1
0
mirror of https://github.com/RPCS3/llvm-mirror.git synced 2024-11-25 04:02:41 +01:00
llvm-mirror/lib/ExecutionEngine/RuntimeDyld/Targets/RuntimeDyldCOFFThumb.h
Lang Hames bc59809461 [RuntimeDyld][COFF] Build stubs for COFF dllimport symbols.
Summary:
Enables JIT-linking by RuntimeDyld of COFF objects that contain references to
dllimport symbols. This is done by recognizing symbols that start with the
reserved "__imp_" prefix and building a pointer entry to the target symbol in
the stubs area of the section. References to the "__imp_" symbol are updated to
point to this pointer.

Work in progress: The generic code is in place, but only RuntimeDyldCOFFX86_64
and RuntimeDyldCOFFI386 have been updated to look for and update references to
dllimport symbols.

Reviewers: compnerd

Subscribers: hiraditya, ributzka, llvm-commits

Tags: #llvm

Differential Revision: https://reviews.llvm.org/D75884
2020-03-10 16:08:40 -07:00

327 lines
13 KiB
C++

//===--- RuntimeDyldCOFFThumb.h --- COFF/Thumb specific code ---*- C++ --*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// COFF thumb support for MC-JIT runtime dynamic linker.
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_LIB_EXECUTIONENGINE_RUNTIMEDYLD_TARGETS_RUNTIMEDYLDCOFFTHUMB_H
#define LLVM_LIB_EXECUTIONENGINE_RUNTIMEDYLD_TARGETS_RUNTIMEDYLDCOFFTHUMB_H
#include "../RuntimeDyldCOFF.h"
#include "llvm/BinaryFormat/COFF.h"
#include "llvm/Object/COFF.h"
#define DEBUG_TYPE "dyld"
namespace llvm {
static bool isThumbFunc(object::symbol_iterator Symbol,
const object::ObjectFile &Obj,
object::section_iterator Section) {
Expected<object::SymbolRef::Type> SymTypeOrErr = Symbol->getType();
if (!SymTypeOrErr) {
std::string Buf;
raw_string_ostream OS(Buf);
logAllUnhandledErrors(SymTypeOrErr.takeError(), OS);
OS.flush();
report_fatal_error(Buf);
}
if (*SymTypeOrErr != object::SymbolRef::ST_Function)
return false;
// We check the IMAGE_SCN_MEM_16BIT flag in the section of the symbol to tell
// if it's thumb or not
return cast<object::COFFObjectFile>(Obj)
.getCOFFSection(*Section)
->Characteristics &
COFF::IMAGE_SCN_MEM_16BIT;
}
class RuntimeDyldCOFFThumb : public RuntimeDyldCOFF {
public:
RuntimeDyldCOFFThumb(RuntimeDyld::MemoryManager &MM,
JITSymbolResolver &Resolver)
: RuntimeDyldCOFF(MM, Resolver, 4, COFF::IMAGE_REL_ARM_ADDR32) {}
unsigned getMaxStubSize() const override {
return 16; // 8-byte load instructions, 4-byte jump, 4-byte padding
}
unsigned getStubAlignment() override { return 1; }
Expected<object::relocation_iterator>
processRelocationRef(unsigned SectionID,
object::relocation_iterator RelI,
const object::ObjectFile &Obj,
ObjSectionToIDMap &ObjSectionToID,
StubMap &Stubs) override {
auto Symbol = RelI->getSymbol();
if (Symbol == Obj.symbol_end())
report_fatal_error("Unknown symbol in relocation");
Expected<StringRef> TargetNameOrErr = Symbol->getName();
if (!TargetNameOrErr)
return TargetNameOrErr.takeError();
StringRef TargetName = *TargetNameOrErr;
auto SectionOrErr = Symbol->getSection();
if (!SectionOrErr)
return SectionOrErr.takeError();
auto Section = *SectionOrErr;
uint64_t RelType = RelI->getType();
uint64_t Offset = RelI->getOffset();
// Determine the Addend used to adjust the relocation value.
uint64_t Addend = 0;
SectionEntry &AddendSection = Sections[SectionID];
uintptr_t ObjTarget = AddendSection.getObjAddress() + Offset;
uint8_t *Displacement = (uint8_t *)ObjTarget;
switch (RelType) {
case COFF::IMAGE_REL_ARM_ADDR32:
case COFF::IMAGE_REL_ARM_ADDR32NB:
case COFF::IMAGE_REL_ARM_SECREL:
Addend = readBytesUnaligned(Displacement, 4);
break;
default:
break;
}
#if !defined(NDEBUG)
SmallString<32> RelTypeName;
RelI->getTypeName(RelTypeName);
#endif
LLVM_DEBUG(dbgs() << "\t\tIn Section " << SectionID << " Offset " << Offset
<< " RelType: " << RelTypeName << " TargetName: "
<< TargetName << " Addend " << Addend << "\n");
bool IsExtern = Section == Obj.section_end();
unsigned TargetSectionID = -1;
uint64_t TargetOffset = -1;
if (TargetName.startswith(getImportSymbolPrefix())) {
TargetSectionID = SectionID;
TargetOffset = getDLLImportOffset(SectionID, Stubs, TargetName, true);
TargetName = StringRef();
IsExtern = false;
} else if (!IsExtern) {
if (auto TargetSectionIDOrErr =
findOrEmitSection(Obj, *Section, Section->isText(), ObjSectionToID))
TargetSectionID = *TargetSectionIDOrErr;
else
return TargetSectionIDOrErr.takeError();
if (RelType != COFF::IMAGE_REL_ARM_SECTION)
TargetOffset = getSymbolOffset(*Symbol);
}
if (IsExtern) {
RelocationEntry RE(SectionID, Offset, RelType, 0, -1, 0, 0, 0, false, 0);
addRelocationForSymbol(RE, TargetName);
} else {
// We need to find out if the relocation is relative to a thumb function
// so that we include the ISA selection bit when resolve the relocation
bool IsTargetThumbFunc = isThumbFunc(Symbol, Obj, Section);
switch (RelType) {
default: llvm_unreachable("unsupported relocation type");
case COFF::IMAGE_REL_ARM_ABSOLUTE:
// This relocation is ignored.
break;
case COFF::IMAGE_REL_ARM_ADDR32: {
RelocationEntry RE =
RelocationEntry(SectionID, Offset, RelType, Addend, TargetSectionID,
TargetOffset, 0, 0, false, 0, IsTargetThumbFunc);
addRelocationForSection(RE, TargetSectionID);
break;
}
case COFF::IMAGE_REL_ARM_ADDR32NB: {
RelocationEntry RE =
RelocationEntry(SectionID, Offset, RelType, Addend, TargetSectionID,
TargetOffset, 0, 0, false, 0);
addRelocationForSection(RE, TargetSectionID);
break;
}
case COFF::IMAGE_REL_ARM_SECTION: {
RelocationEntry RE =
RelocationEntry(TargetSectionID, Offset, RelType, 0);
addRelocationForSection(RE, TargetSectionID);
break;
}
case COFF::IMAGE_REL_ARM_SECREL: {
RelocationEntry RE =
RelocationEntry(SectionID, Offset, RelType, TargetOffset + Addend);
addRelocationForSection(RE, TargetSectionID);
break;
}
case COFF::IMAGE_REL_ARM_MOV32T: {
RelocationEntry RE =
RelocationEntry(SectionID, Offset, RelType, Addend, TargetSectionID,
TargetOffset, 0, 0, false, 0, IsTargetThumbFunc);
addRelocationForSection(RE, TargetSectionID);
break;
}
case COFF::IMAGE_REL_ARM_BRANCH20T:
case COFF::IMAGE_REL_ARM_BRANCH24T:
case COFF::IMAGE_REL_ARM_BLX23T: {
RelocationEntry RE = RelocationEntry(SectionID, Offset, RelType,
TargetOffset + Addend, true, 0);
addRelocationForSection(RE, TargetSectionID);
break;
}
}
}
return ++RelI;
}
void resolveRelocation(const RelocationEntry &RE, uint64_t Value) override {
const auto Section = Sections[RE.SectionID];
uint8_t *Target = Section.getAddressWithOffset(RE.Offset);
int ISASelectionBit = RE.IsTargetThumbFunc ? 1 : 0;
switch (RE.RelType) {
default: llvm_unreachable("unsupported relocation type");
case COFF::IMAGE_REL_ARM_ABSOLUTE:
// This relocation is ignored.
break;
case COFF::IMAGE_REL_ARM_ADDR32: {
// The target's 32-bit VA.
uint64_t Result =
RE.Sections.SectionA == static_cast<uint32_t>(-1)
? Value
: Sections[RE.Sections.SectionA].getLoadAddressWithOffset(RE.Addend);
Result |= ISASelectionBit;
assert(Result <= UINT32_MAX && "relocation overflow");
LLVM_DEBUG(dbgs() << "\t\tOffset: " << RE.Offset
<< " RelType: IMAGE_REL_ARM_ADDR32"
<< " TargetSection: " << RE.Sections.SectionA
<< " Value: " << format("0x%08" PRIx32, Result)
<< '\n');
writeBytesUnaligned(Result, Target, 4);
break;
}
case COFF::IMAGE_REL_ARM_ADDR32NB: {
// The target's 32-bit RVA.
// NOTE: use Section[0].getLoadAddress() as an approximation of ImageBase
uint64_t Result = Sections[RE.Sections.SectionA].getLoadAddress() -
Sections[0].getLoadAddress() + RE.Addend;
assert(Result <= UINT32_MAX && "relocation overflow");
LLVM_DEBUG(dbgs() << "\t\tOffset: " << RE.Offset
<< " RelType: IMAGE_REL_ARM_ADDR32NB"
<< " TargetSection: " << RE.Sections.SectionA
<< " Value: " << format("0x%08" PRIx32, Result)
<< '\n');
Result |= ISASelectionBit;
writeBytesUnaligned(Result, Target, 4);
break;
}
case COFF::IMAGE_REL_ARM_SECTION:
// 16-bit section index of the section that contains the target.
assert(static_cast<uint32_t>(RE.SectionID) <= UINT16_MAX &&
"relocation overflow");
LLVM_DEBUG(dbgs() << "\t\tOffset: " << RE.Offset
<< " RelType: IMAGE_REL_ARM_SECTION Value: "
<< RE.SectionID << '\n');
writeBytesUnaligned(RE.SectionID, Target, 2);
break;
case COFF::IMAGE_REL_ARM_SECREL:
// 32-bit offset of the target from the beginning of its section.
assert(static_cast<uint64_t>(RE.Addend) <= UINT32_MAX &&
"relocation overflow");
LLVM_DEBUG(dbgs() << "\t\tOffset: " << RE.Offset
<< " RelType: IMAGE_REL_ARM_SECREL Value: " << RE.Addend
<< '\n');
writeBytesUnaligned(RE.Addend, Target, 2);
break;
case COFF::IMAGE_REL_ARM_MOV32T: {
// 32-bit VA of the target applied to a contiguous MOVW+MOVT pair.
uint64_t Result =
Sections[RE.Sections.SectionA].getLoadAddressWithOffset(RE.Addend);
assert(Result <= UINT32_MAX && "relocation overflow");
LLVM_DEBUG(dbgs() << "\t\tOffset: " << RE.Offset
<< " RelType: IMAGE_REL_ARM_MOV32T"
<< " TargetSection: " << RE.Sections.SectionA
<< " Value: " << format("0x%08" PRIx32, Result)
<< '\n');
// MOVW(T3): |11110|i|10|0|1|0|0|imm4|0|imm3|Rd|imm8|
// imm32 = zext imm4:i:imm3:imm8
// MOVT(T1): |11110|i|10|1|1|0|0|imm4|0|imm3|Rd|imm8|
// imm16 = imm4:i:imm3:imm8
auto EncodeImmediate = [](uint8_t *Bytes, uint16_t Immediate) {
Bytes[0] |= ((Immediate & 0xf000) >> 12);
Bytes[1] |= ((Immediate & 0x0800) >> 11);
Bytes[2] |= ((Immediate & 0x00ff) >> 0);
Bytes[3] |= (((Immediate & 0x0700) >> 8) << 4);
};
EncodeImmediate(&Target[0],
(static_cast<uint32_t>(Result) >> 00) | ISASelectionBit);
EncodeImmediate(&Target[4], static_cast<uint32_t>(Result) >> 16);
break;
}
case COFF::IMAGE_REL_ARM_BRANCH20T: {
// The most significant 20-bits of the signed 21-bit relative displacement
uint64_t Value =
RE.Addend - (Sections[RE.SectionID].getLoadAddress() + RE.Offset) - 4;
assert(static_cast<int64_t>(RE.Addend) <= INT32_MAX &&
"relocation overflow");
assert(static_cast<int64_t>(RE.Addend) >= INT32_MIN &&
"relocation underflow");
LLVM_DEBUG(dbgs() << "\t\tOffset: " << RE.Offset
<< " RelType: IMAGE_REL_ARM_BRANCH20T"
<< " Value: " << static_cast<int32_t>(Value) << '\n');
static_cast<void>(Value);
llvm_unreachable("unimplemented relocation");
break;
}
case COFF::IMAGE_REL_ARM_BRANCH24T: {
// The most significant 24-bits of the signed 25-bit relative displacement
uint64_t Value =
RE.Addend - (Sections[RE.SectionID].getLoadAddress() + RE.Offset) - 4;
assert(static_cast<int64_t>(RE.Addend) <= INT32_MAX &&
"relocation overflow");
assert(static_cast<int64_t>(RE.Addend) >= INT32_MIN &&
"relocation underflow");
LLVM_DEBUG(dbgs() << "\t\tOffset: " << RE.Offset
<< " RelType: IMAGE_REL_ARM_BRANCH24T"
<< " Value: " << static_cast<int32_t>(Value) << '\n');
static_cast<void>(Value);
llvm_unreachable("unimplemented relocation");
break;
}
case COFF::IMAGE_REL_ARM_BLX23T: {
// The most significant 24-bits of the signed 25-bit relative displacement
uint64_t Value =
RE.Addend - (Sections[RE.SectionID].getLoadAddress() + RE.Offset) - 4;
assert(static_cast<int64_t>(RE.Addend) <= INT32_MAX &&
"relocation overflow");
assert(static_cast<int64_t>(RE.Addend) >= INT32_MIN &&
"relocation underflow");
LLVM_DEBUG(dbgs() << "\t\tOffset: " << RE.Offset
<< " RelType: IMAGE_REL_ARM_BLX23T"
<< " Value: " << static_cast<int32_t>(Value) << '\n');
static_cast<void>(Value);
llvm_unreachable("unimplemented relocation");
break;
}
}
}
void registerEHFrames() override {}
};
}
#endif