mirror of
https://github.com/RPCS3/llvm-mirror.git
synced 2024-11-22 02:33:06 +01:00
bab6d38daf
This patch adds a peephole optimization `SETCC(FREEZE(x),const)` => `FREEZE(SETCC(x,const))` if the SETCC is only used by BRCOND. Combined with `BRCOND(FREEZE(X)) => BRCOND(X)`, this leads to a nice improvement in the generated assembly when x is a masked loaded value. Reviewed By: efriedma Differential Revision: https://reviews.llvm.org/D105344
2758 lines
94 KiB
C++
2758 lines
94 KiB
C++
//===- llvm/CodeGen/SelectionDAGNodes.h - SelectionDAG Nodes ----*- C++ -*-===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file declares the SDNode class and derived classes, which are used to
|
|
// represent the nodes and operations present in a SelectionDAG. These nodes
|
|
// and operations are machine code level operations, with some similarities to
|
|
// the GCC RTL representation.
|
|
//
|
|
// Clients should include the SelectionDAG.h file instead of this file directly.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#ifndef LLVM_CODEGEN_SELECTIONDAGNODES_H
|
|
#define LLVM_CODEGEN_SELECTIONDAGNODES_H
|
|
|
|
#include "llvm/ADT/APFloat.h"
|
|
#include "llvm/ADT/ArrayRef.h"
|
|
#include "llvm/ADT/BitVector.h"
|
|
#include "llvm/ADT/FoldingSet.h"
|
|
#include "llvm/ADT/GraphTraits.h"
|
|
#include "llvm/ADT/SmallPtrSet.h"
|
|
#include "llvm/ADT/SmallVector.h"
|
|
#include "llvm/ADT/ilist_node.h"
|
|
#include "llvm/ADT/iterator.h"
|
|
#include "llvm/ADT/iterator_range.h"
|
|
#include "llvm/CodeGen/ISDOpcodes.h"
|
|
#include "llvm/CodeGen/MachineMemOperand.h"
|
|
#include "llvm/CodeGen/Register.h"
|
|
#include "llvm/CodeGen/ValueTypes.h"
|
|
#include "llvm/IR/Constants.h"
|
|
#include "llvm/IR/DebugLoc.h"
|
|
#include "llvm/IR/Instruction.h"
|
|
#include "llvm/IR/Instructions.h"
|
|
#include "llvm/IR/Metadata.h"
|
|
#include "llvm/IR/Operator.h"
|
|
#include "llvm/Support/AlignOf.h"
|
|
#include "llvm/Support/AtomicOrdering.h"
|
|
#include "llvm/Support/Casting.h"
|
|
#include "llvm/Support/ErrorHandling.h"
|
|
#include "llvm/Support/MachineValueType.h"
|
|
#include "llvm/Support/TypeSize.h"
|
|
#include <algorithm>
|
|
#include <cassert>
|
|
#include <climits>
|
|
#include <cstddef>
|
|
#include <cstdint>
|
|
#include <cstring>
|
|
#include <iterator>
|
|
#include <string>
|
|
#include <tuple>
|
|
|
|
namespace llvm {
|
|
|
|
class APInt;
|
|
class Constant;
|
|
template <typename T> struct DenseMapInfo;
|
|
class GlobalValue;
|
|
class MachineBasicBlock;
|
|
class MachineConstantPoolValue;
|
|
class MCSymbol;
|
|
class raw_ostream;
|
|
class SDNode;
|
|
class SelectionDAG;
|
|
class Type;
|
|
class Value;
|
|
|
|
void checkForCycles(const SDNode *N, const SelectionDAG *DAG = nullptr,
|
|
bool force = false);
|
|
|
|
/// This represents a list of ValueType's that has been intern'd by
|
|
/// a SelectionDAG. Instances of this simple value class are returned by
|
|
/// SelectionDAG::getVTList(...).
|
|
///
|
|
struct SDVTList {
|
|
const EVT *VTs;
|
|
unsigned int NumVTs;
|
|
};
|
|
|
|
namespace ISD {
|
|
|
|
/// Node predicates
|
|
|
|
/// If N is a BUILD_VECTOR or SPLAT_VECTOR node whose elements are all the
|
|
/// same constant or undefined, return true and return the constant value in
|
|
/// \p SplatValue.
|
|
bool isConstantSplatVector(const SDNode *N, APInt &SplatValue);
|
|
|
|
/// Return true if the specified node is a BUILD_VECTOR or SPLAT_VECTOR where
|
|
/// all of the elements are ~0 or undef. If \p BuildVectorOnly is set to
|
|
/// true, it only checks BUILD_VECTOR.
|
|
bool isConstantSplatVectorAllOnes(const SDNode *N,
|
|
bool BuildVectorOnly = false);
|
|
|
|
/// Return true if the specified node is a BUILD_VECTOR or SPLAT_VECTOR where
|
|
/// all of the elements are 0 or undef. If \p BuildVectorOnly is set to true, it
|
|
/// only checks BUILD_VECTOR.
|
|
bool isConstantSplatVectorAllZeros(const SDNode *N,
|
|
bool BuildVectorOnly = false);
|
|
|
|
/// Return true if the specified node is a BUILD_VECTOR where all of the
|
|
/// elements are ~0 or undef.
|
|
bool isBuildVectorAllOnes(const SDNode *N);
|
|
|
|
/// Return true if the specified node is a BUILD_VECTOR where all of the
|
|
/// elements are 0 or undef.
|
|
bool isBuildVectorAllZeros(const SDNode *N);
|
|
|
|
/// Return true if the specified node is a BUILD_VECTOR node of all
|
|
/// ConstantSDNode or undef.
|
|
bool isBuildVectorOfConstantSDNodes(const SDNode *N);
|
|
|
|
/// Return true if the specified node is a BUILD_VECTOR node of all
|
|
/// ConstantFPSDNode or undef.
|
|
bool isBuildVectorOfConstantFPSDNodes(const SDNode *N);
|
|
|
|
/// Return true if the node has at least one operand and all operands of the
|
|
/// specified node are ISD::UNDEF.
|
|
bool allOperandsUndef(const SDNode *N);
|
|
|
|
} // end namespace ISD
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
/// Unlike LLVM values, Selection DAG nodes may return multiple
|
|
/// values as the result of a computation. Many nodes return multiple values,
|
|
/// from loads (which define a token and a return value) to ADDC (which returns
|
|
/// a result and a carry value), to calls (which may return an arbitrary number
|
|
/// of values).
|
|
///
|
|
/// As such, each use of a SelectionDAG computation must indicate the node that
|
|
/// computes it as well as which return value to use from that node. This pair
|
|
/// of information is represented with the SDValue value type.
|
|
///
|
|
class SDValue {
|
|
friend struct DenseMapInfo<SDValue>;
|
|
|
|
SDNode *Node = nullptr; // The node defining the value we are using.
|
|
unsigned ResNo = 0; // Which return value of the node we are using.
|
|
|
|
public:
|
|
SDValue() = default;
|
|
SDValue(SDNode *node, unsigned resno);
|
|
|
|
/// get the index which selects a specific result in the SDNode
|
|
unsigned getResNo() const { return ResNo; }
|
|
|
|
/// get the SDNode which holds the desired result
|
|
SDNode *getNode() const { return Node; }
|
|
|
|
/// set the SDNode
|
|
void setNode(SDNode *N) { Node = N; }
|
|
|
|
inline SDNode *operator->() const { return Node; }
|
|
|
|
bool operator==(const SDValue &O) const {
|
|
return Node == O.Node && ResNo == O.ResNo;
|
|
}
|
|
bool operator!=(const SDValue &O) const {
|
|
return !operator==(O);
|
|
}
|
|
bool operator<(const SDValue &O) const {
|
|
return std::tie(Node, ResNo) < std::tie(O.Node, O.ResNo);
|
|
}
|
|
explicit operator bool() const {
|
|
return Node != nullptr;
|
|
}
|
|
|
|
SDValue getValue(unsigned R) const {
|
|
return SDValue(Node, R);
|
|
}
|
|
|
|
/// Return true if this node is an operand of N.
|
|
bool isOperandOf(const SDNode *N) const;
|
|
|
|
/// Return the ValueType of the referenced return value.
|
|
inline EVT getValueType() const;
|
|
|
|
/// Return the simple ValueType of the referenced return value.
|
|
MVT getSimpleValueType() const {
|
|
return getValueType().getSimpleVT();
|
|
}
|
|
|
|
/// Returns the size of the value in bits.
|
|
///
|
|
/// If the value type is a scalable vector type, the scalable property will
|
|
/// be set and the runtime size will be a positive integer multiple of the
|
|
/// base size.
|
|
TypeSize getValueSizeInBits() const {
|
|
return getValueType().getSizeInBits();
|
|
}
|
|
|
|
uint64_t getScalarValueSizeInBits() const {
|
|
return getValueType().getScalarType().getFixedSizeInBits();
|
|
}
|
|
|
|
// Forwarding methods - These forward to the corresponding methods in SDNode.
|
|
inline unsigned getOpcode() const;
|
|
inline unsigned getNumOperands() const;
|
|
inline const SDValue &getOperand(unsigned i) const;
|
|
inline uint64_t getConstantOperandVal(unsigned i) const;
|
|
inline const APInt &getConstantOperandAPInt(unsigned i) const;
|
|
inline bool isTargetMemoryOpcode() const;
|
|
inline bool isTargetOpcode() const;
|
|
inline bool isMachineOpcode() const;
|
|
inline bool isUndef() const;
|
|
inline unsigned getMachineOpcode() const;
|
|
inline const DebugLoc &getDebugLoc() const;
|
|
inline void dump() const;
|
|
inline void dump(const SelectionDAG *G) const;
|
|
inline void dumpr() const;
|
|
inline void dumpr(const SelectionDAG *G) const;
|
|
|
|
/// Return true if this operand (which must be a chain) reaches the
|
|
/// specified operand without crossing any side-effecting instructions.
|
|
/// In practice, this looks through token factors and non-volatile loads.
|
|
/// In order to remain efficient, this only
|
|
/// looks a couple of nodes in, it does not do an exhaustive search.
|
|
bool reachesChainWithoutSideEffects(SDValue Dest,
|
|
unsigned Depth = 2) const;
|
|
|
|
/// Return true if there are no nodes using value ResNo of Node.
|
|
inline bool use_empty() const;
|
|
|
|
/// Return true if there is exactly one node using value ResNo of Node.
|
|
inline bool hasOneUse() const;
|
|
};
|
|
|
|
template<> struct DenseMapInfo<SDValue> {
|
|
static inline SDValue getEmptyKey() {
|
|
SDValue V;
|
|
V.ResNo = -1U;
|
|
return V;
|
|
}
|
|
|
|
static inline SDValue getTombstoneKey() {
|
|
SDValue V;
|
|
V.ResNo = -2U;
|
|
return V;
|
|
}
|
|
|
|
static unsigned getHashValue(const SDValue &Val) {
|
|
return ((unsigned)((uintptr_t)Val.getNode() >> 4) ^
|
|
(unsigned)((uintptr_t)Val.getNode() >> 9)) + Val.getResNo();
|
|
}
|
|
|
|
static bool isEqual(const SDValue &LHS, const SDValue &RHS) {
|
|
return LHS == RHS;
|
|
}
|
|
};
|
|
|
|
/// Allow casting operators to work directly on
|
|
/// SDValues as if they were SDNode*'s.
|
|
template<> struct simplify_type<SDValue> {
|
|
using SimpleType = SDNode *;
|
|
|
|
static SimpleType getSimplifiedValue(SDValue &Val) {
|
|
return Val.getNode();
|
|
}
|
|
};
|
|
template<> struct simplify_type<const SDValue> {
|
|
using SimpleType = /*const*/ SDNode *;
|
|
|
|
static SimpleType getSimplifiedValue(const SDValue &Val) {
|
|
return Val.getNode();
|
|
}
|
|
};
|
|
|
|
/// Represents a use of a SDNode. This class holds an SDValue,
|
|
/// which records the SDNode being used and the result number, a
|
|
/// pointer to the SDNode using the value, and Next and Prev pointers,
|
|
/// which link together all the uses of an SDNode.
|
|
///
|
|
class SDUse {
|
|
/// Val - The value being used.
|
|
SDValue Val;
|
|
/// User - The user of this value.
|
|
SDNode *User = nullptr;
|
|
/// Prev, Next - Pointers to the uses list of the SDNode referred by
|
|
/// this operand.
|
|
SDUse **Prev = nullptr;
|
|
SDUse *Next = nullptr;
|
|
|
|
public:
|
|
SDUse() = default;
|
|
SDUse(const SDUse &U) = delete;
|
|
SDUse &operator=(const SDUse &) = delete;
|
|
|
|
/// Normally SDUse will just implicitly convert to an SDValue that it holds.
|
|
operator const SDValue&() const { return Val; }
|
|
|
|
/// If implicit conversion to SDValue doesn't work, the get() method returns
|
|
/// the SDValue.
|
|
const SDValue &get() const { return Val; }
|
|
|
|
/// This returns the SDNode that contains this Use.
|
|
SDNode *getUser() { return User; }
|
|
|
|
/// Get the next SDUse in the use list.
|
|
SDUse *getNext() const { return Next; }
|
|
|
|
/// Convenience function for get().getNode().
|
|
SDNode *getNode() const { return Val.getNode(); }
|
|
/// Convenience function for get().getResNo().
|
|
unsigned getResNo() const { return Val.getResNo(); }
|
|
/// Convenience function for get().getValueType().
|
|
EVT getValueType() const { return Val.getValueType(); }
|
|
|
|
/// Convenience function for get().operator==
|
|
bool operator==(const SDValue &V) const {
|
|
return Val == V;
|
|
}
|
|
|
|
/// Convenience function for get().operator!=
|
|
bool operator!=(const SDValue &V) const {
|
|
return Val != V;
|
|
}
|
|
|
|
/// Convenience function for get().operator<
|
|
bool operator<(const SDValue &V) const {
|
|
return Val < V;
|
|
}
|
|
|
|
private:
|
|
friend class SelectionDAG;
|
|
friend class SDNode;
|
|
// TODO: unfriend HandleSDNode once we fix its operand handling.
|
|
friend class HandleSDNode;
|
|
|
|
void setUser(SDNode *p) { User = p; }
|
|
|
|
/// Remove this use from its existing use list, assign it the
|
|
/// given value, and add it to the new value's node's use list.
|
|
inline void set(const SDValue &V);
|
|
/// Like set, but only supports initializing a newly-allocated
|
|
/// SDUse with a non-null value.
|
|
inline void setInitial(const SDValue &V);
|
|
/// Like set, but only sets the Node portion of the value,
|
|
/// leaving the ResNo portion unmodified.
|
|
inline void setNode(SDNode *N);
|
|
|
|
void addToList(SDUse **List) {
|
|
Next = *List;
|
|
if (Next) Next->Prev = &Next;
|
|
Prev = List;
|
|
*List = this;
|
|
}
|
|
|
|
void removeFromList() {
|
|
*Prev = Next;
|
|
if (Next) Next->Prev = Prev;
|
|
}
|
|
};
|
|
|
|
/// simplify_type specializations - Allow casting operators to work directly on
|
|
/// SDValues as if they were SDNode*'s.
|
|
template<> struct simplify_type<SDUse> {
|
|
using SimpleType = SDNode *;
|
|
|
|
static SimpleType getSimplifiedValue(SDUse &Val) {
|
|
return Val.getNode();
|
|
}
|
|
};
|
|
|
|
/// These are IR-level optimization flags that may be propagated to SDNodes.
|
|
/// TODO: This data structure should be shared by the IR optimizer and the
|
|
/// the backend.
|
|
struct SDNodeFlags {
|
|
private:
|
|
bool NoUnsignedWrap : 1;
|
|
bool NoSignedWrap : 1;
|
|
bool Exact : 1;
|
|
bool NoNaNs : 1;
|
|
bool NoInfs : 1;
|
|
bool NoSignedZeros : 1;
|
|
bool AllowReciprocal : 1;
|
|
bool AllowContract : 1;
|
|
bool ApproximateFuncs : 1;
|
|
bool AllowReassociation : 1;
|
|
|
|
// We assume instructions do not raise floating-point exceptions by default,
|
|
// and only those marked explicitly may do so. We could choose to represent
|
|
// this via a positive "FPExcept" flags like on the MI level, but having a
|
|
// negative "NoFPExcept" flag here (that defaults to true) makes the flag
|
|
// intersection logic more straightforward.
|
|
bool NoFPExcept : 1;
|
|
|
|
public:
|
|
/// Default constructor turns off all optimization flags.
|
|
SDNodeFlags()
|
|
: NoUnsignedWrap(false), NoSignedWrap(false), Exact(false), NoNaNs(false),
|
|
NoInfs(false), NoSignedZeros(false), AllowReciprocal(false),
|
|
AllowContract(false), ApproximateFuncs(false),
|
|
AllowReassociation(false), NoFPExcept(false) {}
|
|
|
|
/// Propagate the fast-math-flags from an IR FPMathOperator.
|
|
void copyFMF(const FPMathOperator &FPMO) {
|
|
setNoNaNs(FPMO.hasNoNaNs());
|
|
setNoInfs(FPMO.hasNoInfs());
|
|
setNoSignedZeros(FPMO.hasNoSignedZeros());
|
|
setAllowReciprocal(FPMO.hasAllowReciprocal());
|
|
setAllowContract(FPMO.hasAllowContract());
|
|
setApproximateFuncs(FPMO.hasApproxFunc());
|
|
setAllowReassociation(FPMO.hasAllowReassoc());
|
|
}
|
|
|
|
// These are mutators for each flag.
|
|
void setNoUnsignedWrap(bool b) { NoUnsignedWrap = b; }
|
|
void setNoSignedWrap(bool b) { NoSignedWrap = b; }
|
|
void setExact(bool b) { Exact = b; }
|
|
void setNoNaNs(bool b) { NoNaNs = b; }
|
|
void setNoInfs(bool b) { NoInfs = b; }
|
|
void setNoSignedZeros(bool b) { NoSignedZeros = b; }
|
|
void setAllowReciprocal(bool b) { AllowReciprocal = b; }
|
|
void setAllowContract(bool b) { AllowContract = b; }
|
|
void setApproximateFuncs(bool b) { ApproximateFuncs = b; }
|
|
void setAllowReassociation(bool b) { AllowReassociation = b; }
|
|
void setNoFPExcept(bool b) { NoFPExcept = b; }
|
|
|
|
// These are accessors for each flag.
|
|
bool hasNoUnsignedWrap() const { return NoUnsignedWrap; }
|
|
bool hasNoSignedWrap() const { return NoSignedWrap; }
|
|
bool hasExact() const { return Exact; }
|
|
bool hasNoNaNs() const { return NoNaNs; }
|
|
bool hasNoInfs() const { return NoInfs; }
|
|
bool hasNoSignedZeros() const { return NoSignedZeros; }
|
|
bool hasAllowReciprocal() const { return AllowReciprocal; }
|
|
bool hasAllowContract() const { return AllowContract; }
|
|
bool hasApproximateFuncs() const { return ApproximateFuncs; }
|
|
bool hasAllowReassociation() const { return AllowReassociation; }
|
|
bool hasNoFPExcept() const { return NoFPExcept; }
|
|
|
|
/// Clear any flags in this flag set that aren't also set in Flags. All
|
|
/// flags will be cleared if Flags are undefined.
|
|
void intersectWith(const SDNodeFlags Flags) {
|
|
NoUnsignedWrap &= Flags.NoUnsignedWrap;
|
|
NoSignedWrap &= Flags.NoSignedWrap;
|
|
Exact &= Flags.Exact;
|
|
NoNaNs &= Flags.NoNaNs;
|
|
NoInfs &= Flags.NoInfs;
|
|
NoSignedZeros &= Flags.NoSignedZeros;
|
|
AllowReciprocal &= Flags.AllowReciprocal;
|
|
AllowContract &= Flags.AllowContract;
|
|
ApproximateFuncs &= Flags.ApproximateFuncs;
|
|
AllowReassociation &= Flags.AllowReassociation;
|
|
NoFPExcept &= Flags.NoFPExcept;
|
|
}
|
|
};
|
|
|
|
/// Represents one node in the SelectionDAG.
|
|
///
|
|
class SDNode : public FoldingSetNode, public ilist_node<SDNode> {
|
|
private:
|
|
/// The operation that this node performs.
|
|
int16_t NodeType;
|
|
|
|
protected:
|
|
// We define a set of mini-helper classes to help us interpret the bits in our
|
|
// SubclassData. These are designed to fit within a uint16_t so they pack
|
|
// with NodeType.
|
|
|
|
#if defined(_AIX) && (!defined(__GNUC__) || defined(__clang__))
|
|
// Except for GCC; by default, AIX compilers store bit-fields in 4-byte words
|
|
// and give the `pack` pragma push semantics.
|
|
#define BEGIN_TWO_BYTE_PACK() _Pragma("pack(2)")
|
|
#define END_TWO_BYTE_PACK() _Pragma("pack(pop)")
|
|
#else
|
|
#define BEGIN_TWO_BYTE_PACK()
|
|
#define END_TWO_BYTE_PACK()
|
|
#endif
|
|
|
|
BEGIN_TWO_BYTE_PACK()
|
|
class SDNodeBitfields {
|
|
friend class SDNode;
|
|
friend class MemIntrinsicSDNode;
|
|
friend class MemSDNode;
|
|
friend class SelectionDAG;
|
|
|
|
uint16_t HasDebugValue : 1;
|
|
uint16_t IsMemIntrinsic : 1;
|
|
uint16_t IsDivergent : 1;
|
|
};
|
|
enum { NumSDNodeBits = 3 };
|
|
|
|
class ConstantSDNodeBitfields {
|
|
friend class ConstantSDNode;
|
|
|
|
uint16_t : NumSDNodeBits;
|
|
|
|
uint16_t IsOpaque : 1;
|
|
};
|
|
|
|
class MemSDNodeBitfields {
|
|
friend class MemSDNode;
|
|
friend class MemIntrinsicSDNode;
|
|
friend class AtomicSDNode;
|
|
|
|
uint16_t : NumSDNodeBits;
|
|
|
|
uint16_t IsVolatile : 1;
|
|
uint16_t IsNonTemporal : 1;
|
|
uint16_t IsDereferenceable : 1;
|
|
uint16_t IsInvariant : 1;
|
|
};
|
|
enum { NumMemSDNodeBits = NumSDNodeBits + 4 };
|
|
|
|
class LSBaseSDNodeBitfields {
|
|
friend class LSBaseSDNode;
|
|
friend class MaskedLoadStoreSDNode;
|
|
friend class MaskedGatherScatterSDNode;
|
|
|
|
uint16_t : NumMemSDNodeBits;
|
|
|
|
// This storage is shared between disparate class hierarchies to hold an
|
|
// enumeration specific to the class hierarchy in use.
|
|
// LSBaseSDNode => enum ISD::MemIndexedMode
|
|
// MaskedLoadStoreBaseSDNode => enum ISD::MemIndexedMode
|
|
// MaskedGatherScatterSDNode => enum ISD::MemIndexType
|
|
uint16_t AddressingMode : 3;
|
|
};
|
|
enum { NumLSBaseSDNodeBits = NumMemSDNodeBits + 3 };
|
|
|
|
class LoadSDNodeBitfields {
|
|
friend class LoadSDNode;
|
|
friend class MaskedLoadSDNode;
|
|
friend class MaskedGatherSDNode;
|
|
|
|
uint16_t : NumLSBaseSDNodeBits;
|
|
|
|
uint16_t ExtTy : 2; // enum ISD::LoadExtType
|
|
uint16_t IsExpanding : 1;
|
|
};
|
|
|
|
class StoreSDNodeBitfields {
|
|
friend class StoreSDNode;
|
|
friend class MaskedStoreSDNode;
|
|
friend class MaskedScatterSDNode;
|
|
|
|
uint16_t : NumLSBaseSDNodeBits;
|
|
|
|
uint16_t IsTruncating : 1;
|
|
uint16_t IsCompressing : 1;
|
|
};
|
|
|
|
union {
|
|
char RawSDNodeBits[sizeof(uint16_t)];
|
|
SDNodeBitfields SDNodeBits;
|
|
ConstantSDNodeBitfields ConstantSDNodeBits;
|
|
MemSDNodeBitfields MemSDNodeBits;
|
|
LSBaseSDNodeBitfields LSBaseSDNodeBits;
|
|
LoadSDNodeBitfields LoadSDNodeBits;
|
|
StoreSDNodeBitfields StoreSDNodeBits;
|
|
};
|
|
END_TWO_BYTE_PACK()
|
|
#undef BEGIN_TWO_BYTE_PACK
|
|
#undef END_TWO_BYTE_PACK
|
|
|
|
// RawSDNodeBits must cover the entirety of the union. This means that all of
|
|
// the union's members must have size <= RawSDNodeBits. We write the RHS as
|
|
// "2" instead of sizeof(RawSDNodeBits) because MSVC can't handle the latter.
|
|
static_assert(sizeof(SDNodeBitfields) <= 2, "field too wide");
|
|
static_assert(sizeof(ConstantSDNodeBitfields) <= 2, "field too wide");
|
|
static_assert(sizeof(MemSDNodeBitfields) <= 2, "field too wide");
|
|
static_assert(sizeof(LSBaseSDNodeBitfields) <= 2, "field too wide");
|
|
static_assert(sizeof(LoadSDNodeBitfields) <= 2, "field too wide");
|
|
static_assert(sizeof(StoreSDNodeBitfields) <= 2, "field too wide");
|
|
|
|
private:
|
|
friend class SelectionDAG;
|
|
// TODO: unfriend HandleSDNode once we fix its operand handling.
|
|
friend class HandleSDNode;
|
|
|
|
/// Unique id per SDNode in the DAG.
|
|
int NodeId = -1;
|
|
|
|
/// The values that are used by this operation.
|
|
SDUse *OperandList = nullptr;
|
|
|
|
/// The types of the values this node defines. SDNode's may
|
|
/// define multiple values simultaneously.
|
|
const EVT *ValueList;
|
|
|
|
/// List of uses for this SDNode.
|
|
SDUse *UseList = nullptr;
|
|
|
|
/// The number of entries in the Operand/Value list.
|
|
unsigned short NumOperands = 0;
|
|
unsigned short NumValues;
|
|
|
|
// The ordering of the SDNodes. It roughly corresponds to the ordering of the
|
|
// original LLVM instructions.
|
|
// This is used for turning off scheduling, because we'll forgo
|
|
// the normal scheduling algorithms and output the instructions according to
|
|
// this ordering.
|
|
unsigned IROrder;
|
|
|
|
/// Source line information.
|
|
DebugLoc debugLoc;
|
|
|
|
/// Return a pointer to the specified value type.
|
|
static const EVT *getValueTypeList(EVT VT);
|
|
|
|
SDNodeFlags Flags;
|
|
|
|
public:
|
|
/// Unique and persistent id per SDNode in the DAG.
|
|
/// Used for debug printing.
|
|
uint16_t PersistentId;
|
|
|
|
//===--------------------------------------------------------------------===//
|
|
// Accessors
|
|
//
|
|
|
|
/// Return the SelectionDAG opcode value for this node. For
|
|
/// pre-isel nodes (those for which isMachineOpcode returns false), these
|
|
/// are the opcode values in the ISD and <target>ISD namespaces. For
|
|
/// post-isel opcodes, see getMachineOpcode.
|
|
unsigned getOpcode() const { return (unsigned short)NodeType; }
|
|
|
|
/// Test if this node has a target-specific opcode (in the
|
|
/// \<target\>ISD namespace).
|
|
bool isTargetOpcode() const { return NodeType >= ISD::BUILTIN_OP_END; }
|
|
|
|
/// Test if this node has a target-specific opcode that may raise
|
|
/// FP exceptions (in the \<target\>ISD namespace and greater than
|
|
/// FIRST_TARGET_STRICTFP_OPCODE). Note that all target memory
|
|
/// opcode are currently automatically considered to possibly raise
|
|
/// FP exceptions as well.
|
|
bool isTargetStrictFPOpcode() const {
|
|
return NodeType >= ISD::FIRST_TARGET_STRICTFP_OPCODE;
|
|
}
|
|
|
|
/// Test if this node has a target-specific
|
|
/// memory-referencing opcode (in the \<target\>ISD namespace and
|
|
/// greater than FIRST_TARGET_MEMORY_OPCODE).
|
|
bool isTargetMemoryOpcode() const {
|
|
return NodeType >= ISD::FIRST_TARGET_MEMORY_OPCODE;
|
|
}
|
|
|
|
/// Return true if the type of the node type undefined.
|
|
bool isUndef() const { return NodeType == ISD::UNDEF; }
|
|
|
|
/// Test if this node is a memory intrinsic (with valid pointer information).
|
|
/// INTRINSIC_W_CHAIN and INTRINSIC_VOID nodes are sometimes created for
|
|
/// non-memory intrinsics (with chains) that are not really instances of
|
|
/// MemSDNode. For such nodes, we need some extra state to determine the
|
|
/// proper classof relationship.
|
|
bool isMemIntrinsic() const {
|
|
return (NodeType == ISD::INTRINSIC_W_CHAIN ||
|
|
NodeType == ISD::INTRINSIC_VOID) &&
|
|
SDNodeBits.IsMemIntrinsic;
|
|
}
|
|
|
|
/// Test if this node is a strict floating point pseudo-op.
|
|
bool isStrictFPOpcode() {
|
|
switch (NodeType) {
|
|
default:
|
|
return false;
|
|
case ISD::STRICT_FP16_TO_FP:
|
|
case ISD::STRICT_FP_TO_FP16:
|
|
#define DAG_INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC, DAGN) \
|
|
case ISD::STRICT_##DAGN:
|
|
#include "llvm/IR/ConstrainedOps.def"
|
|
return true;
|
|
}
|
|
}
|
|
|
|
/// Test if this node has a post-isel opcode, directly
|
|
/// corresponding to a MachineInstr opcode.
|
|
bool isMachineOpcode() const { return NodeType < 0; }
|
|
|
|
/// This may only be called if isMachineOpcode returns
|
|
/// true. It returns the MachineInstr opcode value that the node's opcode
|
|
/// corresponds to.
|
|
unsigned getMachineOpcode() const {
|
|
assert(isMachineOpcode() && "Not a MachineInstr opcode!");
|
|
return ~NodeType;
|
|
}
|
|
|
|
bool getHasDebugValue() const { return SDNodeBits.HasDebugValue; }
|
|
void setHasDebugValue(bool b) { SDNodeBits.HasDebugValue = b; }
|
|
|
|
bool isDivergent() const { return SDNodeBits.IsDivergent; }
|
|
|
|
/// Return true if there are no uses of this node.
|
|
bool use_empty() const { return UseList == nullptr; }
|
|
|
|
/// Return true if there is exactly one use of this node.
|
|
bool hasOneUse() const { return hasSingleElement(uses()); }
|
|
|
|
/// Return the number of uses of this node. This method takes
|
|
/// time proportional to the number of uses.
|
|
size_t use_size() const { return std::distance(use_begin(), use_end()); }
|
|
|
|
/// Return the unique node id.
|
|
int getNodeId() const { return NodeId; }
|
|
|
|
/// Set unique node id.
|
|
void setNodeId(int Id) { NodeId = Id; }
|
|
|
|
/// Return the node ordering.
|
|
unsigned getIROrder() const { return IROrder; }
|
|
|
|
/// Set the node ordering.
|
|
void setIROrder(unsigned Order) { IROrder = Order; }
|
|
|
|
/// Return the source location info.
|
|
const DebugLoc &getDebugLoc() const { return debugLoc; }
|
|
|
|
/// Set source location info. Try to avoid this, putting
|
|
/// it in the constructor is preferable.
|
|
void setDebugLoc(DebugLoc dl) { debugLoc = std::move(dl); }
|
|
|
|
/// This class provides iterator support for SDUse
|
|
/// operands that use a specific SDNode.
|
|
class use_iterator {
|
|
friend class SDNode;
|
|
|
|
SDUse *Op = nullptr;
|
|
|
|
explicit use_iterator(SDUse *op) : Op(op) {}
|
|
|
|
public:
|
|
using iterator_category = std::forward_iterator_tag;
|
|
using value_type = SDUse;
|
|
using difference_type = std::ptrdiff_t;
|
|
using pointer = value_type *;
|
|
using reference = value_type &;
|
|
|
|
use_iterator() = default;
|
|
use_iterator(const use_iterator &I) : Op(I.Op) {}
|
|
|
|
bool operator==(const use_iterator &x) const {
|
|
return Op == x.Op;
|
|
}
|
|
bool operator!=(const use_iterator &x) const {
|
|
return !operator==(x);
|
|
}
|
|
|
|
/// Return true if this iterator is at the end of uses list.
|
|
bool atEnd() const { return Op == nullptr; }
|
|
|
|
// Iterator traversal: forward iteration only.
|
|
use_iterator &operator++() { // Preincrement
|
|
assert(Op && "Cannot increment end iterator!");
|
|
Op = Op->getNext();
|
|
return *this;
|
|
}
|
|
|
|
use_iterator operator++(int) { // Postincrement
|
|
use_iterator tmp = *this; ++*this; return tmp;
|
|
}
|
|
|
|
/// Retrieve a pointer to the current user node.
|
|
SDNode *operator*() const {
|
|
assert(Op && "Cannot dereference end iterator!");
|
|
return Op->getUser();
|
|
}
|
|
|
|
SDNode *operator->() const { return operator*(); }
|
|
|
|
SDUse &getUse() const { return *Op; }
|
|
|
|
/// Retrieve the operand # of this use in its user.
|
|
unsigned getOperandNo() const {
|
|
assert(Op && "Cannot dereference end iterator!");
|
|
return (unsigned)(Op - Op->getUser()->OperandList);
|
|
}
|
|
};
|
|
|
|
/// Provide iteration support to walk over all uses of an SDNode.
|
|
use_iterator use_begin() const {
|
|
return use_iterator(UseList);
|
|
}
|
|
|
|
static use_iterator use_end() { return use_iterator(nullptr); }
|
|
|
|
inline iterator_range<use_iterator> uses() {
|
|
return make_range(use_begin(), use_end());
|
|
}
|
|
inline iterator_range<use_iterator> uses() const {
|
|
return make_range(use_begin(), use_end());
|
|
}
|
|
|
|
/// Return true if there are exactly NUSES uses of the indicated value.
|
|
/// This method ignores uses of other values defined by this operation.
|
|
bool hasNUsesOfValue(unsigned NUses, unsigned Value) const;
|
|
|
|
/// Return true if there are any use of the indicated value.
|
|
/// This method ignores uses of other values defined by this operation.
|
|
bool hasAnyUseOfValue(unsigned Value) const;
|
|
|
|
/// Return true if this node is the only use of N.
|
|
bool isOnlyUserOf(const SDNode *N) const;
|
|
|
|
/// Return true if this node is an operand of N.
|
|
bool isOperandOf(const SDNode *N) const;
|
|
|
|
/// Return true if this node is a predecessor of N.
|
|
/// NOTE: Implemented on top of hasPredecessor and every bit as
|
|
/// expensive. Use carefully.
|
|
bool isPredecessorOf(const SDNode *N) const {
|
|
return N->hasPredecessor(this);
|
|
}
|
|
|
|
/// Return true if N is a predecessor of this node.
|
|
/// N is either an operand of this node, or can be reached by recursively
|
|
/// traversing up the operands.
|
|
/// NOTE: This is an expensive method. Use it carefully.
|
|
bool hasPredecessor(const SDNode *N) const;
|
|
|
|
/// Returns true if N is a predecessor of any node in Worklist. This
|
|
/// helper keeps Visited and Worklist sets externally to allow unions
|
|
/// searches to be performed in parallel, caching of results across
|
|
/// queries and incremental addition to Worklist. Stops early if N is
|
|
/// found but will resume. Remember to clear Visited and Worklists
|
|
/// if DAG changes. MaxSteps gives a maximum number of nodes to visit before
|
|
/// giving up. The TopologicalPrune flag signals that positive NodeIds are
|
|
/// topologically ordered (Operands have strictly smaller node id) and search
|
|
/// can be pruned leveraging this.
|
|
static bool hasPredecessorHelper(const SDNode *N,
|
|
SmallPtrSetImpl<const SDNode *> &Visited,
|
|
SmallVectorImpl<const SDNode *> &Worklist,
|
|
unsigned int MaxSteps = 0,
|
|
bool TopologicalPrune = false) {
|
|
SmallVector<const SDNode *, 8> DeferredNodes;
|
|
if (Visited.count(N))
|
|
return true;
|
|
|
|
// Node Id's are assigned in three places: As a topological
|
|
// ordering (> 0), during legalization (results in values set to
|
|
// 0), new nodes (set to -1). If N has a topolgical id then we
|
|
// know that all nodes with ids smaller than it cannot be
|
|
// successors and we need not check them. Filter out all node
|
|
// that can't be matches. We add them to the worklist before exit
|
|
// in case of multiple calls. Note that during selection the topological id
|
|
// may be violated if a node's predecessor is selected before it. We mark
|
|
// this at selection negating the id of unselected successors and
|
|
// restricting topological pruning to positive ids.
|
|
|
|
int NId = N->getNodeId();
|
|
// If we Invalidated the Id, reconstruct original NId.
|
|
if (NId < -1)
|
|
NId = -(NId + 1);
|
|
|
|
bool Found = false;
|
|
while (!Worklist.empty()) {
|
|
const SDNode *M = Worklist.pop_back_val();
|
|
int MId = M->getNodeId();
|
|
if (TopologicalPrune && M->getOpcode() != ISD::TokenFactor && (NId > 0) &&
|
|
(MId > 0) && (MId < NId)) {
|
|
DeferredNodes.push_back(M);
|
|
continue;
|
|
}
|
|
for (const SDValue &OpV : M->op_values()) {
|
|
SDNode *Op = OpV.getNode();
|
|
if (Visited.insert(Op).second)
|
|
Worklist.push_back(Op);
|
|
if (Op == N)
|
|
Found = true;
|
|
}
|
|
if (Found)
|
|
break;
|
|
if (MaxSteps != 0 && Visited.size() >= MaxSteps)
|
|
break;
|
|
}
|
|
// Push deferred nodes back on worklist.
|
|
Worklist.append(DeferredNodes.begin(), DeferredNodes.end());
|
|
// If we bailed early, conservatively return found.
|
|
if (MaxSteps != 0 && Visited.size() >= MaxSteps)
|
|
return true;
|
|
return Found;
|
|
}
|
|
|
|
/// Return true if all the users of N are contained in Nodes.
|
|
/// NOTE: Requires at least one match, but doesn't require them all.
|
|
static bool areOnlyUsersOf(ArrayRef<const SDNode *> Nodes, const SDNode *N);
|
|
|
|
/// Return the number of values used by this operation.
|
|
unsigned getNumOperands() const { return NumOperands; }
|
|
|
|
/// Return the maximum number of operands that a SDNode can hold.
|
|
static constexpr size_t getMaxNumOperands() {
|
|
return std::numeric_limits<decltype(SDNode::NumOperands)>::max();
|
|
}
|
|
|
|
/// Helper method returns the integer value of a ConstantSDNode operand.
|
|
inline uint64_t getConstantOperandVal(unsigned Num) const;
|
|
|
|
/// Helper method returns the APInt of a ConstantSDNode operand.
|
|
inline const APInt &getConstantOperandAPInt(unsigned Num) const;
|
|
|
|
const SDValue &getOperand(unsigned Num) const {
|
|
assert(Num < NumOperands && "Invalid child # of SDNode!");
|
|
return OperandList[Num];
|
|
}
|
|
|
|
using op_iterator = SDUse *;
|
|
|
|
op_iterator op_begin() const { return OperandList; }
|
|
op_iterator op_end() const { return OperandList+NumOperands; }
|
|
ArrayRef<SDUse> ops() const { return makeArrayRef(op_begin(), op_end()); }
|
|
|
|
/// Iterator for directly iterating over the operand SDValue's.
|
|
struct value_op_iterator
|
|
: iterator_adaptor_base<value_op_iterator, op_iterator,
|
|
std::random_access_iterator_tag, SDValue,
|
|
ptrdiff_t, value_op_iterator *,
|
|
value_op_iterator *> {
|
|
explicit value_op_iterator(SDUse *U = nullptr)
|
|
: iterator_adaptor_base(U) {}
|
|
|
|
const SDValue &operator*() const { return I->get(); }
|
|
};
|
|
|
|
iterator_range<value_op_iterator> op_values() const {
|
|
return make_range(value_op_iterator(op_begin()),
|
|
value_op_iterator(op_end()));
|
|
}
|
|
|
|
SDVTList getVTList() const {
|
|
SDVTList X = { ValueList, NumValues };
|
|
return X;
|
|
}
|
|
|
|
/// If this node has a glue operand, return the node
|
|
/// to which the glue operand points. Otherwise return NULL.
|
|
SDNode *getGluedNode() const {
|
|
if (getNumOperands() != 0 &&
|
|
getOperand(getNumOperands()-1).getValueType() == MVT::Glue)
|
|
return getOperand(getNumOperands()-1).getNode();
|
|
return nullptr;
|
|
}
|
|
|
|
/// If this node has a glue value with a user, return
|
|
/// the user (there is at most one). Otherwise return NULL.
|
|
SDNode *getGluedUser() const {
|
|
for (use_iterator UI = use_begin(), UE = use_end(); UI != UE; ++UI)
|
|
if (UI.getUse().get().getValueType() == MVT::Glue)
|
|
return *UI;
|
|
return nullptr;
|
|
}
|
|
|
|
SDNodeFlags getFlags() const { return Flags; }
|
|
void setFlags(SDNodeFlags NewFlags) { Flags = NewFlags; }
|
|
|
|
/// Clear any flags in this node that aren't also set in Flags.
|
|
/// If Flags is not in a defined state then this has no effect.
|
|
void intersectFlagsWith(const SDNodeFlags Flags);
|
|
|
|
/// Return the number of values defined/returned by this operator.
|
|
unsigned getNumValues() const { return NumValues; }
|
|
|
|
/// Return the type of a specified result.
|
|
EVT getValueType(unsigned ResNo) const {
|
|
assert(ResNo < NumValues && "Illegal result number!");
|
|
return ValueList[ResNo];
|
|
}
|
|
|
|
/// Return the type of a specified result as a simple type.
|
|
MVT getSimpleValueType(unsigned ResNo) const {
|
|
return getValueType(ResNo).getSimpleVT();
|
|
}
|
|
|
|
/// Returns MVT::getSizeInBits(getValueType(ResNo)).
|
|
///
|
|
/// If the value type is a scalable vector type, the scalable property will
|
|
/// be set and the runtime size will be a positive integer multiple of the
|
|
/// base size.
|
|
TypeSize getValueSizeInBits(unsigned ResNo) const {
|
|
return getValueType(ResNo).getSizeInBits();
|
|
}
|
|
|
|
using value_iterator = const EVT *;
|
|
|
|
value_iterator value_begin() const { return ValueList; }
|
|
value_iterator value_end() const { return ValueList+NumValues; }
|
|
iterator_range<value_iterator> values() const {
|
|
return llvm::make_range(value_begin(), value_end());
|
|
}
|
|
|
|
/// Return the opcode of this operation for printing.
|
|
std::string getOperationName(const SelectionDAG *G = nullptr) const;
|
|
static const char* getIndexedModeName(ISD::MemIndexedMode AM);
|
|
void print_types(raw_ostream &OS, const SelectionDAG *G) const;
|
|
void print_details(raw_ostream &OS, const SelectionDAG *G) const;
|
|
void print(raw_ostream &OS, const SelectionDAG *G = nullptr) const;
|
|
void printr(raw_ostream &OS, const SelectionDAG *G = nullptr) const;
|
|
|
|
/// Print a SelectionDAG node and all children down to
|
|
/// the leaves. The given SelectionDAG allows target-specific nodes
|
|
/// to be printed in human-readable form. Unlike printr, this will
|
|
/// print the whole DAG, including children that appear multiple
|
|
/// times.
|
|
///
|
|
void printrFull(raw_ostream &O, const SelectionDAG *G = nullptr) const;
|
|
|
|
/// Print a SelectionDAG node and children up to
|
|
/// depth "depth." The given SelectionDAG allows target-specific
|
|
/// nodes to be printed in human-readable form. Unlike printr, this
|
|
/// will print children that appear multiple times wherever they are
|
|
/// used.
|
|
///
|
|
void printrWithDepth(raw_ostream &O, const SelectionDAG *G = nullptr,
|
|
unsigned depth = 100) const;
|
|
|
|
/// Dump this node, for debugging.
|
|
void dump() const;
|
|
|
|
/// Dump (recursively) this node and its use-def subgraph.
|
|
void dumpr() const;
|
|
|
|
/// Dump this node, for debugging.
|
|
/// The given SelectionDAG allows target-specific nodes to be printed
|
|
/// in human-readable form.
|
|
void dump(const SelectionDAG *G) const;
|
|
|
|
/// Dump (recursively) this node and its use-def subgraph.
|
|
/// The given SelectionDAG allows target-specific nodes to be printed
|
|
/// in human-readable form.
|
|
void dumpr(const SelectionDAG *G) const;
|
|
|
|
/// printrFull to dbgs(). The given SelectionDAG allows
|
|
/// target-specific nodes to be printed in human-readable form.
|
|
/// Unlike dumpr, this will print the whole DAG, including children
|
|
/// that appear multiple times.
|
|
void dumprFull(const SelectionDAG *G = nullptr) const;
|
|
|
|
/// printrWithDepth to dbgs(). The given
|
|
/// SelectionDAG allows target-specific nodes to be printed in
|
|
/// human-readable form. Unlike dumpr, this will print children
|
|
/// that appear multiple times wherever they are used.
|
|
///
|
|
void dumprWithDepth(const SelectionDAG *G = nullptr,
|
|
unsigned depth = 100) const;
|
|
|
|
/// Gather unique data for the node.
|
|
void Profile(FoldingSetNodeID &ID) const;
|
|
|
|
/// This method should only be used by the SDUse class.
|
|
void addUse(SDUse &U) { U.addToList(&UseList); }
|
|
|
|
protected:
|
|
static SDVTList getSDVTList(EVT VT) {
|
|
SDVTList Ret = { getValueTypeList(VT), 1 };
|
|
return Ret;
|
|
}
|
|
|
|
/// Create an SDNode.
|
|
///
|
|
/// SDNodes are created without any operands, and never own the operand
|
|
/// storage. To add operands, see SelectionDAG::createOperands.
|
|
SDNode(unsigned Opc, unsigned Order, DebugLoc dl, SDVTList VTs)
|
|
: NodeType(Opc), ValueList(VTs.VTs), NumValues(VTs.NumVTs),
|
|
IROrder(Order), debugLoc(std::move(dl)) {
|
|
memset(&RawSDNodeBits, 0, sizeof(RawSDNodeBits));
|
|
assert(debugLoc.hasTrivialDestructor() && "Expected trivial destructor");
|
|
assert(NumValues == VTs.NumVTs &&
|
|
"NumValues wasn't wide enough for its operands!");
|
|
}
|
|
|
|
/// Release the operands and set this node to have zero operands.
|
|
void DropOperands();
|
|
};
|
|
|
|
/// Wrapper class for IR location info (IR ordering and DebugLoc) to be passed
|
|
/// into SDNode creation functions.
|
|
/// When an SDNode is created from the DAGBuilder, the DebugLoc is extracted
|
|
/// from the original Instruction, and IROrder is the ordinal position of
|
|
/// the instruction.
|
|
/// When an SDNode is created after the DAG is being built, both DebugLoc and
|
|
/// the IROrder are propagated from the original SDNode.
|
|
/// So SDLoc class provides two constructors besides the default one, one to
|
|
/// be used by the DAGBuilder, the other to be used by others.
|
|
class SDLoc {
|
|
private:
|
|
DebugLoc DL;
|
|
int IROrder = 0;
|
|
|
|
public:
|
|
SDLoc() = default;
|
|
SDLoc(const SDNode *N) : DL(N->getDebugLoc()), IROrder(N->getIROrder()) {}
|
|
SDLoc(const SDValue V) : SDLoc(V.getNode()) {}
|
|
SDLoc(const Instruction *I, int Order) : IROrder(Order) {
|
|
assert(Order >= 0 && "bad IROrder");
|
|
if (I)
|
|
DL = I->getDebugLoc();
|
|
}
|
|
|
|
unsigned getIROrder() const { return IROrder; }
|
|
const DebugLoc &getDebugLoc() const { return DL; }
|
|
};
|
|
|
|
// Define inline functions from the SDValue class.
|
|
|
|
inline SDValue::SDValue(SDNode *node, unsigned resno)
|
|
: Node(node), ResNo(resno) {
|
|
// Explicitly check for !ResNo to avoid use-after-free, because there are
|
|
// callers that use SDValue(N, 0) with a deleted N to indicate successful
|
|
// combines.
|
|
assert((!Node || !ResNo || ResNo < Node->getNumValues()) &&
|
|
"Invalid result number for the given node!");
|
|
assert(ResNo < -2U && "Cannot use result numbers reserved for DenseMaps.");
|
|
}
|
|
|
|
inline unsigned SDValue::getOpcode() const {
|
|
return Node->getOpcode();
|
|
}
|
|
|
|
inline EVT SDValue::getValueType() const {
|
|
return Node->getValueType(ResNo);
|
|
}
|
|
|
|
inline unsigned SDValue::getNumOperands() const {
|
|
return Node->getNumOperands();
|
|
}
|
|
|
|
inline const SDValue &SDValue::getOperand(unsigned i) const {
|
|
return Node->getOperand(i);
|
|
}
|
|
|
|
inline uint64_t SDValue::getConstantOperandVal(unsigned i) const {
|
|
return Node->getConstantOperandVal(i);
|
|
}
|
|
|
|
inline const APInt &SDValue::getConstantOperandAPInt(unsigned i) const {
|
|
return Node->getConstantOperandAPInt(i);
|
|
}
|
|
|
|
inline bool SDValue::isTargetOpcode() const {
|
|
return Node->isTargetOpcode();
|
|
}
|
|
|
|
inline bool SDValue::isTargetMemoryOpcode() const {
|
|
return Node->isTargetMemoryOpcode();
|
|
}
|
|
|
|
inline bool SDValue::isMachineOpcode() const {
|
|
return Node->isMachineOpcode();
|
|
}
|
|
|
|
inline unsigned SDValue::getMachineOpcode() const {
|
|
return Node->getMachineOpcode();
|
|
}
|
|
|
|
inline bool SDValue::isUndef() const {
|
|
return Node->isUndef();
|
|
}
|
|
|
|
inline bool SDValue::use_empty() const {
|
|
return !Node->hasAnyUseOfValue(ResNo);
|
|
}
|
|
|
|
inline bool SDValue::hasOneUse() const {
|
|
return Node->hasNUsesOfValue(1, ResNo);
|
|
}
|
|
|
|
inline const DebugLoc &SDValue::getDebugLoc() const {
|
|
return Node->getDebugLoc();
|
|
}
|
|
|
|
inline void SDValue::dump() const {
|
|
return Node->dump();
|
|
}
|
|
|
|
inline void SDValue::dump(const SelectionDAG *G) const {
|
|
return Node->dump(G);
|
|
}
|
|
|
|
inline void SDValue::dumpr() const {
|
|
return Node->dumpr();
|
|
}
|
|
|
|
inline void SDValue::dumpr(const SelectionDAG *G) const {
|
|
return Node->dumpr(G);
|
|
}
|
|
|
|
// Define inline functions from the SDUse class.
|
|
|
|
inline void SDUse::set(const SDValue &V) {
|
|
if (Val.getNode()) removeFromList();
|
|
Val = V;
|
|
if (V.getNode()) V.getNode()->addUse(*this);
|
|
}
|
|
|
|
inline void SDUse::setInitial(const SDValue &V) {
|
|
Val = V;
|
|
V.getNode()->addUse(*this);
|
|
}
|
|
|
|
inline void SDUse::setNode(SDNode *N) {
|
|
if (Val.getNode()) removeFromList();
|
|
Val.setNode(N);
|
|
if (N) N->addUse(*this);
|
|
}
|
|
|
|
/// This class is used to form a handle around another node that
|
|
/// is persistent and is updated across invocations of replaceAllUsesWith on its
|
|
/// operand. This node should be directly created by end-users and not added to
|
|
/// the AllNodes list.
|
|
class HandleSDNode : public SDNode {
|
|
SDUse Op;
|
|
|
|
public:
|
|
explicit HandleSDNode(SDValue X)
|
|
: SDNode(ISD::HANDLENODE, 0, DebugLoc(), getSDVTList(MVT::Other)) {
|
|
// HandleSDNodes are never inserted into the DAG, so they won't be
|
|
// auto-numbered. Use ID 65535 as a sentinel.
|
|
PersistentId = 0xffff;
|
|
|
|
// Manually set up the operand list. This node type is special in that it's
|
|
// always stack allocated and SelectionDAG does not manage its operands.
|
|
// TODO: This should either (a) not be in the SDNode hierarchy, or (b) not
|
|
// be so special.
|
|
Op.setUser(this);
|
|
Op.setInitial(X);
|
|
NumOperands = 1;
|
|
OperandList = &Op;
|
|
}
|
|
~HandleSDNode();
|
|
|
|
const SDValue &getValue() const { return Op; }
|
|
};
|
|
|
|
class AddrSpaceCastSDNode : public SDNode {
|
|
private:
|
|
unsigned SrcAddrSpace;
|
|
unsigned DestAddrSpace;
|
|
|
|
public:
|
|
AddrSpaceCastSDNode(unsigned Order, const DebugLoc &dl, EVT VT,
|
|
unsigned SrcAS, unsigned DestAS);
|
|
|
|
unsigned getSrcAddressSpace() const { return SrcAddrSpace; }
|
|
unsigned getDestAddressSpace() const { return DestAddrSpace; }
|
|
|
|
static bool classof(const SDNode *N) {
|
|
return N->getOpcode() == ISD::ADDRSPACECAST;
|
|
}
|
|
};
|
|
|
|
/// This is an abstract virtual class for memory operations.
|
|
class MemSDNode : public SDNode {
|
|
private:
|
|
// VT of in-memory value.
|
|
EVT MemoryVT;
|
|
|
|
protected:
|
|
/// Memory reference information.
|
|
MachineMemOperand *MMO;
|
|
|
|
public:
|
|
MemSDNode(unsigned Opc, unsigned Order, const DebugLoc &dl, SDVTList VTs,
|
|
EVT memvt, MachineMemOperand *MMO);
|
|
|
|
bool readMem() const { return MMO->isLoad(); }
|
|
bool writeMem() const { return MMO->isStore(); }
|
|
|
|
/// Returns alignment and volatility of the memory access
|
|
Align getOriginalAlign() const { return MMO->getBaseAlign(); }
|
|
Align getAlign() const { return MMO->getAlign(); }
|
|
// FIXME: Remove once transition to getAlign is over.
|
|
unsigned getAlignment() const { return MMO->getAlign().value(); }
|
|
|
|
/// Return the SubclassData value, without HasDebugValue. This contains an
|
|
/// encoding of the volatile flag, as well as bits used by subclasses. This
|
|
/// function should only be used to compute a FoldingSetNodeID value.
|
|
/// The HasDebugValue bit is masked out because CSE map needs to match
|
|
/// nodes with debug info with nodes without debug info. Same is about
|
|
/// isDivergent bit.
|
|
unsigned getRawSubclassData() const {
|
|
uint16_t Data;
|
|
union {
|
|
char RawSDNodeBits[sizeof(uint16_t)];
|
|
SDNodeBitfields SDNodeBits;
|
|
};
|
|
memcpy(&RawSDNodeBits, &this->RawSDNodeBits, sizeof(this->RawSDNodeBits));
|
|
SDNodeBits.HasDebugValue = 0;
|
|
SDNodeBits.IsDivergent = false;
|
|
memcpy(&Data, &RawSDNodeBits, sizeof(RawSDNodeBits));
|
|
return Data;
|
|
}
|
|
|
|
bool isVolatile() const { return MemSDNodeBits.IsVolatile; }
|
|
bool isNonTemporal() const { return MemSDNodeBits.IsNonTemporal; }
|
|
bool isDereferenceable() const { return MemSDNodeBits.IsDereferenceable; }
|
|
bool isInvariant() const { return MemSDNodeBits.IsInvariant; }
|
|
|
|
// Returns the offset from the location of the access.
|
|
int64_t getSrcValueOffset() const { return MMO->getOffset(); }
|
|
|
|
/// Returns the AA info that describes the dereference.
|
|
AAMDNodes getAAInfo() const { return MMO->getAAInfo(); }
|
|
|
|
/// Returns the Ranges that describes the dereference.
|
|
const MDNode *getRanges() const { return MMO->getRanges(); }
|
|
|
|
/// Returns the synchronization scope ID for this memory operation.
|
|
SyncScope::ID getSyncScopeID() const { return MMO->getSyncScopeID(); }
|
|
|
|
/// Return the atomic ordering requirements for this memory operation. For
|
|
/// cmpxchg atomic operations, return the atomic ordering requirements when
|
|
/// store occurs.
|
|
AtomicOrdering getSuccessOrdering() const {
|
|
return MMO->getSuccessOrdering();
|
|
}
|
|
|
|
/// Return a single atomic ordering that is at least as strong as both the
|
|
/// success and failure orderings for an atomic operation. (For operations
|
|
/// other than cmpxchg, this is equivalent to getSuccessOrdering().)
|
|
AtomicOrdering getMergedOrdering() const { return MMO->getMergedOrdering(); }
|
|
|
|
/// Return true if the memory operation ordering is Unordered or higher.
|
|
bool isAtomic() const { return MMO->isAtomic(); }
|
|
|
|
/// Returns true if the memory operation doesn't imply any ordering
|
|
/// constraints on surrounding memory operations beyond the normal memory
|
|
/// aliasing rules.
|
|
bool isUnordered() const { return MMO->isUnordered(); }
|
|
|
|
/// Returns true if the memory operation is neither atomic or volatile.
|
|
bool isSimple() const { return !isAtomic() && !isVolatile(); }
|
|
|
|
/// Return the type of the in-memory value.
|
|
EVT getMemoryVT() const { return MemoryVT; }
|
|
|
|
/// Return a MachineMemOperand object describing the memory
|
|
/// reference performed by operation.
|
|
MachineMemOperand *getMemOperand() const { return MMO; }
|
|
|
|
const MachinePointerInfo &getPointerInfo() const {
|
|
return MMO->getPointerInfo();
|
|
}
|
|
|
|
/// Return the address space for the associated pointer
|
|
unsigned getAddressSpace() const {
|
|
return getPointerInfo().getAddrSpace();
|
|
}
|
|
|
|
/// Update this MemSDNode's MachineMemOperand information
|
|
/// to reflect the alignment of NewMMO, if it has a greater alignment.
|
|
/// This must only be used when the new alignment applies to all users of
|
|
/// this MachineMemOperand.
|
|
void refineAlignment(const MachineMemOperand *NewMMO) {
|
|
MMO->refineAlignment(NewMMO);
|
|
}
|
|
|
|
const SDValue &getChain() const { return getOperand(0); }
|
|
|
|
const SDValue &getBasePtr() const {
|
|
switch (getOpcode()) {
|
|
case ISD::STORE:
|
|
case ISD::MSTORE:
|
|
return getOperand(2);
|
|
case ISD::MGATHER:
|
|
case ISD::MSCATTER:
|
|
return getOperand(3);
|
|
default:
|
|
return getOperand(1);
|
|
}
|
|
}
|
|
|
|
// Methods to support isa and dyn_cast
|
|
static bool classof(const SDNode *N) {
|
|
// For some targets, we lower some target intrinsics to a MemIntrinsicNode
|
|
// with either an intrinsic or a target opcode.
|
|
switch (N->getOpcode()) {
|
|
case ISD::LOAD:
|
|
case ISD::STORE:
|
|
case ISD::PREFETCH:
|
|
case ISD::ATOMIC_CMP_SWAP:
|
|
case ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS:
|
|
case ISD::ATOMIC_SWAP:
|
|
case ISD::ATOMIC_LOAD_ADD:
|
|
case ISD::ATOMIC_LOAD_SUB:
|
|
case ISD::ATOMIC_LOAD_AND:
|
|
case ISD::ATOMIC_LOAD_CLR:
|
|
case ISD::ATOMIC_LOAD_OR:
|
|
case ISD::ATOMIC_LOAD_XOR:
|
|
case ISD::ATOMIC_LOAD_NAND:
|
|
case ISD::ATOMIC_LOAD_MIN:
|
|
case ISD::ATOMIC_LOAD_MAX:
|
|
case ISD::ATOMIC_LOAD_UMIN:
|
|
case ISD::ATOMIC_LOAD_UMAX:
|
|
case ISD::ATOMIC_LOAD_FADD:
|
|
case ISD::ATOMIC_LOAD_FSUB:
|
|
case ISD::ATOMIC_LOAD:
|
|
case ISD::ATOMIC_STORE:
|
|
case ISD::MLOAD:
|
|
case ISD::MSTORE:
|
|
case ISD::MGATHER:
|
|
case ISD::MSCATTER:
|
|
return true;
|
|
default:
|
|
return N->isMemIntrinsic() || N->isTargetMemoryOpcode();
|
|
}
|
|
}
|
|
};
|
|
|
|
/// This is an SDNode representing atomic operations.
|
|
class AtomicSDNode : public MemSDNode {
|
|
public:
|
|
AtomicSDNode(unsigned Opc, unsigned Order, const DebugLoc &dl, SDVTList VTL,
|
|
EVT MemVT, MachineMemOperand *MMO)
|
|
: MemSDNode(Opc, Order, dl, VTL, MemVT, MMO) {
|
|
assert(((Opc != ISD::ATOMIC_LOAD && Opc != ISD::ATOMIC_STORE) ||
|
|
MMO->isAtomic()) && "then why are we using an AtomicSDNode?");
|
|
}
|
|
|
|
const SDValue &getBasePtr() const { return getOperand(1); }
|
|
const SDValue &getVal() const { return getOperand(2); }
|
|
|
|
/// Returns true if this SDNode represents cmpxchg atomic operation, false
|
|
/// otherwise.
|
|
bool isCompareAndSwap() const {
|
|
unsigned Op = getOpcode();
|
|
return Op == ISD::ATOMIC_CMP_SWAP ||
|
|
Op == ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS;
|
|
}
|
|
|
|
/// For cmpxchg atomic operations, return the atomic ordering requirements
|
|
/// when store does not occur.
|
|
AtomicOrdering getFailureOrdering() const {
|
|
assert(isCompareAndSwap() && "Must be cmpxchg operation");
|
|
return MMO->getFailureOrdering();
|
|
}
|
|
|
|
// Methods to support isa and dyn_cast
|
|
static bool classof(const SDNode *N) {
|
|
return N->getOpcode() == ISD::ATOMIC_CMP_SWAP ||
|
|
N->getOpcode() == ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS ||
|
|
N->getOpcode() == ISD::ATOMIC_SWAP ||
|
|
N->getOpcode() == ISD::ATOMIC_LOAD_ADD ||
|
|
N->getOpcode() == ISD::ATOMIC_LOAD_SUB ||
|
|
N->getOpcode() == ISD::ATOMIC_LOAD_AND ||
|
|
N->getOpcode() == ISD::ATOMIC_LOAD_CLR ||
|
|
N->getOpcode() == ISD::ATOMIC_LOAD_OR ||
|
|
N->getOpcode() == ISD::ATOMIC_LOAD_XOR ||
|
|
N->getOpcode() == ISD::ATOMIC_LOAD_NAND ||
|
|
N->getOpcode() == ISD::ATOMIC_LOAD_MIN ||
|
|
N->getOpcode() == ISD::ATOMIC_LOAD_MAX ||
|
|
N->getOpcode() == ISD::ATOMIC_LOAD_UMIN ||
|
|
N->getOpcode() == ISD::ATOMIC_LOAD_UMAX ||
|
|
N->getOpcode() == ISD::ATOMIC_LOAD_FADD ||
|
|
N->getOpcode() == ISD::ATOMIC_LOAD_FSUB ||
|
|
N->getOpcode() == ISD::ATOMIC_LOAD ||
|
|
N->getOpcode() == ISD::ATOMIC_STORE;
|
|
}
|
|
};
|
|
|
|
/// This SDNode is used for target intrinsics that touch
|
|
/// memory and need an associated MachineMemOperand. Its opcode may be
|
|
/// INTRINSIC_VOID, INTRINSIC_W_CHAIN, PREFETCH, or a target-specific opcode
|
|
/// with a value not less than FIRST_TARGET_MEMORY_OPCODE.
|
|
class MemIntrinsicSDNode : public MemSDNode {
|
|
public:
|
|
MemIntrinsicSDNode(unsigned Opc, unsigned Order, const DebugLoc &dl,
|
|
SDVTList VTs, EVT MemoryVT, MachineMemOperand *MMO)
|
|
: MemSDNode(Opc, Order, dl, VTs, MemoryVT, MMO) {
|
|
SDNodeBits.IsMemIntrinsic = true;
|
|
}
|
|
|
|
// Methods to support isa and dyn_cast
|
|
static bool classof(const SDNode *N) {
|
|
// We lower some target intrinsics to their target opcode
|
|
// early a node with a target opcode can be of this class
|
|
return N->isMemIntrinsic() ||
|
|
N->getOpcode() == ISD::PREFETCH ||
|
|
N->isTargetMemoryOpcode();
|
|
}
|
|
};
|
|
|
|
/// This SDNode is used to implement the code generator
|
|
/// support for the llvm IR shufflevector instruction. It combines elements
|
|
/// from two input vectors into a new input vector, with the selection and
|
|
/// ordering of elements determined by an array of integers, referred to as
|
|
/// the shuffle mask. For input vectors of width N, mask indices of 0..N-1
|
|
/// refer to elements from the LHS input, and indices from N to 2N-1 the RHS.
|
|
/// An index of -1 is treated as undef, such that the code generator may put
|
|
/// any value in the corresponding element of the result.
|
|
class ShuffleVectorSDNode : public SDNode {
|
|
// The memory for Mask is owned by the SelectionDAG's OperandAllocator, and
|
|
// is freed when the SelectionDAG object is destroyed.
|
|
const int *Mask;
|
|
|
|
protected:
|
|
friend class SelectionDAG;
|
|
|
|
ShuffleVectorSDNode(EVT VT, unsigned Order, const DebugLoc &dl, const int *M)
|
|
: SDNode(ISD::VECTOR_SHUFFLE, Order, dl, getSDVTList(VT)), Mask(M) {}
|
|
|
|
public:
|
|
ArrayRef<int> getMask() const {
|
|
EVT VT = getValueType(0);
|
|
return makeArrayRef(Mask, VT.getVectorNumElements());
|
|
}
|
|
|
|
int getMaskElt(unsigned Idx) const {
|
|
assert(Idx < getValueType(0).getVectorNumElements() && "Idx out of range!");
|
|
return Mask[Idx];
|
|
}
|
|
|
|
bool isSplat() const { return isSplatMask(Mask, getValueType(0)); }
|
|
|
|
int getSplatIndex() const {
|
|
assert(isSplat() && "Cannot get splat index for non-splat!");
|
|
EVT VT = getValueType(0);
|
|
for (unsigned i = 0, e = VT.getVectorNumElements(); i != e; ++i)
|
|
if (Mask[i] >= 0)
|
|
return Mask[i];
|
|
|
|
// We can choose any index value here and be correct because all elements
|
|
// are undefined. Return 0 for better potential for callers to simplify.
|
|
return 0;
|
|
}
|
|
|
|
static bool isSplatMask(const int *Mask, EVT VT);
|
|
|
|
/// Change values in a shuffle permute mask assuming
|
|
/// the two vector operands have swapped position.
|
|
static void commuteMask(MutableArrayRef<int> Mask) {
|
|
unsigned NumElems = Mask.size();
|
|
for (unsigned i = 0; i != NumElems; ++i) {
|
|
int idx = Mask[i];
|
|
if (idx < 0)
|
|
continue;
|
|
else if (idx < (int)NumElems)
|
|
Mask[i] = idx + NumElems;
|
|
else
|
|
Mask[i] = idx - NumElems;
|
|
}
|
|
}
|
|
|
|
static bool classof(const SDNode *N) {
|
|
return N->getOpcode() == ISD::VECTOR_SHUFFLE;
|
|
}
|
|
};
|
|
|
|
class ConstantSDNode : public SDNode {
|
|
friend class SelectionDAG;
|
|
|
|
const ConstantInt *Value;
|
|
|
|
ConstantSDNode(bool isTarget, bool isOpaque, const ConstantInt *val, EVT VT)
|
|
: SDNode(isTarget ? ISD::TargetConstant : ISD::Constant, 0, DebugLoc(),
|
|
getSDVTList(VT)),
|
|
Value(val) {
|
|
ConstantSDNodeBits.IsOpaque = isOpaque;
|
|
}
|
|
|
|
public:
|
|
const ConstantInt *getConstantIntValue() const { return Value; }
|
|
const APInt &getAPIntValue() const { return Value->getValue(); }
|
|
uint64_t getZExtValue() const { return Value->getZExtValue(); }
|
|
int64_t getSExtValue() const { return Value->getSExtValue(); }
|
|
uint64_t getLimitedValue(uint64_t Limit = UINT64_MAX) {
|
|
return Value->getLimitedValue(Limit);
|
|
}
|
|
MaybeAlign getMaybeAlignValue() const { return Value->getMaybeAlignValue(); }
|
|
Align getAlignValue() const { return Value->getAlignValue(); }
|
|
|
|
bool isOne() const { return Value->isOne(); }
|
|
bool isNullValue() const { return Value->isZero(); }
|
|
bool isAllOnesValue() const { return Value->isMinusOne(); }
|
|
bool isMaxSignedValue() const { return Value->isMaxValue(true); }
|
|
bool isMinSignedValue() const { return Value->isMinValue(true); }
|
|
|
|
bool isOpaque() const { return ConstantSDNodeBits.IsOpaque; }
|
|
|
|
static bool classof(const SDNode *N) {
|
|
return N->getOpcode() == ISD::Constant ||
|
|
N->getOpcode() == ISD::TargetConstant;
|
|
}
|
|
};
|
|
|
|
uint64_t SDNode::getConstantOperandVal(unsigned Num) const {
|
|
return cast<ConstantSDNode>(getOperand(Num))->getZExtValue();
|
|
}
|
|
|
|
const APInt &SDNode::getConstantOperandAPInt(unsigned Num) const {
|
|
return cast<ConstantSDNode>(getOperand(Num))->getAPIntValue();
|
|
}
|
|
|
|
class ConstantFPSDNode : public SDNode {
|
|
friend class SelectionDAG;
|
|
|
|
const ConstantFP *Value;
|
|
|
|
ConstantFPSDNode(bool isTarget, const ConstantFP *val, EVT VT)
|
|
: SDNode(isTarget ? ISD::TargetConstantFP : ISD::ConstantFP, 0,
|
|
DebugLoc(), getSDVTList(VT)),
|
|
Value(val) {}
|
|
|
|
public:
|
|
const APFloat& getValueAPF() const { return Value->getValueAPF(); }
|
|
const ConstantFP *getConstantFPValue() const { return Value; }
|
|
|
|
/// Return true if the value is positive or negative zero.
|
|
bool isZero() const { return Value->isZero(); }
|
|
|
|
/// Return true if the value is a NaN.
|
|
bool isNaN() const { return Value->isNaN(); }
|
|
|
|
/// Return true if the value is an infinity
|
|
bool isInfinity() const { return Value->isInfinity(); }
|
|
|
|
/// Return true if the value is negative.
|
|
bool isNegative() const { return Value->isNegative(); }
|
|
|
|
/// We don't rely on operator== working on double values, as
|
|
/// it returns true for things that are clearly not equal, like -0.0 and 0.0.
|
|
/// As such, this method can be used to do an exact bit-for-bit comparison of
|
|
/// two floating point values.
|
|
|
|
/// We leave the version with the double argument here because it's just so
|
|
/// convenient to write "2.0" and the like. Without this function we'd
|
|
/// have to duplicate its logic everywhere it's called.
|
|
bool isExactlyValue(double V) const {
|
|
return Value->getValueAPF().isExactlyValue(V);
|
|
}
|
|
bool isExactlyValue(const APFloat& V) const;
|
|
|
|
static bool isValueValidForType(EVT VT, const APFloat& Val);
|
|
|
|
static bool classof(const SDNode *N) {
|
|
return N->getOpcode() == ISD::ConstantFP ||
|
|
N->getOpcode() == ISD::TargetConstantFP;
|
|
}
|
|
};
|
|
|
|
/// Returns true if \p V is a constant integer zero.
|
|
bool isNullConstant(SDValue V);
|
|
|
|
/// Returns true if \p V is an FP constant with a value of positive zero.
|
|
bool isNullFPConstant(SDValue V);
|
|
|
|
/// Returns true if \p V is an integer constant with all bits set.
|
|
bool isAllOnesConstant(SDValue V);
|
|
|
|
/// Returns true if \p V is a constant integer one.
|
|
bool isOneConstant(SDValue V);
|
|
|
|
/// Return the non-bitcasted source operand of \p V if it exists.
|
|
/// If \p V is not a bitcasted value, it is returned as-is.
|
|
SDValue peekThroughBitcasts(SDValue V);
|
|
|
|
/// Return the non-bitcasted and one-use source operand of \p V if it exists.
|
|
/// If \p V is not a bitcasted one-use value, it is returned as-is.
|
|
SDValue peekThroughOneUseBitcasts(SDValue V);
|
|
|
|
/// Return the non-extracted vector source operand of \p V if it exists.
|
|
/// If \p V is not an extracted subvector, it is returned as-is.
|
|
SDValue peekThroughExtractSubvectors(SDValue V);
|
|
|
|
/// Returns true if \p V is a bitwise not operation. Assumes that an all ones
|
|
/// constant is canonicalized to be operand 1.
|
|
bool isBitwiseNot(SDValue V, bool AllowUndefs = false);
|
|
|
|
/// Returns the SDNode if it is a constant splat BuildVector or constant int.
|
|
ConstantSDNode *isConstOrConstSplat(SDValue N, bool AllowUndefs = false,
|
|
bool AllowTruncation = false);
|
|
|
|
/// Returns the SDNode if it is a demanded constant splat BuildVector or
|
|
/// constant int.
|
|
ConstantSDNode *isConstOrConstSplat(SDValue N, const APInt &DemandedElts,
|
|
bool AllowUndefs = false,
|
|
bool AllowTruncation = false);
|
|
|
|
/// Returns the SDNode if it is a constant splat BuildVector or constant float.
|
|
ConstantFPSDNode *isConstOrConstSplatFP(SDValue N, bool AllowUndefs = false);
|
|
|
|
/// Returns the SDNode if it is a demanded constant splat BuildVector or
|
|
/// constant float.
|
|
ConstantFPSDNode *isConstOrConstSplatFP(SDValue N, const APInt &DemandedElts,
|
|
bool AllowUndefs = false);
|
|
|
|
/// Return true if the value is a constant 0 integer or a splatted vector of
|
|
/// a constant 0 integer (with no undefs by default).
|
|
/// Build vector implicit truncation is not an issue for null values.
|
|
bool isNullOrNullSplat(SDValue V, bool AllowUndefs = false);
|
|
|
|
/// Return true if the value is a constant 1 integer or a splatted vector of a
|
|
/// constant 1 integer (with no undefs).
|
|
/// Does not permit build vector implicit truncation.
|
|
bool isOneOrOneSplat(SDValue V, bool AllowUndefs = false);
|
|
|
|
/// Return true if the value is a constant -1 integer or a splatted vector of a
|
|
/// constant -1 integer (with no undefs).
|
|
/// Does not permit build vector implicit truncation.
|
|
bool isAllOnesOrAllOnesSplat(SDValue V, bool AllowUndefs = false);
|
|
|
|
/// Return true if \p V is either a integer or FP constant.
|
|
inline bool isIntOrFPConstant(SDValue V) {
|
|
return isa<ConstantSDNode>(V) || isa<ConstantFPSDNode>(V);
|
|
}
|
|
|
|
class GlobalAddressSDNode : public SDNode {
|
|
friend class SelectionDAG;
|
|
|
|
const GlobalValue *TheGlobal;
|
|
int64_t Offset;
|
|
unsigned TargetFlags;
|
|
|
|
GlobalAddressSDNode(unsigned Opc, unsigned Order, const DebugLoc &DL,
|
|
const GlobalValue *GA, EVT VT, int64_t o,
|
|
unsigned TF);
|
|
|
|
public:
|
|
const GlobalValue *getGlobal() const { return TheGlobal; }
|
|
int64_t getOffset() const { return Offset; }
|
|
unsigned getTargetFlags() const { return TargetFlags; }
|
|
// Return the address space this GlobalAddress belongs to.
|
|
unsigned getAddressSpace() const;
|
|
|
|
static bool classof(const SDNode *N) {
|
|
return N->getOpcode() == ISD::GlobalAddress ||
|
|
N->getOpcode() == ISD::TargetGlobalAddress ||
|
|
N->getOpcode() == ISD::GlobalTLSAddress ||
|
|
N->getOpcode() == ISD::TargetGlobalTLSAddress;
|
|
}
|
|
};
|
|
|
|
class FrameIndexSDNode : public SDNode {
|
|
friend class SelectionDAG;
|
|
|
|
int FI;
|
|
|
|
FrameIndexSDNode(int fi, EVT VT, bool isTarg)
|
|
: SDNode(isTarg ? ISD::TargetFrameIndex : ISD::FrameIndex,
|
|
0, DebugLoc(), getSDVTList(VT)), FI(fi) {
|
|
}
|
|
|
|
public:
|
|
int getIndex() const { return FI; }
|
|
|
|
static bool classof(const SDNode *N) {
|
|
return N->getOpcode() == ISD::FrameIndex ||
|
|
N->getOpcode() == ISD::TargetFrameIndex;
|
|
}
|
|
};
|
|
|
|
/// This SDNode is used for LIFETIME_START/LIFETIME_END values, which indicate
|
|
/// the offet and size that are started/ended in the underlying FrameIndex.
|
|
class LifetimeSDNode : public SDNode {
|
|
friend class SelectionDAG;
|
|
int64_t Size;
|
|
int64_t Offset; // -1 if offset is unknown.
|
|
|
|
LifetimeSDNode(unsigned Opcode, unsigned Order, const DebugLoc &dl,
|
|
SDVTList VTs, int64_t Size, int64_t Offset)
|
|
: SDNode(Opcode, Order, dl, VTs), Size(Size), Offset(Offset) {}
|
|
public:
|
|
int64_t getFrameIndex() const {
|
|
return cast<FrameIndexSDNode>(getOperand(1))->getIndex();
|
|
}
|
|
|
|
bool hasOffset() const { return Offset >= 0; }
|
|
int64_t getOffset() const {
|
|
assert(hasOffset() && "offset is unknown");
|
|
return Offset;
|
|
}
|
|
int64_t getSize() const {
|
|
assert(hasOffset() && "offset is unknown");
|
|
return Size;
|
|
}
|
|
|
|
// Methods to support isa and dyn_cast
|
|
static bool classof(const SDNode *N) {
|
|
return N->getOpcode() == ISD::LIFETIME_START ||
|
|
N->getOpcode() == ISD::LIFETIME_END;
|
|
}
|
|
};
|
|
|
|
/// This SDNode is used for PSEUDO_PROBE values, which are the function guid and
|
|
/// the index of the basic block being probed. A pseudo probe serves as a place
|
|
/// holder and will be removed at the end of compilation. It does not have any
|
|
/// operand because we do not want the instruction selection to deal with any.
|
|
class PseudoProbeSDNode : public SDNode {
|
|
friend class SelectionDAG;
|
|
uint64_t Guid;
|
|
uint64_t Index;
|
|
uint32_t Attributes;
|
|
|
|
PseudoProbeSDNode(unsigned Opcode, unsigned Order, const DebugLoc &Dl,
|
|
SDVTList VTs, uint64_t Guid, uint64_t Index, uint32_t Attr)
|
|
: SDNode(Opcode, Order, Dl, VTs), Guid(Guid), Index(Index),
|
|
Attributes(Attr) {}
|
|
|
|
public:
|
|
uint64_t getGuid() const { return Guid; }
|
|
uint64_t getIndex() const { return Index; }
|
|
uint32_t getAttributes() const { return Attributes; }
|
|
|
|
// Methods to support isa and dyn_cast
|
|
static bool classof(const SDNode *N) {
|
|
return N->getOpcode() == ISD::PSEUDO_PROBE;
|
|
}
|
|
};
|
|
|
|
class JumpTableSDNode : public SDNode {
|
|
friend class SelectionDAG;
|
|
|
|
int JTI;
|
|
unsigned TargetFlags;
|
|
|
|
JumpTableSDNode(int jti, EVT VT, bool isTarg, unsigned TF)
|
|
: SDNode(isTarg ? ISD::TargetJumpTable : ISD::JumpTable,
|
|
0, DebugLoc(), getSDVTList(VT)), JTI(jti), TargetFlags(TF) {
|
|
}
|
|
|
|
public:
|
|
int getIndex() const { return JTI; }
|
|
unsigned getTargetFlags() const { return TargetFlags; }
|
|
|
|
static bool classof(const SDNode *N) {
|
|
return N->getOpcode() == ISD::JumpTable ||
|
|
N->getOpcode() == ISD::TargetJumpTable;
|
|
}
|
|
};
|
|
|
|
class ConstantPoolSDNode : public SDNode {
|
|
friend class SelectionDAG;
|
|
|
|
union {
|
|
const Constant *ConstVal;
|
|
MachineConstantPoolValue *MachineCPVal;
|
|
} Val;
|
|
int Offset; // It's a MachineConstantPoolValue if top bit is set.
|
|
Align Alignment; // Minimum alignment requirement of CP.
|
|
unsigned TargetFlags;
|
|
|
|
ConstantPoolSDNode(bool isTarget, const Constant *c, EVT VT, int o,
|
|
Align Alignment, unsigned TF)
|
|
: SDNode(isTarget ? ISD::TargetConstantPool : ISD::ConstantPool, 0,
|
|
DebugLoc(), getSDVTList(VT)),
|
|
Offset(o), Alignment(Alignment), TargetFlags(TF) {
|
|
assert(Offset >= 0 && "Offset is too large");
|
|
Val.ConstVal = c;
|
|
}
|
|
|
|
ConstantPoolSDNode(bool isTarget, MachineConstantPoolValue *v, EVT VT, int o,
|
|
Align Alignment, unsigned TF)
|
|
: SDNode(isTarget ? ISD::TargetConstantPool : ISD::ConstantPool, 0,
|
|
DebugLoc(), getSDVTList(VT)),
|
|
Offset(o), Alignment(Alignment), TargetFlags(TF) {
|
|
assert(Offset >= 0 && "Offset is too large");
|
|
Val.MachineCPVal = v;
|
|
Offset |= 1 << (sizeof(unsigned)*CHAR_BIT-1);
|
|
}
|
|
|
|
public:
|
|
bool isMachineConstantPoolEntry() const {
|
|
return Offset < 0;
|
|
}
|
|
|
|
const Constant *getConstVal() const {
|
|
assert(!isMachineConstantPoolEntry() && "Wrong constantpool type");
|
|
return Val.ConstVal;
|
|
}
|
|
|
|
MachineConstantPoolValue *getMachineCPVal() const {
|
|
assert(isMachineConstantPoolEntry() && "Wrong constantpool type");
|
|
return Val.MachineCPVal;
|
|
}
|
|
|
|
int getOffset() const {
|
|
return Offset & ~(1 << (sizeof(unsigned)*CHAR_BIT-1));
|
|
}
|
|
|
|
// Return the alignment of this constant pool object, which is either 0 (for
|
|
// default alignment) or the desired value.
|
|
Align getAlign() const { return Alignment; }
|
|
unsigned getTargetFlags() const { return TargetFlags; }
|
|
|
|
Type *getType() const;
|
|
|
|
static bool classof(const SDNode *N) {
|
|
return N->getOpcode() == ISD::ConstantPool ||
|
|
N->getOpcode() == ISD::TargetConstantPool;
|
|
}
|
|
};
|
|
|
|
/// Completely target-dependent object reference.
|
|
class TargetIndexSDNode : public SDNode {
|
|
friend class SelectionDAG;
|
|
|
|
unsigned TargetFlags;
|
|
int Index;
|
|
int64_t Offset;
|
|
|
|
public:
|
|
TargetIndexSDNode(int Idx, EVT VT, int64_t Ofs, unsigned TF)
|
|
: SDNode(ISD::TargetIndex, 0, DebugLoc(), getSDVTList(VT)),
|
|
TargetFlags(TF), Index(Idx), Offset(Ofs) {}
|
|
|
|
unsigned getTargetFlags() const { return TargetFlags; }
|
|
int getIndex() const { return Index; }
|
|
int64_t getOffset() const { return Offset; }
|
|
|
|
static bool classof(const SDNode *N) {
|
|
return N->getOpcode() == ISD::TargetIndex;
|
|
}
|
|
};
|
|
|
|
class BasicBlockSDNode : public SDNode {
|
|
friend class SelectionDAG;
|
|
|
|
MachineBasicBlock *MBB;
|
|
|
|
/// Debug info is meaningful and potentially useful here, but we create
|
|
/// blocks out of order when they're jumped to, which makes it a bit
|
|
/// harder. Let's see if we need it first.
|
|
explicit BasicBlockSDNode(MachineBasicBlock *mbb)
|
|
: SDNode(ISD::BasicBlock, 0, DebugLoc(), getSDVTList(MVT::Other)), MBB(mbb)
|
|
{}
|
|
|
|
public:
|
|
MachineBasicBlock *getBasicBlock() const { return MBB; }
|
|
|
|
static bool classof(const SDNode *N) {
|
|
return N->getOpcode() == ISD::BasicBlock;
|
|
}
|
|
};
|
|
|
|
/// A "pseudo-class" with methods for operating on BUILD_VECTORs.
|
|
class BuildVectorSDNode : public SDNode {
|
|
public:
|
|
// These are constructed as SDNodes and then cast to BuildVectorSDNodes.
|
|
explicit BuildVectorSDNode() = delete;
|
|
|
|
/// Check if this is a constant splat, and if so, find the
|
|
/// smallest element size that splats the vector. If MinSplatBits is
|
|
/// nonzero, the element size must be at least that large. Note that the
|
|
/// splat element may be the entire vector (i.e., a one element vector).
|
|
/// Returns the splat element value in SplatValue. Any undefined bits in
|
|
/// that value are zero, and the corresponding bits in the SplatUndef mask
|
|
/// are set. The SplatBitSize value is set to the splat element size in
|
|
/// bits. HasAnyUndefs is set to true if any bits in the vector are
|
|
/// undefined. isBigEndian describes the endianness of the target.
|
|
bool isConstantSplat(APInt &SplatValue, APInt &SplatUndef,
|
|
unsigned &SplatBitSize, bool &HasAnyUndefs,
|
|
unsigned MinSplatBits = 0,
|
|
bool isBigEndian = false) const;
|
|
|
|
/// Returns the demanded splatted value or a null value if this is not a
|
|
/// splat.
|
|
///
|
|
/// The DemandedElts mask indicates the elements that must be in the splat.
|
|
/// If passed a non-null UndefElements bitvector, it will resize it to match
|
|
/// the vector width and set the bits where elements are undef.
|
|
SDValue getSplatValue(const APInt &DemandedElts,
|
|
BitVector *UndefElements = nullptr) const;
|
|
|
|
/// Returns the splatted value or a null value if this is not a splat.
|
|
///
|
|
/// If passed a non-null UndefElements bitvector, it will resize it to match
|
|
/// the vector width and set the bits where elements are undef.
|
|
SDValue getSplatValue(BitVector *UndefElements = nullptr) const;
|
|
|
|
/// Find the shortest repeating sequence of values in the build vector.
|
|
///
|
|
/// e.g. { u, X, u, X, u, u, X, u } -> { X }
|
|
/// { X, Y, u, Y, u, u, X, u } -> { X, Y }
|
|
///
|
|
/// Currently this must be a power-of-2 build vector.
|
|
/// The DemandedElts mask indicates the elements that must be present,
|
|
/// undemanded elements in Sequence may be null (SDValue()). If passed a
|
|
/// non-null UndefElements bitvector, it will resize it to match the original
|
|
/// vector width and set the bits where elements are undef. If result is
|
|
/// false, Sequence will be empty.
|
|
bool getRepeatedSequence(const APInt &DemandedElts,
|
|
SmallVectorImpl<SDValue> &Sequence,
|
|
BitVector *UndefElements = nullptr) const;
|
|
|
|
/// Find the shortest repeating sequence of values in the build vector.
|
|
///
|
|
/// e.g. { u, X, u, X, u, u, X, u } -> { X }
|
|
/// { X, Y, u, Y, u, u, X, u } -> { X, Y }
|
|
///
|
|
/// Currently this must be a power-of-2 build vector.
|
|
/// If passed a non-null UndefElements bitvector, it will resize it to match
|
|
/// the original vector width and set the bits where elements are undef.
|
|
/// If result is false, Sequence will be empty.
|
|
bool getRepeatedSequence(SmallVectorImpl<SDValue> &Sequence,
|
|
BitVector *UndefElements = nullptr) const;
|
|
|
|
/// Returns the demanded splatted constant or null if this is not a constant
|
|
/// splat.
|
|
///
|
|
/// The DemandedElts mask indicates the elements that must be in the splat.
|
|
/// If passed a non-null UndefElements bitvector, it will resize it to match
|
|
/// the vector width and set the bits where elements are undef.
|
|
ConstantSDNode *
|
|
getConstantSplatNode(const APInt &DemandedElts,
|
|
BitVector *UndefElements = nullptr) const;
|
|
|
|
/// Returns the splatted constant or null if this is not a constant
|
|
/// splat.
|
|
///
|
|
/// If passed a non-null UndefElements bitvector, it will resize it to match
|
|
/// the vector width and set the bits where elements are undef.
|
|
ConstantSDNode *
|
|
getConstantSplatNode(BitVector *UndefElements = nullptr) const;
|
|
|
|
/// Returns the demanded splatted constant FP or null if this is not a
|
|
/// constant FP splat.
|
|
///
|
|
/// The DemandedElts mask indicates the elements that must be in the splat.
|
|
/// If passed a non-null UndefElements bitvector, it will resize it to match
|
|
/// the vector width and set the bits where elements are undef.
|
|
ConstantFPSDNode *
|
|
getConstantFPSplatNode(const APInt &DemandedElts,
|
|
BitVector *UndefElements = nullptr) const;
|
|
|
|
/// Returns the splatted constant FP or null if this is not a constant
|
|
/// FP splat.
|
|
///
|
|
/// If passed a non-null UndefElements bitvector, it will resize it to match
|
|
/// the vector width and set the bits where elements are undef.
|
|
ConstantFPSDNode *
|
|
getConstantFPSplatNode(BitVector *UndefElements = nullptr) const;
|
|
|
|
/// If this is a constant FP splat and the splatted constant FP is an
|
|
/// exact power or 2, return the log base 2 integer value. Otherwise,
|
|
/// return -1.
|
|
///
|
|
/// The BitWidth specifies the necessary bit precision.
|
|
int32_t getConstantFPSplatPow2ToLog2Int(BitVector *UndefElements,
|
|
uint32_t BitWidth) const;
|
|
|
|
bool isConstant() const;
|
|
|
|
static bool classof(const SDNode *N) {
|
|
return N->getOpcode() == ISD::BUILD_VECTOR;
|
|
}
|
|
};
|
|
|
|
/// An SDNode that holds an arbitrary LLVM IR Value. This is
|
|
/// used when the SelectionDAG needs to make a simple reference to something
|
|
/// in the LLVM IR representation.
|
|
///
|
|
class SrcValueSDNode : public SDNode {
|
|
friend class SelectionDAG;
|
|
|
|
const Value *V;
|
|
|
|
/// Create a SrcValue for a general value.
|
|
explicit SrcValueSDNode(const Value *v)
|
|
: SDNode(ISD::SRCVALUE, 0, DebugLoc(), getSDVTList(MVT::Other)), V(v) {}
|
|
|
|
public:
|
|
/// Return the contained Value.
|
|
const Value *getValue() const { return V; }
|
|
|
|
static bool classof(const SDNode *N) {
|
|
return N->getOpcode() == ISD::SRCVALUE;
|
|
}
|
|
};
|
|
|
|
class MDNodeSDNode : public SDNode {
|
|
friend class SelectionDAG;
|
|
|
|
const MDNode *MD;
|
|
|
|
explicit MDNodeSDNode(const MDNode *md)
|
|
: SDNode(ISD::MDNODE_SDNODE, 0, DebugLoc(), getSDVTList(MVT::Other)), MD(md)
|
|
{}
|
|
|
|
public:
|
|
const MDNode *getMD() const { return MD; }
|
|
|
|
static bool classof(const SDNode *N) {
|
|
return N->getOpcode() == ISD::MDNODE_SDNODE;
|
|
}
|
|
};
|
|
|
|
class RegisterSDNode : public SDNode {
|
|
friend class SelectionDAG;
|
|
|
|
Register Reg;
|
|
|
|
RegisterSDNode(Register reg, EVT VT)
|
|
: SDNode(ISD::Register, 0, DebugLoc(), getSDVTList(VT)), Reg(reg) {}
|
|
|
|
public:
|
|
Register getReg() const { return Reg; }
|
|
|
|
static bool classof(const SDNode *N) {
|
|
return N->getOpcode() == ISD::Register;
|
|
}
|
|
};
|
|
|
|
class RegisterMaskSDNode : public SDNode {
|
|
friend class SelectionDAG;
|
|
|
|
// The memory for RegMask is not owned by the node.
|
|
const uint32_t *RegMask;
|
|
|
|
RegisterMaskSDNode(const uint32_t *mask)
|
|
: SDNode(ISD::RegisterMask, 0, DebugLoc(), getSDVTList(MVT::Untyped)),
|
|
RegMask(mask) {}
|
|
|
|
public:
|
|
const uint32_t *getRegMask() const { return RegMask; }
|
|
|
|
static bool classof(const SDNode *N) {
|
|
return N->getOpcode() == ISD::RegisterMask;
|
|
}
|
|
};
|
|
|
|
class BlockAddressSDNode : public SDNode {
|
|
friend class SelectionDAG;
|
|
|
|
const BlockAddress *BA;
|
|
int64_t Offset;
|
|
unsigned TargetFlags;
|
|
|
|
BlockAddressSDNode(unsigned NodeTy, EVT VT, const BlockAddress *ba,
|
|
int64_t o, unsigned Flags)
|
|
: SDNode(NodeTy, 0, DebugLoc(), getSDVTList(VT)),
|
|
BA(ba), Offset(o), TargetFlags(Flags) {}
|
|
|
|
public:
|
|
const BlockAddress *getBlockAddress() const { return BA; }
|
|
int64_t getOffset() const { return Offset; }
|
|
unsigned getTargetFlags() const { return TargetFlags; }
|
|
|
|
static bool classof(const SDNode *N) {
|
|
return N->getOpcode() == ISD::BlockAddress ||
|
|
N->getOpcode() == ISD::TargetBlockAddress;
|
|
}
|
|
};
|
|
|
|
class LabelSDNode : public SDNode {
|
|
friend class SelectionDAG;
|
|
|
|
MCSymbol *Label;
|
|
|
|
LabelSDNode(unsigned Opcode, unsigned Order, const DebugLoc &dl, MCSymbol *L)
|
|
: SDNode(Opcode, Order, dl, getSDVTList(MVT::Other)), Label(L) {
|
|
assert(LabelSDNode::classof(this) && "not a label opcode");
|
|
}
|
|
|
|
public:
|
|
MCSymbol *getLabel() const { return Label; }
|
|
|
|
static bool classof(const SDNode *N) {
|
|
return N->getOpcode() == ISD::EH_LABEL ||
|
|
N->getOpcode() == ISD::ANNOTATION_LABEL;
|
|
}
|
|
};
|
|
|
|
class ExternalSymbolSDNode : public SDNode {
|
|
friend class SelectionDAG;
|
|
|
|
const char *Symbol;
|
|
unsigned TargetFlags;
|
|
|
|
ExternalSymbolSDNode(bool isTarget, const char *Sym, unsigned TF, EVT VT)
|
|
: SDNode(isTarget ? ISD::TargetExternalSymbol : ISD::ExternalSymbol, 0,
|
|
DebugLoc(), getSDVTList(VT)),
|
|
Symbol(Sym), TargetFlags(TF) {}
|
|
|
|
public:
|
|
const char *getSymbol() const { return Symbol; }
|
|
unsigned getTargetFlags() const { return TargetFlags; }
|
|
|
|
static bool classof(const SDNode *N) {
|
|
return N->getOpcode() == ISD::ExternalSymbol ||
|
|
N->getOpcode() == ISD::TargetExternalSymbol;
|
|
}
|
|
};
|
|
|
|
class MCSymbolSDNode : public SDNode {
|
|
friend class SelectionDAG;
|
|
|
|
MCSymbol *Symbol;
|
|
|
|
MCSymbolSDNode(MCSymbol *Symbol, EVT VT)
|
|
: SDNode(ISD::MCSymbol, 0, DebugLoc(), getSDVTList(VT)), Symbol(Symbol) {}
|
|
|
|
public:
|
|
MCSymbol *getMCSymbol() const { return Symbol; }
|
|
|
|
static bool classof(const SDNode *N) {
|
|
return N->getOpcode() == ISD::MCSymbol;
|
|
}
|
|
};
|
|
|
|
class CondCodeSDNode : public SDNode {
|
|
friend class SelectionDAG;
|
|
|
|
ISD::CondCode Condition;
|
|
|
|
explicit CondCodeSDNode(ISD::CondCode Cond)
|
|
: SDNode(ISD::CONDCODE, 0, DebugLoc(), getSDVTList(MVT::Other)),
|
|
Condition(Cond) {}
|
|
|
|
public:
|
|
ISD::CondCode get() const { return Condition; }
|
|
|
|
static bool classof(const SDNode *N) {
|
|
return N->getOpcode() == ISD::CONDCODE;
|
|
}
|
|
};
|
|
|
|
/// This class is used to represent EVT's, which are used
|
|
/// to parameterize some operations.
|
|
class VTSDNode : public SDNode {
|
|
friend class SelectionDAG;
|
|
|
|
EVT ValueType;
|
|
|
|
explicit VTSDNode(EVT VT)
|
|
: SDNode(ISD::VALUETYPE, 0, DebugLoc(), getSDVTList(MVT::Other)),
|
|
ValueType(VT) {}
|
|
|
|
public:
|
|
EVT getVT() const { return ValueType; }
|
|
|
|
static bool classof(const SDNode *N) {
|
|
return N->getOpcode() == ISD::VALUETYPE;
|
|
}
|
|
};
|
|
|
|
/// Base class for LoadSDNode and StoreSDNode
|
|
class LSBaseSDNode : public MemSDNode {
|
|
public:
|
|
LSBaseSDNode(ISD::NodeType NodeTy, unsigned Order, const DebugLoc &dl,
|
|
SDVTList VTs, ISD::MemIndexedMode AM, EVT MemVT,
|
|
MachineMemOperand *MMO)
|
|
: MemSDNode(NodeTy, Order, dl, VTs, MemVT, MMO) {
|
|
LSBaseSDNodeBits.AddressingMode = AM;
|
|
assert(getAddressingMode() == AM && "Value truncated");
|
|
}
|
|
|
|
const SDValue &getOffset() const {
|
|
return getOperand(getOpcode() == ISD::LOAD ? 2 : 3);
|
|
}
|
|
|
|
/// Return the addressing mode for this load or store:
|
|
/// unindexed, pre-inc, pre-dec, post-inc, or post-dec.
|
|
ISD::MemIndexedMode getAddressingMode() const {
|
|
return static_cast<ISD::MemIndexedMode>(LSBaseSDNodeBits.AddressingMode);
|
|
}
|
|
|
|
/// Return true if this is a pre/post inc/dec load/store.
|
|
bool isIndexed() const { return getAddressingMode() != ISD::UNINDEXED; }
|
|
|
|
/// Return true if this is NOT a pre/post inc/dec load/store.
|
|
bool isUnindexed() const { return getAddressingMode() == ISD::UNINDEXED; }
|
|
|
|
static bool classof(const SDNode *N) {
|
|
return N->getOpcode() == ISD::LOAD ||
|
|
N->getOpcode() == ISD::STORE;
|
|
}
|
|
};
|
|
|
|
/// This class is used to represent ISD::LOAD nodes.
|
|
class LoadSDNode : public LSBaseSDNode {
|
|
friend class SelectionDAG;
|
|
|
|
LoadSDNode(unsigned Order, const DebugLoc &dl, SDVTList VTs,
|
|
ISD::MemIndexedMode AM, ISD::LoadExtType ETy, EVT MemVT,
|
|
MachineMemOperand *MMO)
|
|
: LSBaseSDNode(ISD::LOAD, Order, dl, VTs, AM, MemVT, MMO) {
|
|
LoadSDNodeBits.ExtTy = ETy;
|
|
assert(readMem() && "Load MachineMemOperand is not a load!");
|
|
assert(!writeMem() && "Load MachineMemOperand is a store!");
|
|
}
|
|
|
|
public:
|
|
/// Return whether this is a plain node,
|
|
/// or one of the varieties of value-extending loads.
|
|
ISD::LoadExtType getExtensionType() const {
|
|
return static_cast<ISD::LoadExtType>(LoadSDNodeBits.ExtTy);
|
|
}
|
|
|
|
const SDValue &getBasePtr() const { return getOperand(1); }
|
|
const SDValue &getOffset() const { return getOperand(2); }
|
|
|
|
static bool classof(const SDNode *N) {
|
|
return N->getOpcode() == ISD::LOAD;
|
|
}
|
|
};
|
|
|
|
/// This class is used to represent ISD::STORE nodes.
|
|
class StoreSDNode : public LSBaseSDNode {
|
|
friend class SelectionDAG;
|
|
|
|
StoreSDNode(unsigned Order, const DebugLoc &dl, SDVTList VTs,
|
|
ISD::MemIndexedMode AM, bool isTrunc, EVT MemVT,
|
|
MachineMemOperand *MMO)
|
|
: LSBaseSDNode(ISD::STORE, Order, dl, VTs, AM, MemVT, MMO) {
|
|
StoreSDNodeBits.IsTruncating = isTrunc;
|
|
assert(!readMem() && "Store MachineMemOperand is a load!");
|
|
assert(writeMem() && "Store MachineMemOperand is not a store!");
|
|
}
|
|
|
|
public:
|
|
/// Return true if the op does a truncation before store.
|
|
/// For integers this is the same as doing a TRUNCATE and storing the result.
|
|
/// For floats, it is the same as doing an FP_ROUND and storing the result.
|
|
bool isTruncatingStore() const { return StoreSDNodeBits.IsTruncating; }
|
|
void setTruncatingStore(bool Truncating) {
|
|
StoreSDNodeBits.IsTruncating = Truncating;
|
|
}
|
|
|
|
const SDValue &getValue() const { return getOperand(1); }
|
|
const SDValue &getBasePtr() const { return getOperand(2); }
|
|
const SDValue &getOffset() const { return getOperand(3); }
|
|
|
|
static bool classof(const SDNode *N) {
|
|
return N->getOpcode() == ISD::STORE;
|
|
}
|
|
};
|
|
|
|
/// This base class is used to represent MLOAD and MSTORE nodes
|
|
class MaskedLoadStoreSDNode : public MemSDNode {
|
|
public:
|
|
friend class SelectionDAG;
|
|
|
|
MaskedLoadStoreSDNode(ISD::NodeType NodeTy, unsigned Order,
|
|
const DebugLoc &dl, SDVTList VTs,
|
|
ISD::MemIndexedMode AM, EVT MemVT,
|
|
MachineMemOperand *MMO)
|
|
: MemSDNode(NodeTy, Order, dl, VTs, MemVT, MMO) {
|
|
LSBaseSDNodeBits.AddressingMode = AM;
|
|
assert(getAddressingMode() == AM && "Value truncated");
|
|
}
|
|
|
|
// MaskedLoadSDNode (Chain, ptr, offset, mask, passthru)
|
|
// MaskedStoreSDNode (Chain, data, ptr, offset, mask)
|
|
// Mask is a vector of i1 elements
|
|
const SDValue &getOffset() const {
|
|
return getOperand(getOpcode() == ISD::MLOAD ? 2 : 3);
|
|
}
|
|
const SDValue &getMask() const {
|
|
return getOperand(getOpcode() == ISD::MLOAD ? 3 : 4);
|
|
}
|
|
|
|
/// Return the addressing mode for this load or store:
|
|
/// unindexed, pre-inc, pre-dec, post-inc, or post-dec.
|
|
ISD::MemIndexedMode getAddressingMode() const {
|
|
return static_cast<ISD::MemIndexedMode>(LSBaseSDNodeBits.AddressingMode);
|
|
}
|
|
|
|
/// Return true if this is a pre/post inc/dec load/store.
|
|
bool isIndexed() const { return getAddressingMode() != ISD::UNINDEXED; }
|
|
|
|
/// Return true if this is NOT a pre/post inc/dec load/store.
|
|
bool isUnindexed() const { return getAddressingMode() == ISD::UNINDEXED; }
|
|
|
|
static bool classof(const SDNode *N) {
|
|
return N->getOpcode() == ISD::MLOAD ||
|
|
N->getOpcode() == ISD::MSTORE;
|
|
}
|
|
};
|
|
|
|
/// This class is used to represent an MLOAD node
|
|
class MaskedLoadSDNode : public MaskedLoadStoreSDNode {
|
|
public:
|
|
friend class SelectionDAG;
|
|
|
|
MaskedLoadSDNode(unsigned Order, const DebugLoc &dl, SDVTList VTs,
|
|
ISD::MemIndexedMode AM, ISD::LoadExtType ETy,
|
|
bool IsExpanding, EVT MemVT, MachineMemOperand *MMO)
|
|
: MaskedLoadStoreSDNode(ISD::MLOAD, Order, dl, VTs, AM, MemVT, MMO) {
|
|
LoadSDNodeBits.ExtTy = ETy;
|
|
LoadSDNodeBits.IsExpanding = IsExpanding;
|
|
}
|
|
|
|
ISD::LoadExtType getExtensionType() const {
|
|
return static_cast<ISD::LoadExtType>(LoadSDNodeBits.ExtTy);
|
|
}
|
|
|
|
const SDValue &getBasePtr() const { return getOperand(1); }
|
|
const SDValue &getOffset() const { return getOperand(2); }
|
|
const SDValue &getMask() const { return getOperand(3); }
|
|
const SDValue &getPassThru() const { return getOperand(4); }
|
|
|
|
static bool classof(const SDNode *N) {
|
|
return N->getOpcode() == ISD::MLOAD;
|
|
}
|
|
|
|
bool isExpandingLoad() const { return LoadSDNodeBits.IsExpanding; }
|
|
};
|
|
|
|
/// This class is used to represent an MSTORE node
|
|
class MaskedStoreSDNode : public MaskedLoadStoreSDNode {
|
|
public:
|
|
friend class SelectionDAG;
|
|
|
|
MaskedStoreSDNode(unsigned Order, const DebugLoc &dl, SDVTList VTs,
|
|
ISD::MemIndexedMode AM, bool isTrunc, bool isCompressing,
|
|
EVT MemVT, MachineMemOperand *MMO)
|
|
: MaskedLoadStoreSDNode(ISD::MSTORE, Order, dl, VTs, AM, MemVT, MMO) {
|
|
StoreSDNodeBits.IsTruncating = isTrunc;
|
|
StoreSDNodeBits.IsCompressing = isCompressing;
|
|
}
|
|
|
|
/// Return true if the op does a truncation before store.
|
|
/// For integers this is the same as doing a TRUNCATE and storing the result.
|
|
/// For floats, it is the same as doing an FP_ROUND and storing the result.
|
|
bool isTruncatingStore() const { return StoreSDNodeBits.IsTruncating; }
|
|
|
|
/// Returns true if the op does a compression to the vector before storing.
|
|
/// The node contiguously stores the active elements (integers or floats)
|
|
/// in src (those with their respective bit set in writemask k) to unaligned
|
|
/// memory at base_addr.
|
|
bool isCompressingStore() const { return StoreSDNodeBits.IsCompressing; }
|
|
|
|
const SDValue &getValue() const { return getOperand(1); }
|
|
const SDValue &getBasePtr() const { return getOperand(2); }
|
|
const SDValue &getOffset() const { return getOperand(3); }
|
|
const SDValue &getMask() const { return getOperand(4); }
|
|
|
|
static bool classof(const SDNode *N) {
|
|
return N->getOpcode() == ISD::MSTORE;
|
|
}
|
|
};
|
|
|
|
/// This is a base class used to represent
|
|
/// MGATHER and MSCATTER nodes
|
|
///
|
|
class MaskedGatherScatterSDNode : public MemSDNode {
|
|
public:
|
|
friend class SelectionDAG;
|
|
|
|
MaskedGatherScatterSDNode(ISD::NodeType NodeTy, unsigned Order,
|
|
const DebugLoc &dl, SDVTList VTs, EVT MemVT,
|
|
MachineMemOperand *MMO, ISD::MemIndexType IndexType)
|
|
: MemSDNode(NodeTy, Order, dl, VTs, MemVT, MMO) {
|
|
LSBaseSDNodeBits.AddressingMode = IndexType;
|
|
assert(getIndexType() == IndexType && "Value truncated");
|
|
}
|
|
|
|
/// How is Index applied to BasePtr when computing addresses.
|
|
ISD::MemIndexType getIndexType() const {
|
|
return static_cast<ISD::MemIndexType>(LSBaseSDNodeBits.AddressingMode);
|
|
}
|
|
void setIndexType(ISD::MemIndexType IndexType) {
|
|
LSBaseSDNodeBits.AddressingMode = IndexType;
|
|
}
|
|
bool isIndexScaled() const {
|
|
return (getIndexType() == ISD::SIGNED_SCALED) ||
|
|
(getIndexType() == ISD::UNSIGNED_SCALED);
|
|
}
|
|
bool isIndexSigned() const {
|
|
return (getIndexType() == ISD::SIGNED_SCALED) ||
|
|
(getIndexType() == ISD::SIGNED_UNSCALED);
|
|
}
|
|
|
|
// In the both nodes address is Op1, mask is Op2:
|
|
// MaskedGatherSDNode (Chain, passthru, mask, base, index, scale)
|
|
// MaskedScatterSDNode (Chain, value, mask, base, index, scale)
|
|
// Mask is a vector of i1 elements
|
|
const SDValue &getBasePtr() const { return getOperand(3); }
|
|
const SDValue &getIndex() const { return getOperand(4); }
|
|
const SDValue &getMask() const { return getOperand(2); }
|
|
const SDValue &getScale() const { return getOperand(5); }
|
|
|
|
static bool classof(const SDNode *N) {
|
|
return N->getOpcode() == ISD::MGATHER ||
|
|
N->getOpcode() == ISD::MSCATTER;
|
|
}
|
|
};
|
|
|
|
/// This class is used to represent an MGATHER node
|
|
///
|
|
class MaskedGatherSDNode : public MaskedGatherScatterSDNode {
|
|
public:
|
|
friend class SelectionDAG;
|
|
|
|
MaskedGatherSDNode(unsigned Order, const DebugLoc &dl, SDVTList VTs,
|
|
EVT MemVT, MachineMemOperand *MMO,
|
|
ISD::MemIndexType IndexType, ISD::LoadExtType ETy)
|
|
: MaskedGatherScatterSDNode(ISD::MGATHER, Order, dl, VTs, MemVT, MMO,
|
|
IndexType) {
|
|
LoadSDNodeBits.ExtTy = ETy;
|
|
}
|
|
|
|
const SDValue &getPassThru() const { return getOperand(1); }
|
|
|
|
ISD::LoadExtType getExtensionType() const {
|
|
return ISD::LoadExtType(LoadSDNodeBits.ExtTy);
|
|
}
|
|
|
|
static bool classof(const SDNode *N) {
|
|
return N->getOpcode() == ISD::MGATHER;
|
|
}
|
|
};
|
|
|
|
/// This class is used to represent an MSCATTER node
|
|
///
|
|
class MaskedScatterSDNode : public MaskedGatherScatterSDNode {
|
|
public:
|
|
friend class SelectionDAG;
|
|
|
|
MaskedScatterSDNode(unsigned Order, const DebugLoc &dl, SDVTList VTs,
|
|
EVT MemVT, MachineMemOperand *MMO,
|
|
ISD::MemIndexType IndexType, bool IsTrunc)
|
|
: MaskedGatherScatterSDNode(ISD::MSCATTER, Order, dl, VTs, MemVT, MMO,
|
|
IndexType) {
|
|
StoreSDNodeBits.IsTruncating = IsTrunc;
|
|
}
|
|
|
|
/// Return true if the op does a truncation before store.
|
|
/// For integers this is the same as doing a TRUNCATE and storing the result.
|
|
/// For floats, it is the same as doing an FP_ROUND and storing the result.
|
|
bool isTruncatingStore() const { return StoreSDNodeBits.IsTruncating; }
|
|
|
|
const SDValue &getValue() const { return getOperand(1); }
|
|
|
|
static bool classof(const SDNode *N) {
|
|
return N->getOpcode() == ISD::MSCATTER;
|
|
}
|
|
};
|
|
|
|
/// An SDNode that represents everything that will be needed
|
|
/// to construct a MachineInstr. These nodes are created during the
|
|
/// instruction selection proper phase.
|
|
///
|
|
/// Note that the only supported way to set the `memoperands` is by calling the
|
|
/// `SelectionDAG::setNodeMemRefs` function as the memory management happens
|
|
/// inside the DAG rather than in the node.
|
|
class MachineSDNode : public SDNode {
|
|
private:
|
|
friend class SelectionDAG;
|
|
|
|
MachineSDNode(unsigned Opc, unsigned Order, const DebugLoc &DL, SDVTList VTs)
|
|
: SDNode(Opc, Order, DL, VTs) {}
|
|
|
|
// We use a pointer union between a single `MachineMemOperand` pointer and
|
|
// a pointer to an array of `MachineMemOperand` pointers. This is null when
|
|
// the number of these is zero, the single pointer variant used when the
|
|
// number is one, and the array is used for larger numbers.
|
|
//
|
|
// The array is allocated via the `SelectionDAG`'s allocator and so will
|
|
// always live until the DAG is cleaned up and doesn't require ownership here.
|
|
//
|
|
// We can't use something simpler like `TinyPtrVector` here because `SDNode`
|
|
// subclasses aren't managed in a conforming C++ manner. See the comments on
|
|
// `SelectionDAG::MorphNodeTo` which details what all goes on, but the
|
|
// constraint here is that these don't manage memory with their constructor or
|
|
// destructor and can be initialized to a good state even if they start off
|
|
// uninitialized.
|
|
PointerUnion<MachineMemOperand *, MachineMemOperand **> MemRefs = {};
|
|
|
|
// Note that this could be folded into the above `MemRefs` member if doing so
|
|
// is advantageous at some point. We don't need to store this in most cases.
|
|
// However, at the moment this doesn't appear to make the allocation any
|
|
// smaller and makes the code somewhat simpler to read.
|
|
int NumMemRefs = 0;
|
|
|
|
public:
|
|
using mmo_iterator = ArrayRef<MachineMemOperand *>::const_iterator;
|
|
|
|
ArrayRef<MachineMemOperand *> memoperands() const {
|
|
// Special case the common cases.
|
|
if (NumMemRefs == 0)
|
|
return {};
|
|
if (NumMemRefs == 1)
|
|
return makeArrayRef(MemRefs.getAddrOfPtr1(), 1);
|
|
|
|
// Otherwise we have an actual array.
|
|
return makeArrayRef(MemRefs.get<MachineMemOperand **>(), NumMemRefs);
|
|
}
|
|
mmo_iterator memoperands_begin() const { return memoperands().begin(); }
|
|
mmo_iterator memoperands_end() const { return memoperands().end(); }
|
|
bool memoperands_empty() const { return memoperands().empty(); }
|
|
|
|
/// Clear out the memory reference descriptor list.
|
|
void clearMemRefs() {
|
|
MemRefs = nullptr;
|
|
NumMemRefs = 0;
|
|
}
|
|
|
|
static bool classof(const SDNode *N) {
|
|
return N->isMachineOpcode();
|
|
}
|
|
};
|
|
|
|
/// An SDNode that records if a register contains a value that is guaranteed to
|
|
/// be aligned accordingly.
|
|
class AssertAlignSDNode : public SDNode {
|
|
Align Alignment;
|
|
|
|
public:
|
|
AssertAlignSDNode(unsigned Order, const DebugLoc &DL, EVT VT, Align A)
|
|
: SDNode(ISD::AssertAlign, Order, DL, getSDVTList(VT)), Alignment(A) {}
|
|
|
|
Align getAlign() const { return Alignment; }
|
|
|
|
static bool classof(const SDNode *N) {
|
|
return N->getOpcode() == ISD::AssertAlign;
|
|
}
|
|
};
|
|
|
|
class SDNodeIterator {
|
|
const SDNode *Node;
|
|
unsigned Operand;
|
|
|
|
SDNodeIterator(const SDNode *N, unsigned Op) : Node(N), Operand(Op) {}
|
|
|
|
public:
|
|
using iterator_category = std::forward_iterator_tag;
|
|
using value_type = SDNode;
|
|
using difference_type = std::ptrdiff_t;
|
|
using pointer = value_type *;
|
|
using reference = value_type &;
|
|
|
|
bool operator==(const SDNodeIterator& x) const {
|
|
return Operand == x.Operand;
|
|
}
|
|
bool operator!=(const SDNodeIterator& x) const { return !operator==(x); }
|
|
|
|
pointer operator*() const {
|
|
return Node->getOperand(Operand).getNode();
|
|
}
|
|
pointer operator->() const { return operator*(); }
|
|
|
|
SDNodeIterator& operator++() { // Preincrement
|
|
++Operand;
|
|
return *this;
|
|
}
|
|
SDNodeIterator operator++(int) { // Postincrement
|
|
SDNodeIterator tmp = *this; ++*this; return tmp;
|
|
}
|
|
size_t operator-(SDNodeIterator Other) const {
|
|
assert(Node == Other.Node &&
|
|
"Cannot compare iterators of two different nodes!");
|
|
return Operand - Other.Operand;
|
|
}
|
|
|
|
static SDNodeIterator begin(const SDNode *N) { return SDNodeIterator(N, 0); }
|
|
static SDNodeIterator end (const SDNode *N) {
|
|
return SDNodeIterator(N, N->getNumOperands());
|
|
}
|
|
|
|
unsigned getOperand() const { return Operand; }
|
|
const SDNode *getNode() const { return Node; }
|
|
};
|
|
|
|
template <> struct GraphTraits<SDNode*> {
|
|
using NodeRef = SDNode *;
|
|
using ChildIteratorType = SDNodeIterator;
|
|
|
|
static NodeRef getEntryNode(SDNode *N) { return N; }
|
|
|
|
static ChildIteratorType child_begin(NodeRef N) {
|
|
return SDNodeIterator::begin(N);
|
|
}
|
|
|
|
static ChildIteratorType child_end(NodeRef N) {
|
|
return SDNodeIterator::end(N);
|
|
}
|
|
};
|
|
|
|
/// A representation of the largest SDNode, for use in sizeof().
|
|
///
|
|
/// This needs to be a union because the largest node differs on 32 bit systems
|
|
/// with 4 and 8 byte pointer alignment, respectively.
|
|
using LargestSDNode = AlignedCharArrayUnion<AtomicSDNode, TargetIndexSDNode,
|
|
BlockAddressSDNode,
|
|
GlobalAddressSDNode,
|
|
PseudoProbeSDNode>;
|
|
|
|
/// The SDNode class with the greatest alignment requirement.
|
|
using MostAlignedSDNode = GlobalAddressSDNode;
|
|
|
|
namespace ISD {
|
|
|
|
/// Returns true if the specified node is a non-extending and unindexed load.
|
|
inline bool isNormalLoad(const SDNode *N) {
|
|
const LoadSDNode *Ld = dyn_cast<LoadSDNode>(N);
|
|
return Ld && Ld->getExtensionType() == ISD::NON_EXTLOAD &&
|
|
Ld->getAddressingMode() == ISD::UNINDEXED;
|
|
}
|
|
|
|
/// Returns true if the specified node is a non-extending load.
|
|
inline bool isNON_EXTLoad(const SDNode *N) {
|
|
return isa<LoadSDNode>(N) &&
|
|
cast<LoadSDNode>(N)->getExtensionType() == ISD::NON_EXTLOAD;
|
|
}
|
|
|
|
/// Returns true if the specified node is a EXTLOAD.
|
|
inline bool isEXTLoad(const SDNode *N) {
|
|
return isa<LoadSDNode>(N) &&
|
|
cast<LoadSDNode>(N)->getExtensionType() == ISD::EXTLOAD;
|
|
}
|
|
|
|
/// Returns true if the specified node is a SEXTLOAD.
|
|
inline bool isSEXTLoad(const SDNode *N) {
|
|
return isa<LoadSDNode>(N) &&
|
|
cast<LoadSDNode>(N)->getExtensionType() == ISD::SEXTLOAD;
|
|
}
|
|
|
|
/// Returns true if the specified node is a ZEXTLOAD.
|
|
inline bool isZEXTLoad(const SDNode *N) {
|
|
return isa<LoadSDNode>(N) &&
|
|
cast<LoadSDNode>(N)->getExtensionType() == ISD::ZEXTLOAD;
|
|
}
|
|
|
|
/// Returns true if the specified node is an unindexed load.
|
|
inline bool isUNINDEXEDLoad(const SDNode *N) {
|
|
return isa<LoadSDNode>(N) &&
|
|
cast<LoadSDNode>(N)->getAddressingMode() == ISD::UNINDEXED;
|
|
}
|
|
|
|
/// Returns true if the specified node is a non-truncating
|
|
/// and unindexed store.
|
|
inline bool isNormalStore(const SDNode *N) {
|
|
const StoreSDNode *St = dyn_cast<StoreSDNode>(N);
|
|
return St && !St->isTruncatingStore() &&
|
|
St->getAddressingMode() == ISD::UNINDEXED;
|
|
}
|
|
|
|
/// Returns true if the specified node is an unindexed store.
|
|
inline bool isUNINDEXEDStore(const SDNode *N) {
|
|
return isa<StoreSDNode>(N) &&
|
|
cast<StoreSDNode>(N)->getAddressingMode() == ISD::UNINDEXED;
|
|
}
|
|
|
|
/// Attempt to match a unary predicate against a scalar/splat constant or
|
|
/// every element of a constant BUILD_VECTOR.
|
|
/// If AllowUndef is true, then UNDEF elements will pass nullptr to Match.
|
|
bool matchUnaryPredicate(SDValue Op,
|
|
std::function<bool(ConstantSDNode *)> Match,
|
|
bool AllowUndefs = false);
|
|
|
|
/// Attempt to match a binary predicate against a pair of scalar/splat
|
|
/// constants or every element of a pair of constant BUILD_VECTORs.
|
|
/// If AllowUndef is true, then UNDEF elements will pass nullptr to Match.
|
|
/// If AllowTypeMismatch is true then RetType + ArgTypes don't need to match.
|
|
bool matchBinaryPredicate(
|
|
SDValue LHS, SDValue RHS,
|
|
std::function<bool(ConstantSDNode *, ConstantSDNode *)> Match,
|
|
bool AllowUndefs = false, bool AllowTypeMismatch = false);
|
|
|
|
/// Returns true if the specified value is the overflow result from one
|
|
/// of the overflow intrinsic nodes.
|
|
inline bool isOverflowIntrOpRes(SDValue Op) {
|
|
unsigned Opc = Op.getOpcode();
|
|
return (Op.getResNo() == 1 &&
|
|
(Opc == ISD::SADDO || Opc == ISD::UADDO || Opc == ISD::SSUBO ||
|
|
Opc == ISD::USUBO || Opc == ISD::SMULO || Opc == ISD::UMULO));
|
|
}
|
|
|
|
} // end namespace ISD
|
|
|
|
} // end namespace llvm
|
|
|
|
#endif // LLVM_CODEGEN_SELECTIONDAGNODES_H
|