1
0
mirror of https://github.com/RPCS3/llvm-mirror.git synced 2024-11-22 02:33:06 +01:00
llvm-mirror/include/llvm/LTO/LTO.h
Fangrui Song 2174d3b961 [LTO] Add SelectionKind to IRSymtab and use it in ld.lld/LLVMgold
In PGO, a C++ external linkage function `foo` has a private counter
`__profc_foo` and a private `__profd_foo` in a `comdat nodeduplicate`.

A `__attribute__((weak))` function `foo` has a weak hidden counter `__profc_foo`
and a private `__profd_foo` in a `comdat nodeduplicate`.

In `ld.lld a.o b.o`, say a.o defines an external linkage `foo` and b.o
defines a weak `foo`. Currently we treat `comdat nodeduplicate` as `comdat any`,
ld.lld will incorrectly consider `b.o:__profc_foo` non-prevailing.  In the worst
case when `b.o:__profd_foo` is retained and `b.o:__profc_foo` isn't, there will
be dangling reference causing an `undefined hidden symbol` error.

Add SelectionKind to `Comdat` in IRSymtab and let linkers ignore nodeduplicate comdat.

Differential Revision: https://reviews.llvm.org/D106228
2021-07-20 13:22:00 -07:00

479 lines
19 KiB
C++

//===-LTO.h - LLVM Link Time Optimizer ------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file declares functions and classes used to support LTO. It is intended
// to be used both by LTO classes as well as by clients (gold-plugin) that
// don't utilize the LTO code generator interfaces.
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_LTO_LTO_H
#define LLVM_LTO_LTO_H
#include "llvm/ADT/MapVector.h"
#include "llvm/ADT/StringMap.h"
#include "llvm/Bitcode/BitcodeReader.h"
#include "llvm/IR/ModuleSummaryIndex.h"
#include "llvm/LTO/Config.h"
#include "llvm/Object/IRSymtab.h"
#include "llvm/Support/Error.h"
#include "llvm/Support/thread.h"
#include "llvm/Transforms/IPO/FunctionImport.h"
namespace llvm {
class Error;
class IRMover;
class LLVMContext;
class MemoryBufferRef;
class Module;
class raw_pwrite_stream;
class Target;
class ToolOutputFile;
/// Resolve linkage for prevailing symbols in the \p Index. Linkage changes
/// recorded in the index and the ThinLTO backends must apply the changes to
/// the module via thinLTOResolvePrevailingInModule.
///
/// This is done for correctness (if value exported, ensure we always
/// emit a copy), and compile-time optimization (allow drop of duplicates).
void thinLTOResolvePrevailingInIndex(
const lto::Config &C, ModuleSummaryIndex &Index,
function_ref<bool(GlobalValue::GUID, const GlobalValueSummary *)>
isPrevailing,
function_ref<void(StringRef, GlobalValue::GUID, GlobalValue::LinkageTypes)>
recordNewLinkage,
const DenseSet<GlobalValue::GUID> &GUIDPreservedSymbols);
/// Update the linkages in the given \p Index to mark exported values
/// as external and non-exported values as internal. The ThinLTO backends
/// must apply the changes to the Module via thinLTOInternalizeModule.
void thinLTOInternalizeAndPromoteInIndex(
ModuleSummaryIndex &Index,
function_ref<bool(StringRef, ValueInfo)> isExported,
function_ref<bool(GlobalValue::GUID, const GlobalValueSummary *)>
isPrevailing);
/// Computes a unique hash for the Module considering the current list of
/// export/import and other global analysis results.
/// The hash is produced in \p Key.
void computeLTOCacheKey(
SmallString<40> &Key, const lto::Config &Conf,
const ModuleSummaryIndex &Index, StringRef ModuleID,
const FunctionImporter::ImportMapTy &ImportList,
const FunctionImporter::ExportSetTy &ExportList,
const std::map<GlobalValue::GUID, GlobalValue::LinkageTypes> &ResolvedODR,
const GVSummaryMapTy &DefinedGlobals,
const std::set<GlobalValue::GUID> &CfiFunctionDefs = {},
const std::set<GlobalValue::GUID> &CfiFunctionDecls = {});
namespace lto {
/// Given the original \p Path to an output file, replace any path
/// prefix matching \p OldPrefix with \p NewPrefix. Also, create the
/// resulting directory if it does not yet exist.
std::string getThinLTOOutputFile(const std::string &Path,
const std::string &OldPrefix,
const std::string &NewPrefix);
/// Setup optimization remarks.
Expected<std::unique_ptr<ToolOutputFile>> setupLLVMOptimizationRemarks(
LLVMContext &Context, StringRef RemarksFilename, StringRef RemarksPasses,
StringRef RemarksFormat, bool RemarksWithHotness,
Optional<uint64_t> RemarksHotnessThreshold = 0, int Count = -1);
/// Setups the output file for saving statistics.
Expected<std::unique_ptr<ToolOutputFile>>
setupStatsFile(StringRef StatsFilename);
/// Produces a container ordering for optimal multi-threaded processing. Returns
/// ordered indices to elements in the input array.
std::vector<int> generateModulesOrdering(ArrayRef<BitcodeModule *> R);
class LTO;
struct SymbolResolution;
class ThinBackendProc;
/// An input file. This is a symbol table wrapper that only exposes the
/// information that an LTO client should need in order to do symbol resolution.
class InputFile {
public:
class Symbol;
private:
// FIXME: Remove LTO class friendship once we have bitcode symbol tables.
friend LTO;
InputFile() = default;
std::vector<BitcodeModule> Mods;
SmallVector<char, 0> Strtab;
std::vector<Symbol> Symbols;
// [begin, end) for each module
std::vector<std::pair<size_t, size_t>> ModuleSymIndices;
StringRef TargetTriple, SourceFileName, COFFLinkerOpts;
std::vector<StringRef> DependentLibraries;
std::vector<std::pair<StringRef, Comdat::SelectionKind>> ComdatTable;
public:
~InputFile();
/// Create an InputFile.
static Expected<std::unique_ptr<InputFile>> create(MemoryBufferRef Object);
/// The purpose of this class is to only expose the symbol information that an
/// LTO client should need in order to do symbol resolution.
class Symbol : irsymtab::Symbol {
friend LTO;
public:
Symbol(const irsymtab::Symbol &S) : irsymtab::Symbol(S) {}
using irsymtab::Symbol::isUndefined;
using irsymtab::Symbol::isCommon;
using irsymtab::Symbol::isWeak;
using irsymtab::Symbol::isIndirect;
using irsymtab::Symbol::getName;
using irsymtab::Symbol::getIRName;
using irsymtab::Symbol::getVisibility;
using irsymtab::Symbol::canBeOmittedFromSymbolTable;
using irsymtab::Symbol::isTLS;
using irsymtab::Symbol::getComdatIndex;
using irsymtab::Symbol::getCommonSize;
using irsymtab::Symbol::getCommonAlignment;
using irsymtab::Symbol::getCOFFWeakExternalFallback;
using irsymtab::Symbol::getSectionName;
using irsymtab::Symbol::isExecutable;
using irsymtab::Symbol::isUsed;
};
/// A range over the symbols in this InputFile.
ArrayRef<Symbol> symbols() const { return Symbols; }
/// Returns linker options specified in the input file.
StringRef getCOFFLinkerOpts() const { return COFFLinkerOpts; }
/// Returns dependent library specifiers from the input file.
ArrayRef<StringRef> getDependentLibraries() const { return DependentLibraries; }
/// Returns the path to the InputFile.
StringRef getName() const;
/// Returns the input file's target triple.
StringRef getTargetTriple() const { return TargetTriple; }
/// Returns the source file path specified at compile time.
StringRef getSourceFileName() const { return SourceFileName; }
// Returns a table with all the comdats used by this file.
ArrayRef<std::pair<StringRef, Comdat::SelectionKind>> getComdatTable() const {
return ComdatTable;
}
// Returns the only BitcodeModule from InputFile.
BitcodeModule &getSingleBitcodeModule();
private:
ArrayRef<Symbol> module_symbols(unsigned I) const {
const auto &Indices = ModuleSymIndices[I];
return {Symbols.data() + Indices.first, Symbols.data() + Indices.second};
}
};
/// This class wraps an output stream for a native object. Most clients should
/// just be able to return an instance of this base class from the stream
/// callback, but if a client needs to perform some action after the stream is
/// written to, that can be done by deriving from this class and overriding the
/// destructor.
class NativeObjectStream {
public:
NativeObjectStream(std::unique_ptr<raw_pwrite_stream> OS) : OS(std::move(OS)) {}
std::unique_ptr<raw_pwrite_stream> OS;
virtual ~NativeObjectStream() = default;
};
/// This type defines the callback to add a native object that is generated on
/// the fly.
///
/// Stream callbacks must be thread safe.
using AddStreamFn =
std::function<std::unique_ptr<NativeObjectStream>(unsigned Task)>;
/// This is the type of a native object cache. To request an item from the
/// cache, pass a unique string as the Key. For hits, the cached file will be
/// added to the link and this function will return AddStreamFn(). For misses,
/// the cache will return a stream callback which must be called at most once to
/// produce content for the stream. The native object stream produced by the
/// stream callback will add the file to the link after the stream is written
/// to.
///
/// Clients generally look like this:
///
/// if (AddStreamFn AddStream = Cache(Task, Key))
/// ProduceContent(AddStream);
using NativeObjectCache =
std::function<AddStreamFn(unsigned Task, StringRef Key)>;
/// A ThinBackend defines what happens after the thin-link phase during ThinLTO.
/// The details of this type definition aren't important; clients can only
/// create a ThinBackend using one of the create*ThinBackend() functions below.
using ThinBackend = std::function<std::unique_ptr<ThinBackendProc>(
const Config &C, ModuleSummaryIndex &CombinedIndex,
StringMap<GVSummaryMapTy> &ModuleToDefinedGVSummaries,
AddStreamFn AddStream, NativeObjectCache Cache)>;
/// This ThinBackend runs the individual backend jobs in-process.
/// The default value means to use one job per hardware core (not hyper-thread).
ThinBackend createInProcessThinBackend(ThreadPoolStrategy Parallelism);
/// This ThinBackend writes individual module indexes to files, instead of
/// running the individual backend jobs. This backend is for distributed builds
/// where separate processes will invoke the real backends.
///
/// To find the path to write the index to, the backend checks if the path has a
/// prefix of OldPrefix; if so, it replaces that prefix with NewPrefix. It then
/// appends ".thinlto.bc" and writes the index to that path. If
/// ShouldEmitImportsFiles is true it also writes a list of imported files to a
/// similar path with ".imports" appended instead.
/// LinkedObjectsFile is an output stream to write the list of object files for
/// the final ThinLTO linking. Can be nullptr.
/// OnWrite is callback which receives module identifier and notifies LTO user
/// that index file for the module (and optionally imports file) was created.
using IndexWriteCallback = std::function<void(const std::string &)>;
ThinBackend createWriteIndexesThinBackend(std::string OldPrefix,
std::string NewPrefix,
bool ShouldEmitImportsFiles,
raw_fd_ostream *LinkedObjectsFile,
IndexWriteCallback OnWrite);
/// This class implements a resolution-based interface to LLVM's LTO
/// functionality. It supports regular LTO, parallel LTO code generation and
/// ThinLTO. You can use it from a linker in the following way:
/// - Set hooks and code generation options (see lto::Config struct defined in
/// Config.h), and use the lto::Config object to create an lto::LTO object.
/// - Create lto::InputFile objects using lto::InputFile::create(), then use
/// the symbols() function to enumerate its symbols and compute a resolution
/// for each symbol (see SymbolResolution below).
/// - After the linker has visited each input file (and each regular object
/// file) and computed a resolution for each symbol, take each lto::InputFile
/// and pass it and an array of symbol resolutions to the add() function.
/// - Call the getMaxTasks() function to get an upper bound on the number of
/// native object files that LTO may add to the link.
/// - Call the run() function. This function will use the supplied AddStream
/// and Cache functions to add up to getMaxTasks() native object files to
/// the link.
class LTO {
friend InputFile;
public:
/// Create an LTO object. A default constructed LTO object has a reasonable
/// production configuration, but you can customize it by passing arguments to
/// this constructor.
/// FIXME: We do currently require the DiagHandler field to be set in Conf.
/// Until that is fixed, a Config argument is required.
LTO(Config Conf, ThinBackend Backend = nullptr,
unsigned ParallelCodeGenParallelismLevel = 1);
~LTO();
/// Add an input file to the LTO link, using the provided symbol resolutions.
/// The symbol resolutions must appear in the enumeration order given by
/// InputFile::symbols().
Error add(std::unique_ptr<InputFile> Obj, ArrayRef<SymbolResolution> Res);
/// Returns an upper bound on the number of tasks that the client may expect.
/// This may only be called after all IR object files have been added. For a
/// full description of tasks see LTOBackend.h.
unsigned getMaxTasks() const;
/// Runs the LTO pipeline. This function calls the supplied AddStream
/// function to add native object files to the link.
///
/// The Cache parameter is optional. If supplied, it will be used to cache
/// native object files and add them to the link.
///
/// The client will receive at most one callback (via either AddStream or
/// Cache) for each task identifier.
Error run(AddStreamFn AddStream, NativeObjectCache Cache = nullptr);
/// Static method that returns a list of libcall symbols that can be generated
/// by LTO but might not be visible from bitcode symbol table.
static ArrayRef<const char*> getRuntimeLibcallSymbols();
private:
Config Conf;
struct RegularLTOState {
RegularLTOState(unsigned ParallelCodeGenParallelismLevel,
const Config &Conf);
struct CommonResolution {
uint64_t Size = 0;
MaybeAlign Align;
/// Record if at least one instance of the common was marked as prevailing
bool Prevailing = false;
};
std::map<std::string, CommonResolution> Commons;
unsigned ParallelCodeGenParallelismLevel;
LTOLLVMContext Ctx;
std::unique_ptr<Module> CombinedModule;
std::unique_ptr<IRMover> Mover;
// This stores the information about a regular LTO module that we have added
// to the link. It will either be linked immediately (for modules without
// summaries) or after summary-based dead stripping (for modules with
// summaries).
struct AddedModule {
std::unique_ptr<Module> M;
std::vector<GlobalValue *> Keep;
};
std::vector<AddedModule> ModsWithSummaries;
bool EmptyCombinedModule = true;
} RegularLTO;
using ModuleMapType = MapVector<StringRef, BitcodeModule>;
struct ThinLTOState {
ThinLTOState(ThinBackend Backend);
ThinBackend Backend;
ModuleSummaryIndex CombinedIndex;
// The full set of bitcode modules in input order.
ModuleMapType ModuleMap;
// The bitcode modules to compile, if specified by the LTO Config.
Optional<ModuleMapType> ModulesToCompile;
DenseMap<GlobalValue::GUID, StringRef> PrevailingModuleForGUID;
} ThinLTO;
// The global resolution for a particular (mangled) symbol name. This is in
// particular necessary to track whether each symbol can be internalized.
// Because any input file may introduce a new cross-partition reference, we
// cannot make any final internalization decisions until all input files have
// been added and the client has called run(). During run() we apply
// internalization decisions either directly to the module (for regular LTO)
// or to the combined index (for ThinLTO).
struct GlobalResolution {
/// The unmangled name of the global.
std::string IRName;
/// Keep track if the symbol is visible outside of a module with a summary
/// (i.e. in either a regular object or a regular LTO module without a
/// summary).
bool VisibleOutsideSummary = false;
/// The symbol was exported dynamically, and therefore could be referenced
/// by a shared library not visible to the linker.
bool ExportDynamic = false;
bool UnnamedAddr = true;
/// True if module contains the prevailing definition.
bool Prevailing = false;
/// Returns true if module contains the prevailing definition and symbol is
/// an IR symbol. For example when module-level inline asm block is used,
/// symbol can be prevailing in module but have no IR name.
bool isPrevailingIRSymbol() const { return Prevailing && !IRName.empty(); }
/// This field keeps track of the partition number of this global. The
/// regular LTO object is partition 0, while each ThinLTO object has its own
/// partition number from 1 onwards.
///
/// Any global that is defined or used by more than one partition, or that
/// is referenced externally, may not be internalized.
///
/// Partitions generally have a one-to-one correspondence with tasks, except
/// that we use partition 0 for all parallel LTO code generation partitions.
/// Any partitioning of the combined LTO object is done internally by the
/// LTO backend.
unsigned Partition = Unknown;
/// Special partition numbers.
enum : unsigned {
/// A partition number has not yet been assigned to this global.
Unknown = -1u,
/// This global is either used by more than one partition or has an
/// external reference, and therefore cannot be internalized.
External = -2u,
/// The RegularLTO partition
RegularLTO = 0,
};
};
// Global mapping from mangled symbol names to resolutions.
StringMap<GlobalResolution> GlobalResolutions;
void addModuleToGlobalRes(ArrayRef<InputFile::Symbol> Syms,
ArrayRef<SymbolResolution> Res, unsigned Partition,
bool InSummary);
// These functions take a range of symbol resolutions [ResI, ResE) and consume
// the resolutions used by a single input module by incrementing ResI. After
// these functions return, [ResI, ResE) will refer to the resolution range for
// the remaining modules in the InputFile.
Error addModule(InputFile &Input, unsigned ModI,
const SymbolResolution *&ResI, const SymbolResolution *ResE);
Expected<RegularLTOState::AddedModule>
addRegularLTO(BitcodeModule BM, ArrayRef<InputFile::Symbol> Syms,
const SymbolResolution *&ResI, const SymbolResolution *ResE);
Error linkRegularLTO(RegularLTOState::AddedModule Mod,
bool LivenessFromIndex);
Error addThinLTO(BitcodeModule BM, ArrayRef<InputFile::Symbol> Syms,
const SymbolResolution *&ResI, const SymbolResolution *ResE);
Error runRegularLTO(AddStreamFn AddStream);
Error runThinLTO(AddStreamFn AddStream, NativeObjectCache Cache,
const DenseSet<GlobalValue::GUID> &GUIDPreservedSymbols);
Error checkPartiallySplit();
mutable bool CalledGetMaxTasks = false;
// Use Optional to distinguish false from not yet initialized.
Optional<bool> EnableSplitLTOUnit;
// Identify symbols exported dynamically, and that therefore could be
// referenced by a shared library not visible to the linker.
DenseSet<GlobalValue::GUID> DynamicExportSymbols;
};
/// The resolution for a symbol. The linker must provide a SymbolResolution for
/// each global symbol based on its internal resolution of that symbol.
struct SymbolResolution {
SymbolResolution()
: Prevailing(0), FinalDefinitionInLinkageUnit(0), VisibleToRegularObj(0),
ExportDynamic(0), LinkerRedefined(0) {}
/// The linker has chosen this definition of the symbol.
unsigned Prevailing : 1;
/// The definition of this symbol is unpreemptable at runtime and is known to
/// be in this linkage unit.
unsigned FinalDefinitionInLinkageUnit : 1;
/// The definition of this symbol is visible outside of the LTO unit.
unsigned VisibleToRegularObj : 1;
/// The symbol was exported dynamically, and therefore could be referenced
/// by a shared library not visible to the linker.
unsigned ExportDynamic : 1;
/// Linker redefined version of the symbol which appeared in -wrap or -defsym
/// linker option.
unsigned LinkerRedefined : 1;
};
} // namespace lto
} // namespace llvm
#endif