1
0
mirror of https://github.com/RPCS3/llvm-mirror.git synced 2024-10-18 10:32:48 +02:00
llvm-mirror/lib/CodeGen/VirtRegMap.cpp
Tomas Matheson bb84fe4048 [CodeGen][regalloc] Don't align stack slots if the stack can't be realigned
Register allocation may spill virtual registers to the stack, which can
increase alignment requirements of the stack frame. If the the function
did not require stack realignment before register allocation, the
registers required to do so may not be reserved/available. This results
in a stack frame that requires realignment but can not be realigned.

Instead, only increase the alignment of the stack if we are still able
to realign.

The register SpillAlignment will be ignored if we can't realign, and the
backend will be responsible for emitting the correct unaligned loads and
stores. This seems to be the assumed behaviour already, e.g.
ARMBaseInstrInfo::storeRegToStackSlot and X86InstrInfo::storeRegToStackSlot
are both `canRealignStack` aware.

Differential Revision: https://reviews.llvm.org/D103602
2021-06-11 16:49:12 +01:00

656 lines
23 KiB
C++

//===- llvm/CodeGen/VirtRegMap.cpp - Virtual Register Map -----------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file implements the VirtRegMap class.
//
// It also contains implementations of the Spiller interface, which, given a
// virtual register map and a machine function, eliminates all virtual
// references by replacing them with physical register references - adding spill
// code as necessary.
//
//===----------------------------------------------------------------------===//
#include "llvm/CodeGen/VirtRegMap.h"
#include "LiveDebugVariables.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/CodeGen/LiveInterval.h"
#include "llvm/CodeGen/LiveIntervals.h"
#include "llvm/CodeGen/LiveStacks.h"
#include "llvm/CodeGen/MachineBasicBlock.h"
#include "llvm/CodeGen/MachineFrameInfo.h"
#include "llvm/CodeGen/MachineFunction.h"
#include "llvm/CodeGen/MachineFunctionPass.h"
#include "llvm/CodeGen/MachineInstr.h"
#include "llvm/CodeGen/MachineOperand.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/CodeGen/SlotIndexes.h"
#include "llvm/CodeGen/TargetFrameLowering.h"
#include "llvm/CodeGen/TargetInstrInfo.h"
#include "llvm/CodeGen/TargetOpcodes.h"
#include "llvm/CodeGen/TargetRegisterInfo.h"
#include "llvm/CodeGen/TargetSubtargetInfo.h"
#include "llvm/Config/llvm-config.h"
#include "llvm/MC/LaneBitmask.h"
#include "llvm/Pass.h"
#include "llvm/Support/Compiler.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/raw_ostream.h"
#include <cassert>
#include <iterator>
#include <utility>
using namespace llvm;
#define DEBUG_TYPE "regalloc"
STATISTIC(NumSpillSlots, "Number of spill slots allocated");
STATISTIC(NumIdCopies, "Number of identity moves eliminated after rewriting");
//===----------------------------------------------------------------------===//
// VirtRegMap implementation
//===----------------------------------------------------------------------===//
char VirtRegMap::ID = 0;
INITIALIZE_PASS(VirtRegMap, "virtregmap", "Virtual Register Map", false, false)
bool VirtRegMap::runOnMachineFunction(MachineFunction &mf) {
MRI = &mf.getRegInfo();
TII = mf.getSubtarget().getInstrInfo();
TRI = mf.getSubtarget().getRegisterInfo();
MF = &mf;
Virt2PhysMap.clear();
Virt2StackSlotMap.clear();
Virt2SplitMap.clear();
Virt2ShapeMap.clear();
grow();
return false;
}
void VirtRegMap::grow() {
unsigned NumRegs = MF->getRegInfo().getNumVirtRegs();
Virt2PhysMap.resize(NumRegs);
Virt2StackSlotMap.resize(NumRegs);
Virt2SplitMap.resize(NumRegs);
}
void VirtRegMap::assignVirt2Phys(Register virtReg, MCPhysReg physReg) {
assert(virtReg.isVirtual() && Register::isPhysicalRegister(physReg));
assert(Virt2PhysMap[virtReg.id()] == NO_PHYS_REG &&
"attempt to assign physical register to already mapped "
"virtual register");
assert(!getRegInfo().isReserved(physReg) &&
"Attempt to map virtReg to a reserved physReg");
Virt2PhysMap[virtReg.id()] = physReg;
}
unsigned VirtRegMap::createSpillSlot(const TargetRegisterClass *RC) {
unsigned Size = TRI->getSpillSize(*RC);
Align Alignment = TRI->getSpillAlign(*RC);
// Set preferred alignment if we are still able to realign the stack
auto &ST = MF->getSubtarget();
Align CurrentAlign = ST.getFrameLowering()->getStackAlign();
if (Alignment > CurrentAlign && !ST.getRegisterInfo()->canRealignStack(*MF)) {
Alignment = CurrentAlign;
}
int SS = MF->getFrameInfo().CreateSpillStackObject(Size, Alignment);
++NumSpillSlots;
return SS;
}
bool VirtRegMap::hasPreferredPhys(Register VirtReg) const {
Register Hint = MRI->getSimpleHint(VirtReg);
if (!Hint.isValid())
return false;
if (Hint.isVirtual())
Hint = getPhys(Hint);
return Register(getPhys(VirtReg)) == Hint;
}
bool VirtRegMap::hasKnownPreference(Register VirtReg) const {
std::pair<unsigned, unsigned> Hint = MRI->getRegAllocationHint(VirtReg);
if (Register::isPhysicalRegister(Hint.second))
return true;
if (Register::isVirtualRegister(Hint.second))
return hasPhys(Hint.second);
return false;
}
int VirtRegMap::assignVirt2StackSlot(Register virtReg) {
assert(virtReg.isVirtual());
assert(Virt2StackSlotMap[virtReg.id()] == NO_STACK_SLOT &&
"attempt to assign stack slot to already spilled register");
const TargetRegisterClass* RC = MF->getRegInfo().getRegClass(virtReg);
return Virt2StackSlotMap[virtReg.id()] = createSpillSlot(RC);
}
void VirtRegMap::assignVirt2StackSlot(Register virtReg, int SS) {
assert(virtReg.isVirtual());
assert(Virt2StackSlotMap[virtReg.id()] == NO_STACK_SLOT &&
"attempt to assign stack slot to already spilled register");
assert((SS >= 0 ||
(SS >= MF->getFrameInfo().getObjectIndexBegin())) &&
"illegal fixed frame index");
Virt2StackSlotMap[virtReg.id()] = SS;
}
void VirtRegMap::print(raw_ostream &OS, const Module*) const {
OS << "********** REGISTER MAP **********\n";
for (unsigned i = 0, e = MRI->getNumVirtRegs(); i != e; ++i) {
unsigned Reg = Register::index2VirtReg(i);
if (Virt2PhysMap[Reg] != (unsigned)VirtRegMap::NO_PHYS_REG) {
OS << '[' << printReg(Reg, TRI) << " -> "
<< printReg(Virt2PhysMap[Reg], TRI) << "] "
<< TRI->getRegClassName(MRI->getRegClass(Reg)) << "\n";
}
}
for (unsigned i = 0, e = MRI->getNumVirtRegs(); i != e; ++i) {
unsigned Reg = Register::index2VirtReg(i);
if (Virt2StackSlotMap[Reg] != VirtRegMap::NO_STACK_SLOT) {
OS << '[' << printReg(Reg, TRI) << " -> fi#" << Virt2StackSlotMap[Reg]
<< "] " << TRI->getRegClassName(MRI->getRegClass(Reg)) << "\n";
}
}
OS << '\n';
}
#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
LLVM_DUMP_METHOD void VirtRegMap::dump() const {
print(dbgs());
}
#endif
//===----------------------------------------------------------------------===//
// VirtRegRewriter
//===----------------------------------------------------------------------===//
//
// The VirtRegRewriter is the last of the register allocator passes.
// It rewrites virtual registers to physical registers as specified in the
// VirtRegMap analysis. It also updates live-in information on basic blocks
// according to LiveIntervals.
//
namespace {
class VirtRegRewriter : public MachineFunctionPass {
MachineFunction *MF;
const TargetRegisterInfo *TRI;
const TargetInstrInfo *TII;
MachineRegisterInfo *MRI;
SlotIndexes *Indexes;
LiveIntervals *LIS;
VirtRegMap *VRM;
LiveDebugVariables *DebugVars;
DenseSet<Register> RewriteRegs;
bool ClearVirtRegs;
void rewrite();
void addMBBLiveIns();
bool readsUndefSubreg(const MachineOperand &MO) const;
void addLiveInsForSubRanges(const LiveInterval &LI, MCRegister PhysReg) const;
void handleIdentityCopy(MachineInstr &MI);
void expandCopyBundle(MachineInstr &MI) const;
bool subRegLiveThrough(const MachineInstr &MI, MCRegister SuperPhysReg) const;
public:
static char ID;
VirtRegRewriter(bool ClearVirtRegs_ = true) :
MachineFunctionPass(ID),
ClearVirtRegs(ClearVirtRegs_) {}
void getAnalysisUsage(AnalysisUsage &AU) const override;
bool runOnMachineFunction(MachineFunction&) override;
MachineFunctionProperties getSetProperties() const override {
if (ClearVirtRegs) {
return MachineFunctionProperties().set(
MachineFunctionProperties::Property::NoVRegs);
}
return MachineFunctionProperties();
}
};
} // end anonymous namespace
char VirtRegRewriter::ID = 0;
char &llvm::VirtRegRewriterID = VirtRegRewriter::ID;
INITIALIZE_PASS_BEGIN(VirtRegRewriter, "virtregrewriter",
"Virtual Register Rewriter", false, false)
INITIALIZE_PASS_DEPENDENCY(SlotIndexes)
INITIALIZE_PASS_DEPENDENCY(LiveIntervals)
INITIALIZE_PASS_DEPENDENCY(LiveDebugVariables)
INITIALIZE_PASS_DEPENDENCY(LiveStacks)
INITIALIZE_PASS_DEPENDENCY(VirtRegMap)
INITIALIZE_PASS_END(VirtRegRewriter, "virtregrewriter",
"Virtual Register Rewriter", false, false)
void VirtRegRewriter::getAnalysisUsage(AnalysisUsage &AU) const {
AU.setPreservesCFG();
AU.addRequired<LiveIntervals>();
AU.addPreserved<LiveIntervals>();
AU.addRequired<SlotIndexes>();
AU.addPreserved<SlotIndexes>();
AU.addRequired<LiveDebugVariables>();
AU.addRequired<LiveStacks>();
AU.addPreserved<LiveStacks>();
AU.addRequired<VirtRegMap>();
if (!ClearVirtRegs)
AU.addPreserved<LiveDebugVariables>();
MachineFunctionPass::getAnalysisUsage(AU);
}
bool VirtRegRewriter::runOnMachineFunction(MachineFunction &fn) {
MF = &fn;
TRI = MF->getSubtarget().getRegisterInfo();
TII = MF->getSubtarget().getInstrInfo();
MRI = &MF->getRegInfo();
Indexes = &getAnalysis<SlotIndexes>();
LIS = &getAnalysis<LiveIntervals>();
VRM = &getAnalysis<VirtRegMap>();
DebugVars = getAnalysisIfAvailable<LiveDebugVariables>();
LLVM_DEBUG(dbgs() << "********** REWRITE VIRTUAL REGISTERS **********\n"
<< "********** Function: " << MF->getName() << '\n');
LLVM_DEBUG(VRM->dump());
// Add kill flags while we still have virtual registers.
LIS->addKillFlags(VRM);
// Live-in lists on basic blocks are required for physregs.
addMBBLiveIns();
// Rewrite virtual registers.
rewrite();
if (DebugVars && ClearVirtRegs) {
// Write out new DBG_VALUE instructions.
// We only do this if ClearVirtRegs is specified since this should be the
// final run of the pass and we don't want to emit them multiple times.
DebugVars->emitDebugValues(VRM);
// All machine operands and other references to virtual registers have been
// replaced. Remove the virtual registers and release all the transient data.
VRM->clearAllVirt();
MRI->clearVirtRegs();
}
return true;
}
void VirtRegRewriter::addLiveInsForSubRanges(const LiveInterval &LI,
MCRegister PhysReg) const {
assert(!LI.empty());
assert(LI.hasSubRanges());
using SubRangeIteratorPair =
std::pair<const LiveInterval::SubRange *, LiveInterval::const_iterator>;
SmallVector<SubRangeIteratorPair, 4> SubRanges;
SlotIndex First;
SlotIndex Last;
for (const LiveInterval::SubRange &SR : LI.subranges()) {
SubRanges.push_back(std::make_pair(&SR, SR.begin()));
if (!First.isValid() || SR.segments.front().start < First)
First = SR.segments.front().start;
if (!Last.isValid() || SR.segments.back().end > Last)
Last = SR.segments.back().end;
}
// Check all mbb start positions between First and Last while
// simulatenously advancing an iterator for each subrange.
for (SlotIndexes::MBBIndexIterator MBBI = Indexes->findMBBIndex(First);
MBBI != Indexes->MBBIndexEnd() && MBBI->first <= Last; ++MBBI) {
SlotIndex MBBBegin = MBBI->first;
// Advance all subrange iterators so that their end position is just
// behind MBBBegin (or the iterator is at the end).
LaneBitmask LaneMask;
for (auto &RangeIterPair : SubRanges) {
const LiveInterval::SubRange *SR = RangeIterPair.first;
LiveInterval::const_iterator &SRI = RangeIterPair.second;
while (SRI != SR->end() && SRI->end <= MBBBegin)
++SRI;
if (SRI == SR->end())
continue;
if (SRI->start <= MBBBegin)
LaneMask |= SR->LaneMask;
}
if (LaneMask.none())
continue;
MachineBasicBlock *MBB = MBBI->second;
MBB->addLiveIn(PhysReg, LaneMask);
}
}
// Compute MBB live-in lists from virtual register live ranges and their
// assignments.
void VirtRegRewriter::addMBBLiveIns() {
for (unsigned Idx = 0, IdxE = MRI->getNumVirtRegs(); Idx != IdxE; ++Idx) {
Register VirtReg = Register::index2VirtReg(Idx);
if (MRI->reg_nodbg_empty(VirtReg))
continue;
LiveInterval &LI = LIS->getInterval(VirtReg);
if (LI.empty() || LIS->intervalIsInOneMBB(LI))
continue;
// This is a virtual register that is live across basic blocks. Its
// assigned PhysReg must be marked as live-in to those blocks.
Register PhysReg = VRM->getPhys(VirtReg);
if (PhysReg == VirtRegMap::NO_PHYS_REG) {
// There may be no physical register assigned if only some register
// classes were already allocated.
assert(!ClearVirtRegs && "Unmapped virtual register");
continue;
}
if (LI.hasSubRanges()) {
addLiveInsForSubRanges(LI, PhysReg);
} else {
// Go over MBB begin positions and see if we have segments covering them.
// The following works because segments and the MBBIndex list are both
// sorted by slot indexes.
SlotIndexes::MBBIndexIterator I = Indexes->MBBIndexBegin();
for (const auto &Seg : LI) {
I = Indexes->advanceMBBIndex(I, Seg.start);
for (; I != Indexes->MBBIndexEnd() && I->first < Seg.end; ++I) {
MachineBasicBlock *MBB = I->second;
MBB->addLiveIn(PhysReg);
}
}
}
}
// Sort and unique MBB LiveIns as we've not checked if SubReg/PhysReg were in
// each MBB's LiveIns set before calling addLiveIn on them.
for (MachineBasicBlock &MBB : *MF)
MBB.sortUniqueLiveIns();
}
/// Returns true if the given machine operand \p MO only reads undefined lanes.
/// The function only works for use operands with a subregister set.
bool VirtRegRewriter::readsUndefSubreg(const MachineOperand &MO) const {
// Shortcut if the operand is already marked undef.
if (MO.isUndef())
return true;
Register Reg = MO.getReg();
const LiveInterval &LI = LIS->getInterval(Reg);
const MachineInstr &MI = *MO.getParent();
SlotIndex BaseIndex = LIS->getInstructionIndex(MI);
// This code is only meant to handle reading undefined subregisters which
// we couldn't properly detect before.
assert(LI.liveAt(BaseIndex) &&
"Reads of completely dead register should be marked undef already");
unsigned SubRegIdx = MO.getSubReg();
assert(SubRegIdx != 0 && LI.hasSubRanges());
LaneBitmask UseMask = TRI->getSubRegIndexLaneMask(SubRegIdx);
// See if any of the relevant subregister liveranges is defined at this point.
for (const LiveInterval::SubRange &SR : LI.subranges()) {
if ((SR.LaneMask & UseMask).any() && SR.liveAt(BaseIndex))
return false;
}
return true;
}
void VirtRegRewriter::handleIdentityCopy(MachineInstr &MI) {
if (!MI.isIdentityCopy())
return;
LLVM_DEBUG(dbgs() << "Identity copy: " << MI);
++NumIdCopies;
Register DstReg = MI.getOperand(0).getReg();
// We may have deferred allocation of the virtual register, and the rewrite
// regs code doesn't handle the liveness update.
if (DstReg.isVirtual())
return;
RewriteRegs.insert(DstReg);
// Copies like:
// %r0 = COPY undef %r0
// %al = COPY %al, implicit-def %eax
// give us additional liveness information: The target (super-)register
// must not be valid before this point. Replace the COPY with a KILL
// instruction to maintain this information.
if (MI.getOperand(1).isUndef() || MI.getNumOperands() > 2) {
MI.setDesc(TII->get(TargetOpcode::KILL));
LLVM_DEBUG(dbgs() << " replace by: " << MI);
return;
}
if (Indexes)
Indexes->removeSingleMachineInstrFromMaps(MI);
MI.eraseFromBundle();
LLVM_DEBUG(dbgs() << " deleted.\n");
}
/// The liverange splitting logic sometimes produces bundles of copies when
/// subregisters are involved. Expand these into a sequence of copy instructions
/// after processing the last in the bundle. Does not update LiveIntervals
/// which we shouldn't need for this instruction anymore.
void VirtRegRewriter::expandCopyBundle(MachineInstr &MI) const {
if (!MI.isCopy() && !MI.isKill())
return;
if (MI.isBundledWithPred() && !MI.isBundledWithSucc()) {
SmallVector<MachineInstr *, 2> MIs({&MI});
// Only do this when the complete bundle is made out of COPYs and KILLs.
MachineBasicBlock &MBB = *MI.getParent();
for (MachineBasicBlock::reverse_instr_iterator I =
std::next(MI.getReverseIterator()), E = MBB.instr_rend();
I != E && I->isBundledWithSucc(); ++I) {
if (!I->isCopy() && !I->isKill())
return;
MIs.push_back(&*I);
}
MachineInstr *FirstMI = MIs.back();
auto anyRegsAlias = [](const MachineInstr *Dst,
ArrayRef<MachineInstr *> Srcs,
const TargetRegisterInfo *TRI) {
for (const MachineInstr *Src : Srcs)
if (Src != Dst)
if (TRI->regsOverlap(Dst->getOperand(0).getReg(),
Src->getOperand(1).getReg()))
return true;
return false;
};
// If any of the destination registers in the bundle of copies alias any of
// the source registers, try to schedule the instructions to avoid any
// clobbering.
for (int E = MIs.size(), PrevE = E; E > 1; PrevE = E) {
for (int I = E; I--; )
if (!anyRegsAlias(MIs[I], makeArrayRef(MIs).take_front(E), TRI)) {
if (I + 1 != E)
std::swap(MIs[I], MIs[E - 1]);
--E;
}
if (PrevE == E) {
MF->getFunction().getContext().emitError(
"register rewriting failed: cycle in copy bundle");
break;
}
}
MachineInstr *BundleStart = FirstMI;
for (MachineInstr *BundledMI : llvm::reverse(MIs)) {
// If instruction is in the middle of the bundle, move it before the
// bundle starts, otherwise, just unbundle it. When we get to the last
// instruction, the bundle will have been completely undone.
if (BundledMI != BundleStart) {
BundledMI->removeFromBundle();
MBB.insert(BundleStart, BundledMI);
} else if (BundledMI->isBundledWithSucc()) {
BundledMI->unbundleFromSucc();
BundleStart = &*std::next(BundledMI->getIterator());
}
if (Indexes && BundledMI != FirstMI)
Indexes->insertMachineInstrInMaps(*BundledMI);
}
}
}
/// Check whether (part of) \p SuperPhysReg is live through \p MI.
/// \pre \p MI defines a subregister of a virtual register that
/// has been assigned to \p SuperPhysReg.
bool VirtRegRewriter::subRegLiveThrough(const MachineInstr &MI,
MCRegister SuperPhysReg) const {
SlotIndex MIIndex = LIS->getInstructionIndex(MI);
SlotIndex BeforeMIUses = MIIndex.getBaseIndex();
SlotIndex AfterMIDefs = MIIndex.getBoundaryIndex();
for (MCRegUnitIterator Unit(SuperPhysReg, TRI); Unit.isValid(); ++Unit) {
const LiveRange &UnitRange = LIS->getRegUnit(*Unit);
// If the regunit is live both before and after MI,
// we assume it is live through.
// Generally speaking, this is not true, because something like
// "RU = op RU" would match that description.
// However, we know that we are trying to assess whether
// a def of a virtual reg, vreg, is live at the same time of RU.
// If we are in the "RU = op RU" situation, that means that vreg
// is defined at the same time as RU (i.e., "vreg, RU = op RU").
// Thus, vreg and RU interferes and vreg cannot be assigned to
// SuperPhysReg. Therefore, this situation cannot happen.
if (UnitRange.liveAt(AfterMIDefs) && UnitRange.liveAt(BeforeMIUses))
return true;
}
return false;
}
void VirtRegRewriter::rewrite() {
bool NoSubRegLiveness = !MRI->subRegLivenessEnabled();
SmallVector<Register, 8> SuperDeads;
SmallVector<Register, 8> SuperDefs;
SmallVector<Register, 8> SuperKills;
for (MachineFunction::iterator MBBI = MF->begin(), MBBE = MF->end();
MBBI != MBBE; ++MBBI) {
LLVM_DEBUG(MBBI->print(dbgs(), Indexes));
for (MachineBasicBlock::instr_iterator
MII = MBBI->instr_begin(), MIE = MBBI->instr_end(); MII != MIE;) {
MachineInstr *MI = &*MII;
++MII;
for (MachineInstr::mop_iterator MOI = MI->operands_begin(),
MOE = MI->operands_end(); MOI != MOE; ++MOI) {
MachineOperand &MO = *MOI;
// Make sure MRI knows about registers clobbered by regmasks.
if (MO.isRegMask())
MRI->addPhysRegsUsedFromRegMask(MO.getRegMask());
if (!MO.isReg() || !MO.getReg().isVirtual())
continue;
Register VirtReg = MO.getReg();
MCRegister PhysReg = VRM->getPhys(VirtReg);
if (PhysReg == VirtRegMap::NO_PHYS_REG)
continue;
assert(Register(PhysReg).isPhysical());
RewriteRegs.insert(PhysReg);
assert(!MRI->isReserved(PhysReg) && "Reserved register assignment");
// Preserve semantics of sub-register operands.
unsigned SubReg = MO.getSubReg();
if (SubReg != 0) {
if (NoSubRegLiveness || !MRI->shouldTrackSubRegLiveness(VirtReg)) {
// A virtual register kill refers to the whole register, so we may
// have to add implicit killed operands for the super-register. A
// partial redef always kills and redefines the super-register.
if ((MO.readsReg() && (MO.isDef() || MO.isKill())) ||
(MO.isDef() && subRegLiveThrough(*MI, PhysReg)))
SuperKills.push_back(PhysReg);
if (MO.isDef()) {
// Also add implicit defs for the super-register.
if (MO.isDead())
SuperDeads.push_back(PhysReg);
else
SuperDefs.push_back(PhysReg);
}
} else {
if (MO.isUse()) {
if (readsUndefSubreg(MO))
// We need to add an <undef> flag if the subregister is
// completely undefined (and we are not adding super-register
// defs).
MO.setIsUndef(true);
} else if (!MO.isDead()) {
assert(MO.isDef());
}
}
// The def undef and def internal flags only make sense for
// sub-register defs, and we are substituting a full physreg. An
// implicit killed operand from the SuperKills list will represent the
// partial read of the super-register.
if (MO.isDef()) {
MO.setIsUndef(false);
MO.setIsInternalRead(false);
}
// PhysReg operands cannot have subregister indexes.
PhysReg = TRI->getSubReg(PhysReg, SubReg);
assert(PhysReg.isValid() && "Invalid SubReg for physical register");
MO.setSubReg(0);
}
// Rewrite. Note we could have used MachineOperand::substPhysReg(), but
// we need the inlining here.
MO.setReg(PhysReg);
MO.setIsRenamable(true);
}
// Add any missing super-register kills after rewriting the whole
// instruction.
while (!SuperKills.empty())
MI->addRegisterKilled(SuperKills.pop_back_val(), TRI, true);
while (!SuperDeads.empty())
MI->addRegisterDead(SuperDeads.pop_back_val(), TRI, true);
while (!SuperDefs.empty())
MI->addRegisterDefined(SuperDefs.pop_back_val(), TRI);
LLVM_DEBUG(dbgs() << "> " << *MI);
expandCopyBundle(*MI);
// We can remove identity copies right now.
handleIdentityCopy(*MI);
}
}
if (LIS) {
// Don't bother maintaining accurate LiveIntervals for registers which were
// already allocated.
for (Register PhysReg : RewriteRegs) {
for (MCRegUnitIterator Units(PhysReg, TRI); Units.isValid();
++Units) {
LIS->removeRegUnit(*Units);
}
}
}
RewriteRegs.clear();
}
FunctionPass *llvm::createVirtRegRewriter(bool ClearVirtRegs) {
return new VirtRegRewriter(ClearVirtRegs);
}