mirror of
https://github.com/RPCS3/llvm-mirror.git
synced 2024-11-25 04:02:41 +01:00
e67bfc0f97
The getOrderedReductionCost implementation introduced in D105432 calls the CRTP base version getArithmeticInstrCost instead of the redirecting to the target version. Differential Revision: https://reviews.llvm.org/D106795
2215 lines
89 KiB
C++
2215 lines
89 KiB
C++
//===- BasicTTIImpl.h -------------------------------------------*- C++ -*-===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
/// \file
|
|
/// This file provides a helper that implements much of the TTI interface in
|
|
/// terms of the target-independent code generator and TargetLowering
|
|
/// interfaces.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#ifndef LLVM_CODEGEN_BASICTTIIMPL_H
|
|
#define LLVM_CODEGEN_BASICTTIIMPL_H
|
|
|
|
#include "llvm/ADT/APInt.h"
|
|
#include "llvm/ADT/ArrayRef.h"
|
|
#include "llvm/ADT/BitVector.h"
|
|
#include "llvm/ADT/SmallPtrSet.h"
|
|
#include "llvm/ADT/SmallVector.h"
|
|
#include "llvm/Analysis/LoopInfo.h"
|
|
#include "llvm/Analysis/TargetTransformInfo.h"
|
|
#include "llvm/Analysis/TargetTransformInfoImpl.h"
|
|
#include "llvm/CodeGen/ISDOpcodes.h"
|
|
#include "llvm/CodeGen/TargetLowering.h"
|
|
#include "llvm/CodeGen/TargetSubtargetInfo.h"
|
|
#include "llvm/CodeGen/ValueTypes.h"
|
|
#include "llvm/IR/BasicBlock.h"
|
|
#include "llvm/IR/Constant.h"
|
|
#include "llvm/IR/Constants.h"
|
|
#include "llvm/IR/DataLayout.h"
|
|
#include "llvm/IR/DerivedTypes.h"
|
|
#include "llvm/IR/InstrTypes.h"
|
|
#include "llvm/IR/Instruction.h"
|
|
#include "llvm/IR/Instructions.h"
|
|
#include "llvm/IR/Intrinsics.h"
|
|
#include "llvm/IR/Operator.h"
|
|
#include "llvm/IR/Type.h"
|
|
#include "llvm/IR/Value.h"
|
|
#include "llvm/Support/Casting.h"
|
|
#include "llvm/Support/CommandLine.h"
|
|
#include "llvm/Support/ErrorHandling.h"
|
|
#include "llvm/Support/MachineValueType.h"
|
|
#include "llvm/Support/MathExtras.h"
|
|
#include "llvm/Target/TargetMachine.h"
|
|
#include <algorithm>
|
|
#include <cassert>
|
|
#include <cstdint>
|
|
#include <limits>
|
|
#include <utility>
|
|
|
|
namespace llvm {
|
|
|
|
class Function;
|
|
class GlobalValue;
|
|
class LLVMContext;
|
|
class ScalarEvolution;
|
|
class SCEV;
|
|
class TargetMachine;
|
|
|
|
extern cl::opt<unsigned> PartialUnrollingThreshold;
|
|
|
|
/// Base class which can be used to help build a TTI implementation.
|
|
///
|
|
/// This class provides as much implementation of the TTI interface as is
|
|
/// possible using the target independent parts of the code generator.
|
|
///
|
|
/// In order to subclass it, your class must implement a getST() method to
|
|
/// return the subtarget, and a getTLI() method to return the target lowering.
|
|
/// We need these methods implemented in the derived class so that this class
|
|
/// doesn't have to duplicate storage for them.
|
|
template <typename T>
|
|
class BasicTTIImplBase : public TargetTransformInfoImplCRTPBase<T> {
|
|
private:
|
|
using BaseT = TargetTransformInfoImplCRTPBase<T>;
|
|
using TTI = TargetTransformInfo;
|
|
|
|
/// Helper function to access this as a T.
|
|
T *thisT() { return static_cast<T *>(this); }
|
|
|
|
/// Estimate a cost of Broadcast as an extract and sequence of insert
|
|
/// operations.
|
|
InstructionCost getBroadcastShuffleOverhead(FixedVectorType *VTy) {
|
|
InstructionCost Cost = 0;
|
|
// Broadcast cost is equal to the cost of extracting the zero'th element
|
|
// plus the cost of inserting it into every element of the result vector.
|
|
Cost += thisT()->getVectorInstrCost(Instruction::ExtractElement, VTy, 0);
|
|
|
|
for (int i = 0, e = VTy->getNumElements(); i < e; ++i) {
|
|
Cost += thisT()->getVectorInstrCost(Instruction::InsertElement, VTy, i);
|
|
}
|
|
return Cost;
|
|
}
|
|
|
|
/// Estimate a cost of shuffle as a sequence of extract and insert
|
|
/// operations.
|
|
InstructionCost getPermuteShuffleOverhead(FixedVectorType *VTy) {
|
|
InstructionCost Cost = 0;
|
|
// Shuffle cost is equal to the cost of extracting element from its argument
|
|
// plus the cost of inserting them onto the result vector.
|
|
|
|
// e.g. <4 x float> has a mask of <0,5,2,7> i.e we need to extract from
|
|
// index 0 of first vector, index 1 of second vector,index 2 of first
|
|
// vector and finally index 3 of second vector and insert them at index
|
|
// <0,1,2,3> of result vector.
|
|
for (int i = 0, e = VTy->getNumElements(); i < e; ++i) {
|
|
Cost += thisT()->getVectorInstrCost(Instruction::InsertElement, VTy, i);
|
|
Cost += thisT()->getVectorInstrCost(Instruction::ExtractElement, VTy, i);
|
|
}
|
|
return Cost;
|
|
}
|
|
|
|
/// Estimate a cost of subvector extraction as a sequence of extract and
|
|
/// insert operations.
|
|
InstructionCost getExtractSubvectorOverhead(VectorType *VTy, int Index,
|
|
FixedVectorType *SubVTy) {
|
|
assert(VTy && SubVTy &&
|
|
"Can only extract subvectors from vectors");
|
|
int NumSubElts = SubVTy->getNumElements();
|
|
assert((!isa<FixedVectorType>(VTy) ||
|
|
(Index + NumSubElts) <=
|
|
(int)cast<FixedVectorType>(VTy)->getNumElements()) &&
|
|
"SK_ExtractSubvector index out of range");
|
|
|
|
InstructionCost Cost = 0;
|
|
// Subvector extraction cost is equal to the cost of extracting element from
|
|
// the source type plus the cost of inserting them into the result vector
|
|
// type.
|
|
for (int i = 0; i != NumSubElts; ++i) {
|
|
Cost += thisT()->getVectorInstrCost(Instruction::ExtractElement, VTy,
|
|
i + Index);
|
|
Cost +=
|
|
thisT()->getVectorInstrCost(Instruction::InsertElement, SubVTy, i);
|
|
}
|
|
return Cost;
|
|
}
|
|
|
|
/// Estimate a cost of subvector insertion as a sequence of extract and
|
|
/// insert operations.
|
|
InstructionCost getInsertSubvectorOverhead(VectorType *VTy, int Index,
|
|
FixedVectorType *SubVTy) {
|
|
assert(VTy && SubVTy &&
|
|
"Can only insert subvectors into vectors");
|
|
int NumSubElts = SubVTy->getNumElements();
|
|
assert((!isa<FixedVectorType>(VTy) ||
|
|
(Index + NumSubElts) <=
|
|
(int)cast<FixedVectorType>(VTy)->getNumElements()) &&
|
|
"SK_InsertSubvector index out of range");
|
|
|
|
InstructionCost Cost = 0;
|
|
// Subvector insertion cost is equal to the cost of extracting element from
|
|
// the source type plus the cost of inserting them into the result vector
|
|
// type.
|
|
for (int i = 0; i != NumSubElts; ++i) {
|
|
Cost +=
|
|
thisT()->getVectorInstrCost(Instruction::ExtractElement, SubVTy, i);
|
|
Cost += thisT()->getVectorInstrCost(Instruction::InsertElement, VTy,
|
|
i + Index);
|
|
}
|
|
return Cost;
|
|
}
|
|
|
|
/// Local query method delegates up to T which *must* implement this!
|
|
const TargetSubtargetInfo *getST() const {
|
|
return static_cast<const T *>(this)->getST();
|
|
}
|
|
|
|
/// Local query method delegates up to T which *must* implement this!
|
|
const TargetLoweringBase *getTLI() const {
|
|
return static_cast<const T *>(this)->getTLI();
|
|
}
|
|
|
|
static ISD::MemIndexedMode getISDIndexedMode(TTI::MemIndexedMode M) {
|
|
switch (M) {
|
|
case TTI::MIM_Unindexed:
|
|
return ISD::UNINDEXED;
|
|
case TTI::MIM_PreInc:
|
|
return ISD::PRE_INC;
|
|
case TTI::MIM_PreDec:
|
|
return ISD::PRE_DEC;
|
|
case TTI::MIM_PostInc:
|
|
return ISD::POST_INC;
|
|
case TTI::MIM_PostDec:
|
|
return ISD::POST_DEC;
|
|
}
|
|
llvm_unreachable("Unexpected MemIndexedMode");
|
|
}
|
|
|
|
InstructionCost getCommonMaskedMemoryOpCost(unsigned Opcode, Type *DataTy,
|
|
Align Alignment,
|
|
bool VariableMask,
|
|
bool IsGatherScatter,
|
|
TTI::TargetCostKind CostKind) {
|
|
auto *VT = cast<FixedVectorType>(DataTy);
|
|
// Assume the target does not have support for gather/scatter operations
|
|
// and provide a rough estimate.
|
|
//
|
|
// First, compute the cost of the individual memory operations.
|
|
InstructionCost AddrExtractCost =
|
|
IsGatherScatter
|
|
? getVectorInstrCost(Instruction::ExtractElement,
|
|
FixedVectorType::get(
|
|
PointerType::get(VT->getElementType(), 0),
|
|
VT->getNumElements()),
|
|
-1)
|
|
: 0;
|
|
InstructionCost LoadCost =
|
|
VT->getNumElements() *
|
|
(AddrExtractCost +
|
|
getMemoryOpCost(Opcode, VT->getElementType(), Alignment, 0, CostKind));
|
|
|
|
// Next, compute the cost of packing the result in a vector.
|
|
InstructionCost PackingCost = getScalarizationOverhead(
|
|
VT, Opcode != Instruction::Store, Opcode == Instruction::Store);
|
|
|
|
InstructionCost ConditionalCost = 0;
|
|
if (VariableMask) {
|
|
// Compute the cost of conditionally executing the memory operations with
|
|
// variable masks. This includes extracting the individual conditions, a
|
|
// branches and PHIs to combine the results.
|
|
// NOTE: Estimating the cost of conditionally executing the memory
|
|
// operations accurately is quite difficult and the current solution
|
|
// provides a very rough estimate only.
|
|
ConditionalCost =
|
|
VT->getNumElements() *
|
|
(getVectorInstrCost(
|
|
Instruction::ExtractElement,
|
|
FixedVectorType::get(Type::getInt1Ty(DataTy->getContext()),
|
|
VT->getNumElements()),
|
|
-1) +
|
|
getCFInstrCost(Instruction::Br, CostKind) +
|
|
getCFInstrCost(Instruction::PHI, CostKind));
|
|
}
|
|
|
|
return LoadCost + PackingCost + ConditionalCost;
|
|
}
|
|
|
|
protected:
|
|
explicit BasicTTIImplBase(const TargetMachine *TM, const DataLayout &DL)
|
|
: BaseT(DL) {}
|
|
virtual ~BasicTTIImplBase() = default;
|
|
|
|
using TargetTransformInfoImplBase::DL;
|
|
|
|
public:
|
|
/// \name Scalar TTI Implementations
|
|
/// @{
|
|
bool allowsMisalignedMemoryAccesses(LLVMContext &Context, unsigned BitWidth,
|
|
unsigned AddressSpace, Align Alignment,
|
|
bool *Fast) const {
|
|
EVT E = EVT::getIntegerVT(Context, BitWidth);
|
|
return getTLI()->allowsMisalignedMemoryAccesses(
|
|
E, AddressSpace, Alignment, MachineMemOperand::MONone, Fast);
|
|
}
|
|
|
|
bool hasBranchDivergence() { return false; }
|
|
|
|
bool useGPUDivergenceAnalysis() { return false; }
|
|
|
|
bool isSourceOfDivergence(const Value *V) { return false; }
|
|
|
|
bool isAlwaysUniform(const Value *V) { return false; }
|
|
|
|
unsigned getFlatAddressSpace() {
|
|
// Return an invalid address space.
|
|
return -1;
|
|
}
|
|
|
|
bool collectFlatAddressOperands(SmallVectorImpl<int> &OpIndexes,
|
|
Intrinsic::ID IID) const {
|
|
return false;
|
|
}
|
|
|
|
bool isNoopAddrSpaceCast(unsigned FromAS, unsigned ToAS) const {
|
|
return getTLI()->getTargetMachine().isNoopAddrSpaceCast(FromAS, ToAS);
|
|
}
|
|
|
|
unsigned getAssumedAddrSpace(const Value *V) const {
|
|
return getTLI()->getTargetMachine().getAssumedAddrSpace(V);
|
|
}
|
|
|
|
Value *rewriteIntrinsicWithAddressSpace(IntrinsicInst *II, Value *OldV,
|
|
Value *NewV) const {
|
|
return nullptr;
|
|
}
|
|
|
|
bool isLegalAddImmediate(int64_t imm) {
|
|
return getTLI()->isLegalAddImmediate(imm);
|
|
}
|
|
|
|
bool isLegalICmpImmediate(int64_t imm) {
|
|
return getTLI()->isLegalICmpImmediate(imm);
|
|
}
|
|
|
|
bool isLegalAddressingMode(Type *Ty, GlobalValue *BaseGV, int64_t BaseOffset,
|
|
bool HasBaseReg, int64_t Scale,
|
|
unsigned AddrSpace, Instruction *I = nullptr) {
|
|
TargetLoweringBase::AddrMode AM;
|
|
AM.BaseGV = BaseGV;
|
|
AM.BaseOffs = BaseOffset;
|
|
AM.HasBaseReg = HasBaseReg;
|
|
AM.Scale = Scale;
|
|
return getTLI()->isLegalAddressingMode(DL, AM, Ty, AddrSpace, I);
|
|
}
|
|
|
|
bool isIndexedLoadLegal(TTI::MemIndexedMode M, Type *Ty,
|
|
const DataLayout &DL) const {
|
|
EVT VT = getTLI()->getValueType(DL, Ty);
|
|
return getTLI()->isIndexedLoadLegal(getISDIndexedMode(M), VT);
|
|
}
|
|
|
|
bool isIndexedStoreLegal(TTI::MemIndexedMode M, Type *Ty,
|
|
const DataLayout &DL) const {
|
|
EVT VT = getTLI()->getValueType(DL, Ty);
|
|
return getTLI()->isIndexedStoreLegal(getISDIndexedMode(M), VT);
|
|
}
|
|
|
|
bool isLSRCostLess(TTI::LSRCost C1, TTI::LSRCost C2) {
|
|
return TargetTransformInfoImplBase::isLSRCostLess(C1, C2);
|
|
}
|
|
|
|
bool isNumRegsMajorCostOfLSR() {
|
|
return TargetTransformInfoImplBase::isNumRegsMajorCostOfLSR();
|
|
}
|
|
|
|
bool isProfitableLSRChainElement(Instruction *I) {
|
|
return TargetTransformInfoImplBase::isProfitableLSRChainElement(I);
|
|
}
|
|
|
|
InstructionCost getScalingFactorCost(Type *Ty, GlobalValue *BaseGV,
|
|
int64_t BaseOffset, bool HasBaseReg,
|
|
int64_t Scale, unsigned AddrSpace) {
|
|
TargetLoweringBase::AddrMode AM;
|
|
AM.BaseGV = BaseGV;
|
|
AM.BaseOffs = BaseOffset;
|
|
AM.HasBaseReg = HasBaseReg;
|
|
AM.Scale = Scale;
|
|
return getTLI()->getScalingFactorCost(DL, AM, Ty, AddrSpace);
|
|
}
|
|
|
|
bool isTruncateFree(Type *Ty1, Type *Ty2) {
|
|
return getTLI()->isTruncateFree(Ty1, Ty2);
|
|
}
|
|
|
|
bool isProfitableToHoist(Instruction *I) {
|
|
return getTLI()->isProfitableToHoist(I);
|
|
}
|
|
|
|
bool useAA() const { return getST()->useAA(); }
|
|
|
|
bool isTypeLegal(Type *Ty) {
|
|
EVT VT = getTLI()->getValueType(DL, Ty);
|
|
return getTLI()->isTypeLegal(VT);
|
|
}
|
|
|
|
InstructionCost getRegUsageForType(Type *Ty) {
|
|
InstructionCost Val = getTLI()->getTypeLegalizationCost(DL, Ty).first;
|
|
assert(Val >= 0 && "Negative cost!");
|
|
return Val;
|
|
}
|
|
|
|
InstructionCost getGEPCost(Type *PointeeType, const Value *Ptr,
|
|
ArrayRef<const Value *> Operands) {
|
|
return BaseT::getGEPCost(PointeeType, Ptr, Operands);
|
|
}
|
|
|
|
unsigned getEstimatedNumberOfCaseClusters(const SwitchInst &SI,
|
|
unsigned &JumpTableSize,
|
|
ProfileSummaryInfo *PSI,
|
|
BlockFrequencyInfo *BFI) {
|
|
/// Try to find the estimated number of clusters. Note that the number of
|
|
/// clusters identified in this function could be different from the actual
|
|
/// numbers found in lowering. This function ignore switches that are
|
|
/// lowered with a mix of jump table / bit test / BTree. This function was
|
|
/// initially intended to be used when estimating the cost of switch in
|
|
/// inline cost heuristic, but it's a generic cost model to be used in other
|
|
/// places (e.g., in loop unrolling).
|
|
unsigned N = SI.getNumCases();
|
|
const TargetLoweringBase *TLI = getTLI();
|
|
const DataLayout &DL = this->getDataLayout();
|
|
|
|
JumpTableSize = 0;
|
|
bool IsJTAllowed = TLI->areJTsAllowed(SI.getParent()->getParent());
|
|
|
|
// Early exit if both a jump table and bit test are not allowed.
|
|
if (N < 1 || (!IsJTAllowed && DL.getIndexSizeInBits(0u) < N))
|
|
return N;
|
|
|
|
APInt MaxCaseVal = SI.case_begin()->getCaseValue()->getValue();
|
|
APInt MinCaseVal = MaxCaseVal;
|
|
for (auto CI : SI.cases()) {
|
|
const APInt &CaseVal = CI.getCaseValue()->getValue();
|
|
if (CaseVal.sgt(MaxCaseVal))
|
|
MaxCaseVal = CaseVal;
|
|
if (CaseVal.slt(MinCaseVal))
|
|
MinCaseVal = CaseVal;
|
|
}
|
|
|
|
// Check if suitable for a bit test
|
|
if (N <= DL.getIndexSizeInBits(0u)) {
|
|
SmallPtrSet<const BasicBlock *, 4> Dests;
|
|
for (auto I : SI.cases())
|
|
Dests.insert(I.getCaseSuccessor());
|
|
|
|
if (TLI->isSuitableForBitTests(Dests.size(), N, MinCaseVal, MaxCaseVal,
|
|
DL))
|
|
return 1;
|
|
}
|
|
|
|
// Check if suitable for a jump table.
|
|
if (IsJTAllowed) {
|
|
if (N < 2 || N < TLI->getMinimumJumpTableEntries())
|
|
return N;
|
|
uint64_t Range =
|
|
(MaxCaseVal - MinCaseVal)
|
|
.getLimitedValue(std::numeric_limits<uint64_t>::max() - 1) + 1;
|
|
// Check whether a range of clusters is dense enough for a jump table
|
|
if (TLI->isSuitableForJumpTable(&SI, N, Range, PSI, BFI)) {
|
|
JumpTableSize = Range;
|
|
return 1;
|
|
}
|
|
}
|
|
return N;
|
|
}
|
|
|
|
bool shouldBuildLookupTables() {
|
|
const TargetLoweringBase *TLI = getTLI();
|
|
return TLI->isOperationLegalOrCustom(ISD::BR_JT, MVT::Other) ||
|
|
TLI->isOperationLegalOrCustom(ISD::BRIND, MVT::Other);
|
|
}
|
|
|
|
bool shouldBuildRelLookupTables() const {
|
|
const TargetMachine &TM = getTLI()->getTargetMachine();
|
|
// If non-PIC mode, do not generate a relative lookup table.
|
|
if (!TM.isPositionIndependent())
|
|
return false;
|
|
|
|
/// Relative lookup table entries consist of 32-bit offsets.
|
|
/// Do not generate relative lookup tables for large code models
|
|
/// in 64-bit achitectures where 32-bit offsets might not be enough.
|
|
if (TM.getCodeModel() == CodeModel::Medium ||
|
|
TM.getCodeModel() == CodeModel::Large)
|
|
return false;
|
|
|
|
Triple TargetTriple = TM.getTargetTriple();
|
|
if (!TargetTriple.isArch64Bit())
|
|
return false;
|
|
|
|
// TODO: Triggers issues on aarch64 on darwin, so temporarily disable it
|
|
// there.
|
|
if (TargetTriple.getArch() == Triple::aarch64 && TargetTriple.isOSDarwin())
|
|
return false;
|
|
|
|
return true;
|
|
}
|
|
|
|
bool haveFastSqrt(Type *Ty) {
|
|
const TargetLoweringBase *TLI = getTLI();
|
|
EVT VT = TLI->getValueType(DL, Ty);
|
|
return TLI->isTypeLegal(VT) &&
|
|
TLI->isOperationLegalOrCustom(ISD::FSQRT, VT);
|
|
}
|
|
|
|
bool isFCmpOrdCheaperThanFCmpZero(Type *Ty) {
|
|
return true;
|
|
}
|
|
|
|
InstructionCost getFPOpCost(Type *Ty) {
|
|
// Check whether FADD is available, as a proxy for floating-point in
|
|
// general.
|
|
const TargetLoweringBase *TLI = getTLI();
|
|
EVT VT = TLI->getValueType(DL, Ty);
|
|
if (TLI->isOperationLegalOrCustomOrPromote(ISD::FADD, VT))
|
|
return TargetTransformInfo::TCC_Basic;
|
|
return TargetTransformInfo::TCC_Expensive;
|
|
}
|
|
|
|
unsigned getInliningThresholdMultiplier() { return 1; }
|
|
unsigned adjustInliningThreshold(const CallBase *CB) { return 0; }
|
|
|
|
int getInlinerVectorBonusPercent() { return 150; }
|
|
|
|
void getUnrollingPreferences(Loop *L, ScalarEvolution &SE,
|
|
TTI::UnrollingPreferences &UP) {
|
|
// This unrolling functionality is target independent, but to provide some
|
|
// motivation for its intended use, for x86:
|
|
|
|
// According to the Intel 64 and IA-32 Architectures Optimization Reference
|
|
// Manual, Intel Core models and later have a loop stream detector (and
|
|
// associated uop queue) that can benefit from partial unrolling.
|
|
// The relevant requirements are:
|
|
// - The loop must have no more than 4 (8 for Nehalem and later) branches
|
|
// taken, and none of them may be calls.
|
|
// - The loop can have no more than 18 (28 for Nehalem and later) uops.
|
|
|
|
// According to the Software Optimization Guide for AMD Family 15h
|
|
// Processors, models 30h-4fh (Steamroller and later) have a loop predictor
|
|
// and loop buffer which can benefit from partial unrolling.
|
|
// The relevant requirements are:
|
|
// - The loop must have fewer than 16 branches
|
|
// - The loop must have less than 40 uops in all executed loop branches
|
|
|
|
// The number of taken branches in a loop is hard to estimate here, and
|
|
// benchmarking has revealed that it is better not to be conservative when
|
|
// estimating the branch count. As a result, we'll ignore the branch limits
|
|
// until someone finds a case where it matters in practice.
|
|
|
|
unsigned MaxOps;
|
|
const TargetSubtargetInfo *ST = getST();
|
|
if (PartialUnrollingThreshold.getNumOccurrences() > 0)
|
|
MaxOps = PartialUnrollingThreshold;
|
|
else if (ST->getSchedModel().LoopMicroOpBufferSize > 0)
|
|
MaxOps = ST->getSchedModel().LoopMicroOpBufferSize;
|
|
else
|
|
return;
|
|
|
|
// Scan the loop: don't unroll loops with calls.
|
|
for (BasicBlock *BB : L->blocks()) {
|
|
for (Instruction &I : *BB) {
|
|
if (isa<CallInst>(I) || isa<InvokeInst>(I)) {
|
|
if (const Function *F = cast<CallBase>(I).getCalledFunction()) {
|
|
if (!thisT()->isLoweredToCall(F))
|
|
continue;
|
|
}
|
|
|
|
return;
|
|
}
|
|
}
|
|
}
|
|
|
|
// Enable runtime and partial unrolling up to the specified size.
|
|
// Enable using trip count upper bound to unroll loops.
|
|
UP.Partial = UP.Runtime = UP.UpperBound = true;
|
|
UP.PartialThreshold = MaxOps;
|
|
|
|
// Avoid unrolling when optimizing for size.
|
|
UP.OptSizeThreshold = 0;
|
|
UP.PartialOptSizeThreshold = 0;
|
|
|
|
// Set number of instructions optimized when "back edge"
|
|
// becomes "fall through" to default value of 2.
|
|
UP.BEInsns = 2;
|
|
}
|
|
|
|
void getPeelingPreferences(Loop *L, ScalarEvolution &SE,
|
|
TTI::PeelingPreferences &PP) {
|
|
PP.PeelCount = 0;
|
|
PP.AllowPeeling = true;
|
|
PP.AllowLoopNestsPeeling = false;
|
|
PP.PeelProfiledIterations = true;
|
|
}
|
|
|
|
bool isHardwareLoopProfitable(Loop *L, ScalarEvolution &SE,
|
|
AssumptionCache &AC,
|
|
TargetLibraryInfo *LibInfo,
|
|
HardwareLoopInfo &HWLoopInfo) {
|
|
return BaseT::isHardwareLoopProfitable(L, SE, AC, LibInfo, HWLoopInfo);
|
|
}
|
|
|
|
bool preferPredicateOverEpilogue(Loop *L, LoopInfo *LI, ScalarEvolution &SE,
|
|
AssumptionCache &AC, TargetLibraryInfo *TLI,
|
|
DominatorTree *DT,
|
|
const LoopAccessInfo *LAI) {
|
|
return BaseT::preferPredicateOverEpilogue(L, LI, SE, AC, TLI, DT, LAI);
|
|
}
|
|
|
|
bool emitGetActiveLaneMask() {
|
|
return BaseT::emitGetActiveLaneMask();
|
|
}
|
|
|
|
Optional<Instruction *> instCombineIntrinsic(InstCombiner &IC,
|
|
IntrinsicInst &II) {
|
|
return BaseT::instCombineIntrinsic(IC, II);
|
|
}
|
|
|
|
Optional<Value *> simplifyDemandedUseBitsIntrinsic(InstCombiner &IC,
|
|
IntrinsicInst &II,
|
|
APInt DemandedMask,
|
|
KnownBits &Known,
|
|
bool &KnownBitsComputed) {
|
|
return BaseT::simplifyDemandedUseBitsIntrinsic(IC, II, DemandedMask, Known,
|
|
KnownBitsComputed);
|
|
}
|
|
|
|
Optional<Value *> simplifyDemandedVectorEltsIntrinsic(
|
|
InstCombiner &IC, IntrinsicInst &II, APInt DemandedElts, APInt &UndefElts,
|
|
APInt &UndefElts2, APInt &UndefElts3,
|
|
std::function<void(Instruction *, unsigned, APInt, APInt &)>
|
|
SimplifyAndSetOp) {
|
|
return BaseT::simplifyDemandedVectorEltsIntrinsic(
|
|
IC, II, DemandedElts, UndefElts, UndefElts2, UndefElts3,
|
|
SimplifyAndSetOp);
|
|
}
|
|
|
|
InstructionCost getInstructionLatency(const Instruction *I) {
|
|
if (isa<LoadInst>(I))
|
|
return getST()->getSchedModel().DefaultLoadLatency;
|
|
|
|
return BaseT::getInstructionLatency(I);
|
|
}
|
|
|
|
virtual Optional<unsigned>
|
|
getCacheSize(TargetTransformInfo::CacheLevel Level) const {
|
|
return Optional<unsigned>(
|
|
getST()->getCacheSize(static_cast<unsigned>(Level)));
|
|
}
|
|
|
|
virtual Optional<unsigned>
|
|
getCacheAssociativity(TargetTransformInfo::CacheLevel Level) const {
|
|
Optional<unsigned> TargetResult =
|
|
getST()->getCacheAssociativity(static_cast<unsigned>(Level));
|
|
|
|
if (TargetResult)
|
|
return TargetResult;
|
|
|
|
return BaseT::getCacheAssociativity(Level);
|
|
}
|
|
|
|
virtual unsigned getCacheLineSize() const {
|
|
return getST()->getCacheLineSize();
|
|
}
|
|
|
|
virtual unsigned getPrefetchDistance() const {
|
|
return getST()->getPrefetchDistance();
|
|
}
|
|
|
|
virtual unsigned getMinPrefetchStride(unsigned NumMemAccesses,
|
|
unsigned NumStridedMemAccesses,
|
|
unsigned NumPrefetches,
|
|
bool HasCall) const {
|
|
return getST()->getMinPrefetchStride(NumMemAccesses, NumStridedMemAccesses,
|
|
NumPrefetches, HasCall);
|
|
}
|
|
|
|
virtual unsigned getMaxPrefetchIterationsAhead() const {
|
|
return getST()->getMaxPrefetchIterationsAhead();
|
|
}
|
|
|
|
virtual bool enableWritePrefetching() const {
|
|
return getST()->enableWritePrefetching();
|
|
}
|
|
|
|
/// @}
|
|
|
|
/// \name Vector TTI Implementations
|
|
/// @{
|
|
|
|
TypeSize getRegisterBitWidth(TargetTransformInfo::RegisterKind K) const {
|
|
return TypeSize::getFixed(32);
|
|
}
|
|
|
|
Optional<unsigned> getMaxVScale() const { return None; }
|
|
|
|
/// Estimate the overhead of scalarizing an instruction. Insert and Extract
|
|
/// are set if the demanded result elements need to be inserted and/or
|
|
/// extracted from vectors.
|
|
InstructionCost getScalarizationOverhead(VectorType *InTy,
|
|
const APInt &DemandedElts,
|
|
bool Insert, bool Extract) {
|
|
/// FIXME: a bitfield is not a reasonable abstraction for talking about
|
|
/// which elements are needed from a scalable vector
|
|
auto *Ty = cast<FixedVectorType>(InTy);
|
|
|
|
assert(DemandedElts.getBitWidth() == Ty->getNumElements() &&
|
|
"Vector size mismatch");
|
|
|
|
InstructionCost Cost = 0;
|
|
|
|
for (int i = 0, e = Ty->getNumElements(); i < e; ++i) {
|
|
if (!DemandedElts[i])
|
|
continue;
|
|
if (Insert)
|
|
Cost += thisT()->getVectorInstrCost(Instruction::InsertElement, Ty, i);
|
|
if (Extract)
|
|
Cost += thisT()->getVectorInstrCost(Instruction::ExtractElement, Ty, i);
|
|
}
|
|
|
|
return Cost;
|
|
}
|
|
|
|
/// Helper wrapper for the DemandedElts variant of getScalarizationOverhead.
|
|
InstructionCost getScalarizationOverhead(VectorType *InTy, bool Insert,
|
|
bool Extract) {
|
|
auto *Ty = cast<FixedVectorType>(InTy);
|
|
|
|
APInt DemandedElts = APInt::getAllOnesValue(Ty->getNumElements());
|
|
return thisT()->getScalarizationOverhead(Ty, DemandedElts, Insert, Extract);
|
|
}
|
|
|
|
/// Estimate the overhead of scalarizing an instructions unique
|
|
/// non-constant operands. The (potentially vector) types to use for each of
|
|
/// argument are passes via Tys.
|
|
InstructionCost getOperandsScalarizationOverhead(ArrayRef<const Value *> Args,
|
|
ArrayRef<Type *> Tys) {
|
|
assert(Args.size() == Tys.size() && "Expected matching Args and Tys");
|
|
|
|
InstructionCost Cost = 0;
|
|
SmallPtrSet<const Value*, 4> UniqueOperands;
|
|
for (int I = 0, E = Args.size(); I != E; I++) {
|
|
// Disregard things like metadata arguments.
|
|
const Value *A = Args[I];
|
|
Type *Ty = Tys[I];
|
|
if (!Ty->isIntOrIntVectorTy() && !Ty->isFPOrFPVectorTy() &&
|
|
!Ty->isPtrOrPtrVectorTy())
|
|
continue;
|
|
|
|
if (!isa<Constant>(A) && UniqueOperands.insert(A).second) {
|
|
if (auto *VecTy = dyn_cast<VectorType>(Ty))
|
|
Cost += getScalarizationOverhead(VecTy, false, true);
|
|
}
|
|
}
|
|
|
|
return Cost;
|
|
}
|
|
|
|
/// Estimate the overhead of scalarizing the inputs and outputs of an
|
|
/// instruction, with return type RetTy and arguments Args of type Tys. If
|
|
/// Args are unknown (empty), then the cost associated with one argument is
|
|
/// added as a heuristic.
|
|
InstructionCost getScalarizationOverhead(VectorType *RetTy,
|
|
ArrayRef<const Value *> Args,
|
|
ArrayRef<Type *> Tys) {
|
|
InstructionCost Cost = getScalarizationOverhead(RetTy, true, false);
|
|
if (!Args.empty())
|
|
Cost += getOperandsScalarizationOverhead(Args, Tys);
|
|
else
|
|
// When no information on arguments is provided, we add the cost
|
|
// associated with one argument as a heuristic.
|
|
Cost += getScalarizationOverhead(RetTy, false, true);
|
|
|
|
return Cost;
|
|
}
|
|
|
|
unsigned getMaxInterleaveFactor(unsigned VF) { return 1; }
|
|
|
|
InstructionCost getArithmeticInstrCost(
|
|
unsigned Opcode, Type *Ty,
|
|
TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput,
|
|
TTI::OperandValueKind Opd1Info = TTI::OK_AnyValue,
|
|
TTI::OperandValueKind Opd2Info = TTI::OK_AnyValue,
|
|
TTI::OperandValueProperties Opd1PropInfo = TTI::OP_None,
|
|
TTI::OperandValueProperties Opd2PropInfo = TTI::OP_None,
|
|
ArrayRef<const Value *> Args = ArrayRef<const Value *>(),
|
|
const Instruction *CxtI = nullptr) {
|
|
// Check if any of the operands are vector operands.
|
|
const TargetLoweringBase *TLI = getTLI();
|
|
int ISD = TLI->InstructionOpcodeToISD(Opcode);
|
|
assert(ISD && "Invalid opcode");
|
|
|
|
// TODO: Handle more cost kinds.
|
|
if (CostKind != TTI::TCK_RecipThroughput)
|
|
return BaseT::getArithmeticInstrCost(Opcode, Ty, CostKind,
|
|
Opd1Info, Opd2Info,
|
|
Opd1PropInfo, Opd2PropInfo,
|
|
Args, CxtI);
|
|
|
|
std::pair<InstructionCost, MVT> LT = TLI->getTypeLegalizationCost(DL, Ty);
|
|
|
|
bool IsFloat = Ty->isFPOrFPVectorTy();
|
|
// Assume that floating point arithmetic operations cost twice as much as
|
|
// integer operations.
|
|
InstructionCost OpCost = (IsFloat ? 2 : 1);
|
|
|
|
if (TLI->isOperationLegalOrPromote(ISD, LT.second)) {
|
|
// The operation is legal. Assume it costs 1.
|
|
// TODO: Once we have extract/insert subvector cost we need to use them.
|
|
return LT.first * OpCost;
|
|
}
|
|
|
|
if (!TLI->isOperationExpand(ISD, LT.second)) {
|
|
// If the operation is custom lowered, then assume that the code is twice
|
|
// as expensive.
|
|
return LT.first * 2 * OpCost;
|
|
}
|
|
|
|
// An 'Expand' of URem and SRem is special because it may default
|
|
// to expanding the operation into a sequence of sub-operations
|
|
// i.e. X % Y -> X-(X/Y)*Y.
|
|
if (ISD == ISD::UREM || ISD == ISD::SREM) {
|
|
bool IsSigned = ISD == ISD::SREM;
|
|
if (TLI->isOperationLegalOrCustom(IsSigned ? ISD::SDIVREM : ISD::UDIVREM,
|
|
LT.second) ||
|
|
TLI->isOperationLegalOrCustom(IsSigned ? ISD::SDIV : ISD::UDIV,
|
|
LT.second)) {
|
|
unsigned DivOpc = IsSigned ? Instruction::SDiv : Instruction::UDiv;
|
|
InstructionCost DivCost = thisT()->getArithmeticInstrCost(
|
|
DivOpc, Ty, CostKind, Opd1Info, Opd2Info, Opd1PropInfo,
|
|
Opd2PropInfo);
|
|
InstructionCost MulCost =
|
|
thisT()->getArithmeticInstrCost(Instruction::Mul, Ty, CostKind);
|
|
InstructionCost SubCost =
|
|
thisT()->getArithmeticInstrCost(Instruction::Sub, Ty, CostKind);
|
|
return DivCost + MulCost + SubCost;
|
|
}
|
|
}
|
|
|
|
// We cannot scalarize scalable vectors, so return Invalid.
|
|
if (isa<ScalableVectorType>(Ty))
|
|
return InstructionCost::getInvalid();
|
|
|
|
// Else, assume that we need to scalarize this op.
|
|
// TODO: If one of the types get legalized by splitting, handle this
|
|
// similarly to what getCastInstrCost() does.
|
|
if (auto *VTy = dyn_cast<FixedVectorType>(Ty)) {
|
|
InstructionCost Cost = thisT()->getArithmeticInstrCost(
|
|
Opcode, VTy->getScalarType(), CostKind, Opd1Info, Opd2Info,
|
|
Opd1PropInfo, Opd2PropInfo, Args, CxtI);
|
|
// Return the cost of multiple scalar invocation plus the cost of
|
|
// inserting and extracting the values.
|
|
SmallVector<Type *> Tys(Args.size(), Ty);
|
|
return getScalarizationOverhead(VTy, Args, Tys) +
|
|
VTy->getNumElements() * Cost;
|
|
}
|
|
|
|
// We don't know anything about this scalar instruction.
|
|
return OpCost;
|
|
}
|
|
|
|
TTI::ShuffleKind improveShuffleKindFromMask(TTI::ShuffleKind Kind,
|
|
ArrayRef<int> Mask) const {
|
|
int Limit = Mask.size() * 2;
|
|
if (Mask.empty() ||
|
|
// Extra check required by isSingleSourceMaskImpl function (called by
|
|
// ShuffleVectorInst::isSingleSourceMask).
|
|
any_of(Mask, [Limit](int I) { return I >= Limit; }))
|
|
return Kind;
|
|
switch (Kind) {
|
|
case TTI::SK_PermuteSingleSrc:
|
|
if (ShuffleVectorInst::isReverseMask(Mask))
|
|
return TTI::SK_Reverse;
|
|
if (ShuffleVectorInst::isZeroEltSplatMask(Mask))
|
|
return TTI::SK_Broadcast;
|
|
break;
|
|
case TTI::SK_PermuteTwoSrc:
|
|
if (ShuffleVectorInst::isSelectMask(Mask))
|
|
return TTI::SK_Select;
|
|
if (ShuffleVectorInst::isTransposeMask(Mask))
|
|
return TTI::SK_Transpose;
|
|
break;
|
|
case TTI::SK_Select:
|
|
case TTI::SK_Reverse:
|
|
case TTI::SK_Broadcast:
|
|
case TTI::SK_Transpose:
|
|
case TTI::SK_InsertSubvector:
|
|
case TTI::SK_ExtractSubvector:
|
|
case TTI::SK_Splice:
|
|
break;
|
|
}
|
|
return Kind;
|
|
}
|
|
|
|
InstructionCost getShuffleCost(TTI::ShuffleKind Kind, VectorType *Tp,
|
|
ArrayRef<int> Mask, int Index,
|
|
VectorType *SubTp) {
|
|
|
|
switch (improveShuffleKindFromMask(Kind, Mask)) {
|
|
case TTI::SK_Broadcast:
|
|
return getBroadcastShuffleOverhead(cast<FixedVectorType>(Tp));
|
|
case TTI::SK_Select:
|
|
case TTI::SK_Splice:
|
|
case TTI::SK_Reverse:
|
|
case TTI::SK_Transpose:
|
|
case TTI::SK_PermuteSingleSrc:
|
|
case TTI::SK_PermuteTwoSrc:
|
|
return getPermuteShuffleOverhead(cast<FixedVectorType>(Tp));
|
|
case TTI::SK_ExtractSubvector:
|
|
return getExtractSubvectorOverhead(Tp, Index,
|
|
cast<FixedVectorType>(SubTp));
|
|
case TTI::SK_InsertSubvector:
|
|
return getInsertSubvectorOverhead(Tp, Index,
|
|
cast<FixedVectorType>(SubTp));
|
|
}
|
|
llvm_unreachable("Unknown TTI::ShuffleKind");
|
|
}
|
|
|
|
InstructionCost getCastInstrCost(unsigned Opcode, Type *Dst, Type *Src,
|
|
TTI::CastContextHint CCH,
|
|
TTI::TargetCostKind CostKind,
|
|
const Instruction *I = nullptr) {
|
|
if (BaseT::getCastInstrCost(Opcode, Dst, Src, CCH, CostKind, I) == 0)
|
|
return 0;
|
|
|
|
const TargetLoweringBase *TLI = getTLI();
|
|
int ISD = TLI->InstructionOpcodeToISD(Opcode);
|
|
assert(ISD && "Invalid opcode");
|
|
std::pair<InstructionCost, MVT> SrcLT =
|
|
TLI->getTypeLegalizationCost(DL, Src);
|
|
std::pair<InstructionCost, MVT> DstLT =
|
|
TLI->getTypeLegalizationCost(DL, Dst);
|
|
|
|
TypeSize SrcSize = SrcLT.second.getSizeInBits();
|
|
TypeSize DstSize = DstLT.second.getSizeInBits();
|
|
bool IntOrPtrSrc = Src->isIntegerTy() || Src->isPointerTy();
|
|
bool IntOrPtrDst = Dst->isIntegerTy() || Dst->isPointerTy();
|
|
|
|
switch (Opcode) {
|
|
default:
|
|
break;
|
|
case Instruction::Trunc:
|
|
// Check for NOOP conversions.
|
|
if (TLI->isTruncateFree(SrcLT.second, DstLT.second))
|
|
return 0;
|
|
LLVM_FALLTHROUGH;
|
|
case Instruction::BitCast:
|
|
// Bitcast between types that are legalized to the same type are free and
|
|
// assume int to/from ptr of the same size is also free.
|
|
if (SrcLT.first == DstLT.first && IntOrPtrSrc == IntOrPtrDst &&
|
|
SrcSize == DstSize)
|
|
return 0;
|
|
break;
|
|
case Instruction::FPExt:
|
|
if (I && getTLI()->isExtFree(I))
|
|
return 0;
|
|
break;
|
|
case Instruction::ZExt:
|
|
if (TLI->isZExtFree(SrcLT.second, DstLT.second))
|
|
return 0;
|
|
LLVM_FALLTHROUGH;
|
|
case Instruction::SExt:
|
|
if (I && getTLI()->isExtFree(I))
|
|
return 0;
|
|
|
|
// If this is a zext/sext of a load, return 0 if the corresponding
|
|
// extending load exists on target and the result type is legal.
|
|
if (CCH == TTI::CastContextHint::Normal) {
|
|
EVT ExtVT = EVT::getEVT(Dst);
|
|
EVT LoadVT = EVT::getEVT(Src);
|
|
unsigned LType =
|
|
((Opcode == Instruction::ZExt) ? ISD::ZEXTLOAD : ISD::SEXTLOAD);
|
|
if (DstLT.first == SrcLT.first &&
|
|
TLI->isLoadExtLegal(LType, ExtVT, LoadVT))
|
|
return 0;
|
|
}
|
|
break;
|
|
case Instruction::AddrSpaceCast:
|
|
if (TLI->isFreeAddrSpaceCast(Src->getPointerAddressSpace(),
|
|
Dst->getPointerAddressSpace()))
|
|
return 0;
|
|
break;
|
|
}
|
|
|
|
auto *SrcVTy = dyn_cast<VectorType>(Src);
|
|
auto *DstVTy = dyn_cast<VectorType>(Dst);
|
|
|
|
// If the cast is marked as legal (or promote) then assume low cost.
|
|
if (SrcLT.first == DstLT.first &&
|
|
TLI->isOperationLegalOrPromote(ISD, DstLT.second))
|
|
return SrcLT.first;
|
|
|
|
// Handle scalar conversions.
|
|
if (!SrcVTy && !DstVTy) {
|
|
// Just check the op cost. If the operation is legal then assume it costs
|
|
// 1.
|
|
if (!TLI->isOperationExpand(ISD, DstLT.second))
|
|
return 1;
|
|
|
|
// Assume that illegal scalar instruction are expensive.
|
|
return 4;
|
|
}
|
|
|
|
// Check vector-to-vector casts.
|
|
if (DstVTy && SrcVTy) {
|
|
// If the cast is between same-sized registers, then the check is simple.
|
|
if (SrcLT.first == DstLT.first && SrcSize == DstSize) {
|
|
|
|
// Assume that Zext is done using AND.
|
|
if (Opcode == Instruction::ZExt)
|
|
return SrcLT.first;
|
|
|
|
// Assume that sext is done using SHL and SRA.
|
|
if (Opcode == Instruction::SExt)
|
|
return SrcLT.first * 2;
|
|
|
|
// Just check the op cost. If the operation is legal then assume it
|
|
// costs
|
|
// 1 and multiply by the type-legalization overhead.
|
|
if (!TLI->isOperationExpand(ISD, DstLT.second))
|
|
return SrcLT.first * 1;
|
|
}
|
|
|
|
// If we are legalizing by splitting, query the concrete TTI for the cost
|
|
// of casting the original vector twice. We also need to factor in the
|
|
// cost of the split itself. Count that as 1, to be consistent with
|
|
// TLI->getTypeLegalizationCost().
|
|
bool SplitSrc =
|
|
TLI->getTypeAction(Src->getContext(), TLI->getValueType(DL, Src)) ==
|
|
TargetLowering::TypeSplitVector;
|
|
bool SplitDst =
|
|
TLI->getTypeAction(Dst->getContext(), TLI->getValueType(DL, Dst)) ==
|
|
TargetLowering::TypeSplitVector;
|
|
if ((SplitSrc || SplitDst) && SrcVTy->getElementCount().isVector() &&
|
|
DstVTy->getElementCount().isVector()) {
|
|
Type *SplitDstTy = VectorType::getHalfElementsVectorType(DstVTy);
|
|
Type *SplitSrcTy = VectorType::getHalfElementsVectorType(SrcVTy);
|
|
T *TTI = static_cast<T *>(this);
|
|
// If both types need to be split then the split is free.
|
|
InstructionCost SplitCost =
|
|
(!SplitSrc || !SplitDst) ? TTI->getVectorSplitCost() : 0;
|
|
return SplitCost +
|
|
(2 * TTI->getCastInstrCost(Opcode, SplitDstTy, SplitSrcTy, CCH,
|
|
CostKind, I));
|
|
}
|
|
|
|
// Scalarization cost is Invalid, can't assume any num elements.
|
|
if (isa<ScalableVectorType>(DstVTy))
|
|
return InstructionCost::getInvalid();
|
|
|
|
// In other cases where the source or destination are illegal, assume
|
|
// the operation will get scalarized.
|
|
unsigned Num = cast<FixedVectorType>(DstVTy)->getNumElements();
|
|
InstructionCost Cost = thisT()->getCastInstrCost(
|
|
Opcode, Dst->getScalarType(), Src->getScalarType(), CCH, CostKind, I);
|
|
|
|
// Return the cost of multiple scalar invocation plus the cost of
|
|
// inserting and extracting the values.
|
|
return getScalarizationOverhead(DstVTy, true, true) + Num * Cost;
|
|
}
|
|
|
|
// We already handled vector-to-vector and scalar-to-scalar conversions.
|
|
// This
|
|
// is where we handle bitcast between vectors and scalars. We need to assume
|
|
// that the conversion is scalarized in one way or another.
|
|
if (Opcode == Instruction::BitCast) {
|
|
// Illegal bitcasts are done by storing and loading from a stack slot.
|
|
return (SrcVTy ? getScalarizationOverhead(SrcVTy, false, true) : 0) +
|
|
(DstVTy ? getScalarizationOverhead(DstVTy, true, false) : 0);
|
|
}
|
|
|
|
llvm_unreachable("Unhandled cast");
|
|
}
|
|
|
|
InstructionCost getExtractWithExtendCost(unsigned Opcode, Type *Dst,
|
|
VectorType *VecTy, unsigned Index) {
|
|
return thisT()->getVectorInstrCost(Instruction::ExtractElement, VecTy,
|
|
Index) +
|
|
thisT()->getCastInstrCost(Opcode, Dst, VecTy->getElementType(),
|
|
TTI::CastContextHint::None,
|
|
TTI::TCK_RecipThroughput);
|
|
}
|
|
|
|
InstructionCost getCFInstrCost(unsigned Opcode, TTI::TargetCostKind CostKind,
|
|
const Instruction *I = nullptr) {
|
|
return BaseT::getCFInstrCost(Opcode, CostKind, I);
|
|
}
|
|
|
|
InstructionCost getCmpSelInstrCost(unsigned Opcode, Type *ValTy, Type *CondTy,
|
|
CmpInst::Predicate VecPred,
|
|
TTI::TargetCostKind CostKind,
|
|
const Instruction *I = nullptr) {
|
|
const TargetLoweringBase *TLI = getTLI();
|
|
int ISD = TLI->InstructionOpcodeToISD(Opcode);
|
|
assert(ISD && "Invalid opcode");
|
|
|
|
// TODO: Handle other cost kinds.
|
|
if (CostKind != TTI::TCK_RecipThroughput)
|
|
return BaseT::getCmpSelInstrCost(Opcode, ValTy, CondTy, VecPred, CostKind,
|
|
I);
|
|
|
|
// Selects on vectors are actually vector selects.
|
|
if (ISD == ISD::SELECT) {
|
|
assert(CondTy && "CondTy must exist");
|
|
if (CondTy->isVectorTy())
|
|
ISD = ISD::VSELECT;
|
|
}
|
|
std::pair<InstructionCost, MVT> LT =
|
|
TLI->getTypeLegalizationCost(DL, ValTy);
|
|
|
|
if (!(ValTy->isVectorTy() && !LT.second.isVector()) &&
|
|
!TLI->isOperationExpand(ISD, LT.second)) {
|
|
// The operation is legal. Assume it costs 1. Multiply
|
|
// by the type-legalization overhead.
|
|
return LT.first * 1;
|
|
}
|
|
|
|
// Otherwise, assume that the cast is scalarized.
|
|
// TODO: If one of the types get legalized by splitting, handle this
|
|
// similarly to what getCastInstrCost() does.
|
|
if (auto *ValVTy = dyn_cast<VectorType>(ValTy)) {
|
|
unsigned Num = cast<FixedVectorType>(ValVTy)->getNumElements();
|
|
if (CondTy)
|
|
CondTy = CondTy->getScalarType();
|
|
InstructionCost Cost = thisT()->getCmpSelInstrCost(
|
|
Opcode, ValVTy->getScalarType(), CondTy, VecPred, CostKind, I);
|
|
|
|
// Return the cost of multiple scalar invocation plus the cost of
|
|
// inserting and extracting the values.
|
|
return getScalarizationOverhead(ValVTy, true, false) + Num * Cost;
|
|
}
|
|
|
|
// Unknown scalar opcode.
|
|
return 1;
|
|
}
|
|
|
|
InstructionCost getVectorInstrCost(unsigned Opcode, Type *Val,
|
|
unsigned Index) {
|
|
std::pair<InstructionCost, MVT> LT =
|
|
getTLI()->getTypeLegalizationCost(DL, Val->getScalarType());
|
|
|
|
return LT.first;
|
|
}
|
|
|
|
InstructionCost getMemoryOpCost(unsigned Opcode, Type *Src,
|
|
MaybeAlign Alignment, unsigned AddressSpace,
|
|
TTI::TargetCostKind CostKind,
|
|
const Instruction *I = nullptr) {
|
|
assert(!Src->isVoidTy() && "Invalid type");
|
|
// Assume types, such as structs, are expensive.
|
|
if (getTLI()->getValueType(DL, Src, true) == MVT::Other)
|
|
return 4;
|
|
std::pair<InstructionCost, MVT> LT =
|
|
getTLI()->getTypeLegalizationCost(DL, Src);
|
|
|
|
// Assuming that all loads of legal types cost 1.
|
|
InstructionCost Cost = LT.first;
|
|
if (CostKind != TTI::TCK_RecipThroughput)
|
|
return Cost;
|
|
|
|
if (Src->isVectorTy() &&
|
|
// In practice it's not currently possible to have a change in lane
|
|
// length for extending loads or truncating stores so both types should
|
|
// have the same scalable property.
|
|
TypeSize::isKnownLT(Src->getPrimitiveSizeInBits(),
|
|
LT.second.getSizeInBits())) {
|
|
// This is a vector load that legalizes to a larger type than the vector
|
|
// itself. Unless the corresponding extending load or truncating store is
|
|
// legal, then this will scalarize.
|
|
TargetLowering::LegalizeAction LA = TargetLowering::Expand;
|
|
EVT MemVT = getTLI()->getValueType(DL, Src);
|
|
if (Opcode == Instruction::Store)
|
|
LA = getTLI()->getTruncStoreAction(LT.second, MemVT);
|
|
else
|
|
LA = getTLI()->getLoadExtAction(ISD::EXTLOAD, LT.second, MemVT);
|
|
|
|
if (LA != TargetLowering::Legal && LA != TargetLowering::Custom) {
|
|
// This is a vector load/store for some illegal type that is scalarized.
|
|
// We must account for the cost of building or decomposing the vector.
|
|
Cost += getScalarizationOverhead(cast<VectorType>(Src),
|
|
Opcode != Instruction::Store,
|
|
Opcode == Instruction::Store);
|
|
}
|
|
}
|
|
|
|
return Cost;
|
|
}
|
|
|
|
InstructionCost getMaskedMemoryOpCost(unsigned Opcode, Type *DataTy,
|
|
Align Alignment, unsigned AddressSpace,
|
|
TTI::TargetCostKind CostKind) {
|
|
return getCommonMaskedMemoryOpCost(Opcode, DataTy, Alignment, true, false,
|
|
CostKind);
|
|
}
|
|
|
|
InstructionCost getGatherScatterOpCost(unsigned Opcode, Type *DataTy,
|
|
const Value *Ptr, bool VariableMask,
|
|
Align Alignment,
|
|
TTI::TargetCostKind CostKind,
|
|
const Instruction *I = nullptr) {
|
|
return getCommonMaskedMemoryOpCost(Opcode, DataTy, Alignment, VariableMask,
|
|
true, CostKind);
|
|
}
|
|
|
|
InstructionCost getInterleavedMemoryOpCost(
|
|
unsigned Opcode, Type *VecTy, unsigned Factor, ArrayRef<unsigned> Indices,
|
|
Align Alignment, unsigned AddressSpace, TTI::TargetCostKind CostKind,
|
|
bool UseMaskForCond = false, bool UseMaskForGaps = false) {
|
|
auto *VT = cast<FixedVectorType>(VecTy);
|
|
|
|
unsigned NumElts = VT->getNumElements();
|
|
assert(Factor > 1 && NumElts % Factor == 0 && "Invalid interleave factor");
|
|
|
|
unsigned NumSubElts = NumElts / Factor;
|
|
auto *SubVT = FixedVectorType::get(VT->getElementType(), NumSubElts);
|
|
|
|
// Firstly, the cost of load/store operation.
|
|
InstructionCost Cost;
|
|
if (UseMaskForCond || UseMaskForGaps)
|
|
Cost = thisT()->getMaskedMemoryOpCost(Opcode, VecTy, Alignment,
|
|
AddressSpace, CostKind);
|
|
else
|
|
Cost = thisT()->getMemoryOpCost(Opcode, VecTy, Alignment, AddressSpace,
|
|
CostKind);
|
|
|
|
// Legalize the vector type, and get the legalized and unlegalized type
|
|
// sizes.
|
|
MVT VecTyLT = getTLI()->getTypeLegalizationCost(DL, VecTy).second;
|
|
unsigned VecTySize = thisT()->getDataLayout().getTypeStoreSize(VecTy);
|
|
unsigned VecTyLTSize = VecTyLT.getStoreSize();
|
|
|
|
// Scale the cost of the memory operation by the fraction of legalized
|
|
// instructions that will actually be used. We shouldn't account for the
|
|
// cost of dead instructions since they will be removed.
|
|
//
|
|
// E.g., An interleaved load of factor 8:
|
|
// %vec = load <16 x i64>, <16 x i64>* %ptr
|
|
// %v0 = shufflevector %vec, undef, <0, 8>
|
|
//
|
|
// If <16 x i64> is legalized to 8 v2i64 loads, only 2 of the loads will be
|
|
// used (those corresponding to elements [0:1] and [8:9] of the unlegalized
|
|
// type). The other loads are unused.
|
|
//
|
|
// We only scale the cost of loads since interleaved store groups aren't
|
|
// allowed to have gaps.
|
|
if (Opcode == Instruction::Load && VecTySize > VecTyLTSize) {
|
|
// The number of loads of a legal type it will take to represent a load
|
|
// of the unlegalized vector type.
|
|
unsigned NumLegalInsts = divideCeil(VecTySize, VecTyLTSize);
|
|
|
|
// The number of elements of the unlegalized type that correspond to a
|
|
// single legal instruction.
|
|
unsigned NumEltsPerLegalInst = divideCeil(NumElts, NumLegalInsts);
|
|
|
|
// Determine which legal instructions will be used.
|
|
BitVector UsedInsts(NumLegalInsts, false);
|
|
for (unsigned Index : Indices)
|
|
for (unsigned Elt = 0; Elt < NumSubElts; ++Elt)
|
|
UsedInsts.set((Index + Elt * Factor) / NumEltsPerLegalInst);
|
|
|
|
// Scale the cost of the load by the fraction of legal instructions that
|
|
// will be used.
|
|
Cost *= UsedInsts.count() / NumLegalInsts;
|
|
}
|
|
|
|
// Then plus the cost of interleave operation.
|
|
if (Opcode == Instruction::Load) {
|
|
// The interleave cost is similar to extract sub vectors' elements
|
|
// from the wide vector, and insert them into sub vectors.
|
|
//
|
|
// E.g. An interleaved load of factor 2 (with one member of index 0):
|
|
// %vec = load <8 x i32>, <8 x i32>* %ptr
|
|
// %v0 = shuffle %vec, undef, <0, 2, 4, 6> ; Index 0
|
|
// The cost is estimated as extract elements at 0, 2, 4, 6 from the
|
|
// <8 x i32> vector and insert them into a <4 x i32> vector.
|
|
|
|
assert(Indices.size() <= Factor &&
|
|
"Interleaved memory op has too many members");
|
|
|
|
for (unsigned Index : Indices) {
|
|
assert(Index < Factor && "Invalid index for interleaved memory op");
|
|
|
|
// Extract elements from loaded vector for each sub vector.
|
|
for (unsigned i = 0; i < NumSubElts; i++)
|
|
Cost += thisT()->getVectorInstrCost(Instruction::ExtractElement, VT,
|
|
Index + i * Factor);
|
|
}
|
|
|
|
InstructionCost InsSubCost = 0;
|
|
for (unsigned i = 0; i < NumSubElts; i++)
|
|
InsSubCost +=
|
|
thisT()->getVectorInstrCost(Instruction::InsertElement, SubVT, i);
|
|
|
|
Cost += Indices.size() * InsSubCost;
|
|
} else {
|
|
// The interleave cost is extract all elements from sub vectors, and
|
|
// insert them into the wide vector.
|
|
//
|
|
// E.g. An interleaved store of factor 2:
|
|
// %v0_v1 = shuffle %v0, %v1, <0, 4, 1, 5, 2, 6, 3, 7>
|
|
// store <8 x i32> %interleaved.vec, <8 x i32>* %ptr
|
|
// The cost is estimated as extract all elements from both <4 x i32>
|
|
// vectors and insert into the <8 x i32> vector.
|
|
|
|
InstructionCost ExtSubCost = 0;
|
|
for (unsigned i = 0; i < NumSubElts; i++)
|
|
ExtSubCost +=
|
|
thisT()->getVectorInstrCost(Instruction::ExtractElement, SubVT, i);
|
|
Cost += ExtSubCost * Factor;
|
|
|
|
for (unsigned i = 0; i < NumElts; i++)
|
|
Cost += static_cast<T *>(this)
|
|
->getVectorInstrCost(Instruction::InsertElement, VT, i);
|
|
}
|
|
|
|
if (!UseMaskForCond)
|
|
return Cost;
|
|
|
|
Type *I8Type = Type::getInt8Ty(VT->getContext());
|
|
auto *MaskVT = FixedVectorType::get(I8Type, NumElts);
|
|
SubVT = FixedVectorType::get(I8Type, NumSubElts);
|
|
|
|
// The Mask shuffling cost is extract all the elements of the Mask
|
|
// and insert each of them Factor times into the wide vector:
|
|
//
|
|
// E.g. an interleaved group with factor 3:
|
|
// %mask = icmp ult <8 x i32> %vec1, %vec2
|
|
// %interleaved.mask = shufflevector <8 x i1> %mask, <8 x i1> undef,
|
|
// <24 x i32> <0,0,0,1,1,1,2,2,2,3,3,3,4,4,4,5,5,5,6,6,6,7,7,7>
|
|
// The cost is estimated as extract all mask elements from the <8xi1> mask
|
|
// vector and insert them factor times into the <24xi1> shuffled mask
|
|
// vector.
|
|
for (unsigned i = 0; i < NumSubElts; i++)
|
|
Cost +=
|
|
thisT()->getVectorInstrCost(Instruction::ExtractElement, SubVT, i);
|
|
|
|
for (unsigned i = 0; i < NumElts; i++)
|
|
Cost +=
|
|
thisT()->getVectorInstrCost(Instruction::InsertElement, MaskVT, i);
|
|
|
|
// The Gaps mask is invariant and created outside the loop, therefore the
|
|
// cost of creating it is not accounted for here. However if we have both
|
|
// a MaskForGaps and some other mask that guards the execution of the
|
|
// memory access, we need to account for the cost of And-ing the two masks
|
|
// inside the loop.
|
|
if (UseMaskForGaps)
|
|
Cost += thisT()->getArithmeticInstrCost(BinaryOperator::And, MaskVT,
|
|
CostKind);
|
|
|
|
return Cost;
|
|
}
|
|
|
|
/// Get intrinsic cost based on arguments.
|
|
InstructionCost getIntrinsicInstrCost(const IntrinsicCostAttributes &ICA,
|
|
TTI::TargetCostKind CostKind) {
|
|
// Check for generically free intrinsics.
|
|
if (BaseT::getIntrinsicInstrCost(ICA, CostKind) == 0)
|
|
return 0;
|
|
|
|
// Assume that target intrinsics are cheap.
|
|
Intrinsic::ID IID = ICA.getID();
|
|
if (Function::isTargetIntrinsic(IID))
|
|
return TargetTransformInfo::TCC_Basic;
|
|
|
|
if (ICA.isTypeBasedOnly())
|
|
return getTypeBasedIntrinsicInstrCost(ICA, CostKind);
|
|
|
|
Type *RetTy = ICA.getReturnType();
|
|
|
|
ElementCount RetVF =
|
|
(RetTy->isVectorTy() ? cast<VectorType>(RetTy)->getElementCount()
|
|
: ElementCount::getFixed(1));
|
|
const IntrinsicInst *I = ICA.getInst();
|
|
const SmallVectorImpl<const Value *> &Args = ICA.getArgs();
|
|
FastMathFlags FMF = ICA.getFlags();
|
|
switch (IID) {
|
|
default:
|
|
break;
|
|
|
|
case Intrinsic::cttz:
|
|
// FIXME: If necessary, this should go in target-specific overrides.
|
|
if (RetVF.isScalar() && getTLI()->isCheapToSpeculateCttz())
|
|
return TargetTransformInfo::TCC_Basic;
|
|
break;
|
|
|
|
case Intrinsic::ctlz:
|
|
// FIXME: If necessary, this should go in target-specific overrides.
|
|
if (RetVF.isScalar() && getTLI()->isCheapToSpeculateCtlz())
|
|
return TargetTransformInfo::TCC_Basic;
|
|
break;
|
|
|
|
case Intrinsic::memcpy:
|
|
return thisT()->getMemcpyCost(ICA.getInst());
|
|
|
|
case Intrinsic::masked_scatter: {
|
|
const Value *Mask = Args[3];
|
|
bool VarMask = !isa<Constant>(Mask);
|
|
Align Alignment = cast<ConstantInt>(Args[2])->getAlignValue();
|
|
return thisT()->getGatherScatterOpCost(Instruction::Store,
|
|
ICA.getArgTypes()[0], Args[1],
|
|
VarMask, Alignment, CostKind, I);
|
|
}
|
|
case Intrinsic::masked_gather: {
|
|
const Value *Mask = Args[2];
|
|
bool VarMask = !isa<Constant>(Mask);
|
|
Align Alignment = cast<ConstantInt>(Args[1])->getAlignValue();
|
|
return thisT()->getGatherScatterOpCost(Instruction::Load, RetTy, Args[0],
|
|
VarMask, Alignment, CostKind, I);
|
|
}
|
|
case Intrinsic::experimental_stepvector: {
|
|
if (isa<ScalableVectorType>(RetTy))
|
|
return BaseT::getIntrinsicInstrCost(ICA, CostKind);
|
|
// The cost of materialising a constant integer vector.
|
|
return TargetTransformInfo::TCC_Basic;
|
|
}
|
|
case Intrinsic::experimental_vector_extract: {
|
|
// FIXME: Handle case where a scalable vector is extracted from a scalable
|
|
// vector
|
|
if (isa<ScalableVectorType>(RetTy))
|
|
return BaseT::getIntrinsicInstrCost(ICA, CostKind);
|
|
unsigned Index = cast<ConstantInt>(Args[1])->getZExtValue();
|
|
return thisT()->getShuffleCost(TTI::SK_ExtractSubvector,
|
|
cast<VectorType>(Args[0]->getType()), None,
|
|
Index, cast<VectorType>(RetTy));
|
|
}
|
|
case Intrinsic::experimental_vector_insert: {
|
|
// FIXME: Handle case where a scalable vector is inserted into a scalable
|
|
// vector
|
|
if (isa<ScalableVectorType>(Args[1]->getType()))
|
|
return BaseT::getIntrinsicInstrCost(ICA, CostKind);
|
|
unsigned Index = cast<ConstantInt>(Args[2])->getZExtValue();
|
|
return thisT()->getShuffleCost(
|
|
TTI::SK_InsertSubvector, cast<VectorType>(Args[0]->getType()), None,
|
|
Index, cast<VectorType>(Args[1]->getType()));
|
|
}
|
|
case Intrinsic::experimental_vector_reverse: {
|
|
return thisT()->getShuffleCost(TTI::SK_Reverse,
|
|
cast<VectorType>(Args[0]->getType()), None,
|
|
0, cast<VectorType>(RetTy));
|
|
}
|
|
case Intrinsic::experimental_vector_splice: {
|
|
unsigned Index = cast<ConstantInt>(Args[2])->getZExtValue();
|
|
return thisT()->getShuffleCost(TTI::SK_Splice,
|
|
cast<VectorType>(Args[0]->getType()), None,
|
|
Index, cast<VectorType>(RetTy));
|
|
}
|
|
case Intrinsic::vector_reduce_add:
|
|
case Intrinsic::vector_reduce_mul:
|
|
case Intrinsic::vector_reduce_and:
|
|
case Intrinsic::vector_reduce_or:
|
|
case Intrinsic::vector_reduce_xor:
|
|
case Intrinsic::vector_reduce_smax:
|
|
case Intrinsic::vector_reduce_smin:
|
|
case Intrinsic::vector_reduce_fmax:
|
|
case Intrinsic::vector_reduce_fmin:
|
|
case Intrinsic::vector_reduce_umax:
|
|
case Intrinsic::vector_reduce_umin: {
|
|
IntrinsicCostAttributes Attrs(IID, RetTy, Args[0]->getType(), FMF, I, 1);
|
|
return getTypeBasedIntrinsicInstrCost(Attrs, CostKind);
|
|
}
|
|
case Intrinsic::vector_reduce_fadd:
|
|
case Intrinsic::vector_reduce_fmul: {
|
|
IntrinsicCostAttributes Attrs(
|
|
IID, RetTy, {Args[0]->getType(), Args[1]->getType()}, FMF, I, 1);
|
|
return getTypeBasedIntrinsicInstrCost(Attrs, CostKind);
|
|
}
|
|
case Intrinsic::fshl:
|
|
case Intrinsic::fshr: {
|
|
if (isa<ScalableVectorType>(RetTy))
|
|
return BaseT::getIntrinsicInstrCost(ICA, CostKind);
|
|
const Value *X = Args[0];
|
|
const Value *Y = Args[1];
|
|
const Value *Z = Args[2];
|
|
TTI::OperandValueProperties OpPropsX, OpPropsY, OpPropsZ, OpPropsBW;
|
|
TTI::OperandValueKind OpKindX = TTI::getOperandInfo(X, OpPropsX);
|
|
TTI::OperandValueKind OpKindY = TTI::getOperandInfo(Y, OpPropsY);
|
|
TTI::OperandValueKind OpKindZ = TTI::getOperandInfo(Z, OpPropsZ);
|
|
TTI::OperandValueKind OpKindBW = TTI::OK_UniformConstantValue;
|
|
OpPropsBW = isPowerOf2_32(RetTy->getScalarSizeInBits()) ? TTI::OP_PowerOf2
|
|
: TTI::OP_None;
|
|
// fshl: (X << (Z % BW)) | (Y >> (BW - (Z % BW)))
|
|
// fshr: (X << (BW - (Z % BW))) | (Y >> (Z % BW))
|
|
InstructionCost Cost = 0;
|
|
Cost +=
|
|
thisT()->getArithmeticInstrCost(BinaryOperator::Or, RetTy, CostKind);
|
|
Cost +=
|
|
thisT()->getArithmeticInstrCost(BinaryOperator::Sub, RetTy, CostKind);
|
|
Cost += thisT()->getArithmeticInstrCost(
|
|
BinaryOperator::Shl, RetTy, CostKind, OpKindX, OpKindZ, OpPropsX);
|
|
Cost += thisT()->getArithmeticInstrCost(
|
|
BinaryOperator::LShr, RetTy, CostKind, OpKindY, OpKindZ, OpPropsY);
|
|
// Non-constant shift amounts requires a modulo.
|
|
if (OpKindZ != TTI::OK_UniformConstantValue &&
|
|
OpKindZ != TTI::OK_NonUniformConstantValue)
|
|
Cost += thisT()->getArithmeticInstrCost(BinaryOperator::URem, RetTy,
|
|
CostKind, OpKindZ, OpKindBW,
|
|
OpPropsZ, OpPropsBW);
|
|
// For non-rotates (X != Y) we must add shift-by-zero handling costs.
|
|
if (X != Y) {
|
|
Type *CondTy = RetTy->getWithNewBitWidth(1);
|
|
Cost +=
|
|
thisT()->getCmpSelInstrCost(BinaryOperator::ICmp, RetTy, CondTy,
|
|
CmpInst::BAD_ICMP_PREDICATE, CostKind);
|
|
Cost +=
|
|
thisT()->getCmpSelInstrCost(BinaryOperator::Select, RetTy, CondTy,
|
|
CmpInst::BAD_ICMP_PREDICATE, CostKind);
|
|
}
|
|
return Cost;
|
|
}
|
|
}
|
|
|
|
// Assume that we need to scalarize this intrinsic.
|
|
// Compute the scalarization overhead based on Args for a vector
|
|
// intrinsic.
|
|
InstructionCost ScalarizationCost = InstructionCost::getInvalid();
|
|
if (RetVF.isVector() && !RetVF.isScalable()) {
|
|
ScalarizationCost = 0;
|
|
if (!RetTy->isVoidTy())
|
|
ScalarizationCost +=
|
|
getScalarizationOverhead(cast<VectorType>(RetTy), true, false);
|
|
ScalarizationCost +=
|
|
getOperandsScalarizationOverhead(Args, ICA.getArgTypes());
|
|
}
|
|
|
|
IntrinsicCostAttributes Attrs(IID, RetTy, ICA.getArgTypes(), FMF, I,
|
|
ScalarizationCost);
|
|
return thisT()->getTypeBasedIntrinsicInstrCost(Attrs, CostKind);
|
|
}
|
|
|
|
/// Get intrinsic cost based on argument types.
|
|
/// If ScalarizationCostPassed is std::numeric_limits<unsigned>::max(), the
|
|
/// cost of scalarizing the arguments and the return value will be computed
|
|
/// based on types.
|
|
InstructionCost
|
|
getTypeBasedIntrinsicInstrCost(const IntrinsicCostAttributes &ICA,
|
|
TTI::TargetCostKind CostKind) {
|
|
Intrinsic::ID IID = ICA.getID();
|
|
Type *RetTy = ICA.getReturnType();
|
|
const SmallVectorImpl<Type *> &Tys = ICA.getArgTypes();
|
|
FastMathFlags FMF = ICA.getFlags();
|
|
InstructionCost ScalarizationCostPassed = ICA.getScalarizationCost();
|
|
bool SkipScalarizationCost = ICA.skipScalarizationCost();
|
|
|
|
VectorType *VecOpTy = nullptr;
|
|
if (!Tys.empty()) {
|
|
// The vector reduction operand is operand 0 except for fadd/fmul.
|
|
// Their operand 0 is a scalar start value, so the vector op is operand 1.
|
|
unsigned VecTyIndex = 0;
|
|
if (IID == Intrinsic::vector_reduce_fadd ||
|
|
IID == Intrinsic::vector_reduce_fmul)
|
|
VecTyIndex = 1;
|
|
assert(Tys.size() > VecTyIndex && "Unexpected IntrinsicCostAttributes");
|
|
VecOpTy = dyn_cast<VectorType>(Tys[VecTyIndex]);
|
|
}
|
|
|
|
// Library call cost - other than size, make it expensive.
|
|
unsigned SingleCallCost = CostKind == TTI::TCK_CodeSize ? 1 : 10;
|
|
SmallVector<unsigned, 2> ISDs;
|
|
switch (IID) {
|
|
default: {
|
|
// Scalable vectors cannot be scalarized, so return Invalid.
|
|
if (isa<ScalableVectorType>(RetTy) || any_of(Tys, [](const Type *Ty) {
|
|
return isa<ScalableVectorType>(Ty);
|
|
}))
|
|
return InstructionCost::getInvalid();
|
|
|
|
// Assume that we need to scalarize this intrinsic.
|
|
InstructionCost ScalarizationCost =
|
|
SkipScalarizationCost ? ScalarizationCostPassed : 0;
|
|
unsigned ScalarCalls = 1;
|
|
Type *ScalarRetTy = RetTy;
|
|
if (auto *RetVTy = dyn_cast<VectorType>(RetTy)) {
|
|
if (!SkipScalarizationCost)
|
|
ScalarizationCost = getScalarizationOverhead(RetVTy, true, false);
|
|
ScalarCalls = std::max(ScalarCalls,
|
|
cast<FixedVectorType>(RetVTy)->getNumElements());
|
|
ScalarRetTy = RetTy->getScalarType();
|
|
}
|
|
SmallVector<Type *, 4> ScalarTys;
|
|
for (unsigned i = 0, ie = Tys.size(); i != ie; ++i) {
|
|
Type *Ty = Tys[i];
|
|
if (auto *VTy = dyn_cast<VectorType>(Ty)) {
|
|
if (!SkipScalarizationCost)
|
|
ScalarizationCost += getScalarizationOverhead(VTy, false, true);
|
|
ScalarCalls = std::max(ScalarCalls,
|
|
cast<FixedVectorType>(VTy)->getNumElements());
|
|
Ty = Ty->getScalarType();
|
|
}
|
|
ScalarTys.push_back(Ty);
|
|
}
|
|
if (ScalarCalls == 1)
|
|
return 1; // Return cost of a scalar intrinsic. Assume it to be cheap.
|
|
|
|
IntrinsicCostAttributes ScalarAttrs(IID, ScalarRetTy, ScalarTys, FMF);
|
|
InstructionCost ScalarCost =
|
|
thisT()->getIntrinsicInstrCost(ScalarAttrs, CostKind);
|
|
|
|
return ScalarCalls * ScalarCost + ScalarizationCost;
|
|
}
|
|
// Look for intrinsics that can be lowered directly or turned into a scalar
|
|
// intrinsic call.
|
|
case Intrinsic::sqrt:
|
|
ISDs.push_back(ISD::FSQRT);
|
|
break;
|
|
case Intrinsic::sin:
|
|
ISDs.push_back(ISD::FSIN);
|
|
break;
|
|
case Intrinsic::cos:
|
|
ISDs.push_back(ISD::FCOS);
|
|
break;
|
|
case Intrinsic::exp:
|
|
ISDs.push_back(ISD::FEXP);
|
|
break;
|
|
case Intrinsic::exp2:
|
|
ISDs.push_back(ISD::FEXP2);
|
|
break;
|
|
case Intrinsic::log:
|
|
ISDs.push_back(ISD::FLOG);
|
|
break;
|
|
case Intrinsic::log10:
|
|
ISDs.push_back(ISD::FLOG10);
|
|
break;
|
|
case Intrinsic::log2:
|
|
ISDs.push_back(ISD::FLOG2);
|
|
break;
|
|
case Intrinsic::fabs:
|
|
ISDs.push_back(ISD::FABS);
|
|
break;
|
|
case Intrinsic::canonicalize:
|
|
ISDs.push_back(ISD::FCANONICALIZE);
|
|
break;
|
|
case Intrinsic::minnum:
|
|
ISDs.push_back(ISD::FMINNUM);
|
|
break;
|
|
case Intrinsic::maxnum:
|
|
ISDs.push_back(ISD::FMAXNUM);
|
|
break;
|
|
case Intrinsic::minimum:
|
|
ISDs.push_back(ISD::FMINIMUM);
|
|
break;
|
|
case Intrinsic::maximum:
|
|
ISDs.push_back(ISD::FMAXIMUM);
|
|
break;
|
|
case Intrinsic::copysign:
|
|
ISDs.push_back(ISD::FCOPYSIGN);
|
|
break;
|
|
case Intrinsic::floor:
|
|
ISDs.push_back(ISD::FFLOOR);
|
|
break;
|
|
case Intrinsic::ceil:
|
|
ISDs.push_back(ISD::FCEIL);
|
|
break;
|
|
case Intrinsic::trunc:
|
|
ISDs.push_back(ISD::FTRUNC);
|
|
break;
|
|
case Intrinsic::nearbyint:
|
|
ISDs.push_back(ISD::FNEARBYINT);
|
|
break;
|
|
case Intrinsic::rint:
|
|
ISDs.push_back(ISD::FRINT);
|
|
break;
|
|
case Intrinsic::round:
|
|
ISDs.push_back(ISD::FROUND);
|
|
break;
|
|
case Intrinsic::roundeven:
|
|
ISDs.push_back(ISD::FROUNDEVEN);
|
|
break;
|
|
case Intrinsic::pow:
|
|
ISDs.push_back(ISD::FPOW);
|
|
break;
|
|
case Intrinsic::fma:
|
|
ISDs.push_back(ISD::FMA);
|
|
break;
|
|
case Intrinsic::fmuladd:
|
|
ISDs.push_back(ISD::FMA);
|
|
break;
|
|
case Intrinsic::experimental_constrained_fmuladd:
|
|
ISDs.push_back(ISD::STRICT_FMA);
|
|
break;
|
|
// FIXME: We should return 0 whenever getIntrinsicCost == TCC_Free.
|
|
case Intrinsic::lifetime_start:
|
|
case Intrinsic::lifetime_end:
|
|
case Intrinsic::sideeffect:
|
|
case Intrinsic::pseudoprobe:
|
|
case Intrinsic::arithmetic_fence:
|
|
return 0;
|
|
case Intrinsic::masked_store: {
|
|
Type *Ty = Tys[0];
|
|
Align TyAlign = thisT()->DL.getABITypeAlign(Ty);
|
|
return thisT()->getMaskedMemoryOpCost(Instruction::Store, Ty, TyAlign, 0,
|
|
CostKind);
|
|
}
|
|
case Intrinsic::masked_load: {
|
|
Type *Ty = RetTy;
|
|
Align TyAlign = thisT()->DL.getABITypeAlign(Ty);
|
|
return thisT()->getMaskedMemoryOpCost(Instruction::Load, Ty, TyAlign, 0,
|
|
CostKind);
|
|
}
|
|
case Intrinsic::vector_reduce_add:
|
|
return thisT()->getArithmeticReductionCost(Instruction::Add, VecOpTy,
|
|
None, CostKind);
|
|
case Intrinsic::vector_reduce_mul:
|
|
return thisT()->getArithmeticReductionCost(Instruction::Mul, VecOpTy,
|
|
None, CostKind);
|
|
case Intrinsic::vector_reduce_and:
|
|
return thisT()->getArithmeticReductionCost(Instruction::And, VecOpTy,
|
|
None, CostKind);
|
|
case Intrinsic::vector_reduce_or:
|
|
return thisT()->getArithmeticReductionCost(Instruction::Or, VecOpTy, None,
|
|
CostKind);
|
|
case Intrinsic::vector_reduce_xor:
|
|
return thisT()->getArithmeticReductionCost(Instruction::Xor, VecOpTy,
|
|
None, CostKind);
|
|
case Intrinsic::vector_reduce_fadd:
|
|
return thisT()->getArithmeticReductionCost(Instruction::FAdd, VecOpTy,
|
|
FMF, CostKind);
|
|
case Intrinsic::vector_reduce_fmul:
|
|
return thisT()->getArithmeticReductionCost(Instruction::FMul, VecOpTy,
|
|
FMF, CostKind);
|
|
case Intrinsic::vector_reduce_smax:
|
|
case Intrinsic::vector_reduce_smin:
|
|
case Intrinsic::vector_reduce_fmax:
|
|
case Intrinsic::vector_reduce_fmin:
|
|
return thisT()->getMinMaxReductionCost(
|
|
VecOpTy, cast<VectorType>(CmpInst::makeCmpResultType(VecOpTy)),
|
|
/*IsUnsigned=*/false, CostKind);
|
|
case Intrinsic::vector_reduce_umax:
|
|
case Intrinsic::vector_reduce_umin:
|
|
return thisT()->getMinMaxReductionCost(
|
|
VecOpTy, cast<VectorType>(CmpInst::makeCmpResultType(VecOpTy)),
|
|
/*IsUnsigned=*/true, CostKind);
|
|
case Intrinsic::abs:
|
|
case Intrinsic::smax:
|
|
case Intrinsic::smin:
|
|
case Intrinsic::umax:
|
|
case Intrinsic::umin: {
|
|
// abs(X) = select(icmp(X,0),X,sub(0,X))
|
|
// minmax(X,Y) = select(icmp(X,Y),X,Y)
|
|
Type *CondTy = RetTy->getWithNewBitWidth(1);
|
|
InstructionCost Cost = 0;
|
|
// TODO: Ideally getCmpSelInstrCost would accept an icmp condition code.
|
|
Cost +=
|
|
thisT()->getCmpSelInstrCost(BinaryOperator::ICmp, RetTy, CondTy,
|
|
CmpInst::BAD_ICMP_PREDICATE, CostKind);
|
|
Cost +=
|
|
thisT()->getCmpSelInstrCost(BinaryOperator::Select, RetTy, CondTy,
|
|
CmpInst::BAD_ICMP_PREDICATE, CostKind);
|
|
// TODO: Should we add an OperandValueProperties::OP_Zero property?
|
|
if (IID == Intrinsic::abs)
|
|
Cost += thisT()->getArithmeticInstrCost(
|
|
BinaryOperator::Sub, RetTy, CostKind, TTI::OK_UniformConstantValue);
|
|
return Cost;
|
|
}
|
|
case Intrinsic::sadd_sat:
|
|
case Intrinsic::ssub_sat: {
|
|
Type *CondTy = RetTy->getWithNewBitWidth(1);
|
|
|
|
Type *OpTy = StructType::create({RetTy, CondTy});
|
|
Intrinsic::ID OverflowOp = IID == Intrinsic::sadd_sat
|
|
? Intrinsic::sadd_with_overflow
|
|
: Intrinsic::ssub_with_overflow;
|
|
|
|
// SatMax -> Overflow && SumDiff < 0
|
|
// SatMin -> Overflow && SumDiff >= 0
|
|
InstructionCost Cost = 0;
|
|
IntrinsicCostAttributes Attrs(OverflowOp, OpTy, {RetTy, RetTy}, FMF,
|
|
nullptr, ScalarizationCostPassed);
|
|
Cost += thisT()->getIntrinsicInstrCost(Attrs, CostKind);
|
|
Cost +=
|
|
thisT()->getCmpSelInstrCost(BinaryOperator::ICmp, RetTy, CondTy,
|
|
CmpInst::BAD_ICMP_PREDICATE, CostKind);
|
|
Cost += 2 * thisT()->getCmpSelInstrCost(
|
|
BinaryOperator::Select, RetTy, CondTy,
|
|
CmpInst::BAD_ICMP_PREDICATE, CostKind);
|
|
return Cost;
|
|
}
|
|
case Intrinsic::uadd_sat:
|
|
case Intrinsic::usub_sat: {
|
|
Type *CondTy = RetTy->getWithNewBitWidth(1);
|
|
|
|
Type *OpTy = StructType::create({RetTy, CondTy});
|
|
Intrinsic::ID OverflowOp = IID == Intrinsic::uadd_sat
|
|
? Intrinsic::uadd_with_overflow
|
|
: Intrinsic::usub_with_overflow;
|
|
|
|
InstructionCost Cost = 0;
|
|
IntrinsicCostAttributes Attrs(OverflowOp, OpTy, {RetTy, RetTy}, FMF,
|
|
nullptr, ScalarizationCostPassed);
|
|
Cost += thisT()->getIntrinsicInstrCost(Attrs, CostKind);
|
|
Cost +=
|
|
thisT()->getCmpSelInstrCost(BinaryOperator::Select, RetTy, CondTy,
|
|
CmpInst::BAD_ICMP_PREDICATE, CostKind);
|
|
return Cost;
|
|
}
|
|
case Intrinsic::smul_fix:
|
|
case Intrinsic::umul_fix: {
|
|
unsigned ExtSize = RetTy->getScalarSizeInBits() * 2;
|
|
Type *ExtTy = RetTy->getWithNewBitWidth(ExtSize);
|
|
|
|
unsigned ExtOp =
|
|
IID == Intrinsic::smul_fix ? Instruction::SExt : Instruction::ZExt;
|
|
TTI::CastContextHint CCH = TTI::CastContextHint::None;
|
|
|
|
InstructionCost Cost = 0;
|
|
Cost += 2 * thisT()->getCastInstrCost(ExtOp, ExtTy, RetTy, CCH, CostKind);
|
|
Cost +=
|
|
thisT()->getArithmeticInstrCost(Instruction::Mul, ExtTy, CostKind);
|
|
Cost += 2 * thisT()->getCastInstrCost(Instruction::Trunc, RetTy, ExtTy,
|
|
CCH, CostKind);
|
|
Cost += thisT()->getArithmeticInstrCost(Instruction::LShr, RetTy,
|
|
CostKind, TTI::OK_AnyValue,
|
|
TTI::OK_UniformConstantValue);
|
|
Cost += thisT()->getArithmeticInstrCost(Instruction::Shl, RetTy, CostKind,
|
|
TTI::OK_AnyValue,
|
|
TTI::OK_UniformConstantValue);
|
|
Cost += thisT()->getArithmeticInstrCost(Instruction::Or, RetTy, CostKind);
|
|
return Cost;
|
|
}
|
|
case Intrinsic::sadd_with_overflow:
|
|
case Intrinsic::ssub_with_overflow: {
|
|
Type *SumTy = RetTy->getContainedType(0);
|
|
Type *OverflowTy = RetTy->getContainedType(1);
|
|
unsigned Opcode = IID == Intrinsic::sadd_with_overflow
|
|
? BinaryOperator::Add
|
|
: BinaryOperator::Sub;
|
|
|
|
// LHSSign -> LHS >= 0
|
|
// RHSSign -> RHS >= 0
|
|
// SumSign -> Sum >= 0
|
|
//
|
|
// Add:
|
|
// Overflow -> (LHSSign == RHSSign) && (LHSSign != SumSign)
|
|
// Sub:
|
|
// Overflow -> (LHSSign != RHSSign) && (LHSSign != SumSign)
|
|
InstructionCost Cost = 0;
|
|
Cost += thisT()->getArithmeticInstrCost(Opcode, SumTy, CostKind);
|
|
Cost += 3 * thisT()->getCmpSelInstrCost(
|
|
Instruction::ICmp, SumTy, OverflowTy,
|
|
CmpInst::BAD_ICMP_PREDICATE, CostKind);
|
|
Cost += 2 * thisT()->getCmpSelInstrCost(
|
|
Instruction::Select, OverflowTy, OverflowTy,
|
|
CmpInst::BAD_ICMP_PREDICATE, CostKind);
|
|
Cost += thisT()->getArithmeticInstrCost(BinaryOperator::And, OverflowTy,
|
|
CostKind);
|
|
return Cost;
|
|
}
|
|
case Intrinsic::uadd_with_overflow:
|
|
case Intrinsic::usub_with_overflow: {
|
|
Type *SumTy = RetTy->getContainedType(0);
|
|
Type *OverflowTy = RetTy->getContainedType(1);
|
|
unsigned Opcode = IID == Intrinsic::uadd_with_overflow
|
|
? BinaryOperator::Add
|
|
: BinaryOperator::Sub;
|
|
|
|
InstructionCost Cost = 0;
|
|
Cost += thisT()->getArithmeticInstrCost(Opcode, SumTy, CostKind);
|
|
Cost +=
|
|
thisT()->getCmpSelInstrCost(BinaryOperator::ICmp, SumTy, OverflowTy,
|
|
CmpInst::BAD_ICMP_PREDICATE, CostKind);
|
|
return Cost;
|
|
}
|
|
case Intrinsic::smul_with_overflow:
|
|
case Intrinsic::umul_with_overflow: {
|
|
Type *MulTy = RetTy->getContainedType(0);
|
|
Type *OverflowTy = RetTy->getContainedType(1);
|
|
unsigned ExtSize = MulTy->getScalarSizeInBits() * 2;
|
|
Type *ExtTy = MulTy->getWithNewBitWidth(ExtSize);
|
|
|
|
unsigned ExtOp =
|
|
IID == Intrinsic::smul_fix ? Instruction::SExt : Instruction::ZExt;
|
|
TTI::CastContextHint CCH = TTI::CastContextHint::None;
|
|
|
|
InstructionCost Cost = 0;
|
|
Cost += 2 * thisT()->getCastInstrCost(ExtOp, ExtTy, MulTy, CCH, CostKind);
|
|
Cost +=
|
|
thisT()->getArithmeticInstrCost(Instruction::Mul, ExtTy, CostKind);
|
|
Cost += 2 * thisT()->getCastInstrCost(Instruction::Trunc, MulTy, ExtTy,
|
|
CCH, CostKind);
|
|
Cost += thisT()->getArithmeticInstrCost(Instruction::LShr, MulTy,
|
|
CostKind, TTI::OK_AnyValue,
|
|
TTI::OK_UniformConstantValue);
|
|
|
|
if (IID == Intrinsic::smul_with_overflow)
|
|
Cost += thisT()->getArithmeticInstrCost(Instruction::AShr, MulTy,
|
|
CostKind, TTI::OK_AnyValue,
|
|
TTI::OK_UniformConstantValue);
|
|
|
|
Cost +=
|
|
thisT()->getCmpSelInstrCost(BinaryOperator::ICmp, MulTy, OverflowTy,
|
|
CmpInst::BAD_ICMP_PREDICATE, CostKind);
|
|
return Cost;
|
|
}
|
|
case Intrinsic::ctpop:
|
|
ISDs.push_back(ISD::CTPOP);
|
|
// In case of legalization use TCC_Expensive. This is cheaper than a
|
|
// library call but still not a cheap instruction.
|
|
SingleCallCost = TargetTransformInfo::TCC_Expensive;
|
|
break;
|
|
case Intrinsic::ctlz:
|
|
ISDs.push_back(ISD::CTLZ);
|
|
break;
|
|
case Intrinsic::cttz:
|
|
ISDs.push_back(ISD::CTTZ);
|
|
break;
|
|
case Intrinsic::bswap:
|
|
ISDs.push_back(ISD::BSWAP);
|
|
break;
|
|
case Intrinsic::bitreverse:
|
|
ISDs.push_back(ISD::BITREVERSE);
|
|
break;
|
|
}
|
|
|
|
const TargetLoweringBase *TLI = getTLI();
|
|
std::pair<InstructionCost, MVT> LT =
|
|
TLI->getTypeLegalizationCost(DL, RetTy);
|
|
|
|
SmallVector<InstructionCost, 2> LegalCost;
|
|
SmallVector<InstructionCost, 2> CustomCost;
|
|
for (unsigned ISD : ISDs) {
|
|
if (TLI->isOperationLegalOrPromote(ISD, LT.second)) {
|
|
if (IID == Intrinsic::fabs && LT.second.isFloatingPoint() &&
|
|
TLI->isFAbsFree(LT.second)) {
|
|
return 0;
|
|
}
|
|
|
|
// The operation is legal. Assume it costs 1.
|
|
// If the type is split to multiple registers, assume that there is some
|
|
// overhead to this.
|
|
// TODO: Once we have extract/insert subvector cost we need to use them.
|
|
if (LT.first > 1)
|
|
LegalCost.push_back(LT.first * 2);
|
|
else
|
|
LegalCost.push_back(LT.first * 1);
|
|
} else if (!TLI->isOperationExpand(ISD, LT.second)) {
|
|
// If the operation is custom lowered then assume
|
|
// that the code is twice as expensive.
|
|
CustomCost.push_back(LT.first * 2);
|
|
}
|
|
}
|
|
|
|
auto *MinLegalCostI = std::min_element(LegalCost.begin(), LegalCost.end());
|
|
if (MinLegalCostI != LegalCost.end())
|
|
return *MinLegalCostI;
|
|
|
|
auto MinCustomCostI =
|
|
std::min_element(CustomCost.begin(), CustomCost.end());
|
|
if (MinCustomCostI != CustomCost.end())
|
|
return *MinCustomCostI;
|
|
|
|
// If we can't lower fmuladd into an FMA estimate the cost as a floating
|
|
// point mul followed by an add.
|
|
if (IID == Intrinsic::fmuladd)
|
|
return thisT()->getArithmeticInstrCost(BinaryOperator::FMul, RetTy,
|
|
CostKind) +
|
|
thisT()->getArithmeticInstrCost(BinaryOperator::FAdd, RetTy,
|
|
CostKind);
|
|
if (IID == Intrinsic::experimental_constrained_fmuladd) {
|
|
IntrinsicCostAttributes FMulAttrs(
|
|
Intrinsic::experimental_constrained_fmul, RetTy, Tys);
|
|
IntrinsicCostAttributes FAddAttrs(
|
|
Intrinsic::experimental_constrained_fadd, RetTy, Tys);
|
|
return thisT()->getIntrinsicInstrCost(FMulAttrs, CostKind) +
|
|
thisT()->getIntrinsicInstrCost(FAddAttrs, CostKind);
|
|
}
|
|
|
|
// Else, assume that we need to scalarize this intrinsic. For math builtins
|
|
// this will emit a costly libcall, adding call overhead and spills. Make it
|
|
// very expensive.
|
|
if (auto *RetVTy = dyn_cast<VectorType>(RetTy)) {
|
|
// Scalable vectors cannot be scalarized, so return Invalid.
|
|
if (isa<ScalableVectorType>(RetTy) || any_of(Tys, [](const Type *Ty) {
|
|
return isa<ScalableVectorType>(Ty);
|
|
}))
|
|
return InstructionCost::getInvalid();
|
|
|
|
InstructionCost ScalarizationCost =
|
|
SkipScalarizationCost ? ScalarizationCostPassed
|
|
: getScalarizationOverhead(RetVTy, true, false);
|
|
|
|
unsigned ScalarCalls = cast<FixedVectorType>(RetVTy)->getNumElements();
|
|
SmallVector<Type *, 4> ScalarTys;
|
|
for (unsigned i = 0, ie = Tys.size(); i != ie; ++i) {
|
|
Type *Ty = Tys[i];
|
|
if (Ty->isVectorTy())
|
|
Ty = Ty->getScalarType();
|
|
ScalarTys.push_back(Ty);
|
|
}
|
|
IntrinsicCostAttributes Attrs(IID, RetTy->getScalarType(), ScalarTys, FMF);
|
|
InstructionCost ScalarCost =
|
|
thisT()->getIntrinsicInstrCost(Attrs, CostKind);
|
|
for (unsigned i = 0, ie = Tys.size(); i != ie; ++i) {
|
|
if (auto *VTy = dyn_cast<VectorType>(Tys[i])) {
|
|
if (!ICA.skipScalarizationCost())
|
|
ScalarizationCost += getScalarizationOverhead(VTy, false, true);
|
|
ScalarCalls = std::max(ScalarCalls,
|
|
cast<FixedVectorType>(VTy)->getNumElements());
|
|
}
|
|
}
|
|
return ScalarCalls * ScalarCost + ScalarizationCost;
|
|
}
|
|
|
|
// This is going to be turned into a library call, make it expensive.
|
|
return SingleCallCost;
|
|
}
|
|
|
|
/// Compute a cost of the given call instruction.
|
|
///
|
|
/// Compute the cost of calling function F with return type RetTy and
|
|
/// argument types Tys. F might be nullptr, in this case the cost of an
|
|
/// arbitrary call with the specified signature will be returned.
|
|
/// This is used, for instance, when we estimate call of a vector
|
|
/// counterpart of the given function.
|
|
/// \param F Called function, might be nullptr.
|
|
/// \param RetTy Return value types.
|
|
/// \param Tys Argument types.
|
|
/// \returns The cost of Call instruction.
|
|
InstructionCost
|
|
getCallInstrCost(Function *F, Type *RetTy, ArrayRef<Type *> Tys,
|
|
TTI::TargetCostKind CostKind = TTI::TCK_SizeAndLatency) {
|
|
return 10;
|
|
}
|
|
|
|
unsigned getNumberOfParts(Type *Tp) {
|
|
std::pair<InstructionCost, MVT> LT =
|
|
getTLI()->getTypeLegalizationCost(DL, Tp);
|
|
return *LT.first.getValue();
|
|
}
|
|
|
|
InstructionCost getAddressComputationCost(Type *Ty, ScalarEvolution *,
|
|
const SCEV *) {
|
|
return 0;
|
|
}
|
|
|
|
/// Try to calculate arithmetic and shuffle op costs for reduction intrinsics.
|
|
/// We're assuming that reduction operation are performing the following way:
|
|
///
|
|
/// %val1 = shufflevector<n x t> %val, <n x t> %undef,
|
|
/// <n x i32> <i32 n/2, i32 n/2 + 1, ..., i32 n, i32 undef, ..., i32 undef>
|
|
/// \----------------v-------------/ \----------v------------/
|
|
/// n/2 elements n/2 elements
|
|
/// %red1 = op <n x t> %val, <n x t> val1
|
|
/// After this operation we have a vector %red1 where only the first n/2
|
|
/// elements are meaningful, the second n/2 elements are undefined and can be
|
|
/// dropped. All other operations are actually working with the vector of
|
|
/// length n/2, not n, though the real vector length is still n.
|
|
/// %val2 = shufflevector<n x t> %red1, <n x t> %undef,
|
|
/// <n x i32> <i32 n/4, i32 n/4 + 1, ..., i32 n/2, i32 undef, ..., i32 undef>
|
|
/// \----------------v-------------/ \----------v------------/
|
|
/// n/4 elements 3*n/4 elements
|
|
/// %red2 = op <n x t> %red1, <n x t> val2 - working with the vector of
|
|
/// length n/2, the resulting vector has length n/4 etc.
|
|
///
|
|
/// The cost model should take into account that the actual length of the
|
|
/// vector is reduced on each iteration.
|
|
InstructionCost getTreeReductionCost(unsigned Opcode, VectorType *Ty,
|
|
TTI::TargetCostKind CostKind) {
|
|
Type *ScalarTy = Ty->getElementType();
|
|
unsigned NumVecElts = cast<FixedVectorType>(Ty)->getNumElements();
|
|
if ((Opcode == Instruction::Or || Opcode == Instruction::And) &&
|
|
ScalarTy == IntegerType::getInt1Ty(Ty->getContext()) &&
|
|
NumVecElts >= 2) {
|
|
// Or reduction for i1 is represented as:
|
|
// %val = bitcast <ReduxWidth x i1> to iReduxWidth
|
|
// %res = cmp ne iReduxWidth %val, 0
|
|
// And reduction for i1 is represented as:
|
|
// %val = bitcast <ReduxWidth x i1> to iReduxWidth
|
|
// %res = cmp eq iReduxWidth %val, 11111
|
|
Type *ValTy = IntegerType::get(Ty->getContext(), NumVecElts);
|
|
return thisT()->getCastInstrCost(Instruction::BitCast, ValTy, Ty,
|
|
TTI::CastContextHint::None, CostKind) +
|
|
thisT()->getCmpSelInstrCost(Instruction::ICmp, ValTy,
|
|
CmpInst::makeCmpResultType(ValTy),
|
|
CmpInst::BAD_ICMP_PREDICATE, CostKind);
|
|
}
|
|
unsigned NumReduxLevels = Log2_32(NumVecElts);
|
|
InstructionCost ArithCost = 0;
|
|
InstructionCost ShuffleCost = 0;
|
|
std::pair<InstructionCost, MVT> LT =
|
|
thisT()->getTLI()->getTypeLegalizationCost(DL, Ty);
|
|
unsigned LongVectorCount = 0;
|
|
unsigned MVTLen =
|
|
LT.second.isVector() ? LT.second.getVectorNumElements() : 1;
|
|
while (NumVecElts > MVTLen) {
|
|
NumVecElts /= 2;
|
|
VectorType *SubTy = FixedVectorType::get(ScalarTy, NumVecElts);
|
|
ShuffleCost += thisT()->getShuffleCost(TTI::SK_ExtractSubvector, Ty, None,
|
|
NumVecElts, SubTy);
|
|
ArithCost += thisT()->getArithmeticInstrCost(Opcode, SubTy, CostKind);
|
|
Ty = SubTy;
|
|
++LongVectorCount;
|
|
}
|
|
|
|
NumReduxLevels -= LongVectorCount;
|
|
|
|
// The minimal length of the vector is limited by the real length of vector
|
|
// operations performed on the current platform. That's why several final
|
|
// reduction operations are performed on the vectors with the same
|
|
// architecture-dependent length.
|
|
|
|
// By default reductions need one shuffle per reduction level.
|
|
ShuffleCost += NumReduxLevels * thisT()->getShuffleCost(
|
|
TTI::SK_PermuteSingleSrc, Ty, None, 0, Ty);
|
|
ArithCost += NumReduxLevels * thisT()->getArithmeticInstrCost(Opcode, Ty);
|
|
return ShuffleCost + ArithCost +
|
|
thisT()->getVectorInstrCost(Instruction::ExtractElement, Ty, 0);
|
|
}
|
|
|
|
/// Try to calculate the cost of performing strict (in-order) reductions,
|
|
/// which involves doing a sequence of floating point additions in lane
|
|
/// order, starting with an initial value. For example, consider a scalar
|
|
/// initial value 'InitVal' of type float and a vector of type <4 x float>:
|
|
///
|
|
/// Vector = <float %v0, float %v1, float %v2, float %v3>
|
|
///
|
|
/// %add1 = %InitVal + %v0
|
|
/// %add2 = %add1 + %v1
|
|
/// %add3 = %add2 + %v2
|
|
/// %add4 = %add3 + %v3
|
|
///
|
|
/// As a simple estimate we can say the cost of such a reduction is 4 times
|
|
/// the cost of a scalar FP addition. We can only estimate the costs for
|
|
/// fixed-width vectors here because for scalable vectors we do not know the
|
|
/// runtime number of operations.
|
|
InstructionCost getOrderedReductionCost(unsigned Opcode, VectorType *Ty,
|
|
TTI::TargetCostKind CostKind) {
|
|
// Targets must implement a default value for the scalable case, since
|
|
// we don't know how many lanes the vector has.
|
|
if (isa<ScalableVectorType>(Ty))
|
|
return InstructionCost::getInvalid();
|
|
|
|
auto *VTy = cast<FixedVectorType>(Ty);
|
|
InstructionCost ExtractCost =
|
|
getScalarizationOverhead(VTy, /*Insert=*/false, /*Extract=*/true);
|
|
InstructionCost ArithCost = thisT()->getArithmeticInstrCost(
|
|
Opcode, VTy->getElementType(), CostKind);
|
|
ArithCost *= VTy->getNumElements();
|
|
|
|
return ExtractCost + ArithCost;
|
|
}
|
|
|
|
InstructionCost getArithmeticReductionCost(unsigned Opcode, VectorType *Ty,
|
|
Optional<FastMathFlags> FMF,
|
|
TTI::TargetCostKind CostKind) {
|
|
if (TTI::requiresOrderedReduction(FMF))
|
|
return getOrderedReductionCost(Opcode, Ty, CostKind);
|
|
return getTreeReductionCost(Opcode, Ty, CostKind);
|
|
}
|
|
|
|
/// Try to calculate op costs for min/max reduction operations.
|
|
/// \param CondTy Conditional type for the Select instruction.
|
|
InstructionCost getMinMaxReductionCost(VectorType *Ty, VectorType *CondTy,
|
|
bool IsUnsigned,
|
|
TTI::TargetCostKind CostKind) {
|
|
Type *ScalarTy = Ty->getElementType();
|
|
Type *ScalarCondTy = CondTy->getElementType();
|
|
unsigned NumVecElts = cast<FixedVectorType>(Ty)->getNumElements();
|
|
unsigned NumReduxLevels = Log2_32(NumVecElts);
|
|
unsigned CmpOpcode;
|
|
if (Ty->isFPOrFPVectorTy()) {
|
|
CmpOpcode = Instruction::FCmp;
|
|
} else {
|
|
assert(Ty->isIntOrIntVectorTy() &&
|
|
"expecting floating point or integer type for min/max reduction");
|
|
CmpOpcode = Instruction::ICmp;
|
|
}
|
|
InstructionCost MinMaxCost = 0;
|
|
InstructionCost ShuffleCost = 0;
|
|
std::pair<InstructionCost, MVT> LT =
|
|
thisT()->getTLI()->getTypeLegalizationCost(DL, Ty);
|
|
unsigned LongVectorCount = 0;
|
|
unsigned MVTLen =
|
|
LT.second.isVector() ? LT.second.getVectorNumElements() : 1;
|
|
while (NumVecElts > MVTLen) {
|
|
NumVecElts /= 2;
|
|
auto *SubTy = FixedVectorType::get(ScalarTy, NumVecElts);
|
|
CondTy = FixedVectorType::get(ScalarCondTy, NumVecElts);
|
|
|
|
ShuffleCost += thisT()->getShuffleCost(TTI::SK_ExtractSubvector, Ty, None,
|
|
NumVecElts, SubTy);
|
|
MinMaxCost +=
|
|
thisT()->getCmpSelInstrCost(CmpOpcode, SubTy, CondTy,
|
|
CmpInst::BAD_ICMP_PREDICATE, CostKind) +
|
|
thisT()->getCmpSelInstrCost(Instruction::Select, SubTy, CondTy,
|
|
CmpInst::BAD_ICMP_PREDICATE, CostKind);
|
|
Ty = SubTy;
|
|
++LongVectorCount;
|
|
}
|
|
|
|
NumReduxLevels -= LongVectorCount;
|
|
|
|
// The minimal length of the vector is limited by the real length of vector
|
|
// operations performed on the current platform. That's why several final
|
|
// reduction opertions are perfomed on the vectors with the same
|
|
// architecture-dependent length.
|
|
ShuffleCost += NumReduxLevels * thisT()->getShuffleCost(
|
|
TTI::SK_PermuteSingleSrc, Ty, None, 0, Ty);
|
|
MinMaxCost +=
|
|
NumReduxLevels *
|
|
(thisT()->getCmpSelInstrCost(CmpOpcode, Ty, CondTy,
|
|
CmpInst::BAD_ICMP_PREDICATE, CostKind) +
|
|
thisT()->getCmpSelInstrCost(Instruction::Select, Ty, CondTy,
|
|
CmpInst::BAD_ICMP_PREDICATE, CostKind));
|
|
// The last min/max should be in vector registers and we counted it above.
|
|
// So just need a single extractelement.
|
|
return ShuffleCost + MinMaxCost +
|
|
thisT()->getVectorInstrCost(Instruction::ExtractElement, Ty, 0);
|
|
}
|
|
|
|
InstructionCost getExtendedAddReductionCost(bool IsMLA, bool IsUnsigned,
|
|
Type *ResTy, VectorType *Ty,
|
|
TTI::TargetCostKind CostKind) {
|
|
// Without any native support, this is equivalent to the cost of
|
|
// vecreduce.add(ext) or if IsMLA vecreduce.add(mul(ext, ext))
|
|
VectorType *ExtTy = VectorType::get(ResTy, Ty);
|
|
InstructionCost RedCost = thisT()->getArithmeticReductionCost(
|
|
Instruction::Add, ExtTy, None, CostKind);
|
|
InstructionCost MulCost = 0;
|
|
InstructionCost ExtCost = thisT()->getCastInstrCost(
|
|
IsUnsigned ? Instruction::ZExt : Instruction::SExt, ExtTy, Ty,
|
|
TTI::CastContextHint::None, CostKind);
|
|
if (IsMLA) {
|
|
MulCost =
|
|
thisT()->getArithmeticInstrCost(Instruction::Mul, ExtTy, CostKind);
|
|
ExtCost *= 2;
|
|
}
|
|
|
|
return RedCost + MulCost + ExtCost;
|
|
}
|
|
|
|
InstructionCost getVectorSplitCost() { return 1; }
|
|
|
|
/// @}
|
|
};
|
|
|
|
/// Concrete BasicTTIImpl that can be used if no further customization
|
|
/// is needed.
|
|
class BasicTTIImpl : public BasicTTIImplBase<BasicTTIImpl> {
|
|
using BaseT = BasicTTIImplBase<BasicTTIImpl>;
|
|
|
|
friend class BasicTTIImplBase<BasicTTIImpl>;
|
|
|
|
const TargetSubtargetInfo *ST;
|
|
const TargetLoweringBase *TLI;
|
|
|
|
const TargetSubtargetInfo *getST() const { return ST; }
|
|
const TargetLoweringBase *getTLI() const { return TLI; }
|
|
|
|
public:
|
|
explicit BasicTTIImpl(const TargetMachine *TM, const Function &F);
|
|
};
|
|
|
|
} // end namespace llvm
|
|
|
|
#endif // LLVM_CODEGEN_BASICTTIIMPL_H
|