mirror of
https://github.com/RPCS3/llvm-mirror.git
synced 2024-11-25 04:02:41 +01:00
fe1c7a103a
Make it easier to initialize small maps inline. Note that DenseMap already has an initializer_list constructor. Reviewed By: dblaikie Differential Revision: https://reviews.llvm.org/D106363
1309 lines
43 KiB
C++
1309 lines
43 KiB
C++
//===- llvm/ADT/DenseMap.h - Dense probed hash table ------------*- C++ -*-===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file defines the DenseMap class.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#ifndef LLVM_ADT_DENSEMAP_H
|
|
#define LLVM_ADT_DENSEMAP_H
|
|
|
|
#include "llvm/ADT/DenseMapInfo.h"
|
|
#include "llvm/ADT/EpochTracker.h"
|
|
#include "llvm/Support/AlignOf.h"
|
|
#include "llvm/Support/Compiler.h"
|
|
#include "llvm/Support/MathExtras.h"
|
|
#include "llvm/Support/MemAlloc.h"
|
|
#include "llvm/Support/ReverseIteration.h"
|
|
#include "llvm/Support/type_traits.h"
|
|
#include <algorithm>
|
|
#include <cassert>
|
|
#include <cstddef>
|
|
#include <cstring>
|
|
#include <initializer_list>
|
|
#include <iterator>
|
|
#include <new>
|
|
#include <type_traits>
|
|
#include <utility>
|
|
|
|
namespace llvm {
|
|
|
|
namespace detail {
|
|
|
|
// We extend a pair to allow users to override the bucket type with their own
|
|
// implementation without requiring two members.
|
|
template <typename KeyT, typename ValueT>
|
|
struct DenseMapPair : public std::pair<KeyT, ValueT> {
|
|
using std::pair<KeyT, ValueT>::pair;
|
|
|
|
KeyT &getFirst() { return std::pair<KeyT, ValueT>::first; }
|
|
const KeyT &getFirst() const { return std::pair<KeyT, ValueT>::first; }
|
|
ValueT &getSecond() { return std::pair<KeyT, ValueT>::second; }
|
|
const ValueT &getSecond() const { return std::pair<KeyT, ValueT>::second; }
|
|
};
|
|
|
|
} // end namespace detail
|
|
|
|
template <typename KeyT, typename ValueT,
|
|
typename KeyInfoT = DenseMapInfo<KeyT>,
|
|
typename Bucket = llvm::detail::DenseMapPair<KeyT, ValueT>,
|
|
bool IsConst = false>
|
|
class DenseMapIterator;
|
|
|
|
template <typename DerivedT, typename KeyT, typename ValueT, typename KeyInfoT,
|
|
typename BucketT>
|
|
class DenseMapBase : public DebugEpochBase {
|
|
template <typename T>
|
|
using const_arg_type_t = typename const_pointer_or_const_ref<T>::type;
|
|
|
|
public:
|
|
using size_type = unsigned;
|
|
using key_type = KeyT;
|
|
using mapped_type = ValueT;
|
|
using value_type = BucketT;
|
|
|
|
using iterator = DenseMapIterator<KeyT, ValueT, KeyInfoT, BucketT>;
|
|
using const_iterator =
|
|
DenseMapIterator<KeyT, ValueT, KeyInfoT, BucketT, true>;
|
|
|
|
inline iterator begin() {
|
|
// When the map is empty, avoid the overhead of advancing/retreating past
|
|
// empty buckets.
|
|
if (empty())
|
|
return end();
|
|
if (shouldReverseIterate<KeyT>())
|
|
return makeIterator(getBucketsEnd() - 1, getBuckets(), *this);
|
|
return makeIterator(getBuckets(), getBucketsEnd(), *this);
|
|
}
|
|
inline iterator end() {
|
|
return makeIterator(getBucketsEnd(), getBucketsEnd(), *this, true);
|
|
}
|
|
inline const_iterator begin() const {
|
|
if (empty())
|
|
return end();
|
|
if (shouldReverseIterate<KeyT>())
|
|
return makeConstIterator(getBucketsEnd() - 1, getBuckets(), *this);
|
|
return makeConstIterator(getBuckets(), getBucketsEnd(), *this);
|
|
}
|
|
inline const_iterator end() const {
|
|
return makeConstIterator(getBucketsEnd(), getBucketsEnd(), *this, true);
|
|
}
|
|
|
|
LLVM_NODISCARD bool empty() const {
|
|
return getNumEntries() == 0;
|
|
}
|
|
unsigned size() const { return getNumEntries(); }
|
|
|
|
/// Grow the densemap so that it can contain at least \p NumEntries items
|
|
/// before resizing again.
|
|
void reserve(size_type NumEntries) {
|
|
auto NumBuckets = getMinBucketToReserveForEntries(NumEntries);
|
|
incrementEpoch();
|
|
if (NumBuckets > getNumBuckets())
|
|
grow(NumBuckets);
|
|
}
|
|
|
|
void clear() {
|
|
incrementEpoch();
|
|
if (getNumEntries() == 0 && getNumTombstones() == 0) return;
|
|
|
|
// If the capacity of the array is huge, and the # elements used is small,
|
|
// shrink the array.
|
|
if (getNumEntries() * 4 < getNumBuckets() && getNumBuckets() > 64) {
|
|
shrink_and_clear();
|
|
return;
|
|
}
|
|
|
|
const KeyT EmptyKey = getEmptyKey(), TombstoneKey = getTombstoneKey();
|
|
if (std::is_trivially_destructible<ValueT>::value) {
|
|
// Use a simpler loop when values don't need destruction.
|
|
for (BucketT *P = getBuckets(), *E = getBucketsEnd(); P != E; ++P)
|
|
P->getFirst() = EmptyKey;
|
|
} else {
|
|
unsigned NumEntries = getNumEntries();
|
|
for (BucketT *P = getBuckets(), *E = getBucketsEnd(); P != E; ++P) {
|
|
if (!KeyInfoT::isEqual(P->getFirst(), EmptyKey)) {
|
|
if (!KeyInfoT::isEqual(P->getFirst(), TombstoneKey)) {
|
|
P->getSecond().~ValueT();
|
|
--NumEntries;
|
|
}
|
|
P->getFirst() = EmptyKey;
|
|
}
|
|
}
|
|
assert(NumEntries == 0 && "Node count imbalance!");
|
|
}
|
|
setNumEntries(0);
|
|
setNumTombstones(0);
|
|
}
|
|
|
|
/// Return 1 if the specified key is in the map, 0 otherwise.
|
|
size_type count(const_arg_type_t<KeyT> Val) const {
|
|
const BucketT *TheBucket;
|
|
return LookupBucketFor(Val, TheBucket) ? 1 : 0;
|
|
}
|
|
|
|
iterator find(const_arg_type_t<KeyT> Val) {
|
|
BucketT *TheBucket;
|
|
if (LookupBucketFor(Val, TheBucket))
|
|
return makeIterator(TheBucket,
|
|
shouldReverseIterate<KeyT>() ? getBuckets()
|
|
: getBucketsEnd(),
|
|
*this, true);
|
|
return end();
|
|
}
|
|
const_iterator find(const_arg_type_t<KeyT> Val) const {
|
|
const BucketT *TheBucket;
|
|
if (LookupBucketFor(Val, TheBucket))
|
|
return makeConstIterator(TheBucket,
|
|
shouldReverseIterate<KeyT>() ? getBuckets()
|
|
: getBucketsEnd(),
|
|
*this, true);
|
|
return end();
|
|
}
|
|
|
|
/// Alternate version of find() which allows a different, and possibly
|
|
/// less expensive, key type.
|
|
/// The DenseMapInfo is responsible for supplying methods
|
|
/// getHashValue(LookupKeyT) and isEqual(LookupKeyT, KeyT) for each key
|
|
/// type used.
|
|
template<class LookupKeyT>
|
|
iterator find_as(const LookupKeyT &Val) {
|
|
BucketT *TheBucket;
|
|
if (LookupBucketFor(Val, TheBucket))
|
|
return makeIterator(TheBucket,
|
|
shouldReverseIterate<KeyT>() ? getBuckets()
|
|
: getBucketsEnd(),
|
|
*this, true);
|
|
return end();
|
|
}
|
|
template<class LookupKeyT>
|
|
const_iterator find_as(const LookupKeyT &Val) const {
|
|
const BucketT *TheBucket;
|
|
if (LookupBucketFor(Val, TheBucket))
|
|
return makeConstIterator(TheBucket,
|
|
shouldReverseIterate<KeyT>() ? getBuckets()
|
|
: getBucketsEnd(),
|
|
*this, true);
|
|
return end();
|
|
}
|
|
|
|
/// lookup - Return the entry for the specified key, or a default
|
|
/// constructed value if no such entry exists.
|
|
ValueT lookup(const_arg_type_t<KeyT> Val) const {
|
|
const BucketT *TheBucket;
|
|
if (LookupBucketFor(Val, TheBucket))
|
|
return TheBucket->getSecond();
|
|
return ValueT();
|
|
}
|
|
|
|
// Inserts key,value pair into the map if the key isn't already in the map.
|
|
// If the key is already in the map, it returns false and doesn't update the
|
|
// value.
|
|
std::pair<iterator, bool> insert(const std::pair<KeyT, ValueT> &KV) {
|
|
return try_emplace(KV.first, KV.second);
|
|
}
|
|
|
|
// Inserts key,value pair into the map if the key isn't already in the map.
|
|
// If the key is already in the map, it returns false and doesn't update the
|
|
// value.
|
|
std::pair<iterator, bool> insert(std::pair<KeyT, ValueT> &&KV) {
|
|
return try_emplace(std::move(KV.first), std::move(KV.second));
|
|
}
|
|
|
|
// Inserts key,value pair into the map if the key isn't already in the map.
|
|
// The value is constructed in-place if the key is not in the map, otherwise
|
|
// it is not moved.
|
|
template <typename... Ts>
|
|
std::pair<iterator, bool> try_emplace(KeyT &&Key, Ts &&... Args) {
|
|
BucketT *TheBucket;
|
|
if (LookupBucketFor(Key, TheBucket))
|
|
return std::make_pair(makeIterator(TheBucket,
|
|
shouldReverseIterate<KeyT>()
|
|
? getBuckets()
|
|
: getBucketsEnd(),
|
|
*this, true),
|
|
false); // Already in map.
|
|
|
|
// Otherwise, insert the new element.
|
|
TheBucket =
|
|
InsertIntoBucket(TheBucket, std::move(Key), std::forward<Ts>(Args)...);
|
|
return std::make_pair(makeIterator(TheBucket,
|
|
shouldReverseIterate<KeyT>()
|
|
? getBuckets()
|
|
: getBucketsEnd(),
|
|
*this, true),
|
|
true);
|
|
}
|
|
|
|
// Inserts key,value pair into the map if the key isn't already in the map.
|
|
// The value is constructed in-place if the key is not in the map, otherwise
|
|
// it is not moved.
|
|
template <typename... Ts>
|
|
std::pair<iterator, bool> try_emplace(const KeyT &Key, Ts &&... Args) {
|
|
BucketT *TheBucket;
|
|
if (LookupBucketFor(Key, TheBucket))
|
|
return std::make_pair(makeIterator(TheBucket,
|
|
shouldReverseIterate<KeyT>()
|
|
? getBuckets()
|
|
: getBucketsEnd(),
|
|
*this, true),
|
|
false); // Already in map.
|
|
|
|
// Otherwise, insert the new element.
|
|
TheBucket = InsertIntoBucket(TheBucket, Key, std::forward<Ts>(Args)...);
|
|
return std::make_pair(makeIterator(TheBucket,
|
|
shouldReverseIterate<KeyT>()
|
|
? getBuckets()
|
|
: getBucketsEnd(),
|
|
*this, true),
|
|
true);
|
|
}
|
|
|
|
/// Alternate version of insert() which allows a different, and possibly
|
|
/// less expensive, key type.
|
|
/// The DenseMapInfo is responsible for supplying methods
|
|
/// getHashValue(LookupKeyT) and isEqual(LookupKeyT, KeyT) for each key
|
|
/// type used.
|
|
template <typename LookupKeyT>
|
|
std::pair<iterator, bool> insert_as(std::pair<KeyT, ValueT> &&KV,
|
|
const LookupKeyT &Val) {
|
|
BucketT *TheBucket;
|
|
if (LookupBucketFor(Val, TheBucket))
|
|
return std::make_pair(makeIterator(TheBucket,
|
|
shouldReverseIterate<KeyT>()
|
|
? getBuckets()
|
|
: getBucketsEnd(),
|
|
*this, true),
|
|
false); // Already in map.
|
|
|
|
// Otherwise, insert the new element.
|
|
TheBucket = InsertIntoBucketWithLookup(TheBucket, std::move(KV.first),
|
|
std::move(KV.second), Val);
|
|
return std::make_pair(makeIterator(TheBucket,
|
|
shouldReverseIterate<KeyT>()
|
|
? getBuckets()
|
|
: getBucketsEnd(),
|
|
*this, true),
|
|
true);
|
|
}
|
|
|
|
/// insert - Range insertion of pairs.
|
|
template<typename InputIt>
|
|
void insert(InputIt I, InputIt E) {
|
|
for (; I != E; ++I)
|
|
insert(*I);
|
|
}
|
|
|
|
bool erase(const KeyT &Val) {
|
|
BucketT *TheBucket;
|
|
if (!LookupBucketFor(Val, TheBucket))
|
|
return false; // not in map.
|
|
|
|
TheBucket->getSecond().~ValueT();
|
|
TheBucket->getFirst() = getTombstoneKey();
|
|
decrementNumEntries();
|
|
incrementNumTombstones();
|
|
return true;
|
|
}
|
|
void erase(iterator I) {
|
|
BucketT *TheBucket = &*I;
|
|
TheBucket->getSecond().~ValueT();
|
|
TheBucket->getFirst() = getTombstoneKey();
|
|
decrementNumEntries();
|
|
incrementNumTombstones();
|
|
}
|
|
|
|
value_type& FindAndConstruct(const KeyT &Key) {
|
|
BucketT *TheBucket;
|
|
if (LookupBucketFor(Key, TheBucket))
|
|
return *TheBucket;
|
|
|
|
return *InsertIntoBucket(TheBucket, Key);
|
|
}
|
|
|
|
ValueT &operator[](const KeyT &Key) {
|
|
return FindAndConstruct(Key).second;
|
|
}
|
|
|
|
value_type& FindAndConstruct(KeyT &&Key) {
|
|
BucketT *TheBucket;
|
|
if (LookupBucketFor(Key, TheBucket))
|
|
return *TheBucket;
|
|
|
|
return *InsertIntoBucket(TheBucket, std::move(Key));
|
|
}
|
|
|
|
ValueT &operator[](KeyT &&Key) {
|
|
return FindAndConstruct(std::move(Key)).second;
|
|
}
|
|
|
|
/// isPointerIntoBucketsArray - Return true if the specified pointer points
|
|
/// somewhere into the DenseMap's array of buckets (i.e. either to a key or
|
|
/// value in the DenseMap).
|
|
bool isPointerIntoBucketsArray(const void *Ptr) const {
|
|
return Ptr >= getBuckets() && Ptr < getBucketsEnd();
|
|
}
|
|
|
|
/// getPointerIntoBucketsArray() - Return an opaque pointer into the buckets
|
|
/// array. In conjunction with the previous method, this can be used to
|
|
/// determine whether an insertion caused the DenseMap to reallocate.
|
|
const void *getPointerIntoBucketsArray() const { return getBuckets(); }
|
|
|
|
protected:
|
|
DenseMapBase() = default;
|
|
|
|
void destroyAll() {
|
|
if (getNumBuckets() == 0) // Nothing to do.
|
|
return;
|
|
|
|
const KeyT EmptyKey = getEmptyKey(), TombstoneKey = getTombstoneKey();
|
|
for (BucketT *P = getBuckets(), *E = getBucketsEnd(); P != E; ++P) {
|
|
if (!KeyInfoT::isEqual(P->getFirst(), EmptyKey) &&
|
|
!KeyInfoT::isEqual(P->getFirst(), TombstoneKey))
|
|
P->getSecond().~ValueT();
|
|
P->getFirst().~KeyT();
|
|
}
|
|
}
|
|
|
|
void initEmpty() {
|
|
setNumEntries(0);
|
|
setNumTombstones(0);
|
|
|
|
assert((getNumBuckets() & (getNumBuckets()-1)) == 0 &&
|
|
"# initial buckets must be a power of two!");
|
|
const KeyT EmptyKey = getEmptyKey();
|
|
for (BucketT *B = getBuckets(), *E = getBucketsEnd(); B != E; ++B)
|
|
::new (&B->getFirst()) KeyT(EmptyKey);
|
|
}
|
|
|
|
/// Returns the number of buckets to allocate to ensure that the DenseMap can
|
|
/// accommodate \p NumEntries without need to grow().
|
|
unsigned getMinBucketToReserveForEntries(unsigned NumEntries) {
|
|
// Ensure that "NumEntries * 4 < NumBuckets * 3"
|
|
if (NumEntries == 0)
|
|
return 0;
|
|
// +1 is required because of the strict equality.
|
|
// For example if NumEntries is 48, we need to return 401.
|
|
return NextPowerOf2(NumEntries * 4 / 3 + 1);
|
|
}
|
|
|
|
void moveFromOldBuckets(BucketT *OldBucketsBegin, BucketT *OldBucketsEnd) {
|
|
initEmpty();
|
|
|
|
// Insert all the old elements.
|
|
const KeyT EmptyKey = getEmptyKey();
|
|
const KeyT TombstoneKey = getTombstoneKey();
|
|
for (BucketT *B = OldBucketsBegin, *E = OldBucketsEnd; B != E; ++B) {
|
|
if (!KeyInfoT::isEqual(B->getFirst(), EmptyKey) &&
|
|
!KeyInfoT::isEqual(B->getFirst(), TombstoneKey)) {
|
|
// Insert the key/value into the new table.
|
|
BucketT *DestBucket;
|
|
bool FoundVal = LookupBucketFor(B->getFirst(), DestBucket);
|
|
(void)FoundVal; // silence warning.
|
|
assert(!FoundVal && "Key already in new map?");
|
|
DestBucket->getFirst() = std::move(B->getFirst());
|
|
::new (&DestBucket->getSecond()) ValueT(std::move(B->getSecond()));
|
|
incrementNumEntries();
|
|
|
|
// Free the value.
|
|
B->getSecond().~ValueT();
|
|
}
|
|
B->getFirst().~KeyT();
|
|
}
|
|
}
|
|
|
|
template <typename OtherBaseT>
|
|
void copyFrom(
|
|
const DenseMapBase<OtherBaseT, KeyT, ValueT, KeyInfoT, BucketT> &other) {
|
|
assert(&other != this);
|
|
assert(getNumBuckets() == other.getNumBuckets());
|
|
|
|
setNumEntries(other.getNumEntries());
|
|
setNumTombstones(other.getNumTombstones());
|
|
|
|
if (std::is_trivially_copyable<KeyT>::value &&
|
|
std::is_trivially_copyable<ValueT>::value)
|
|
memcpy(reinterpret_cast<void *>(getBuckets()), other.getBuckets(),
|
|
getNumBuckets() * sizeof(BucketT));
|
|
else
|
|
for (size_t i = 0; i < getNumBuckets(); ++i) {
|
|
::new (&getBuckets()[i].getFirst())
|
|
KeyT(other.getBuckets()[i].getFirst());
|
|
if (!KeyInfoT::isEqual(getBuckets()[i].getFirst(), getEmptyKey()) &&
|
|
!KeyInfoT::isEqual(getBuckets()[i].getFirst(), getTombstoneKey()))
|
|
::new (&getBuckets()[i].getSecond())
|
|
ValueT(other.getBuckets()[i].getSecond());
|
|
}
|
|
}
|
|
|
|
static unsigned getHashValue(const KeyT &Val) {
|
|
return KeyInfoT::getHashValue(Val);
|
|
}
|
|
|
|
template<typename LookupKeyT>
|
|
static unsigned getHashValue(const LookupKeyT &Val) {
|
|
return KeyInfoT::getHashValue(Val);
|
|
}
|
|
|
|
static const KeyT getEmptyKey() {
|
|
static_assert(std::is_base_of<DenseMapBase, DerivedT>::value,
|
|
"Must pass the derived type to this template!");
|
|
return KeyInfoT::getEmptyKey();
|
|
}
|
|
|
|
static const KeyT getTombstoneKey() {
|
|
return KeyInfoT::getTombstoneKey();
|
|
}
|
|
|
|
private:
|
|
iterator makeIterator(BucketT *P, BucketT *E,
|
|
DebugEpochBase &Epoch,
|
|
bool NoAdvance=false) {
|
|
if (shouldReverseIterate<KeyT>()) {
|
|
BucketT *B = P == getBucketsEnd() ? getBuckets() : P + 1;
|
|
return iterator(B, E, Epoch, NoAdvance);
|
|
}
|
|
return iterator(P, E, Epoch, NoAdvance);
|
|
}
|
|
|
|
const_iterator makeConstIterator(const BucketT *P, const BucketT *E,
|
|
const DebugEpochBase &Epoch,
|
|
const bool NoAdvance=false) const {
|
|
if (shouldReverseIterate<KeyT>()) {
|
|
const BucketT *B = P == getBucketsEnd() ? getBuckets() : P + 1;
|
|
return const_iterator(B, E, Epoch, NoAdvance);
|
|
}
|
|
return const_iterator(P, E, Epoch, NoAdvance);
|
|
}
|
|
|
|
unsigned getNumEntries() const {
|
|
return static_cast<const DerivedT *>(this)->getNumEntries();
|
|
}
|
|
|
|
void setNumEntries(unsigned Num) {
|
|
static_cast<DerivedT *>(this)->setNumEntries(Num);
|
|
}
|
|
|
|
void incrementNumEntries() {
|
|
setNumEntries(getNumEntries() + 1);
|
|
}
|
|
|
|
void decrementNumEntries() {
|
|
setNumEntries(getNumEntries() - 1);
|
|
}
|
|
|
|
unsigned getNumTombstones() const {
|
|
return static_cast<const DerivedT *>(this)->getNumTombstones();
|
|
}
|
|
|
|
void setNumTombstones(unsigned Num) {
|
|
static_cast<DerivedT *>(this)->setNumTombstones(Num);
|
|
}
|
|
|
|
void incrementNumTombstones() {
|
|
setNumTombstones(getNumTombstones() + 1);
|
|
}
|
|
|
|
void decrementNumTombstones() {
|
|
setNumTombstones(getNumTombstones() - 1);
|
|
}
|
|
|
|
const BucketT *getBuckets() const {
|
|
return static_cast<const DerivedT *>(this)->getBuckets();
|
|
}
|
|
|
|
BucketT *getBuckets() {
|
|
return static_cast<DerivedT *>(this)->getBuckets();
|
|
}
|
|
|
|
unsigned getNumBuckets() const {
|
|
return static_cast<const DerivedT *>(this)->getNumBuckets();
|
|
}
|
|
|
|
BucketT *getBucketsEnd() {
|
|
return getBuckets() + getNumBuckets();
|
|
}
|
|
|
|
const BucketT *getBucketsEnd() const {
|
|
return getBuckets() + getNumBuckets();
|
|
}
|
|
|
|
void grow(unsigned AtLeast) {
|
|
static_cast<DerivedT *>(this)->grow(AtLeast);
|
|
}
|
|
|
|
void shrink_and_clear() {
|
|
static_cast<DerivedT *>(this)->shrink_and_clear();
|
|
}
|
|
|
|
template <typename KeyArg, typename... ValueArgs>
|
|
BucketT *InsertIntoBucket(BucketT *TheBucket, KeyArg &&Key,
|
|
ValueArgs &&... Values) {
|
|
TheBucket = InsertIntoBucketImpl(Key, Key, TheBucket);
|
|
|
|
TheBucket->getFirst() = std::forward<KeyArg>(Key);
|
|
::new (&TheBucket->getSecond()) ValueT(std::forward<ValueArgs>(Values)...);
|
|
return TheBucket;
|
|
}
|
|
|
|
template <typename LookupKeyT>
|
|
BucketT *InsertIntoBucketWithLookup(BucketT *TheBucket, KeyT &&Key,
|
|
ValueT &&Value, LookupKeyT &Lookup) {
|
|
TheBucket = InsertIntoBucketImpl(Key, Lookup, TheBucket);
|
|
|
|
TheBucket->getFirst() = std::move(Key);
|
|
::new (&TheBucket->getSecond()) ValueT(std::move(Value));
|
|
return TheBucket;
|
|
}
|
|
|
|
template <typename LookupKeyT>
|
|
BucketT *InsertIntoBucketImpl(const KeyT &Key, const LookupKeyT &Lookup,
|
|
BucketT *TheBucket) {
|
|
incrementEpoch();
|
|
|
|
// If the load of the hash table is more than 3/4, or if fewer than 1/8 of
|
|
// the buckets are empty (meaning that many are filled with tombstones),
|
|
// grow the table.
|
|
//
|
|
// The later case is tricky. For example, if we had one empty bucket with
|
|
// tons of tombstones, failing lookups (e.g. for insertion) would have to
|
|
// probe almost the entire table until it found the empty bucket. If the
|
|
// table completely filled with tombstones, no lookup would ever succeed,
|
|
// causing infinite loops in lookup.
|
|
unsigned NewNumEntries = getNumEntries() + 1;
|
|
unsigned NumBuckets = getNumBuckets();
|
|
if (LLVM_UNLIKELY(NewNumEntries * 4 >= NumBuckets * 3)) {
|
|
this->grow(NumBuckets * 2);
|
|
LookupBucketFor(Lookup, TheBucket);
|
|
NumBuckets = getNumBuckets();
|
|
} else if (LLVM_UNLIKELY(NumBuckets-(NewNumEntries+getNumTombstones()) <=
|
|
NumBuckets/8)) {
|
|
this->grow(NumBuckets);
|
|
LookupBucketFor(Lookup, TheBucket);
|
|
}
|
|
assert(TheBucket);
|
|
|
|
// Only update the state after we've grown our bucket space appropriately
|
|
// so that when growing buckets we have self-consistent entry count.
|
|
incrementNumEntries();
|
|
|
|
// If we are writing over a tombstone, remember this.
|
|
const KeyT EmptyKey = getEmptyKey();
|
|
if (!KeyInfoT::isEqual(TheBucket->getFirst(), EmptyKey))
|
|
decrementNumTombstones();
|
|
|
|
return TheBucket;
|
|
}
|
|
|
|
/// LookupBucketFor - Lookup the appropriate bucket for Val, returning it in
|
|
/// FoundBucket. If the bucket contains the key and a value, this returns
|
|
/// true, otherwise it returns a bucket with an empty marker or tombstone and
|
|
/// returns false.
|
|
template<typename LookupKeyT>
|
|
bool LookupBucketFor(const LookupKeyT &Val,
|
|
const BucketT *&FoundBucket) const {
|
|
const BucketT *BucketsPtr = getBuckets();
|
|
const unsigned NumBuckets = getNumBuckets();
|
|
|
|
if (NumBuckets == 0) {
|
|
FoundBucket = nullptr;
|
|
return false;
|
|
}
|
|
|
|
// FoundTombstone - Keep track of whether we find a tombstone while probing.
|
|
const BucketT *FoundTombstone = nullptr;
|
|
const KeyT EmptyKey = getEmptyKey();
|
|
const KeyT TombstoneKey = getTombstoneKey();
|
|
assert(!KeyInfoT::isEqual(Val, EmptyKey) &&
|
|
!KeyInfoT::isEqual(Val, TombstoneKey) &&
|
|
"Empty/Tombstone value shouldn't be inserted into map!");
|
|
|
|
unsigned BucketNo = getHashValue(Val) & (NumBuckets-1);
|
|
unsigned ProbeAmt = 1;
|
|
while (true) {
|
|
const BucketT *ThisBucket = BucketsPtr + BucketNo;
|
|
// Found Val's bucket? If so, return it.
|
|
if (LLVM_LIKELY(KeyInfoT::isEqual(Val, ThisBucket->getFirst()))) {
|
|
FoundBucket = ThisBucket;
|
|
return true;
|
|
}
|
|
|
|
// If we found an empty bucket, the key doesn't exist in the set.
|
|
// Insert it and return the default value.
|
|
if (LLVM_LIKELY(KeyInfoT::isEqual(ThisBucket->getFirst(), EmptyKey))) {
|
|
// If we've already seen a tombstone while probing, fill it in instead
|
|
// of the empty bucket we eventually probed to.
|
|
FoundBucket = FoundTombstone ? FoundTombstone : ThisBucket;
|
|
return false;
|
|
}
|
|
|
|
// If this is a tombstone, remember it. If Val ends up not in the map, we
|
|
// prefer to return it than something that would require more probing.
|
|
if (KeyInfoT::isEqual(ThisBucket->getFirst(), TombstoneKey) &&
|
|
!FoundTombstone)
|
|
FoundTombstone = ThisBucket; // Remember the first tombstone found.
|
|
|
|
// Otherwise, it's a hash collision or a tombstone, continue quadratic
|
|
// probing.
|
|
BucketNo += ProbeAmt++;
|
|
BucketNo &= (NumBuckets-1);
|
|
}
|
|
}
|
|
|
|
template <typename LookupKeyT>
|
|
bool LookupBucketFor(const LookupKeyT &Val, BucketT *&FoundBucket) {
|
|
const BucketT *ConstFoundBucket;
|
|
bool Result = const_cast<const DenseMapBase *>(this)
|
|
->LookupBucketFor(Val, ConstFoundBucket);
|
|
FoundBucket = const_cast<BucketT *>(ConstFoundBucket);
|
|
return Result;
|
|
}
|
|
|
|
public:
|
|
/// Return the approximate size (in bytes) of the actual map.
|
|
/// This is just the raw memory used by DenseMap.
|
|
/// If entries are pointers to objects, the size of the referenced objects
|
|
/// are not included.
|
|
size_t getMemorySize() const {
|
|
return getNumBuckets() * sizeof(BucketT);
|
|
}
|
|
};
|
|
|
|
/// Equality comparison for DenseMap.
|
|
///
|
|
/// Iterates over elements of LHS confirming that each (key, value) pair in LHS
|
|
/// is also in RHS, and that no additional pairs are in RHS.
|
|
/// Equivalent to N calls to RHS.find and N value comparisons. Amortized
|
|
/// complexity is linear, worst case is O(N^2) (if every hash collides).
|
|
template <typename DerivedT, typename KeyT, typename ValueT, typename KeyInfoT,
|
|
typename BucketT>
|
|
bool operator==(
|
|
const DenseMapBase<DerivedT, KeyT, ValueT, KeyInfoT, BucketT> &LHS,
|
|
const DenseMapBase<DerivedT, KeyT, ValueT, KeyInfoT, BucketT> &RHS) {
|
|
if (LHS.size() != RHS.size())
|
|
return false;
|
|
|
|
for (auto &KV : LHS) {
|
|
auto I = RHS.find(KV.first);
|
|
if (I == RHS.end() || I->second != KV.second)
|
|
return false;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
/// Inequality comparison for DenseMap.
|
|
///
|
|
/// Equivalent to !(LHS == RHS). See operator== for performance notes.
|
|
template <typename DerivedT, typename KeyT, typename ValueT, typename KeyInfoT,
|
|
typename BucketT>
|
|
bool operator!=(
|
|
const DenseMapBase<DerivedT, KeyT, ValueT, KeyInfoT, BucketT> &LHS,
|
|
const DenseMapBase<DerivedT, KeyT, ValueT, KeyInfoT, BucketT> &RHS) {
|
|
return !(LHS == RHS);
|
|
}
|
|
|
|
template <typename KeyT, typename ValueT,
|
|
typename KeyInfoT = DenseMapInfo<KeyT>,
|
|
typename BucketT = llvm::detail::DenseMapPair<KeyT, ValueT>>
|
|
class DenseMap : public DenseMapBase<DenseMap<KeyT, ValueT, KeyInfoT, BucketT>,
|
|
KeyT, ValueT, KeyInfoT, BucketT> {
|
|
friend class DenseMapBase<DenseMap, KeyT, ValueT, KeyInfoT, BucketT>;
|
|
|
|
// Lift some types from the dependent base class into this class for
|
|
// simplicity of referring to them.
|
|
using BaseT = DenseMapBase<DenseMap, KeyT, ValueT, KeyInfoT, BucketT>;
|
|
|
|
BucketT *Buckets;
|
|
unsigned NumEntries;
|
|
unsigned NumTombstones;
|
|
unsigned NumBuckets;
|
|
|
|
public:
|
|
/// Create a DenseMap with an optional \p InitialReserve that guarantee that
|
|
/// this number of elements can be inserted in the map without grow()
|
|
explicit DenseMap(unsigned InitialReserve = 0) { init(InitialReserve); }
|
|
|
|
DenseMap(const DenseMap &other) : BaseT() {
|
|
init(0);
|
|
copyFrom(other);
|
|
}
|
|
|
|
DenseMap(DenseMap &&other) : BaseT() {
|
|
init(0);
|
|
swap(other);
|
|
}
|
|
|
|
template<typename InputIt>
|
|
DenseMap(const InputIt &I, const InputIt &E) {
|
|
init(std::distance(I, E));
|
|
this->insert(I, E);
|
|
}
|
|
|
|
DenseMap(std::initializer_list<typename BaseT::value_type> Vals) {
|
|
init(Vals.size());
|
|
this->insert(Vals.begin(), Vals.end());
|
|
}
|
|
|
|
~DenseMap() {
|
|
this->destroyAll();
|
|
deallocate_buffer(Buckets, sizeof(BucketT) * NumBuckets, alignof(BucketT));
|
|
}
|
|
|
|
void swap(DenseMap& RHS) {
|
|
this->incrementEpoch();
|
|
RHS.incrementEpoch();
|
|
std::swap(Buckets, RHS.Buckets);
|
|
std::swap(NumEntries, RHS.NumEntries);
|
|
std::swap(NumTombstones, RHS.NumTombstones);
|
|
std::swap(NumBuckets, RHS.NumBuckets);
|
|
}
|
|
|
|
DenseMap& operator=(const DenseMap& other) {
|
|
if (&other != this)
|
|
copyFrom(other);
|
|
return *this;
|
|
}
|
|
|
|
DenseMap& operator=(DenseMap &&other) {
|
|
this->destroyAll();
|
|
deallocate_buffer(Buckets, sizeof(BucketT) * NumBuckets, alignof(BucketT));
|
|
init(0);
|
|
swap(other);
|
|
return *this;
|
|
}
|
|
|
|
void copyFrom(const DenseMap& other) {
|
|
this->destroyAll();
|
|
deallocate_buffer(Buckets, sizeof(BucketT) * NumBuckets, alignof(BucketT));
|
|
if (allocateBuckets(other.NumBuckets)) {
|
|
this->BaseT::copyFrom(other);
|
|
} else {
|
|
NumEntries = 0;
|
|
NumTombstones = 0;
|
|
}
|
|
}
|
|
|
|
void init(unsigned InitNumEntries) {
|
|
auto InitBuckets = BaseT::getMinBucketToReserveForEntries(InitNumEntries);
|
|
if (allocateBuckets(InitBuckets)) {
|
|
this->BaseT::initEmpty();
|
|
} else {
|
|
NumEntries = 0;
|
|
NumTombstones = 0;
|
|
}
|
|
}
|
|
|
|
void grow(unsigned AtLeast) {
|
|
unsigned OldNumBuckets = NumBuckets;
|
|
BucketT *OldBuckets = Buckets;
|
|
|
|
allocateBuckets(std::max<unsigned>(64, static_cast<unsigned>(NextPowerOf2(AtLeast-1))));
|
|
assert(Buckets);
|
|
if (!OldBuckets) {
|
|
this->BaseT::initEmpty();
|
|
return;
|
|
}
|
|
|
|
this->moveFromOldBuckets(OldBuckets, OldBuckets+OldNumBuckets);
|
|
|
|
// Free the old table.
|
|
deallocate_buffer(OldBuckets, sizeof(BucketT) * OldNumBuckets,
|
|
alignof(BucketT));
|
|
}
|
|
|
|
void shrink_and_clear() {
|
|
unsigned OldNumBuckets = NumBuckets;
|
|
unsigned OldNumEntries = NumEntries;
|
|
this->destroyAll();
|
|
|
|
// Reduce the number of buckets.
|
|
unsigned NewNumBuckets = 0;
|
|
if (OldNumEntries)
|
|
NewNumBuckets = std::max(64, 1 << (Log2_32_Ceil(OldNumEntries) + 1));
|
|
if (NewNumBuckets == NumBuckets) {
|
|
this->BaseT::initEmpty();
|
|
return;
|
|
}
|
|
|
|
deallocate_buffer(Buckets, sizeof(BucketT) * OldNumBuckets,
|
|
alignof(BucketT));
|
|
init(NewNumBuckets);
|
|
}
|
|
|
|
private:
|
|
unsigned getNumEntries() const {
|
|
return NumEntries;
|
|
}
|
|
|
|
void setNumEntries(unsigned Num) {
|
|
NumEntries = Num;
|
|
}
|
|
|
|
unsigned getNumTombstones() const {
|
|
return NumTombstones;
|
|
}
|
|
|
|
void setNumTombstones(unsigned Num) {
|
|
NumTombstones = Num;
|
|
}
|
|
|
|
BucketT *getBuckets() const {
|
|
return Buckets;
|
|
}
|
|
|
|
unsigned getNumBuckets() const {
|
|
return NumBuckets;
|
|
}
|
|
|
|
bool allocateBuckets(unsigned Num) {
|
|
NumBuckets = Num;
|
|
if (NumBuckets == 0) {
|
|
Buckets = nullptr;
|
|
return false;
|
|
}
|
|
|
|
Buckets = static_cast<BucketT *>(
|
|
allocate_buffer(sizeof(BucketT) * NumBuckets, alignof(BucketT)));
|
|
return true;
|
|
}
|
|
};
|
|
|
|
template <typename KeyT, typename ValueT, unsigned InlineBuckets = 4,
|
|
typename KeyInfoT = DenseMapInfo<KeyT>,
|
|
typename BucketT = llvm::detail::DenseMapPair<KeyT, ValueT>>
|
|
class SmallDenseMap
|
|
: public DenseMapBase<
|
|
SmallDenseMap<KeyT, ValueT, InlineBuckets, KeyInfoT, BucketT>, KeyT,
|
|
ValueT, KeyInfoT, BucketT> {
|
|
friend class DenseMapBase<SmallDenseMap, KeyT, ValueT, KeyInfoT, BucketT>;
|
|
|
|
// Lift some types from the dependent base class into this class for
|
|
// simplicity of referring to them.
|
|
using BaseT = DenseMapBase<SmallDenseMap, KeyT, ValueT, KeyInfoT, BucketT>;
|
|
|
|
static_assert(isPowerOf2_64(InlineBuckets),
|
|
"InlineBuckets must be a power of 2.");
|
|
|
|
unsigned Small : 1;
|
|
unsigned NumEntries : 31;
|
|
unsigned NumTombstones;
|
|
|
|
struct LargeRep {
|
|
BucketT *Buckets;
|
|
unsigned NumBuckets;
|
|
};
|
|
|
|
/// A "union" of an inline bucket array and the struct representing
|
|
/// a large bucket. This union will be discriminated by the 'Small' bit.
|
|
AlignedCharArrayUnion<BucketT[InlineBuckets], LargeRep> storage;
|
|
|
|
public:
|
|
explicit SmallDenseMap(unsigned NumInitBuckets = 0) {
|
|
init(NumInitBuckets);
|
|
}
|
|
|
|
SmallDenseMap(const SmallDenseMap &other) : BaseT() {
|
|
init(0);
|
|
copyFrom(other);
|
|
}
|
|
|
|
SmallDenseMap(SmallDenseMap &&other) : BaseT() {
|
|
init(0);
|
|
swap(other);
|
|
}
|
|
|
|
template<typename InputIt>
|
|
SmallDenseMap(const InputIt &I, const InputIt &E) {
|
|
init(NextPowerOf2(std::distance(I, E)));
|
|
this->insert(I, E);
|
|
}
|
|
|
|
SmallDenseMap(std::initializer_list<typename BaseT::value_type> Vals)
|
|
: SmallDenseMap(Vals.begin(), Vals.end()) {}
|
|
|
|
~SmallDenseMap() {
|
|
this->destroyAll();
|
|
deallocateBuckets();
|
|
}
|
|
|
|
void swap(SmallDenseMap& RHS) {
|
|
unsigned TmpNumEntries = RHS.NumEntries;
|
|
RHS.NumEntries = NumEntries;
|
|
NumEntries = TmpNumEntries;
|
|
std::swap(NumTombstones, RHS.NumTombstones);
|
|
|
|
const KeyT EmptyKey = this->getEmptyKey();
|
|
const KeyT TombstoneKey = this->getTombstoneKey();
|
|
if (Small && RHS.Small) {
|
|
// If we're swapping inline bucket arrays, we have to cope with some of
|
|
// the tricky bits of DenseMap's storage system: the buckets are not
|
|
// fully initialized. Thus we swap every key, but we may have
|
|
// a one-directional move of the value.
|
|
for (unsigned i = 0, e = InlineBuckets; i != e; ++i) {
|
|
BucketT *LHSB = &getInlineBuckets()[i],
|
|
*RHSB = &RHS.getInlineBuckets()[i];
|
|
bool hasLHSValue = (!KeyInfoT::isEqual(LHSB->getFirst(), EmptyKey) &&
|
|
!KeyInfoT::isEqual(LHSB->getFirst(), TombstoneKey));
|
|
bool hasRHSValue = (!KeyInfoT::isEqual(RHSB->getFirst(), EmptyKey) &&
|
|
!KeyInfoT::isEqual(RHSB->getFirst(), TombstoneKey));
|
|
if (hasLHSValue && hasRHSValue) {
|
|
// Swap together if we can...
|
|
std::swap(*LHSB, *RHSB);
|
|
continue;
|
|
}
|
|
// Swap separately and handle any asymmetry.
|
|
std::swap(LHSB->getFirst(), RHSB->getFirst());
|
|
if (hasLHSValue) {
|
|
::new (&RHSB->getSecond()) ValueT(std::move(LHSB->getSecond()));
|
|
LHSB->getSecond().~ValueT();
|
|
} else if (hasRHSValue) {
|
|
::new (&LHSB->getSecond()) ValueT(std::move(RHSB->getSecond()));
|
|
RHSB->getSecond().~ValueT();
|
|
}
|
|
}
|
|
return;
|
|
}
|
|
if (!Small && !RHS.Small) {
|
|
std::swap(getLargeRep()->Buckets, RHS.getLargeRep()->Buckets);
|
|
std::swap(getLargeRep()->NumBuckets, RHS.getLargeRep()->NumBuckets);
|
|
return;
|
|
}
|
|
|
|
SmallDenseMap &SmallSide = Small ? *this : RHS;
|
|
SmallDenseMap &LargeSide = Small ? RHS : *this;
|
|
|
|
// First stash the large side's rep and move the small side across.
|
|
LargeRep TmpRep = std::move(*LargeSide.getLargeRep());
|
|
LargeSide.getLargeRep()->~LargeRep();
|
|
LargeSide.Small = true;
|
|
// This is similar to the standard move-from-old-buckets, but the bucket
|
|
// count hasn't actually rotated in this case. So we have to carefully
|
|
// move construct the keys and values into their new locations, but there
|
|
// is no need to re-hash things.
|
|
for (unsigned i = 0, e = InlineBuckets; i != e; ++i) {
|
|
BucketT *NewB = &LargeSide.getInlineBuckets()[i],
|
|
*OldB = &SmallSide.getInlineBuckets()[i];
|
|
::new (&NewB->getFirst()) KeyT(std::move(OldB->getFirst()));
|
|
OldB->getFirst().~KeyT();
|
|
if (!KeyInfoT::isEqual(NewB->getFirst(), EmptyKey) &&
|
|
!KeyInfoT::isEqual(NewB->getFirst(), TombstoneKey)) {
|
|
::new (&NewB->getSecond()) ValueT(std::move(OldB->getSecond()));
|
|
OldB->getSecond().~ValueT();
|
|
}
|
|
}
|
|
|
|
// The hard part of moving the small buckets across is done, just move
|
|
// the TmpRep into its new home.
|
|
SmallSide.Small = false;
|
|
new (SmallSide.getLargeRep()) LargeRep(std::move(TmpRep));
|
|
}
|
|
|
|
SmallDenseMap& operator=(const SmallDenseMap& other) {
|
|
if (&other != this)
|
|
copyFrom(other);
|
|
return *this;
|
|
}
|
|
|
|
SmallDenseMap& operator=(SmallDenseMap &&other) {
|
|
this->destroyAll();
|
|
deallocateBuckets();
|
|
init(0);
|
|
swap(other);
|
|
return *this;
|
|
}
|
|
|
|
void copyFrom(const SmallDenseMap& other) {
|
|
this->destroyAll();
|
|
deallocateBuckets();
|
|
Small = true;
|
|
if (other.getNumBuckets() > InlineBuckets) {
|
|
Small = false;
|
|
new (getLargeRep()) LargeRep(allocateBuckets(other.getNumBuckets()));
|
|
}
|
|
this->BaseT::copyFrom(other);
|
|
}
|
|
|
|
void init(unsigned InitBuckets) {
|
|
Small = true;
|
|
if (InitBuckets > InlineBuckets) {
|
|
Small = false;
|
|
new (getLargeRep()) LargeRep(allocateBuckets(InitBuckets));
|
|
}
|
|
this->BaseT::initEmpty();
|
|
}
|
|
|
|
void grow(unsigned AtLeast) {
|
|
if (AtLeast > InlineBuckets)
|
|
AtLeast = std::max<unsigned>(64, NextPowerOf2(AtLeast-1));
|
|
|
|
if (Small) {
|
|
// First move the inline buckets into a temporary storage.
|
|
AlignedCharArrayUnion<BucketT[InlineBuckets]> TmpStorage;
|
|
BucketT *TmpBegin = reinterpret_cast<BucketT *>(&TmpStorage);
|
|
BucketT *TmpEnd = TmpBegin;
|
|
|
|
// Loop over the buckets, moving non-empty, non-tombstones into the
|
|
// temporary storage. Have the loop move the TmpEnd forward as it goes.
|
|
const KeyT EmptyKey = this->getEmptyKey();
|
|
const KeyT TombstoneKey = this->getTombstoneKey();
|
|
for (BucketT *P = getBuckets(), *E = P + InlineBuckets; P != E; ++P) {
|
|
if (!KeyInfoT::isEqual(P->getFirst(), EmptyKey) &&
|
|
!KeyInfoT::isEqual(P->getFirst(), TombstoneKey)) {
|
|
assert(size_t(TmpEnd - TmpBegin) < InlineBuckets &&
|
|
"Too many inline buckets!");
|
|
::new (&TmpEnd->getFirst()) KeyT(std::move(P->getFirst()));
|
|
::new (&TmpEnd->getSecond()) ValueT(std::move(P->getSecond()));
|
|
++TmpEnd;
|
|
P->getSecond().~ValueT();
|
|
}
|
|
P->getFirst().~KeyT();
|
|
}
|
|
|
|
// AtLeast == InlineBuckets can happen if there are many tombstones,
|
|
// and grow() is used to remove them. Usually we always switch to the
|
|
// large rep here.
|
|
if (AtLeast > InlineBuckets) {
|
|
Small = false;
|
|
new (getLargeRep()) LargeRep(allocateBuckets(AtLeast));
|
|
}
|
|
this->moveFromOldBuckets(TmpBegin, TmpEnd);
|
|
return;
|
|
}
|
|
|
|
LargeRep OldRep = std::move(*getLargeRep());
|
|
getLargeRep()->~LargeRep();
|
|
if (AtLeast <= InlineBuckets) {
|
|
Small = true;
|
|
} else {
|
|
new (getLargeRep()) LargeRep(allocateBuckets(AtLeast));
|
|
}
|
|
|
|
this->moveFromOldBuckets(OldRep.Buckets, OldRep.Buckets+OldRep.NumBuckets);
|
|
|
|
// Free the old table.
|
|
deallocate_buffer(OldRep.Buckets, sizeof(BucketT) * OldRep.NumBuckets,
|
|
alignof(BucketT));
|
|
}
|
|
|
|
void shrink_and_clear() {
|
|
unsigned OldSize = this->size();
|
|
this->destroyAll();
|
|
|
|
// Reduce the number of buckets.
|
|
unsigned NewNumBuckets = 0;
|
|
if (OldSize) {
|
|
NewNumBuckets = 1 << (Log2_32_Ceil(OldSize) + 1);
|
|
if (NewNumBuckets > InlineBuckets && NewNumBuckets < 64u)
|
|
NewNumBuckets = 64;
|
|
}
|
|
if ((Small && NewNumBuckets <= InlineBuckets) ||
|
|
(!Small && NewNumBuckets == getLargeRep()->NumBuckets)) {
|
|
this->BaseT::initEmpty();
|
|
return;
|
|
}
|
|
|
|
deallocateBuckets();
|
|
init(NewNumBuckets);
|
|
}
|
|
|
|
private:
|
|
unsigned getNumEntries() const {
|
|
return NumEntries;
|
|
}
|
|
|
|
void setNumEntries(unsigned Num) {
|
|
// NumEntries is hardcoded to be 31 bits wide.
|
|
assert(Num < (1U << 31) && "Cannot support more than 1<<31 entries");
|
|
NumEntries = Num;
|
|
}
|
|
|
|
unsigned getNumTombstones() const {
|
|
return NumTombstones;
|
|
}
|
|
|
|
void setNumTombstones(unsigned Num) {
|
|
NumTombstones = Num;
|
|
}
|
|
|
|
const BucketT *getInlineBuckets() const {
|
|
assert(Small);
|
|
// Note that this cast does not violate aliasing rules as we assert that
|
|
// the memory's dynamic type is the small, inline bucket buffer, and the
|
|
// 'storage' is a POD containing a char buffer.
|
|
return reinterpret_cast<const BucketT *>(&storage);
|
|
}
|
|
|
|
BucketT *getInlineBuckets() {
|
|
return const_cast<BucketT *>(
|
|
const_cast<const SmallDenseMap *>(this)->getInlineBuckets());
|
|
}
|
|
|
|
const LargeRep *getLargeRep() const {
|
|
assert(!Small);
|
|
// Note, same rule about aliasing as with getInlineBuckets.
|
|
return reinterpret_cast<const LargeRep *>(&storage);
|
|
}
|
|
|
|
LargeRep *getLargeRep() {
|
|
return const_cast<LargeRep *>(
|
|
const_cast<const SmallDenseMap *>(this)->getLargeRep());
|
|
}
|
|
|
|
const BucketT *getBuckets() const {
|
|
return Small ? getInlineBuckets() : getLargeRep()->Buckets;
|
|
}
|
|
|
|
BucketT *getBuckets() {
|
|
return const_cast<BucketT *>(
|
|
const_cast<const SmallDenseMap *>(this)->getBuckets());
|
|
}
|
|
|
|
unsigned getNumBuckets() const {
|
|
return Small ? InlineBuckets : getLargeRep()->NumBuckets;
|
|
}
|
|
|
|
void deallocateBuckets() {
|
|
if (Small)
|
|
return;
|
|
|
|
deallocate_buffer(getLargeRep()->Buckets,
|
|
sizeof(BucketT) * getLargeRep()->NumBuckets,
|
|
alignof(BucketT));
|
|
getLargeRep()->~LargeRep();
|
|
}
|
|
|
|
LargeRep allocateBuckets(unsigned Num) {
|
|
assert(Num > InlineBuckets && "Must allocate more buckets than are inline");
|
|
LargeRep Rep = {static_cast<BucketT *>(allocate_buffer(
|
|
sizeof(BucketT) * Num, alignof(BucketT))),
|
|
Num};
|
|
return Rep;
|
|
}
|
|
};
|
|
|
|
template <typename KeyT, typename ValueT, typename KeyInfoT, typename Bucket,
|
|
bool IsConst>
|
|
class DenseMapIterator : DebugEpochBase::HandleBase {
|
|
friend class DenseMapIterator<KeyT, ValueT, KeyInfoT, Bucket, true>;
|
|
friend class DenseMapIterator<KeyT, ValueT, KeyInfoT, Bucket, false>;
|
|
|
|
public:
|
|
using difference_type = ptrdiff_t;
|
|
using value_type =
|
|
typename std::conditional<IsConst, const Bucket, Bucket>::type;
|
|
using pointer = value_type *;
|
|
using reference = value_type &;
|
|
using iterator_category = std::forward_iterator_tag;
|
|
|
|
private:
|
|
pointer Ptr = nullptr;
|
|
pointer End = nullptr;
|
|
|
|
public:
|
|
DenseMapIterator() = default;
|
|
|
|
DenseMapIterator(pointer Pos, pointer E, const DebugEpochBase &Epoch,
|
|
bool NoAdvance = false)
|
|
: DebugEpochBase::HandleBase(&Epoch), Ptr(Pos), End(E) {
|
|
assert(isHandleInSync() && "invalid construction!");
|
|
|
|
if (NoAdvance) return;
|
|
if (shouldReverseIterate<KeyT>()) {
|
|
RetreatPastEmptyBuckets();
|
|
return;
|
|
}
|
|
AdvancePastEmptyBuckets();
|
|
}
|
|
|
|
// Converting ctor from non-const iterators to const iterators. SFINAE'd out
|
|
// for const iterator destinations so it doesn't end up as a user defined copy
|
|
// constructor.
|
|
template <bool IsConstSrc,
|
|
typename = std::enable_if_t<!IsConstSrc && IsConst>>
|
|
DenseMapIterator(
|
|
const DenseMapIterator<KeyT, ValueT, KeyInfoT, Bucket, IsConstSrc> &I)
|
|
: DebugEpochBase::HandleBase(I), Ptr(I.Ptr), End(I.End) {}
|
|
|
|
reference operator*() const {
|
|
assert(isHandleInSync() && "invalid iterator access!");
|
|
assert(Ptr != End && "dereferencing end() iterator");
|
|
if (shouldReverseIterate<KeyT>())
|
|
return Ptr[-1];
|
|
return *Ptr;
|
|
}
|
|
pointer operator->() const {
|
|
assert(isHandleInSync() && "invalid iterator access!");
|
|
assert(Ptr != End && "dereferencing end() iterator");
|
|
if (shouldReverseIterate<KeyT>())
|
|
return &(Ptr[-1]);
|
|
return Ptr;
|
|
}
|
|
|
|
friend bool operator==(const DenseMapIterator &LHS,
|
|
const DenseMapIterator &RHS) {
|
|
assert((!LHS.Ptr || LHS.isHandleInSync()) && "handle not in sync!");
|
|
assert((!RHS.Ptr || RHS.isHandleInSync()) && "handle not in sync!");
|
|
assert(LHS.getEpochAddress() == RHS.getEpochAddress() &&
|
|
"comparing incomparable iterators!");
|
|
return LHS.Ptr == RHS.Ptr;
|
|
}
|
|
|
|
friend bool operator!=(const DenseMapIterator &LHS,
|
|
const DenseMapIterator &RHS) {
|
|
return !(LHS == RHS);
|
|
}
|
|
|
|
inline DenseMapIterator& operator++() { // Preincrement
|
|
assert(isHandleInSync() && "invalid iterator access!");
|
|
assert(Ptr != End && "incrementing end() iterator");
|
|
if (shouldReverseIterate<KeyT>()) {
|
|
--Ptr;
|
|
RetreatPastEmptyBuckets();
|
|
return *this;
|
|
}
|
|
++Ptr;
|
|
AdvancePastEmptyBuckets();
|
|
return *this;
|
|
}
|
|
DenseMapIterator operator++(int) { // Postincrement
|
|
assert(isHandleInSync() && "invalid iterator access!");
|
|
DenseMapIterator tmp = *this; ++*this; return tmp;
|
|
}
|
|
|
|
private:
|
|
void AdvancePastEmptyBuckets() {
|
|
assert(Ptr <= End);
|
|
const KeyT Empty = KeyInfoT::getEmptyKey();
|
|
const KeyT Tombstone = KeyInfoT::getTombstoneKey();
|
|
|
|
while (Ptr != End && (KeyInfoT::isEqual(Ptr->getFirst(), Empty) ||
|
|
KeyInfoT::isEqual(Ptr->getFirst(), Tombstone)))
|
|
++Ptr;
|
|
}
|
|
|
|
void RetreatPastEmptyBuckets() {
|
|
assert(Ptr >= End);
|
|
const KeyT Empty = KeyInfoT::getEmptyKey();
|
|
const KeyT Tombstone = KeyInfoT::getTombstoneKey();
|
|
|
|
while (Ptr != End && (KeyInfoT::isEqual(Ptr[-1].getFirst(), Empty) ||
|
|
KeyInfoT::isEqual(Ptr[-1].getFirst(), Tombstone)))
|
|
--Ptr;
|
|
}
|
|
};
|
|
|
|
template <typename KeyT, typename ValueT, typename KeyInfoT>
|
|
inline size_t capacity_in_bytes(const DenseMap<KeyT, ValueT, KeyInfoT> &X) {
|
|
return X.getMemorySize();
|
|
}
|
|
|
|
} // end namespace llvm
|
|
|
|
#endif // LLVM_ADT_DENSEMAP_H
|