mirror of
https://github.com/RPCS3/llvm-mirror.git
synced 2024-11-24 19:52:54 +01:00
64df44c038
Differential Revision: https://reviews.llvm.org/D101906
706 lines
24 KiB
C++
706 lines
24 KiB
C++
//===- llvm/DataLayout.h - Data size & alignment info -----------*- C++ -*-===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file defines layout properties related to datatype size/offset/alignment
|
|
// information. It uses lazy annotations to cache information about how
|
|
// structure types are laid out and used.
|
|
//
|
|
// This structure should be created once, filled in if the defaults are not
|
|
// correct and then passed around by const&. None of the members functions
|
|
// require modification to the object.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#ifndef LLVM_IR_DATALAYOUT_H
|
|
#define LLVM_IR_DATALAYOUT_H
|
|
|
|
#include "llvm/ADT/ArrayRef.h"
|
|
#include "llvm/ADT/STLExtras.h"
|
|
#include "llvm/ADT/SmallVector.h"
|
|
#include "llvm/ADT/StringRef.h"
|
|
#include "llvm/IR/DerivedTypes.h"
|
|
#include "llvm/IR/Type.h"
|
|
#include "llvm/Support/Casting.h"
|
|
#include "llvm/Support/ErrorHandling.h"
|
|
#include "llvm/Support/MathExtras.h"
|
|
#include "llvm/Support/Alignment.h"
|
|
#include "llvm/Support/TrailingObjects.h"
|
|
#include "llvm/Support/TypeSize.h"
|
|
#include <cassert>
|
|
#include <cstdint>
|
|
#include <string>
|
|
|
|
// This needs to be outside of the namespace, to avoid conflict with llvm-c
|
|
// decl.
|
|
using LLVMTargetDataRef = struct LLVMOpaqueTargetData *;
|
|
|
|
namespace llvm {
|
|
|
|
class GlobalVariable;
|
|
class LLVMContext;
|
|
class Module;
|
|
class StructLayout;
|
|
class Triple;
|
|
class Value;
|
|
|
|
/// Enum used to categorize the alignment types stored by LayoutAlignElem
|
|
enum AlignTypeEnum {
|
|
INVALID_ALIGN = 0,
|
|
INTEGER_ALIGN = 'i',
|
|
VECTOR_ALIGN = 'v',
|
|
FLOAT_ALIGN = 'f',
|
|
AGGREGATE_ALIGN = 'a'
|
|
};
|
|
|
|
// FIXME: Currently the DataLayout string carries a "preferred alignment"
|
|
// for types. As the DataLayout is module/global, this should likely be
|
|
// sunk down to an FTTI element that is queried rather than a global
|
|
// preference.
|
|
|
|
/// Layout alignment element.
|
|
///
|
|
/// Stores the alignment data associated with a given alignment type (integer,
|
|
/// vector, float) and type bit width.
|
|
///
|
|
/// \note The unusual order of elements in the structure attempts to reduce
|
|
/// padding and make the structure slightly more cache friendly.
|
|
struct LayoutAlignElem {
|
|
/// Alignment type from \c AlignTypeEnum
|
|
unsigned AlignType : 8;
|
|
unsigned TypeBitWidth : 24;
|
|
Align ABIAlign;
|
|
Align PrefAlign;
|
|
|
|
static LayoutAlignElem get(AlignTypeEnum align_type, Align abi_align,
|
|
Align pref_align, uint32_t bit_width);
|
|
|
|
bool operator==(const LayoutAlignElem &rhs) const;
|
|
};
|
|
|
|
/// Layout pointer alignment element.
|
|
///
|
|
/// Stores the alignment data associated with a given pointer and address space.
|
|
///
|
|
/// \note The unusual order of elements in the structure attempts to reduce
|
|
/// padding and make the structure slightly more cache friendly.
|
|
struct PointerAlignElem {
|
|
Align ABIAlign;
|
|
Align PrefAlign;
|
|
uint32_t TypeByteWidth;
|
|
uint32_t AddressSpace;
|
|
uint32_t IndexWidth;
|
|
|
|
/// Initializer
|
|
static PointerAlignElem get(uint32_t AddressSpace, Align ABIAlign,
|
|
Align PrefAlign, uint32_t TypeByteWidth,
|
|
uint32_t IndexWidth);
|
|
|
|
bool operator==(const PointerAlignElem &rhs) const;
|
|
};
|
|
|
|
/// A parsed version of the target data layout string in and methods for
|
|
/// querying it.
|
|
///
|
|
/// The target data layout string is specified *by the target* - a frontend
|
|
/// generating LLVM IR is required to generate the right target data for the
|
|
/// target being codegen'd to.
|
|
class DataLayout {
|
|
public:
|
|
enum class FunctionPtrAlignType {
|
|
/// The function pointer alignment is independent of the function alignment.
|
|
Independent,
|
|
/// The function pointer alignment is a multiple of the function alignment.
|
|
MultipleOfFunctionAlign,
|
|
};
|
|
private:
|
|
/// Defaults to false.
|
|
bool BigEndian;
|
|
|
|
unsigned AllocaAddrSpace;
|
|
MaybeAlign StackNaturalAlign;
|
|
unsigned ProgramAddrSpace;
|
|
unsigned DefaultGlobalsAddrSpace;
|
|
|
|
MaybeAlign FunctionPtrAlign;
|
|
FunctionPtrAlignType TheFunctionPtrAlignType;
|
|
|
|
enum ManglingModeT {
|
|
MM_None,
|
|
MM_ELF,
|
|
MM_MachO,
|
|
MM_WinCOFF,
|
|
MM_WinCOFFX86,
|
|
MM_Mips,
|
|
MM_XCOFF
|
|
};
|
|
ManglingModeT ManglingMode;
|
|
|
|
SmallVector<unsigned char, 8> LegalIntWidths;
|
|
|
|
/// Primitive type alignment data. This is sorted by type and bit
|
|
/// width during construction.
|
|
using AlignmentsTy = SmallVector<LayoutAlignElem, 16>;
|
|
AlignmentsTy Alignments;
|
|
|
|
AlignmentsTy::const_iterator
|
|
findAlignmentLowerBound(AlignTypeEnum AlignType, uint32_t BitWidth) const {
|
|
return const_cast<DataLayout *>(this)->findAlignmentLowerBound(AlignType,
|
|
BitWidth);
|
|
}
|
|
|
|
AlignmentsTy::iterator
|
|
findAlignmentLowerBound(AlignTypeEnum AlignType, uint32_t BitWidth);
|
|
|
|
/// The string representation used to create this DataLayout
|
|
std::string StringRepresentation;
|
|
|
|
using PointersTy = SmallVector<PointerAlignElem, 8>;
|
|
PointersTy Pointers;
|
|
|
|
const PointerAlignElem &getPointerAlignElem(uint32_t AddressSpace) const;
|
|
|
|
// The StructType -> StructLayout map.
|
|
mutable void *LayoutMap = nullptr;
|
|
|
|
/// Pointers in these address spaces are non-integral, and don't have a
|
|
/// well-defined bitwise representation.
|
|
SmallVector<unsigned, 8> NonIntegralAddressSpaces;
|
|
|
|
/// Attempts to set the alignment of the given type. Returns an error
|
|
/// description on failure.
|
|
Error setAlignment(AlignTypeEnum align_type, Align abi_align,
|
|
Align pref_align, uint32_t bit_width);
|
|
|
|
/// Attempts to set the alignment of a pointer in the given address space.
|
|
/// Returns an error description on failure.
|
|
Error setPointerAlignment(uint32_t AddrSpace, Align ABIAlign, Align PrefAlign,
|
|
uint32_t TypeByteWidth, uint32_t IndexWidth);
|
|
|
|
/// Internal helper to get alignment for integer of given bitwidth.
|
|
Align getIntegerAlignment(uint32_t BitWidth, bool abi_or_pref) const;
|
|
|
|
/// Internal helper method that returns requested alignment for type.
|
|
Align getAlignment(Type *Ty, bool abi_or_pref) const;
|
|
|
|
/// Attempts to parse a target data specification string and reports an error
|
|
/// if the string is malformed.
|
|
Error parseSpecifier(StringRef Desc);
|
|
|
|
// Free all internal data structures.
|
|
void clear();
|
|
|
|
public:
|
|
/// Constructs a DataLayout from a specification string. See reset().
|
|
explicit DataLayout(StringRef LayoutDescription) {
|
|
reset(LayoutDescription);
|
|
}
|
|
|
|
/// Initialize target data from properties stored in the module.
|
|
explicit DataLayout(const Module *M);
|
|
|
|
DataLayout(const DataLayout &DL) { *this = DL; }
|
|
|
|
~DataLayout(); // Not virtual, do not subclass this class
|
|
|
|
DataLayout &operator=(const DataLayout &DL) {
|
|
clear();
|
|
StringRepresentation = DL.StringRepresentation;
|
|
BigEndian = DL.isBigEndian();
|
|
AllocaAddrSpace = DL.AllocaAddrSpace;
|
|
StackNaturalAlign = DL.StackNaturalAlign;
|
|
FunctionPtrAlign = DL.FunctionPtrAlign;
|
|
TheFunctionPtrAlignType = DL.TheFunctionPtrAlignType;
|
|
ProgramAddrSpace = DL.ProgramAddrSpace;
|
|
DefaultGlobalsAddrSpace = DL.DefaultGlobalsAddrSpace;
|
|
ManglingMode = DL.ManglingMode;
|
|
LegalIntWidths = DL.LegalIntWidths;
|
|
Alignments = DL.Alignments;
|
|
Pointers = DL.Pointers;
|
|
NonIntegralAddressSpaces = DL.NonIntegralAddressSpaces;
|
|
return *this;
|
|
}
|
|
|
|
bool operator==(const DataLayout &Other) const;
|
|
bool operator!=(const DataLayout &Other) const { return !(*this == Other); }
|
|
|
|
void init(const Module *M);
|
|
|
|
/// Parse a data layout string (with fallback to default values).
|
|
void reset(StringRef LayoutDescription);
|
|
|
|
/// Parse a data layout string and return the layout. Return an error
|
|
/// description on failure.
|
|
static Expected<DataLayout> parse(StringRef LayoutDescription);
|
|
|
|
/// Layout endianness...
|
|
bool isLittleEndian() const { return !BigEndian; }
|
|
bool isBigEndian() const { return BigEndian; }
|
|
|
|
/// Returns the string representation of the DataLayout.
|
|
///
|
|
/// This representation is in the same format accepted by the string
|
|
/// constructor above. This should not be used to compare two DataLayout as
|
|
/// different string can represent the same layout.
|
|
const std::string &getStringRepresentation() const {
|
|
return StringRepresentation;
|
|
}
|
|
|
|
/// Test if the DataLayout was constructed from an empty string.
|
|
bool isDefault() const { return StringRepresentation.empty(); }
|
|
|
|
/// Returns true if the specified type is known to be a native integer
|
|
/// type supported by the CPU.
|
|
///
|
|
/// For example, i64 is not native on most 32-bit CPUs and i37 is not native
|
|
/// on any known one. This returns false if the integer width is not legal.
|
|
///
|
|
/// The width is specified in bits.
|
|
bool isLegalInteger(uint64_t Width) const {
|
|
return llvm::is_contained(LegalIntWidths, Width);
|
|
}
|
|
|
|
bool isIllegalInteger(uint64_t Width) const { return !isLegalInteger(Width); }
|
|
|
|
/// Returns true if the given alignment exceeds the natural stack alignment.
|
|
bool exceedsNaturalStackAlignment(Align Alignment) const {
|
|
return StackNaturalAlign && (Alignment > *StackNaturalAlign);
|
|
}
|
|
|
|
Align getStackAlignment() const {
|
|
assert(StackNaturalAlign && "StackNaturalAlign must be defined");
|
|
return *StackNaturalAlign;
|
|
}
|
|
|
|
unsigned getAllocaAddrSpace() const { return AllocaAddrSpace; }
|
|
|
|
/// Returns the alignment of function pointers, which may or may not be
|
|
/// related to the alignment of functions.
|
|
/// \see getFunctionPtrAlignType
|
|
MaybeAlign getFunctionPtrAlign() const { return FunctionPtrAlign; }
|
|
|
|
/// Return the type of function pointer alignment.
|
|
/// \see getFunctionPtrAlign
|
|
FunctionPtrAlignType getFunctionPtrAlignType() const {
|
|
return TheFunctionPtrAlignType;
|
|
}
|
|
|
|
unsigned getProgramAddressSpace() const { return ProgramAddrSpace; }
|
|
unsigned getDefaultGlobalsAddressSpace() const {
|
|
return DefaultGlobalsAddrSpace;
|
|
}
|
|
|
|
bool hasMicrosoftFastStdCallMangling() const {
|
|
return ManglingMode == MM_WinCOFFX86;
|
|
}
|
|
|
|
/// Returns true if symbols with leading question marks should not receive IR
|
|
/// mangling. True for Windows mangling modes.
|
|
bool doNotMangleLeadingQuestionMark() const {
|
|
return ManglingMode == MM_WinCOFF || ManglingMode == MM_WinCOFFX86;
|
|
}
|
|
|
|
bool hasLinkerPrivateGlobalPrefix() const { return ManglingMode == MM_MachO; }
|
|
|
|
StringRef getLinkerPrivateGlobalPrefix() const {
|
|
if (ManglingMode == MM_MachO)
|
|
return "l";
|
|
return "";
|
|
}
|
|
|
|
char getGlobalPrefix() const {
|
|
switch (ManglingMode) {
|
|
case MM_None:
|
|
case MM_ELF:
|
|
case MM_Mips:
|
|
case MM_WinCOFF:
|
|
case MM_XCOFF:
|
|
return '\0';
|
|
case MM_MachO:
|
|
case MM_WinCOFFX86:
|
|
return '_';
|
|
}
|
|
llvm_unreachable("invalid mangling mode");
|
|
}
|
|
|
|
StringRef getPrivateGlobalPrefix() const {
|
|
switch (ManglingMode) {
|
|
case MM_None:
|
|
return "";
|
|
case MM_ELF:
|
|
case MM_WinCOFF:
|
|
return ".L";
|
|
case MM_Mips:
|
|
return "$";
|
|
case MM_MachO:
|
|
case MM_WinCOFFX86:
|
|
return "L";
|
|
case MM_XCOFF:
|
|
return "L..";
|
|
}
|
|
llvm_unreachable("invalid mangling mode");
|
|
}
|
|
|
|
static const char *getManglingComponent(const Triple &T);
|
|
|
|
/// Returns true if the specified type fits in a native integer type
|
|
/// supported by the CPU.
|
|
///
|
|
/// For example, if the CPU only supports i32 as a native integer type, then
|
|
/// i27 fits in a legal integer type but i45 does not.
|
|
bool fitsInLegalInteger(unsigned Width) const {
|
|
for (unsigned LegalIntWidth : LegalIntWidths)
|
|
if (Width <= LegalIntWidth)
|
|
return true;
|
|
return false;
|
|
}
|
|
|
|
/// Layout pointer alignment
|
|
Align getPointerABIAlignment(unsigned AS) const;
|
|
|
|
/// Return target's alignment for stack-based pointers
|
|
/// FIXME: The defaults need to be removed once all of
|
|
/// the backends/clients are updated.
|
|
Align getPointerPrefAlignment(unsigned AS = 0) const;
|
|
|
|
/// Layout pointer size
|
|
/// FIXME: The defaults need to be removed once all of
|
|
/// the backends/clients are updated.
|
|
unsigned getPointerSize(unsigned AS = 0) const;
|
|
|
|
/// Returns the maximum pointer size over all address spaces.
|
|
unsigned getMaxPointerSize() const;
|
|
|
|
// Index size used for address calculation.
|
|
unsigned getIndexSize(unsigned AS) const;
|
|
|
|
/// Return the address spaces containing non-integral pointers. Pointers in
|
|
/// this address space don't have a well-defined bitwise representation.
|
|
ArrayRef<unsigned> getNonIntegralAddressSpaces() const {
|
|
return NonIntegralAddressSpaces;
|
|
}
|
|
|
|
bool isNonIntegralAddressSpace(unsigned AddrSpace) const {
|
|
ArrayRef<unsigned> NonIntegralSpaces = getNonIntegralAddressSpaces();
|
|
return is_contained(NonIntegralSpaces, AddrSpace);
|
|
}
|
|
|
|
bool isNonIntegralPointerType(PointerType *PT) const {
|
|
return isNonIntegralAddressSpace(PT->getAddressSpace());
|
|
}
|
|
|
|
bool isNonIntegralPointerType(Type *Ty) const {
|
|
auto *PTy = dyn_cast<PointerType>(Ty);
|
|
return PTy && isNonIntegralPointerType(PTy);
|
|
}
|
|
|
|
/// Layout pointer size, in bits
|
|
/// FIXME: The defaults need to be removed once all of
|
|
/// the backends/clients are updated.
|
|
unsigned getPointerSizeInBits(unsigned AS = 0) const {
|
|
return getPointerSize(AS) * 8;
|
|
}
|
|
|
|
/// Returns the maximum pointer size over all address spaces.
|
|
unsigned getMaxPointerSizeInBits() const {
|
|
return getMaxPointerSize() * 8;
|
|
}
|
|
|
|
/// Size in bits of index used for address calculation in getelementptr.
|
|
unsigned getIndexSizeInBits(unsigned AS) const {
|
|
return getIndexSize(AS) * 8;
|
|
}
|
|
|
|
/// Layout pointer size, in bits, based on the type. If this function is
|
|
/// called with a pointer type, then the type size of the pointer is returned.
|
|
/// If this function is called with a vector of pointers, then the type size
|
|
/// of the pointer is returned. This should only be called with a pointer or
|
|
/// vector of pointers.
|
|
unsigned getPointerTypeSizeInBits(Type *) const;
|
|
|
|
/// Layout size of the index used in GEP calculation.
|
|
/// The function should be called with pointer or vector of pointers type.
|
|
unsigned getIndexTypeSizeInBits(Type *Ty) const;
|
|
|
|
unsigned getPointerTypeSize(Type *Ty) const {
|
|
return getPointerTypeSizeInBits(Ty) / 8;
|
|
}
|
|
|
|
/// Size examples:
|
|
///
|
|
/// Type SizeInBits StoreSizeInBits AllocSizeInBits[*]
|
|
/// ---- ---------- --------------- ---------------
|
|
/// i1 1 8 8
|
|
/// i8 8 8 8
|
|
/// i19 19 24 32
|
|
/// i32 32 32 32
|
|
/// i100 100 104 128
|
|
/// i128 128 128 128
|
|
/// Float 32 32 32
|
|
/// Double 64 64 64
|
|
/// X86_FP80 80 80 96
|
|
///
|
|
/// [*] The alloc size depends on the alignment, and thus on the target.
|
|
/// These values are for x86-32 linux.
|
|
|
|
/// Returns the number of bits necessary to hold the specified type.
|
|
///
|
|
/// If Ty is a scalable vector type, the scalable property will be set and
|
|
/// the runtime size will be a positive integer multiple of the base size.
|
|
///
|
|
/// For example, returns 36 for i36 and 80 for x86_fp80. The type passed must
|
|
/// have a size (Type::isSized() must return true).
|
|
TypeSize getTypeSizeInBits(Type *Ty) const;
|
|
|
|
/// Returns the maximum number of bytes that may be overwritten by
|
|
/// storing the specified type.
|
|
///
|
|
/// If Ty is a scalable vector type, the scalable property will be set and
|
|
/// the runtime size will be a positive integer multiple of the base size.
|
|
///
|
|
/// For example, returns 5 for i36 and 10 for x86_fp80.
|
|
TypeSize getTypeStoreSize(Type *Ty) const {
|
|
TypeSize BaseSize = getTypeSizeInBits(Ty);
|
|
return { (BaseSize.getKnownMinSize() + 7) / 8, BaseSize.isScalable() };
|
|
}
|
|
|
|
/// Returns the maximum number of bits that may be overwritten by
|
|
/// storing the specified type; always a multiple of 8.
|
|
///
|
|
/// If Ty is a scalable vector type, the scalable property will be set and
|
|
/// the runtime size will be a positive integer multiple of the base size.
|
|
///
|
|
/// For example, returns 40 for i36 and 80 for x86_fp80.
|
|
TypeSize getTypeStoreSizeInBits(Type *Ty) const {
|
|
return 8 * getTypeStoreSize(Ty);
|
|
}
|
|
|
|
/// Returns true if no extra padding bits are needed when storing the
|
|
/// specified type.
|
|
///
|
|
/// For example, returns false for i19 that has a 24-bit store size.
|
|
bool typeSizeEqualsStoreSize(Type *Ty) const {
|
|
return getTypeSizeInBits(Ty) == getTypeStoreSizeInBits(Ty);
|
|
}
|
|
|
|
/// Returns the offset in bytes between successive objects of the
|
|
/// specified type, including alignment padding.
|
|
///
|
|
/// If Ty is a scalable vector type, the scalable property will be set and
|
|
/// the runtime size will be a positive integer multiple of the base size.
|
|
///
|
|
/// This is the amount that alloca reserves for this type. For example,
|
|
/// returns 12 or 16 for x86_fp80, depending on alignment.
|
|
TypeSize getTypeAllocSize(Type *Ty) const {
|
|
// Round up to the next alignment boundary.
|
|
return alignTo(getTypeStoreSize(Ty), getABITypeAlignment(Ty));
|
|
}
|
|
|
|
/// Returns the offset in bits between successive objects of the
|
|
/// specified type, including alignment padding; always a multiple of 8.
|
|
///
|
|
/// If Ty is a scalable vector type, the scalable property will be set and
|
|
/// the runtime size will be a positive integer multiple of the base size.
|
|
///
|
|
/// This is the amount that alloca reserves for this type. For example,
|
|
/// returns 96 or 128 for x86_fp80, depending on alignment.
|
|
TypeSize getTypeAllocSizeInBits(Type *Ty) const {
|
|
return 8 * getTypeAllocSize(Ty);
|
|
}
|
|
|
|
/// Returns the minimum ABI-required alignment for the specified type.
|
|
/// FIXME: Deprecate this function once migration to Align is over.
|
|
unsigned getABITypeAlignment(Type *Ty) const;
|
|
|
|
/// Returns the minimum ABI-required alignment for the specified type.
|
|
Align getABITypeAlign(Type *Ty) const;
|
|
|
|
/// Helper function to return `Alignment` if it's set or the result of
|
|
/// `getABITypeAlignment(Ty)`, in any case the result is a valid alignment.
|
|
inline Align getValueOrABITypeAlignment(MaybeAlign Alignment,
|
|
Type *Ty) const {
|
|
return Alignment ? *Alignment : getABITypeAlign(Ty);
|
|
}
|
|
|
|
/// Returns the minimum ABI-required alignment for an integer type of
|
|
/// the specified bitwidth.
|
|
Align getABIIntegerTypeAlignment(unsigned BitWidth) const {
|
|
return getIntegerAlignment(BitWidth, /* abi_or_pref */ true);
|
|
}
|
|
|
|
/// Returns the preferred stack/global alignment for the specified
|
|
/// type.
|
|
///
|
|
/// This is always at least as good as the ABI alignment.
|
|
/// FIXME: Deprecate this function once migration to Align is over.
|
|
unsigned getPrefTypeAlignment(Type *Ty) const;
|
|
|
|
/// Returns the preferred stack/global alignment for the specified
|
|
/// type.
|
|
///
|
|
/// This is always at least as good as the ABI alignment.
|
|
Align getPrefTypeAlign(Type *Ty) const;
|
|
|
|
/// Returns an integer type with size at least as big as that of a
|
|
/// pointer in the given address space.
|
|
IntegerType *getIntPtrType(LLVMContext &C, unsigned AddressSpace = 0) const;
|
|
|
|
/// Returns an integer (vector of integer) type with size at least as
|
|
/// big as that of a pointer of the given pointer (vector of pointer) type.
|
|
Type *getIntPtrType(Type *) const;
|
|
|
|
/// Returns the smallest integer type with size at least as big as
|
|
/// Width bits.
|
|
Type *getSmallestLegalIntType(LLVMContext &C, unsigned Width = 0) const;
|
|
|
|
/// Returns the largest legal integer type, or null if none are set.
|
|
Type *getLargestLegalIntType(LLVMContext &C) const {
|
|
unsigned LargestSize = getLargestLegalIntTypeSizeInBits();
|
|
return (LargestSize == 0) ? nullptr : Type::getIntNTy(C, LargestSize);
|
|
}
|
|
|
|
/// Returns the size of largest legal integer type size, or 0 if none
|
|
/// are set.
|
|
unsigned getLargestLegalIntTypeSizeInBits() const;
|
|
|
|
/// Returns the type of a GEP index.
|
|
/// If it was not specified explicitly, it will be the integer type of the
|
|
/// pointer width - IntPtrType.
|
|
Type *getIndexType(Type *PtrTy) const;
|
|
|
|
/// Returns the offset from the beginning of the type for the specified
|
|
/// indices.
|
|
///
|
|
/// Note that this takes the element type, not the pointer type.
|
|
/// This is used to implement getelementptr.
|
|
int64_t getIndexedOffsetInType(Type *ElemTy, ArrayRef<Value *> Indices) const;
|
|
|
|
/// Returns a StructLayout object, indicating the alignment of the
|
|
/// struct, its size, and the offsets of its fields.
|
|
///
|
|
/// Note that this information is lazily cached.
|
|
const StructLayout *getStructLayout(StructType *Ty) const;
|
|
|
|
/// Returns the preferred alignment of the specified global.
|
|
///
|
|
/// This includes an explicitly requested alignment (if the global has one).
|
|
Align getPreferredAlign(const GlobalVariable *GV) const;
|
|
};
|
|
|
|
inline DataLayout *unwrap(LLVMTargetDataRef P) {
|
|
return reinterpret_cast<DataLayout *>(P);
|
|
}
|
|
|
|
inline LLVMTargetDataRef wrap(const DataLayout *P) {
|
|
return reinterpret_cast<LLVMTargetDataRef>(const_cast<DataLayout *>(P));
|
|
}
|
|
|
|
/// Used to lazily calculate structure layout information for a target machine,
|
|
/// based on the DataLayout structure.
|
|
class StructLayout final : public TrailingObjects<StructLayout, uint64_t> {
|
|
uint64_t StructSize;
|
|
Align StructAlignment;
|
|
unsigned IsPadded : 1;
|
|
unsigned NumElements : 31;
|
|
|
|
public:
|
|
uint64_t getSizeInBytes() const { return StructSize; }
|
|
|
|
uint64_t getSizeInBits() const { return 8 * StructSize; }
|
|
|
|
Align getAlignment() const { return StructAlignment; }
|
|
|
|
/// Returns whether the struct has padding or not between its fields.
|
|
/// NB: Padding in nested element is not taken into account.
|
|
bool hasPadding() const { return IsPadded; }
|
|
|
|
/// Given a valid byte offset into the structure, returns the structure
|
|
/// index that contains it.
|
|
unsigned getElementContainingOffset(uint64_t Offset) const;
|
|
|
|
MutableArrayRef<uint64_t> getMemberOffsets() {
|
|
return llvm::makeMutableArrayRef(getTrailingObjects<uint64_t>(),
|
|
NumElements);
|
|
}
|
|
|
|
ArrayRef<uint64_t> getMemberOffsets() const {
|
|
return llvm::makeArrayRef(getTrailingObjects<uint64_t>(), NumElements);
|
|
}
|
|
|
|
uint64_t getElementOffset(unsigned Idx) const {
|
|
assert(Idx < NumElements && "Invalid element idx!");
|
|
return getMemberOffsets()[Idx];
|
|
}
|
|
|
|
uint64_t getElementOffsetInBits(unsigned Idx) const {
|
|
return getElementOffset(Idx) * 8;
|
|
}
|
|
|
|
private:
|
|
friend class DataLayout; // Only DataLayout can create this class
|
|
|
|
StructLayout(StructType *ST, const DataLayout &DL);
|
|
|
|
size_t numTrailingObjects(OverloadToken<uint64_t>) const {
|
|
return NumElements;
|
|
}
|
|
};
|
|
|
|
// The implementation of this method is provided inline as it is particularly
|
|
// well suited to constant folding when called on a specific Type subclass.
|
|
inline TypeSize DataLayout::getTypeSizeInBits(Type *Ty) const {
|
|
assert(Ty->isSized() && "Cannot getTypeInfo() on a type that is unsized!");
|
|
switch (Ty->getTypeID()) {
|
|
case Type::LabelTyID:
|
|
return TypeSize::Fixed(getPointerSizeInBits(0));
|
|
case Type::PointerTyID:
|
|
return TypeSize::Fixed(getPointerSizeInBits(Ty->getPointerAddressSpace()));
|
|
case Type::ArrayTyID: {
|
|
ArrayType *ATy = cast<ArrayType>(Ty);
|
|
return ATy->getNumElements() *
|
|
getTypeAllocSizeInBits(ATy->getElementType());
|
|
}
|
|
case Type::StructTyID:
|
|
// Get the layout annotation... which is lazily created on demand.
|
|
return TypeSize::Fixed(
|
|
getStructLayout(cast<StructType>(Ty))->getSizeInBits());
|
|
case Type::IntegerTyID:
|
|
return TypeSize::Fixed(Ty->getIntegerBitWidth());
|
|
case Type::HalfTyID:
|
|
case Type::BFloatTyID:
|
|
return TypeSize::Fixed(16);
|
|
case Type::FloatTyID:
|
|
return TypeSize::Fixed(32);
|
|
case Type::DoubleTyID:
|
|
case Type::X86_MMXTyID:
|
|
return TypeSize::Fixed(64);
|
|
case Type::PPC_FP128TyID:
|
|
case Type::FP128TyID:
|
|
return TypeSize::Fixed(128);
|
|
case Type::X86_AMXTyID:
|
|
return TypeSize::Fixed(8192);
|
|
// In memory objects this is always aligned to a higher boundary, but
|
|
// only 80 bits contain information.
|
|
case Type::X86_FP80TyID:
|
|
return TypeSize::Fixed(80);
|
|
case Type::FixedVectorTyID:
|
|
case Type::ScalableVectorTyID: {
|
|
VectorType *VTy = cast<VectorType>(Ty);
|
|
auto EltCnt = VTy->getElementCount();
|
|
uint64_t MinBits = EltCnt.getKnownMinValue() *
|
|
getTypeSizeInBits(VTy->getElementType()).getFixedSize();
|
|
return TypeSize(MinBits, EltCnt.isScalable());
|
|
}
|
|
default:
|
|
llvm_unreachable("DataLayout::getTypeSizeInBits(): Unsupported type");
|
|
}
|
|
}
|
|
|
|
} // end namespace llvm
|
|
|
|
#endif // LLVM_IR_DATALAYOUT_H
|