1
0
mirror of https://github.com/RPCS3/llvm-mirror.git synced 2024-11-24 19:52:54 +01:00
llvm-mirror/include/llvm/IR/Module.h
serge-sans-paille 601c2dd9dd Fine grain control over some symbol visibility
Setting -fvisibility=hidden when compiling Target libs has the advantage of
not being intrusive on the codebase, but it also sets the visibility of all
functions within header-only component like ADT. In the end, we end up with
some symbols with hidden visibility within llvm dylib (through the target libs),
and some with external visibility (through other libs). This paves the way for
subtle bugs like https://reviews.llvm.org/D101972

This patch explicitly set the visibility of some classes to `default` so that
`llvm::Any` related symbols keep a `default` visibility. Indeed a template
function with `default` visibility parametrized by a type with `hidden`
visibility is granted `hidden` visibility, and we don't want this for the
uniqueness of `llvm::Any::TypeId`.

Differential Revision: https://reviews.llvm.org/D108943
2021-09-08 21:06:19 -07:00

965 lines
37 KiB
C++

//===- llvm/Module.h - C++ class to represent a VM module -------*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
/// @file
/// Module.h This file contains the declarations for the Module class.
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_IR_MODULE_H
#define LLVM_IR_MODULE_H
#include "llvm-c/Types.h"
#include "llvm/ADT/Optional.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/StringMap.h"
#include "llvm/ADT/StringRef.h"
#include "llvm/ADT/iterator_range.h"
#include "llvm/IR/Attributes.h"
#include "llvm/IR/Comdat.h"
#include "llvm/IR/DataLayout.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/GlobalAlias.h"
#include "llvm/IR/GlobalIFunc.h"
#include "llvm/IR/GlobalVariable.h"
#include "llvm/IR/Metadata.h"
#include "llvm/IR/ProfileSummary.h"
#include "llvm/IR/SymbolTableListTraits.h"
#include "llvm/Support/CBindingWrapping.h"
#include "llvm/Support/CodeGen.h"
#include <cstddef>
#include <cstdint>
#include <iterator>
#include <memory>
#include <string>
#include <vector>
namespace llvm {
class Error;
class FunctionType;
class GVMaterializer;
class LLVMContext;
class MemoryBuffer;
class ModuleSummaryIndex;
class Pass;
class RandomNumberGenerator;
template <class PtrType> class SmallPtrSetImpl;
class StructType;
class VersionTuple;
/// A Module instance is used to store all the information related to an
/// LLVM module. Modules are the top level container of all other LLVM
/// Intermediate Representation (IR) objects. Each module directly contains a
/// list of globals variables, a list of functions, a list of libraries (or
/// other modules) this module depends on, a symbol table, and various data
/// about the target's characteristics.
///
/// A module maintains a GlobalValRefMap object that is used to hold all
/// constant references to global variables in the module. When a global
/// variable is destroyed, it should have no entries in the GlobalValueRefMap.
/// The main container class for the LLVM Intermediate Representation.
class LLVM_EXTERNAL_VISIBILITY Module {
/// @name Types And Enumerations
/// @{
public:
/// The type for the list of global variables.
using GlobalListType = SymbolTableList<GlobalVariable>;
/// The type for the list of functions.
using FunctionListType = SymbolTableList<Function>;
/// The type for the list of aliases.
using AliasListType = SymbolTableList<GlobalAlias>;
/// The type for the list of ifuncs.
using IFuncListType = SymbolTableList<GlobalIFunc>;
/// The type for the list of named metadata.
using NamedMDListType = ilist<NamedMDNode>;
/// The type of the comdat "symbol" table.
using ComdatSymTabType = StringMap<Comdat>;
/// The type for mapping names to named metadata.
using NamedMDSymTabType = StringMap<NamedMDNode *>;
/// The Global Variable iterator.
using global_iterator = GlobalListType::iterator;
/// The Global Variable constant iterator.
using const_global_iterator = GlobalListType::const_iterator;
/// The Function iterators.
using iterator = FunctionListType::iterator;
/// The Function constant iterator
using const_iterator = FunctionListType::const_iterator;
/// The Function reverse iterator.
using reverse_iterator = FunctionListType::reverse_iterator;
/// The Function constant reverse iterator.
using const_reverse_iterator = FunctionListType::const_reverse_iterator;
/// The Global Alias iterators.
using alias_iterator = AliasListType::iterator;
/// The Global Alias constant iterator
using const_alias_iterator = AliasListType::const_iterator;
/// The Global IFunc iterators.
using ifunc_iterator = IFuncListType::iterator;
/// The Global IFunc constant iterator
using const_ifunc_iterator = IFuncListType::const_iterator;
/// The named metadata iterators.
using named_metadata_iterator = NamedMDListType::iterator;
/// The named metadata constant iterators.
using const_named_metadata_iterator = NamedMDListType::const_iterator;
/// This enumeration defines the supported behaviors of module flags.
enum ModFlagBehavior {
/// Emits an error if two values disagree, otherwise the resulting value is
/// that of the operands.
Error = 1,
/// Emits a warning if two values disagree. The result value will be the
/// operand for the flag from the first module being linked.
Warning = 2,
/// Adds a requirement that another module flag be present and have a
/// specified value after linking is performed. The value must be a metadata
/// pair, where the first element of the pair is the ID of the module flag
/// to be restricted, and the second element of the pair is the value the
/// module flag should be restricted to. This behavior can be used to
/// restrict the allowable results (via triggering of an error) of linking
/// IDs with the **Override** behavior.
Require = 3,
/// Uses the specified value, regardless of the behavior or value of the
/// other module. If both modules specify **Override**, but the values
/// differ, an error will be emitted.
Override = 4,
/// Appends the two values, which are required to be metadata nodes.
Append = 5,
/// Appends the two values, which are required to be metadata
/// nodes. However, duplicate entries in the second list are dropped
/// during the append operation.
AppendUnique = 6,
/// Takes the max of the two values, which are required to be integers.
Max = 7,
// Markers:
ModFlagBehaviorFirstVal = Error,
ModFlagBehaviorLastVal = Max
};
/// Checks if Metadata represents a valid ModFlagBehavior, and stores the
/// converted result in MFB.
static bool isValidModFlagBehavior(Metadata *MD, ModFlagBehavior &MFB);
/// Check if the given module flag metadata represents a valid module flag,
/// and store the flag behavior, the key string and the value metadata.
static bool isValidModuleFlag(const MDNode &ModFlag, ModFlagBehavior &MFB,
MDString *&Key, Metadata *&Val);
struct ModuleFlagEntry {
ModFlagBehavior Behavior;
MDString *Key;
Metadata *Val;
ModuleFlagEntry(ModFlagBehavior B, MDString *K, Metadata *V)
: Behavior(B), Key(K), Val(V) {}
};
/// @}
/// @name Member Variables
/// @{
private:
LLVMContext &Context; ///< The LLVMContext from which types and
///< constants are allocated.
GlobalListType GlobalList; ///< The Global Variables in the module
FunctionListType FunctionList; ///< The Functions in the module
AliasListType AliasList; ///< The Aliases in the module
IFuncListType IFuncList; ///< The IFuncs in the module
NamedMDListType NamedMDList; ///< The named metadata in the module
std::string GlobalScopeAsm; ///< Inline Asm at global scope.
std::unique_ptr<ValueSymbolTable> ValSymTab; ///< Symbol table for values
ComdatSymTabType ComdatSymTab; ///< Symbol table for COMDATs
std::unique_ptr<MemoryBuffer>
OwnedMemoryBuffer; ///< Memory buffer directly owned by this
///< module, for legacy clients only.
std::unique_ptr<GVMaterializer>
Materializer; ///< Used to materialize GlobalValues
std::string ModuleID; ///< Human readable identifier for the module
std::string SourceFileName; ///< Original source file name for module,
///< recorded in bitcode.
std::string TargetTriple; ///< Platform target triple Module compiled on
///< Format: (arch)(sub)-(vendor)-(sys0-(abi)
NamedMDSymTabType NamedMDSymTab; ///< NamedMDNode names.
DataLayout DL; ///< DataLayout associated with the module
StringMap<unsigned>
CurrentIntrinsicIds; ///< Keep track of the current unique id count for
///< the specified intrinsic basename.
DenseMap<std::pair<Intrinsic::ID, const FunctionType *>, unsigned>
UniquedIntrinsicNames; ///< Keep track of uniqued names of intrinsics
///< based on unnamed types. The combination of
///< ID and FunctionType maps to the extension that
///< is used to make the intrinsic name unique.
friend class Constant;
/// @}
/// @name Constructors
/// @{
public:
/// The Module constructor. Note that there is no default constructor. You
/// must provide a name for the module upon construction.
explicit Module(StringRef ModuleID, LLVMContext& C);
/// The module destructor. This will dropAllReferences.
~Module();
/// @}
/// @name Module Level Accessors
/// @{
/// Get the module identifier which is, essentially, the name of the module.
/// @returns the module identifier as a string
const std::string &getModuleIdentifier() const { return ModuleID; }
/// Returns the number of non-debug IR instructions in the module.
/// This is equivalent to the sum of the IR instruction counts of each
/// function contained in the module.
unsigned getInstructionCount() const;
/// Get the module's original source file name. When compiling from
/// bitcode, this is taken from a bitcode record where it was recorded.
/// For other compiles it is the same as the ModuleID, which would
/// contain the source file name.
const std::string &getSourceFileName() const { return SourceFileName; }
/// Get a short "name" for the module.
///
/// This is useful for debugging or logging. It is essentially a convenience
/// wrapper around getModuleIdentifier().
StringRef getName() const { return ModuleID; }
/// Get the data layout string for the module's target platform. This is
/// equivalent to getDataLayout()->getStringRepresentation().
const std::string &getDataLayoutStr() const {
return DL.getStringRepresentation();
}
/// Get the data layout for the module's target platform.
const DataLayout &getDataLayout() const;
/// Get the target triple which is a string describing the target host.
/// @returns a string containing the target triple.
const std::string &getTargetTriple() const { return TargetTriple; }
/// Get the global data context.
/// @returns LLVMContext - a container for LLVM's global information
LLVMContext &getContext() const { return Context; }
/// Get any module-scope inline assembly blocks.
/// @returns a string containing the module-scope inline assembly blocks.
const std::string &getModuleInlineAsm() const { return GlobalScopeAsm; }
/// Get a RandomNumberGenerator salted for use with this module. The
/// RNG can be seeded via -rng-seed=<uint64> and is salted with the
/// ModuleID and the provided pass salt. The returned RNG should not
/// be shared across threads or passes.
///
/// A unique RNG per pass ensures a reproducible random stream even
/// when other randomness consuming passes are added or removed. In
/// addition, the random stream will be reproducible across LLVM
/// versions when the pass does not change.
std::unique_ptr<RandomNumberGenerator> createRNG(const StringRef Name) const;
/// Return true if size-info optimization remark is enabled, false
/// otherwise.
bool shouldEmitInstrCountChangedRemark() {
return getContext().getDiagHandlerPtr()->isAnalysisRemarkEnabled(
"size-info");
}
/// @}
/// @name Module Level Mutators
/// @{
/// Set the module identifier.
void setModuleIdentifier(StringRef ID) { ModuleID = std::string(ID); }
/// Set the module's original source file name.
void setSourceFileName(StringRef Name) { SourceFileName = std::string(Name); }
/// Set the data layout
void setDataLayout(StringRef Desc);
void setDataLayout(const DataLayout &Other);
/// Set the target triple.
void setTargetTriple(StringRef T) { TargetTriple = std::string(T); }
/// Set the module-scope inline assembly blocks.
/// A trailing newline is added if the input doesn't have one.
void setModuleInlineAsm(StringRef Asm) {
GlobalScopeAsm = std::string(Asm);
if (!GlobalScopeAsm.empty() && GlobalScopeAsm.back() != '\n')
GlobalScopeAsm += '\n';
}
/// Append to the module-scope inline assembly blocks.
/// A trailing newline is added if the input doesn't have one.
void appendModuleInlineAsm(StringRef Asm) {
GlobalScopeAsm += Asm;
if (!GlobalScopeAsm.empty() && GlobalScopeAsm.back() != '\n')
GlobalScopeAsm += '\n';
}
/// @}
/// @name Generic Value Accessors
/// @{
/// Return the global value in the module with the specified name, of
/// arbitrary type. This method returns null if a global with the specified
/// name is not found.
GlobalValue *getNamedValue(StringRef Name) const;
/// Return the number of global values in the module.
unsigned getNumNamedValues() const;
/// Return a unique non-zero ID for the specified metadata kind. This ID is
/// uniqued across modules in the current LLVMContext.
unsigned getMDKindID(StringRef Name) const;
/// Populate client supplied SmallVector with the name for custom metadata IDs
/// registered in this LLVMContext.
void getMDKindNames(SmallVectorImpl<StringRef> &Result) const;
/// Populate client supplied SmallVector with the bundle tags registered in
/// this LLVMContext. The bundle tags are ordered by increasing bundle IDs.
/// \see LLVMContext::getOperandBundleTagID
void getOperandBundleTags(SmallVectorImpl<StringRef> &Result) const;
std::vector<StructType *> getIdentifiedStructTypes() const;
/// Return a unique name for an intrinsic whose mangling is based on an
/// unnamed type. The Proto represents the function prototype.
std::string getUniqueIntrinsicName(StringRef BaseName, Intrinsic::ID Id,
const FunctionType *Proto);
/// @}
/// @name Function Accessors
/// @{
/// Look up the specified function in the module symbol table. Four
/// possibilities:
/// 1. If it does not exist, add a prototype for the function and return it.
/// 2. Otherwise, if the existing function has the correct prototype, return
/// the existing function.
/// 3. Finally, the function exists but has the wrong prototype: return the
/// function with a constantexpr cast to the right prototype.
///
/// In all cases, the returned value is a FunctionCallee wrapper around the
/// 'FunctionType *T' passed in, as well as a 'Value*' either of the Function or
/// the bitcast to the function.
FunctionCallee getOrInsertFunction(StringRef Name, FunctionType *T,
AttributeList AttributeList);
FunctionCallee getOrInsertFunction(StringRef Name, FunctionType *T);
/// Look up the specified function in the module symbol table. If it does not
/// exist, add a prototype for the function and return it. This function
/// guarantees to return a constant of pointer to the specified function type
/// or a ConstantExpr BitCast of that type if the named function has a
/// different type. This version of the method takes a list of
/// function arguments, which makes it easier for clients to use.
template <typename... ArgsTy>
FunctionCallee getOrInsertFunction(StringRef Name,
AttributeList AttributeList, Type *RetTy,
ArgsTy... Args) {
SmallVector<Type*, sizeof...(ArgsTy)> ArgTys{Args...};
return getOrInsertFunction(Name,
FunctionType::get(RetTy, ArgTys, false),
AttributeList);
}
/// Same as above, but without the attributes.
template <typename... ArgsTy>
FunctionCallee getOrInsertFunction(StringRef Name, Type *RetTy,
ArgsTy... Args) {
return getOrInsertFunction(Name, AttributeList{}, RetTy, Args...);
}
// Avoid an incorrect ordering that'd otherwise compile incorrectly.
template <typename... ArgsTy>
FunctionCallee
getOrInsertFunction(StringRef Name, AttributeList AttributeList,
FunctionType *Invalid, ArgsTy... Args) = delete;
/// Look up the specified function in the module symbol table. If it does not
/// exist, return null.
Function *getFunction(StringRef Name) const;
/// @}
/// @name Global Variable Accessors
/// @{
/// Look up the specified global variable in the module symbol table. If it
/// does not exist, return null. If AllowInternal is set to true, this
/// function will return types that have InternalLinkage. By default, these
/// types are not returned.
GlobalVariable *getGlobalVariable(StringRef Name) const {
return getGlobalVariable(Name, false);
}
GlobalVariable *getGlobalVariable(StringRef Name, bool AllowInternal) const;
GlobalVariable *getGlobalVariable(StringRef Name,
bool AllowInternal = false) {
return static_cast<const Module *>(this)->getGlobalVariable(Name,
AllowInternal);
}
/// Return the global variable in the module with the specified name, of
/// arbitrary type. This method returns null if a global with the specified
/// name is not found.
const GlobalVariable *getNamedGlobal(StringRef Name) const {
return getGlobalVariable(Name, true);
}
GlobalVariable *getNamedGlobal(StringRef Name) {
return const_cast<GlobalVariable *>(
static_cast<const Module *>(this)->getNamedGlobal(Name));
}
/// Look up the specified global in the module symbol table.
/// If it does not exist, invoke a callback to create a declaration of the
/// global and return it. The global is constantexpr casted to the expected
/// type if necessary.
Constant *
getOrInsertGlobal(StringRef Name, Type *Ty,
function_ref<GlobalVariable *()> CreateGlobalCallback);
/// Look up the specified global in the module symbol table. If required, this
/// overload constructs the global variable using its constructor's defaults.
Constant *getOrInsertGlobal(StringRef Name, Type *Ty);
/// @}
/// @name Global Alias Accessors
/// @{
/// Return the global alias in the module with the specified name, of
/// arbitrary type. This method returns null if a global with the specified
/// name is not found.
GlobalAlias *getNamedAlias(StringRef Name) const;
/// @}
/// @name Global IFunc Accessors
/// @{
/// Return the global ifunc in the module with the specified name, of
/// arbitrary type. This method returns null if a global with the specified
/// name is not found.
GlobalIFunc *getNamedIFunc(StringRef Name) const;
/// @}
/// @name Named Metadata Accessors
/// @{
/// Return the first NamedMDNode in the module with the specified name. This
/// method returns null if a NamedMDNode with the specified name is not found.
NamedMDNode *getNamedMetadata(const Twine &Name) const;
/// Return the named MDNode in the module with the specified name. This method
/// returns a new NamedMDNode if a NamedMDNode with the specified name is not
/// found.
NamedMDNode *getOrInsertNamedMetadata(StringRef Name);
/// Remove the given NamedMDNode from this module and delete it.
void eraseNamedMetadata(NamedMDNode *NMD);
/// @}
/// @name Comdat Accessors
/// @{
/// Return the Comdat in the module with the specified name. It is created
/// if it didn't already exist.
Comdat *getOrInsertComdat(StringRef Name);
/// @}
/// @name Module Flags Accessors
/// @{
/// Returns the module flags in the provided vector.
void getModuleFlagsMetadata(SmallVectorImpl<ModuleFlagEntry> &Flags) const;
/// Return the corresponding value if Key appears in module flags, otherwise
/// return null.
Metadata *getModuleFlag(StringRef Key) const;
/// Returns the NamedMDNode in the module that represents module-level flags.
/// This method returns null if there are no module-level flags.
NamedMDNode *getModuleFlagsMetadata() const;
/// Returns the NamedMDNode in the module that represents module-level flags.
/// If module-level flags aren't found, it creates the named metadata that
/// contains them.
NamedMDNode *getOrInsertModuleFlagsMetadata();
/// Add a module-level flag to the module-level flags metadata. It will create
/// the module-level flags named metadata if it doesn't already exist.
void addModuleFlag(ModFlagBehavior Behavior, StringRef Key, Metadata *Val);
void addModuleFlag(ModFlagBehavior Behavior, StringRef Key, Constant *Val);
void addModuleFlag(ModFlagBehavior Behavior, StringRef Key, uint32_t Val);
void addModuleFlag(MDNode *Node);
/// Like addModuleFlag but replaces the old module flag if it already exists.
void setModuleFlag(ModFlagBehavior Behavior, StringRef Key, Metadata *Val);
/// @}
/// @name Materialization
/// @{
/// Sets the GVMaterializer to GVM. This module must not yet have a
/// Materializer. To reset the materializer for a module that already has one,
/// call materializeAll first. Destroying this module will destroy
/// its materializer without materializing any more GlobalValues. Without
/// destroying the Module, there is no way to detach or destroy a materializer
/// without materializing all the GVs it controls, to avoid leaving orphan
/// unmaterialized GVs.
void setMaterializer(GVMaterializer *GVM);
/// Retrieves the GVMaterializer, if any, for this Module.
GVMaterializer *getMaterializer() const { return Materializer.get(); }
bool isMaterialized() const { return !getMaterializer(); }
/// Make sure the GlobalValue is fully read.
llvm::Error materialize(GlobalValue *GV);
/// Make sure all GlobalValues in this Module are fully read and clear the
/// Materializer.
llvm::Error materializeAll();
llvm::Error materializeMetadata();
/// @}
/// @name Direct access to the globals list, functions list, and symbol table
/// @{
/// Get the Module's list of global variables (constant).
const GlobalListType &getGlobalList() const { return GlobalList; }
/// Get the Module's list of global variables.
GlobalListType &getGlobalList() { return GlobalList; }
static GlobalListType Module::*getSublistAccess(GlobalVariable*) {
return &Module::GlobalList;
}
/// Get the Module's list of functions (constant).
const FunctionListType &getFunctionList() const { return FunctionList; }
/// Get the Module's list of functions.
FunctionListType &getFunctionList() { return FunctionList; }
static FunctionListType Module::*getSublistAccess(Function*) {
return &Module::FunctionList;
}
/// Get the Module's list of aliases (constant).
const AliasListType &getAliasList() const { return AliasList; }
/// Get the Module's list of aliases.
AliasListType &getAliasList() { return AliasList; }
static AliasListType Module::*getSublistAccess(GlobalAlias*) {
return &Module::AliasList;
}
/// Get the Module's list of ifuncs (constant).
const IFuncListType &getIFuncList() const { return IFuncList; }
/// Get the Module's list of ifuncs.
IFuncListType &getIFuncList() { return IFuncList; }
static IFuncListType Module::*getSublistAccess(GlobalIFunc*) {
return &Module::IFuncList;
}
/// Get the Module's list of named metadata (constant).
const NamedMDListType &getNamedMDList() const { return NamedMDList; }
/// Get the Module's list of named metadata.
NamedMDListType &getNamedMDList() { return NamedMDList; }
static NamedMDListType Module::*getSublistAccess(NamedMDNode*) {
return &Module::NamedMDList;
}
/// Get the symbol table of global variable and function identifiers
const ValueSymbolTable &getValueSymbolTable() const { return *ValSymTab; }
/// Get the Module's symbol table of global variable and function identifiers.
ValueSymbolTable &getValueSymbolTable() { return *ValSymTab; }
/// Get the Module's symbol table for COMDATs (constant).
const ComdatSymTabType &getComdatSymbolTable() const { return ComdatSymTab; }
/// Get the Module's symbol table for COMDATs.
ComdatSymTabType &getComdatSymbolTable() { return ComdatSymTab; }
/// @}
/// @name Global Variable Iteration
/// @{
global_iterator global_begin() { return GlobalList.begin(); }
const_global_iterator global_begin() const { return GlobalList.begin(); }
global_iterator global_end () { return GlobalList.end(); }
const_global_iterator global_end () const { return GlobalList.end(); }
size_t global_size () const { return GlobalList.size(); }
bool global_empty() const { return GlobalList.empty(); }
iterator_range<global_iterator> globals() {
return make_range(global_begin(), global_end());
}
iterator_range<const_global_iterator> globals() const {
return make_range(global_begin(), global_end());
}
/// @}
/// @name Function Iteration
/// @{
iterator begin() { return FunctionList.begin(); }
const_iterator begin() const { return FunctionList.begin(); }
iterator end () { return FunctionList.end(); }
const_iterator end () const { return FunctionList.end(); }
reverse_iterator rbegin() { return FunctionList.rbegin(); }
const_reverse_iterator rbegin() const{ return FunctionList.rbegin(); }
reverse_iterator rend() { return FunctionList.rend(); }
const_reverse_iterator rend() const { return FunctionList.rend(); }
size_t size() const { return FunctionList.size(); }
bool empty() const { return FunctionList.empty(); }
iterator_range<iterator> functions() {
return make_range(begin(), end());
}
iterator_range<const_iterator> functions() const {
return make_range(begin(), end());
}
/// @}
/// @name Alias Iteration
/// @{
alias_iterator alias_begin() { return AliasList.begin(); }
const_alias_iterator alias_begin() const { return AliasList.begin(); }
alias_iterator alias_end () { return AliasList.end(); }
const_alias_iterator alias_end () const { return AliasList.end(); }
size_t alias_size () const { return AliasList.size(); }
bool alias_empty() const { return AliasList.empty(); }
iterator_range<alias_iterator> aliases() {
return make_range(alias_begin(), alias_end());
}
iterator_range<const_alias_iterator> aliases() const {
return make_range(alias_begin(), alias_end());
}
/// @}
/// @name IFunc Iteration
/// @{
ifunc_iterator ifunc_begin() { return IFuncList.begin(); }
const_ifunc_iterator ifunc_begin() const { return IFuncList.begin(); }
ifunc_iterator ifunc_end () { return IFuncList.end(); }
const_ifunc_iterator ifunc_end () const { return IFuncList.end(); }
size_t ifunc_size () const { return IFuncList.size(); }
bool ifunc_empty() const { return IFuncList.empty(); }
iterator_range<ifunc_iterator> ifuncs() {
return make_range(ifunc_begin(), ifunc_end());
}
iterator_range<const_ifunc_iterator> ifuncs() const {
return make_range(ifunc_begin(), ifunc_end());
}
/// @}
/// @name Convenience iterators
/// @{
using global_object_iterator =
concat_iterator<GlobalObject, iterator, global_iterator>;
using const_global_object_iterator =
concat_iterator<const GlobalObject, const_iterator,
const_global_iterator>;
iterator_range<global_object_iterator> global_objects();
iterator_range<const_global_object_iterator> global_objects() const;
using global_value_iterator =
concat_iterator<GlobalValue, iterator, global_iterator, alias_iterator,
ifunc_iterator>;
using const_global_value_iterator =
concat_iterator<const GlobalValue, const_iterator, const_global_iterator,
const_alias_iterator, const_ifunc_iterator>;
iterator_range<global_value_iterator> global_values();
iterator_range<const_global_value_iterator> global_values() const;
/// @}
/// @name Named Metadata Iteration
/// @{
named_metadata_iterator named_metadata_begin() { return NamedMDList.begin(); }
const_named_metadata_iterator named_metadata_begin() const {
return NamedMDList.begin();
}
named_metadata_iterator named_metadata_end() { return NamedMDList.end(); }
const_named_metadata_iterator named_metadata_end() const {
return NamedMDList.end();
}
size_t named_metadata_size() const { return NamedMDList.size(); }
bool named_metadata_empty() const { return NamedMDList.empty(); }
iterator_range<named_metadata_iterator> named_metadata() {
return make_range(named_metadata_begin(), named_metadata_end());
}
iterator_range<const_named_metadata_iterator> named_metadata() const {
return make_range(named_metadata_begin(), named_metadata_end());
}
/// An iterator for DICompileUnits that skips those marked NoDebug.
class debug_compile_units_iterator {
NamedMDNode *CUs;
unsigned Idx;
void SkipNoDebugCUs();
public:
using iterator_category = std::input_iterator_tag;
using value_type = DICompileUnit *;
using difference_type = std::ptrdiff_t;
using pointer = value_type *;
using reference = value_type &;
explicit debug_compile_units_iterator(NamedMDNode *CUs, unsigned Idx)
: CUs(CUs), Idx(Idx) {
SkipNoDebugCUs();
}
debug_compile_units_iterator &operator++() {
++Idx;
SkipNoDebugCUs();
return *this;
}
debug_compile_units_iterator operator++(int) {
debug_compile_units_iterator T(*this);
++Idx;
return T;
}
bool operator==(const debug_compile_units_iterator &I) const {
return Idx == I.Idx;
}
bool operator!=(const debug_compile_units_iterator &I) const {
return Idx != I.Idx;
}
DICompileUnit *operator*() const;
DICompileUnit *operator->() const;
};
debug_compile_units_iterator debug_compile_units_begin() const {
auto *CUs = getNamedMetadata("llvm.dbg.cu");
return debug_compile_units_iterator(CUs, 0);
}
debug_compile_units_iterator debug_compile_units_end() const {
auto *CUs = getNamedMetadata("llvm.dbg.cu");
return debug_compile_units_iterator(CUs, CUs ? CUs->getNumOperands() : 0);
}
/// Return an iterator for all DICompileUnits listed in this Module's
/// llvm.dbg.cu named metadata node and aren't explicitly marked as
/// NoDebug.
iterator_range<debug_compile_units_iterator> debug_compile_units() const {
auto *CUs = getNamedMetadata("llvm.dbg.cu");
return make_range(
debug_compile_units_iterator(CUs, 0),
debug_compile_units_iterator(CUs, CUs ? CUs->getNumOperands() : 0));
}
/// @}
/// Destroy ConstantArrays in LLVMContext if they are not used.
/// ConstantArrays constructed during linking can cause quadratic memory
/// explosion. Releasing all unused constants can cause a 20% LTO compile-time
/// slowdown for a large application.
///
/// NOTE: Constants are currently owned by LLVMContext. This can then only
/// be called where all uses of the LLVMContext are understood.
void dropTriviallyDeadConstantArrays();
/// @name Utility functions for printing and dumping Module objects
/// @{
/// Print the module to an output stream with an optional
/// AssemblyAnnotationWriter. If \c ShouldPreserveUseListOrder, then include
/// uselistorder directives so that use-lists can be recreated when reading
/// the assembly.
void print(raw_ostream &OS, AssemblyAnnotationWriter *AAW,
bool ShouldPreserveUseListOrder = false,
bool IsForDebug = false) const;
/// Dump the module to stderr (for debugging).
void dump() const;
/// This function causes all the subinstructions to "let go" of all references
/// that they are maintaining. This allows one to 'delete' a whole class at
/// a time, even though there may be circular references... first all
/// references are dropped, and all use counts go to zero. Then everything
/// is delete'd for real. Note that no operations are valid on an object
/// that has "dropped all references", except operator delete.
void dropAllReferences();
/// @}
/// @name Utility functions for querying Debug information.
/// @{
/// Returns the Number of Register ParametersDwarf Version by checking
/// module flags.
unsigned getNumberRegisterParameters() const;
/// Returns the Dwarf Version by checking module flags.
unsigned getDwarfVersion() const;
/// Returns the DWARF format by checking module flags.
bool isDwarf64() const;
/// Returns the CodeView Version by checking module flags.
/// Returns zero if not present in module.
unsigned getCodeViewFlag() const;
/// @}
/// @name Utility functions for querying and setting PIC level
/// @{
/// Returns the PIC level (small or large model)
PICLevel::Level getPICLevel() const;
/// Set the PIC level (small or large model)
void setPICLevel(PICLevel::Level PL);
/// @}
/// @}
/// @name Utility functions for querying and setting PIE level
/// @{
/// Returns the PIE level (small or large model)
PIELevel::Level getPIELevel() const;
/// Set the PIE level (small or large model)
void setPIELevel(PIELevel::Level PL);
/// @}
/// @}
/// @name Utility function for querying and setting code model
/// @{
/// Returns the code model (tiny, small, kernel, medium or large model)
Optional<CodeModel::Model> getCodeModel() const;
/// Set the code model (tiny, small, kernel, medium or large)
void setCodeModel(CodeModel::Model CL);
/// @}
/// @name Utility functions for querying and setting PGO summary
/// @{
/// Attach profile summary metadata to this module.
void setProfileSummary(Metadata *M, ProfileSummary::Kind Kind);
/// Returns profile summary metadata. When IsCS is true, use the context
/// sensitive profile summary.
Metadata *getProfileSummary(bool IsCS) const;
/// @}
/// Returns whether semantic interposition is to be respected.
bool getSemanticInterposition() const;
/// Set whether semantic interposition is to be respected.
void setSemanticInterposition(bool);
/// Returns true if PLT should be avoided for RTLib calls.
bool getRtLibUseGOT() const;
/// Set that PLT should be avoid for RTLib calls.
void setRtLibUseGOT();
/// Get/set whether synthesized functions should get the uwtable attribute.
bool getUwtable() const;
void setUwtable();
/// Get/set whether synthesized functions should get the "frame-pointer"
/// attribute.
FramePointerKind getFramePointer() const;
void setFramePointer(FramePointerKind Kind);
/// Get/set what kind of stack protector guard to use.
StringRef getStackProtectorGuard() const;
void setStackProtectorGuard(StringRef Kind);
/// Get/set which register to use as the stack protector guard register. The
/// empty string is equivalent to "global". Other values may be "tls" or
/// "sysreg".
StringRef getStackProtectorGuardReg() const;
void setStackProtectorGuardReg(StringRef Reg);
/// Get/set what offset from the stack protector to use.
int getStackProtectorGuardOffset() const;
void setStackProtectorGuardOffset(int Offset);
/// Get/set the stack alignment overridden from the default.
unsigned getOverrideStackAlignment() const;
void setOverrideStackAlignment(unsigned Align);
/// @name Utility functions for querying and setting the build SDK version
/// @{
/// Attach a build SDK version metadata to this module.
void setSDKVersion(const VersionTuple &V);
/// Get the build SDK version metadata.
///
/// An empty version is returned if no such metadata is attached.
VersionTuple getSDKVersion() const;
/// @}
/// Take ownership of the given memory buffer.
void setOwnedMemoryBuffer(std::unique_ptr<MemoryBuffer> MB);
/// Set the partial sample profile ratio in the profile summary module flag,
/// if applicable.
void setPartialSampleProfileRatio(const ModuleSummaryIndex &Index);
};
/// Given "llvm.used" or "llvm.compiler.used" as a global name, collect the
/// initializer elements of that global in a SmallVector and return the global
/// itself.
GlobalVariable *collectUsedGlobalVariables(const Module &M,
SmallVectorImpl<GlobalValue *> &Vec,
bool CompilerUsed);
/// An raw_ostream inserter for modules.
inline raw_ostream &operator<<(raw_ostream &O, const Module &M) {
M.print(O, nullptr);
return O;
}
// Create wrappers for C Binding types (see CBindingWrapping.h).
DEFINE_SIMPLE_CONVERSION_FUNCTIONS(Module, LLVMModuleRef)
/* LLVMModuleProviderRef exists for historical reasons, but now just holds a
* Module.
*/
inline Module *unwrap(LLVMModuleProviderRef MP) {
return reinterpret_cast<Module*>(MP);
}
} // end namespace llvm
#endif // LLVM_IR_MODULE_H