysis &&Arg) {} LoopAnalysis &operator=(const LoopAnalysis &RHS) { return *this; } LoopAnalysis &operator=(LoopAnalysis &&RHS) { return *this; } LoopInfo run(Function &F, AnalysisManager *AM); }; /// \brief Printer pass for the \c LoopAnalysis results. class LoopPrinterPass { raw_ostream &OS; public: explicit LoopPrinterPass(raw_ostream &OS) : OS(OS) {} PreservedAnalyses run(Function &F, AnalysisManager *AM); static StringRef name() { return "LoopPrinterPass"; } }; /// \brief The legacy pass manager's analysis pass to compute loop information. class LoopInfoWrapperPass : public FunctionPass { LoopInfo LI; public: static char ID; // Pass identification, replacement for typeid LoopInfoWrapperPass() : FunctionPass(ID) { initializeLoopInfoWrapperPassPass(*PassRegistry::getPassRegistry()); } LoopInfo &getLoopInfo() { return LI; } const LoopInfo &getLoopInfo() const { return LI; } /// \brief Calculate the natural loop information for a given function. bool runOnFunction(Function &F) override; void verifyAnalysis() const override; void releaseMemory() override { LI.releaseMemory(); } void print(raw_ostream &O, const Module *M = nullptr) const override; void getAnalysisUsage(AnalysisUsage &AU) const override; }; } // End llvm namespace #endif