mirror of
https://github.com/RPCS3/llvm-mirror.git
synced 2024-11-21 18:22:53 +01:00
3b84dfd020
Remove the assert in AssemblyWriter::printBasicBlock() and in BasicBlock::isEntryBlock() that require blocks to have parents. Instead, have BasicBlock::isEntryBlock() return false for unattached blocks. This allows us to call these functions for blocks that are not yet added to a module which is a useful debugging capability. Committing for xiaoqing_wu https://reviews.llvm.org/D106127k
4788 lines
158 KiB
C++
4788 lines
158 KiB
C++
//===- AsmWriter.cpp - Printing LLVM as an assembly file ------------------===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This library implements `print` family of functions in classes like
|
|
// Module, Function, Value, etc. In-memory representation of those classes is
|
|
// converted to IR strings.
|
|
//
|
|
// Note that these routines must be extremely tolerant of various errors in the
|
|
// LLVM code, because it can be used for debugging transformations.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "llvm/ADT/APFloat.h"
|
|
#include "llvm/ADT/APInt.h"
|
|
#include "llvm/ADT/ArrayRef.h"
|
|
#include "llvm/ADT/DenseMap.h"
|
|
#include "llvm/ADT/None.h"
|
|
#include "llvm/ADT/Optional.h"
|
|
#include "llvm/ADT/STLExtras.h"
|
|
#include "llvm/ADT/SetVector.h"
|
|
#include "llvm/ADT/SmallString.h"
|
|
#include "llvm/ADT/SmallVector.h"
|
|
#include "llvm/ADT/StringExtras.h"
|
|
#include "llvm/ADT/StringRef.h"
|
|
#include "llvm/ADT/iterator_range.h"
|
|
#include "llvm/BinaryFormat/Dwarf.h"
|
|
#include "llvm/Config/llvm-config.h"
|
|
#include "llvm/IR/Argument.h"
|
|
#include "llvm/IR/AssemblyAnnotationWriter.h"
|
|
#include "llvm/IR/Attributes.h"
|
|
#include "llvm/IR/BasicBlock.h"
|
|
#include "llvm/IR/CFG.h"
|
|
#include "llvm/IR/CallingConv.h"
|
|
#include "llvm/IR/Comdat.h"
|
|
#include "llvm/IR/Constant.h"
|
|
#include "llvm/IR/Constants.h"
|
|
#include "llvm/IR/DebugInfoMetadata.h"
|
|
#include "llvm/IR/DerivedTypes.h"
|
|
#include "llvm/IR/Function.h"
|
|
#include "llvm/IR/GlobalAlias.h"
|
|
#include "llvm/IR/GlobalIFunc.h"
|
|
#include "llvm/IR/GlobalIndirectSymbol.h"
|
|
#include "llvm/IR/GlobalObject.h"
|
|
#include "llvm/IR/GlobalValue.h"
|
|
#include "llvm/IR/GlobalVariable.h"
|
|
#include "llvm/IR/IRPrintingPasses.h"
|
|
#include "llvm/IR/InlineAsm.h"
|
|
#include "llvm/IR/InstrTypes.h"
|
|
#include "llvm/IR/Instruction.h"
|
|
#include "llvm/IR/Instructions.h"
|
|
#include "llvm/IR/IntrinsicInst.h"
|
|
#include "llvm/IR/LLVMContext.h"
|
|
#include "llvm/IR/Metadata.h"
|
|
#include "llvm/IR/Module.h"
|
|
#include "llvm/IR/ModuleSlotTracker.h"
|
|
#include "llvm/IR/ModuleSummaryIndex.h"
|
|
#include "llvm/IR/Operator.h"
|
|
#include "llvm/IR/Type.h"
|
|
#include "llvm/IR/TypeFinder.h"
|
|
#include "llvm/IR/Use.h"
|
|
#include "llvm/IR/User.h"
|
|
#include "llvm/IR/Value.h"
|
|
#include "llvm/Support/AtomicOrdering.h"
|
|
#include "llvm/Support/Casting.h"
|
|
#include "llvm/Support/Compiler.h"
|
|
#include "llvm/Support/Debug.h"
|
|
#include "llvm/Support/ErrorHandling.h"
|
|
#include "llvm/Support/Format.h"
|
|
#include "llvm/Support/FormattedStream.h"
|
|
#include "llvm/Support/raw_ostream.h"
|
|
#include <algorithm>
|
|
#include <cassert>
|
|
#include <cctype>
|
|
#include <cstddef>
|
|
#include <cstdint>
|
|
#include <iterator>
|
|
#include <memory>
|
|
#include <string>
|
|
#include <tuple>
|
|
#include <utility>
|
|
#include <vector>
|
|
|
|
using namespace llvm;
|
|
|
|
// Make virtual table appear in this compilation unit.
|
|
AssemblyAnnotationWriter::~AssemblyAnnotationWriter() = default;
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Helper Functions
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
using OrderMap = MapVector<const Value *, unsigned>;
|
|
|
|
using UseListOrderMap =
|
|
DenseMap<const Function *, MapVector<const Value *, std::vector<unsigned>>>;
|
|
|
|
/// Look for a value that might be wrapped as metadata, e.g. a value in a
|
|
/// metadata operand. Returns the input value as-is if it is not wrapped.
|
|
static const Value *skipMetadataWrapper(const Value *V) {
|
|
if (const auto *MAV = dyn_cast<MetadataAsValue>(V))
|
|
if (const auto *VAM = dyn_cast<ValueAsMetadata>(MAV->getMetadata()))
|
|
return VAM->getValue();
|
|
return V;
|
|
}
|
|
|
|
static void orderValue(const Value *V, OrderMap &OM) {
|
|
if (OM.lookup(V))
|
|
return;
|
|
|
|
if (const Constant *C = dyn_cast<Constant>(V))
|
|
if (C->getNumOperands() && !isa<GlobalValue>(C))
|
|
for (const Value *Op : C->operands())
|
|
if (!isa<BasicBlock>(Op) && !isa<GlobalValue>(Op))
|
|
orderValue(Op, OM);
|
|
|
|
// Note: we cannot cache this lookup above, since inserting into the map
|
|
// changes the map's size, and thus affects the other IDs.
|
|
unsigned ID = OM.size() + 1;
|
|
OM[V] = ID;
|
|
}
|
|
|
|
static OrderMap orderModule(const Module *M) {
|
|
OrderMap OM;
|
|
|
|
for (const GlobalVariable &G : M->globals()) {
|
|
if (G.hasInitializer())
|
|
if (!isa<GlobalValue>(G.getInitializer()))
|
|
orderValue(G.getInitializer(), OM);
|
|
orderValue(&G, OM);
|
|
}
|
|
for (const GlobalAlias &A : M->aliases()) {
|
|
if (!isa<GlobalValue>(A.getAliasee()))
|
|
orderValue(A.getAliasee(), OM);
|
|
orderValue(&A, OM);
|
|
}
|
|
for (const GlobalIFunc &I : M->ifuncs()) {
|
|
if (!isa<GlobalValue>(I.getResolver()))
|
|
orderValue(I.getResolver(), OM);
|
|
orderValue(&I, OM);
|
|
}
|
|
for (const Function &F : *M) {
|
|
for (const Use &U : F.operands())
|
|
if (!isa<GlobalValue>(U.get()))
|
|
orderValue(U.get(), OM);
|
|
|
|
orderValue(&F, OM);
|
|
|
|
if (F.isDeclaration())
|
|
continue;
|
|
|
|
for (const Argument &A : F.args())
|
|
orderValue(&A, OM);
|
|
for (const BasicBlock &BB : F) {
|
|
orderValue(&BB, OM);
|
|
for (const Instruction &I : BB) {
|
|
for (const Value *Op : I.operands()) {
|
|
Op = skipMetadataWrapper(Op);
|
|
if ((isa<Constant>(*Op) && !isa<GlobalValue>(*Op)) ||
|
|
isa<InlineAsm>(*Op))
|
|
orderValue(Op, OM);
|
|
}
|
|
orderValue(&I, OM);
|
|
}
|
|
}
|
|
}
|
|
return OM;
|
|
}
|
|
|
|
static std::vector<unsigned>
|
|
predictValueUseListOrder(const Value *V, unsigned ID, const OrderMap &OM) {
|
|
// Predict use-list order for this one.
|
|
using Entry = std::pair<const Use *, unsigned>;
|
|
SmallVector<Entry, 64> List;
|
|
for (const Use &U : V->uses())
|
|
// Check if this user will be serialized.
|
|
if (OM.lookup(U.getUser()))
|
|
List.push_back(std::make_pair(&U, List.size()));
|
|
|
|
if (List.size() < 2)
|
|
// We may have lost some users.
|
|
return {};
|
|
|
|
// When referencing a value before its declaration, a temporary value is
|
|
// created, which will later be RAUWed with the actual value. This reverses
|
|
// the use list. This happens for all values apart from basic blocks.
|
|
bool GetsReversed = !isa<BasicBlock>(V);
|
|
if (auto *BA = dyn_cast<BlockAddress>(V))
|
|
ID = OM.lookup(BA->getBasicBlock());
|
|
llvm::sort(List, [&](const Entry &L, const Entry &R) {
|
|
const Use *LU = L.first;
|
|
const Use *RU = R.first;
|
|
if (LU == RU)
|
|
return false;
|
|
|
|
auto LID = OM.lookup(LU->getUser());
|
|
auto RID = OM.lookup(RU->getUser());
|
|
|
|
// If ID is 4, then expect: 7 6 5 1 2 3.
|
|
if (LID < RID) {
|
|
if (GetsReversed)
|
|
if (RID <= ID)
|
|
return true;
|
|
return false;
|
|
}
|
|
if (RID < LID) {
|
|
if (GetsReversed)
|
|
if (LID <= ID)
|
|
return false;
|
|
return true;
|
|
}
|
|
|
|
// LID and RID are equal, so we have different operands of the same user.
|
|
// Assume operands are added in order for all instructions.
|
|
if (GetsReversed)
|
|
if (LID <= ID)
|
|
return LU->getOperandNo() < RU->getOperandNo();
|
|
return LU->getOperandNo() > RU->getOperandNo();
|
|
});
|
|
|
|
if (llvm::is_sorted(List, [](const Entry &L, const Entry &R) {
|
|
return L.second < R.second;
|
|
}))
|
|
// Order is already correct.
|
|
return {};
|
|
|
|
// Store the shuffle.
|
|
std::vector<unsigned> Shuffle(List.size());
|
|
for (size_t I = 0, E = List.size(); I != E; ++I)
|
|
Shuffle[I] = List[I].second;
|
|
return Shuffle;
|
|
}
|
|
|
|
static UseListOrderMap predictUseListOrder(const Module *M) {
|
|
OrderMap OM = orderModule(M);
|
|
UseListOrderMap ULOM;
|
|
for (const auto &Pair : OM) {
|
|
const Value *V = Pair.first;
|
|
if (V->use_empty() || std::next(V->use_begin()) == V->use_end())
|
|
continue;
|
|
|
|
std::vector<unsigned> Shuffle =
|
|
predictValueUseListOrder(V, Pair.second, OM);
|
|
if (Shuffle.empty())
|
|
continue;
|
|
|
|
const Function *F = nullptr;
|
|
if (auto *I = dyn_cast<Instruction>(V))
|
|
F = I->getFunction();
|
|
if (auto *A = dyn_cast<Argument>(V))
|
|
F = A->getParent();
|
|
if (auto *BB = dyn_cast<BasicBlock>(V))
|
|
F = BB->getParent();
|
|
ULOM[F][V] = std::move(Shuffle);
|
|
}
|
|
return ULOM;
|
|
}
|
|
|
|
static const Module *getModuleFromVal(const Value *V) {
|
|
if (const Argument *MA = dyn_cast<Argument>(V))
|
|
return MA->getParent() ? MA->getParent()->getParent() : nullptr;
|
|
|
|
if (const BasicBlock *BB = dyn_cast<BasicBlock>(V))
|
|
return BB->getParent() ? BB->getParent()->getParent() : nullptr;
|
|
|
|
if (const Instruction *I = dyn_cast<Instruction>(V)) {
|
|
const Function *M = I->getParent() ? I->getParent()->getParent() : nullptr;
|
|
return M ? M->getParent() : nullptr;
|
|
}
|
|
|
|
if (const GlobalValue *GV = dyn_cast<GlobalValue>(V))
|
|
return GV->getParent();
|
|
|
|
if (const auto *MAV = dyn_cast<MetadataAsValue>(V)) {
|
|
for (const User *U : MAV->users())
|
|
if (isa<Instruction>(U))
|
|
if (const Module *M = getModuleFromVal(U))
|
|
return M;
|
|
return nullptr;
|
|
}
|
|
|
|
return nullptr;
|
|
}
|
|
|
|
static void PrintCallingConv(unsigned cc, raw_ostream &Out) {
|
|
switch (cc) {
|
|
default: Out << "cc" << cc; break;
|
|
case CallingConv::Fast: Out << "fastcc"; break;
|
|
case CallingConv::Cold: Out << "coldcc"; break;
|
|
case CallingConv::WebKit_JS: Out << "webkit_jscc"; break;
|
|
case CallingConv::AnyReg: Out << "anyregcc"; break;
|
|
case CallingConv::PreserveMost: Out << "preserve_mostcc"; break;
|
|
case CallingConv::PreserveAll: Out << "preserve_allcc"; break;
|
|
case CallingConv::CXX_FAST_TLS: Out << "cxx_fast_tlscc"; break;
|
|
case CallingConv::GHC: Out << "ghccc"; break;
|
|
case CallingConv::Tail: Out << "tailcc"; break;
|
|
case CallingConv::CFGuard_Check: Out << "cfguard_checkcc"; break;
|
|
case CallingConv::X86_StdCall: Out << "x86_stdcallcc"; break;
|
|
case CallingConv::X86_FastCall: Out << "x86_fastcallcc"; break;
|
|
case CallingConv::X86_ThisCall: Out << "x86_thiscallcc"; break;
|
|
case CallingConv::X86_RegCall: Out << "x86_regcallcc"; break;
|
|
case CallingConv::X86_VectorCall:Out << "x86_vectorcallcc"; break;
|
|
case CallingConv::Intel_OCL_BI: Out << "intel_ocl_bicc"; break;
|
|
case CallingConv::ARM_APCS: Out << "arm_apcscc"; break;
|
|
case CallingConv::ARM_AAPCS: Out << "arm_aapcscc"; break;
|
|
case CallingConv::ARM_AAPCS_VFP: Out << "arm_aapcs_vfpcc"; break;
|
|
case CallingConv::AArch64_VectorCall: Out << "aarch64_vector_pcs"; break;
|
|
case CallingConv::AArch64_SVE_VectorCall:
|
|
Out << "aarch64_sve_vector_pcs";
|
|
break;
|
|
case CallingConv::MSP430_INTR: Out << "msp430_intrcc"; break;
|
|
case CallingConv::AVR_INTR: Out << "avr_intrcc "; break;
|
|
case CallingConv::AVR_SIGNAL: Out << "avr_signalcc "; break;
|
|
case CallingConv::PTX_Kernel: Out << "ptx_kernel"; break;
|
|
case CallingConv::PTX_Device: Out << "ptx_device"; break;
|
|
case CallingConv::X86_64_SysV: Out << "x86_64_sysvcc"; break;
|
|
case CallingConv::Win64: Out << "win64cc"; break;
|
|
case CallingConv::SPIR_FUNC: Out << "spir_func"; break;
|
|
case CallingConv::SPIR_KERNEL: Out << "spir_kernel"; break;
|
|
case CallingConv::Swift: Out << "swiftcc"; break;
|
|
case CallingConv::SwiftTail: Out << "swifttailcc"; break;
|
|
case CallingConv::X86_INTR: Out << "x86_intrcc"; break;
|
|
case CallingConv::HHVM: Out << "hhvmcc"; break;
|
|
case CallingConv::HHVM_C: Out << "hhvm_ccc"; break;
|
|
case CallingConv::AMDGPU_VS: Out << "amdgpu_vs"; break;
|
|
case CallingConv::AMDGPU_LS: Out << "amdgpu_ls"; break;
|
|
case CallingConv::AMDGPU_HS: Out << "amdgpu_hs"; break;
|
|
case CallingConv::AMDGPU_ES: Out << "amdgpu_es"; break;
|
|
case CallingConv::AMDGPU_GS: Out << "amdgpu_gs"; break;
|
|
case CallingConv::AMDGPU_PS: Out << "amdgpu_ps"; break;
|
|
case CallingConv::AMDGPU_CS: Out << "amdgpu_cs"; break;
|
|
case CallingConv::AMDGPU_KERNEL: Out << "amdgpu_kernel"; break;
|
|
case CallingConv::AMDGPU_Gfx: Out << "amdgpu_gfx"; break;
|
|
}
|
|
}
|
|
|
|
enum PrefixType {
|
|
GlobalPrefix,
|
|
ComdatPrefix,
|
|
LabelPrefix,
|
|
LocalPrefix,
|
|
NoPrefix
|
|
};
|
|
|
|
void llvm::printLLVMNameWithoutPrefix(raw_ostream &OS, StringRef Name) {
|
|
assert(!Name.empty() && "Cannot get empty name!");
|
|
|
|
// Scan the name to see if it needs quotes first.
|
|
bool NeedsQuotes = isdigit(static_cast<unsigned char>(Name[0]));
|
|
if (!NeedsQuotes) {
|
|
for (unsigned i = 0, e = Name.size(); i != e; ++i) {
|
|
// By making this unsigned, the value passed in to isalnum will always be
|
|
// in the range 0-255. This is important when building with MSVC because
|
|
// its implementation will assert. This situation can arise when dealing
|
|
// with UTF-8 multibyte characters.
|
|
unsigned char C = Name[i];
|
|
if (!isalnum(static_cast<unsigned char>(C)) && C != '-' && C != '.' &&
|
|
C != '_') {
|
|
NeedsQuotes = true;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
// If we didn't need any quotes, just write out the name in one blast.
|
|
if (!NeedsQuotes) {
|
|
OS << Name;
|
|
return;
|
|
}
|
|
|
|
// Okay, we need quotes. Output the quotes and escape any scary characters as
|
|
// needed.
|
|
OS << '"';
|
|
printEscapedString(Name, OS);
|
|
OS << '"';
|
|
}
|
|
|
|
/// Turn the specified name into an 'LLVM name', which is either prefixed with %
|
|
/// (if the string only contains simple characters) or is surrounded with ""'s
|
|
/// (if it has special chars in it). Print it out.
|
|
static void PrintLLVMName(raw_ostream &OS, StringRef Name, PrefixType Prefix) {
|
|
switch (Prefix) {
|
|
case NoPrefix:
|
|
break;
|
|
case GlobalPrefix:
|
|
OS << '@';
|
|
break;
|
|
case ComdatPrefix:
|
|
OS << '$';
|
|
break;
|
|
case LabelPrefix:
|
|
break;
|
|
case LocalPrefix:
|
|
OS << '%';
|
|
break;
|
|
}
|
|
printLLVMNameWithoutPrefix(OS, Name);
|
|
}
|
|
|
|
/// Turn the specified name into an 'LLVM name', which is either prefixed with %
|
|
/// (if the string only contains simple characters) or is surrounded with ""'s
|
|
/// (if it has special chars in it). Print it out.
|
|
static void PrintLLVMName(raw_ostream &OS, const Value *V) {
|
|
PrintLLVMName(OS, V->getName(),
|
|
isa<GlobalValue>(V) ? GlobalPrefix : LocalPrefix);
|
|
}
|
|
|
|
static void PrintShuffleMask(raw_ostream &Out, Type *Ty, ArrayRef<int> Mask) {
|
|
Out << ", <";
|
|
if (isa<ScalableVectorType>(Ty))
|
|
Out << "vscale x ";
|
|
Out << Mask.size() << " x i32> ";
|
|
bool FirstElt = true;
|
|
if (all_of(Mask, [](int Elt) { return Elt == 0; })) {
|
|
Out << "zeroinitializer";
|
|
} else if (all_of(Mask, [](int Elt) { return Elt == UndefMaskElem; })) {
|
|
Out << "undef";
|
|
} else {
|
|
Out << "<";
|
|
for (int Elt : Mask) {
|
|
if (FirstElt)
|
|
FirstElt = false;
|
|
else
|
|
Out << ", ";
|
|
Out << "i32 ";
|
|
if (Elt == UndefMaskElem)
|
|
Out << "undef";
|
|
else
|
|
Out << Elt;
|
|
}
|
|
Out << ">";
|
|
}
|
|
}
|
|
|
|
namespace {
|
|
|
|
class TypePrinting {
|
|
public:
|
|
TypePrinting(const Module *M = nullptr) : DeferredM(M) {}
|
|
|
|
TypePrinting(const TypePrinting &) = delete;
|
|
TypePrinting &operator=(const TypePrinting &) = delete;
|
|
|
|
/// The named types that are used by the current module.
|
|
TypeFinder &getNamedTypes();
|
|
|
|
/// The numbered types, number to type mapping.
|
|
std::vector<StructType *> &getNumberedTypes();
|
|
|
|
bool empty();
|
|
|
|
void print(Type *Ty, raw_ostream &OS);
|
|
|
|
void printStructBody(StructType *Ty, raw_ostream &OS);
|
|
|
|
private:
|
|
void incorporateTypes();
|
|
|
|
/// A module to process lazily when needed. Set to nullptr as soon as used.
|
|
const Module *DeferredM;
|
|
|
|
TypeFinder NamedTypes;
|
|
|
|
// The numbered types, along with their value.
|
|
DenseMap<StructType *, unsigned> Type2Number;
|
|
|
|
std::vector<StructType *> NumberedTypes;
|
|
};
|
|
|
|
} // end anonymous namespace
|
|
|
|
TypeFinder &TypePrinting::getNamedTypes() {
|
|
incorporateTypes();
|
|
return NamedTypes;
|
|
}
|
|
|
|
std::vector<StructType *> &TypePrinting::getNumberedTypes() {
|
|
incorporateTypes();
|
|
|
|
// We know all the numbers that each type is used and we know that it is a
|
|
// dense assignment. Convert the map to an index table, if it's not done
|
|
// already (judging from the sizes):
|
|
if (NumberedTypes.size() == Type2Number.size())
|
|
return NumberedTypes;
|
|
|
|
NumberedTypes.resize(Type2Number.size());
|
|
for (const auto &P : Type2Number) {
|
|
assert(P.second < NumberedTypes.size() && "Didn't get a dense numbering?");
|
|
assert(!NumberedTypes[P.second] && "Didn't get a unique numbering?");
|
|
NumberedTypes[P.second] = P.first;
|
|
}
|
|
return NumberedTypes;
|
|
}
|
|
|
|
bool TypePrinting::empty() {
|
|
incorporateTypes();
|
|
return NamedTypes.empty() && Type2Number.empty();
|
|
}
|
|
|
|
void TypePrinting::incorporateTypes() {
|
|
if (!DeferredM)
|
|
return;
|
|
|
|
NamedTypes.run(*DeferredM, false);
|
|
DeferredM = nullptr;
|
|
|
|
// The list of struct types we got back includes all the struct types, split
|
|
// the unnamed ones out to a numbering and remove the anonymous structs.
|
|
unsigned NextNumber = 0;
|
|
|
|
std::vector<StructType*>::iterator NextToUse = NamedTypes.begin(), I, E;
|
|
for (I = NamedTypes.begin(), E = NamedTypes.end(); I != E; ++I) {
|
|
StructType *STy = *I;
|
|
|
|
// Ignore anonymous types.
|
|
if (STy->isLiteral())
|
|
continue;
|
|
|
|
if (STy->getName().empty())
|
|
Type2Number[STy] = NextNumber++;
|
|
else
|
|
*NextToUse++ = STy;
|
|
}
|
|
|
|
NamedTypes.erase(NextToUse, NamedTypes.end());
|
|
}
|
|
|
|
/// Write the specified type to the specified raw_ostream, making use of type
|
|
/// names or up references to shorten the type name where possible.
|
|
void TypePrinting::print(Type *Ty, raw_ostream &OS) {
|
|
switch (Ty->getTypeID()) {
|
|
case Type::VoidTyID: OS << "void"; return;
|
|
case Type::HalfTyID: OS << "half"; return;
|
|
case Type::BFloatTyID: OS << "bfloat"; return;
|
|
case Type::FloatTyID: OS << "float"; return;
|
|
case Type::DoubleTyID: OS << "double"; return;
|
|
case Type::X86_FP80TyID: OS << "x86_fp80"; return;
|
|
case Type::FP128TyID: OS << "fp128"; return;
|
|
case Type::PPC_FP128TyID: OS << "ppc_fp128"; return;
|
|
case Type::LabelTyID: OS << "label"; return;
|
|
case Type::MetadataTyID: OS << "metadata"; return;
|
|
case Type::X86_MMXTyID: OS << "x86_mmx"; return;
|
|
case Type::X86_AMXTyID: OS << "x86_amx"; return;
|
|
case Type::TokenTyID: OS << "token"; return;
|
|
case Type::IntegerTyID:
|
|
OS << 'i' << cast<IntegerType>(Ty)->getBitWidth();
|
|
return;
|
|
|
|
case Type::FunctionTyID: {
|
|
FunctionType *FTy = cast<FunctionType>(Ty);
|
|
print(FTy->getReturnType(), OS);
|
|
OS << " (";
|
|
for (FunctionType::param_iterator I = FTy->param_begin(),
|
|
E = FTy->param_end(); I != E; ++I) {
|
|
if (I != FTy->param_begin())
|
|
OS << ", ";
|
|
print(*I, OS);
|
|
}
|
|
if (FTy->isVarArg()) {
|
|
if (FTy->getNumParams()) OS << ", ";
|
|
OS << "...";
|
|
}
|
|
OS << ')';
|
|
return;
|
|
}
|
|
case Type::StructTyID: {
|
|
StructType *STy = cast<StructType>(Ty);
|
|
|
|
if (STy->isLiteral())
|
|
return printStructBody(STy, OS);
|
|
|
|
if (!STy->getName().empty())
|
|
return PrintLLVMName(OS, STy->getName(), LocalPrefix);
|
|
|
|
incorporateTypes();
|
|
const auto I = Type2Number.find(STy);
|
|
if (I != Type2Number.end())
|
|
OS << '%' << I->second;
|
|
else // Not enumerated, print the hex address.
|
|
OS << "%\"type " << STy << '\"';
|
|
return;
|
|
}
|
|
case Type::PointerTyID: {
|
|
PointerType *PTy = cast<PointerType>(Ty);
|
|
if (PTy->isOpaque()) {
|
|
OS << "ptr";
|
|
if (unsigned AddressSpace = PTy->getAddressSpace())
|
|
OS << " addrspace(" << AddressSpace << ')';
|
|
return;
|
|
}
|
|
print(PTy->getElementType(), OS);
|
|
if (unsigned AddressSpace = PTy->getAddressSpace())
|
|
OS << " addrspace(" << AddressSpace << ')';
|
|
OS << '*';
|
|
return;
|
|
}
|
|
case Type::ArrayTyID: {
|
|
ArrayType *ATy = cast<ArrayType>(Ty);
|
|
OS << '[' << ATy->getNumElements() << " x ";
|
|
print(ATy->getElementType(), OS);
|
|
OS << ']';
|
|
return;
|
|
}
|
|
case Type::FixedVectorTyID:
|
|
case Type::ScalableVectorTyID: {
|
|
VectorType *PTy = cast<VectorType>(Ty);
|
|
ElementCount EC = PTy->getElementCount();
|
|
OS << "<";
|
|
if (EC.isScalable())
|
|
OS << "vscale x ";
|
|
OS << EC.getKnownMinValue() << " x ";
|
|
print(PTy->getElementType(), OS);
|
|
OS << '>';
|
|
return;
|
|
}
|
|
}
|
|
llvm_unreachable("Invalid TypeID");
|
|
}
|
|
|
|
void TypePrinting::printStructBody(StructType *STy, raw_ostream &OS) {
|
|
if (STy->isOpaque()) {
|
|
OS << "opaque";
|
|
return;
|
|
}
|
|
|
|
if (STy->isPacked())
|
|
OS << '<';
|
|
|
|
if (STy->getNumElements() == 0) {
|
|
OS << "{}";
|
|
} else {
|
|
StructType::element_iterator I = STy->element_begin();
|
|
OS << "{ ";
|
|
print(*I++, OS);
|
|
for (StructType::element_iterator E = STy->element_end(); I != E; ++I) {
|
|
OS << ", ";
|
|
print(*I, OS);
|
|
}
|
|
|
|
OS << " }";
|
|
}
|
|
if (STy->isPacked())
|
|
OS << '>';
|
|
}
|
|
|
|
AbstractSlotTrackerStorage::~AbstractSlotTrackerStorage() {}
|
|
|
|
namespace llvm {
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// SlotTracker Class: Enumerate slot numbers for unnamed values
|
|
//===----------------------------------------------------------------------===//
|
|
/// This class provides computation of slot numbers for LLVM Assembly writing.
|
|
///
|
|
class SlotTracker : public AbstractSlotTrackerStorage {
|
|
public:
|
|
/// ValueMap - A mapping of Values to slot numbers.
|
|
using ValueMap = DenseMap<const Value *, unsigned>;
|
|
|
|
private:
|
|
/// TheModule - The module for which we are holding slot numbers.
|
|
const Module* TheModule;
|
|
|
|
/// TheFunction - The function for which we are holding slot numbers.
|
|
const Function* TheFunction = nullptr;
|
|
bool FunctionProcessed = false;
|
|
bool ShouldInitializeAllMetadata;
|
|
|
|
std::function<void(AbstractSlotTrackerStorage *, const Module *, bool)>
|
|
ProcessModuleHookFn;
|
|
std::function<void(AbstractSlotTrackerStorage *, const Function *, bool)>
|
|
ProcessFunctionHookFn;
|
|
|
|
/// The summary index for which we are holding slot numbers.
|
|
const ModuleSummaryIndex *TheIndex = nullptr;
|
|
|
|
/// mMap - The slot map for the module level data.
|
|
ValueMap mMap;
|
|
unsigned mNext = 0;
|
|
|
|
/// fMap - The slot map for the function level data.
|
|
ValueMap fMap;
|
|
unsigned fNext = 0;
|
|
|
|
/// mdnMap - Map for MDNodes.
|
|
DenseMap<const MDNode*, unsigned> mdnMap;
|
|
unsigned mdnNext = 0;
|
|
|
|
/// asMap - The slot map for attribute sets.
|
|
DenseMap<AttributeSet, unsigned> asMap;
|
|
unsigned asNext = 0;
|
|
|
|
/// ModulePathMap - The slot map for Module paths used in the summary index.
|
|
StringMap<unsigned> ModulePathMap;
|
|
unsigned ModulePathNext = 0;
|
|
|
|
/// GUIDMap - The slot map for GUIDs used in the summary index.
|
|
DenseMap<GlobalValue::GUID, unsigned> GUIDMap;
|
|
unsigned GUIDNext = 0;
|
|
|
|
/// TypeIdMap - The slot map for type ids used in the summary index.
|
|
StringMap<unsigned> TypeIdMap;
|
|
unsigned TypeIdNext = 0;
|
|
|
|
public:
|
|
/// Construct from a module.
|
|
///
|
|
/// If \c ShouldInitializeAllMetadata, initializes all metadata in all
|
|
/// functions, giving correct numbering for metadata referenced only from
|
|
/// within a function (even if no functions have been initialized).
|
|
explicit SlotTracker(const Module *M,
|
|
bool ShouldInitializeAllMetadata = false);
|
|
|
|
/// Construct from a function, starting out in incorp state.
|
|
///
|
|
/// If \c ShouldInitializeAllMetadata, initializes all metadata in all
|
|
/// functions, giving correct numbering for metadata referenced only from
|
|
/// within a function (even if no functions have been initialized).
|
|
explicit SlotTracker(const Function *F,
|
|
bool ShouldInitializeAllMetadata = false);
|
|
|
|
/// Construct from a module summary index.
|
|
explicit SlotTracker(const ModuleSummaryIndex *Index);
|
|
|
|
SlotTracker(const SlotTracker &) = delete;
|
|
SlotTracker &operator=(const SlotTracker &) = delete;
|
|
|
|
~SlotTracker() = default;
|
|
|
|
void setProcessHook(
|
|
std::function<void(AbstractSlotTrackerStorage *, const Module *, bool)>);
|
|
void setProcessHook(std::function<void(AbstractSlotTrackerStorage *,
|
|
const Function *, bool)>);
|
|
|
|
unsigned getNextMetadataSlot() override { return mdnNext; }
|
|
|
|
void createMetadataSlot(const MDNode *N) override;
|
|
|
|
/// Return the slot number of the specified value in it's type
|
|
/// plane. If something is not in the SlotTracker, return -1.
|
|
int getLocalSlot(const Value *V);
|
|
int getGlobalSlot(const GlobalValue *V);
|
|
int getMetadataSlot(const MDNode *N) override;
|
|
int getAttributeGroupSlot(AttributeSet AS);
|
|
int getModulePathSlot(StringRef Path);
|
|
int getGUIDSlot(GlobalValue::GUID GUID);
|
|
int getTypeIdSlot(StringRef Id);
|
|
|
|
/// If you'd like to deal with a function instead of just a module, use
|
|
/// this method to get its data into the SlotTracker.
|
|
void incorporateFunction(const Function *F) {
|
|
TheFunction = F;
|
|
FunctionProcessed = false;
|
|
}
|
|
|
|
const Function *getFunction() const { return TheFunction; }
|
|
|
|
/// After calling incorporateFunction, use this method to remove the
|
|
/// most recently incorporated function from the SlotTracker. This
|
|
/// will reset the state of the machine back to just the module contents.
|
|
void purgeFunction();
|
|
|
|
/// MDNode map iterators.
|
|
using mdn_iterator = DenseMap<const MDNode*, unsigned>::iterator;
|
|
|
|
mdn_iterator mdn_begin() { return mdnMap.begin(); }
|
|
mdn_iterator mdn_end() { return mdnMap.end(); }
|
|
unsigned mdn_size() const { return mdnMap.size(); }
|
|
bool mdn_empty() const { return mdnMap.empty(); }
|
|
|
|
/// AttributeSet map iterators.
|
|
using as_iterator = DenseMap<AttributeSet, unsigned>::iterator;
|
|
|
|
as_iterator as_begin() { return asMap.begin(); }
|
|
as_iterator as_end() { return asMap.end(); }
|
|
unsigned as_size() const { return asMap.size(); }
|
|
bool as_empty() const { return asMap.empty(); }
|
|
|
|
/// GUID map iterators.
|
|
using guid_iterator = DenseMap<GlobalValue::GUID, unsigned>::iterator;
|
|
|
|
/// These functions do the actual initialization.
|
|
inline void initializeIfNeeded();
|
|
int initializeIndexIfNeeded();
|
|
|
|
// Implementation Details
|
|
private:
|
|
/// CreateModuleSlot - Insert the specified GlobalValue* into the slot table.
|
|
void CreateModuleSlot(const GlobalValue *V);
|
|
|
|
/// CreateMetadataSlot - Insert the specified MDNode* into the slot table.
|
|
void CreateMetadataSlot(const MDNode *N);
|
|
|
|
/// CreateFunctionSlot - Insert the specified Value* into the slot table.
|
|
void CreateFunctionSlot(const Value *V);
|
|
|
|
/// Insert the specified AttributeSet into the slot table.
|
|
void CreateAttributeSetSlot(AttributeSet AS);
|
|
|
|
inline void CreateModulePathSlot(StringRef Path);
|
|
void CreateGUIDSlot(GlobalValue::GUID GUID);
|
|
void CreateTypeIdSlot(StringRef Id);
|
|
|
|
/// Add all of the module level global variables (and their initializers)
|
|
/// and function declarations, but not the contents of those functions.
|
|
void processModule();
|
|
// Returns number of allocated slots
|
|
int processIndex();
|
|
|
|
/// Add all of the functions arguments, basic blocks, and instructions.
|
|
void processFunction();
|
|
|
|
/// Add the metadata directly attached to a GlobalObject.
|
|
void processGlobalObjectMetadata(const GlobalObject &GO);
|
|
|
|
/// Add all of the metadata from a function.
|
|
void processFunctionMetadata(const Function &F);
|
|
|
|
/// Add all of the metadata from an instruction.
|
|
void processInstructionMetadata(const Instruction &I);
|
|
};
|
|
|
|
} // end namespace llvm
|
|
|
|
ModuleSlotTracker::ModuleSlotTracker(SlotTracker &Machine, const Module *M,
|
|
const Function *F)
|
|
: M(M), F(F), Machine(&Machine) {}
|
|
|
|
ModuleSlotTracker::ModuleSlotTracker(const Module *M,
|
|
bool ShouldInitializeAllMetadata)
|
|
: ShouldCreateStorage(M),
|
|
ShouldInitializeAllMetadata(ShouldInitializeAllMetadata), M(M) {}
|
|
|
|
ModuleSlotTracker::~ModuleSlotTracker() = default;
|
|
|
|
SlotTracker *ModuleSlotTracker::getMachine() {
|
|
if (!ShouldCreateStorage)
|
|
return Machine;
|
|
|
|
ShouldCreateStorage = false;
|
|
MachineStorage =
|
|
std::make_unique<SlotTracker>(M, ShouldInitializeAllMetadata);
|
|
Machine = MachineStorage.get();
|
|
if (ProcessModuleHookFn)
|
|
Machine->setProcessHook(ProcessModuleHookFn);
|
|
if (ProcessFunctionHookFn)
|
|
Machine->setProcessHook(ProcessFunctionHookFn);
|
|
return Machine;
|
|
}
|
|
|
|
void ModuleSlotTracker::incorporateFunction(const Function &F) {
|
|
// Using getMachine() may lazily create the slot tracker.
|
|
if (!getMachine())
|
|
return;
|
|
|
|
// Nothing to do if this is the right function already.
|
|
if (this->F == &F)
|
|
return;
|
|
if (this->F)
|
|
Machine->purgeFunction();
|
|
Machine->incorporateFunction(&F);
|
|
this->F = &F;
|
|
}
|
|
|
|
int ModuleSlotTracker::getLocalSlot(const Value *V) {
|
|
assert(F && "No function incorporated");
|
|
return Machine->getLocalSlot(V);
|
|
}
|
|
|
|
void ModuleSlotTracker::setProcessHook(
|
|
std::function<void(AbstractSlotTrackerStorage *, const Module *, bool)>
|
|
Fn) {
|
|
ProcessModuleHookFn = Fn;
|
|
}
|
|
|
|
void ModuleSlotTracker::setProcessHook(
|
|
std::function<void(AbstractSlotTrackerStorage *, const Function *, bool)>
|
|
Fn) {
|
|
ProcessFunctionHookFn = Fn;
|
|
}
|
|
|
|
static SlotTracker *createSlotTracker(const Value *V) {
|
|
if (const Argument *FA = dyn_cast<Argument>(V))
|
|
return new SlotTracker(FA->getParent());
|
|
|
|
if (const Instruction *I = dyn_cast<Instruction>(V))
|
|
if (I->getParent())
|
|
return new SlotTracker(I->getParent()->getParent());
|
|
|
|
if (const BasicBlock *BB = dyn_cast<BasicBlock>(V))
|
|
return new SlotTracker(BB->getParent());
|
|
|
|
if (const GlobalVariable *GV = dyn_cast<GlobalVariable>(V))
|
|
return new SlotTracker(GV->getParent());
|
|
|
|
if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(V))
|
|
return new SlotTracker(GA->getParent());
|
|
|
|
if (const GlobalIFunc *GIF = dyn_cast<GlobalIFunc>(V))
|
|
return new SlotTracker(GIF->getParent());
|
|
|
|
if (const Function *Func = dyn_cast<Function>(V))
|
|
return new SlotTracker(Func);
|
|
|
|
return nullptr;
|
|
}
|
|
|
|
#if 0
|
|
#define ST_DEBUG(X) dbgs() << X
|
|
#else
|
|
#define ST_DEBUG(X)
|
|
#endif
|
|
|
|
// Module level constructor. Causes the contents of the Module (sans functions)
|
|
// to be added to the slot table.
|
|
SlotTracker::SlotTracker(const Module *M, bool ShouldInitializeAllMetadata)
|
|
: TheModule(M), ShouldInitializeAllMetadata(ShouldInitializeAllMetadata) {}
|
|
|
|
// Function level constructor. Causes the contents of the Module and the one
|
|
// function provided to be added to the slot table.
|
|
SlotTracker::SlotTracker(const Function *F, bool ShouldInitializeAllMetadata)
|
|
: TheModule(F ? F->getParent() : nullptr), TheFunction(F),
|
|
ShouldInitializeAllMetadata(ShouldInitializeAllMetadata) {}
|
|
|
|
SlotTracker::SlotTracker(const ModuleSummaryIndex *Index)
|
|
: TheModule(nullptr), ShouldInitializeAllMetadata(false), TheIndex(Index) {}
|
|
|
|
inline void SlotTracker::initializeIfNeeded() {
|
|
if (TheModule) {
|
|
processModule();
|
|
TheModule = nullptr; ///< Prevent re-processing next time we're called.
|
|
}
|
|
|
|
if (TheFunction && !FunctionProcessed)
|
|
processFunction();
|
|
}
|
|
|
|
int SlotTracker::initializeIndexIfNeeded() {
|
|
if (!TheIndex)
|
|
return 0;
|
|
int NumSlots = processIndex();
|
|
TheIndex = nullptr; ///< Prevent re-processing next time we're called.
|
|
return NumSlots;
|
|
}
|
|
|
|
// Iterate through all the global variables, functions, and global
|
|
// variable initializers and create slots for them.
|
|
void SlotTracker::processModule() {
|
|
ST_DEBUG("begin processModule!\n");
|
|
|
|
// Add all of the unnamed global variables to the value table.
|
|
for (const GlobalVariable &Var : TheModule->globals()) {
|
|
if (!Var.hasName())
|
|
CreateModuleSlot(&Var);
|
|
processGlobalObjectMetadata(Var);
|
|
auto Attrs = Var.getAttributes();
|
|
if (Attrs.hasAttributes())
|
|
CreateAttributeSetSlot(Attrs);
|
|
}
|
|
|
|
for (const GlobalAlias &A : TheModule->aliases()) {
|
|
if (!A.hasName())
|
|
CreateModuleSlot(&A);
|
|
}
|
|
|
|
for (const GlobalIFunc &I : TheModule->ifuncs()) {
|
|
if (!I.hasName())
|
|
CreateModuleSlot(&I);
|
|
}
|
|
|
|
// Add metadata used by named metadata.
|
|
for (const NamedMDNode &NMD : TheModule->named_metadata()) {
|
|
for (unsigned i = 0, e = NMD.getNumOperands(); i != e; ++i)
|
|
CreateMetadataSlot(NMD.getOperand(i));
|
|
}
|
|
|
|
for (const Function &F : *TheModule) {
|
|
if (!F.hasName())
|
|
// Add all the unnamed functions to the table.
|
|
CreateModuleSlot(&F);
|
|
|
|
if (ShouldInitializeAllMetadata)
|
|
processFunctionMetadata(F);
|
|
|
|
// Add all the function attributes to the table.
|
|
// FIXME: Add attributes of other objects?
|
|
AttributeSet FnAttrs = F.getAttributes().getFnAttributes();
|
|
if (FnAttrs.hasAttributes())
|
|
CreateAttributeSetSlot(FnAttrs);
|
|
}
|
|
|
|
if (ProcessModuleHookFn)
|
|
ProcessModuleHookFn(this, TheModule, ShouldInitializeAllMetadata);
|
|
|
|
ST_DEBUG("end processModule!\n");
|
|
}
|
|
|
|
// Process the arguments, basic blocks, and instructions of a function.
|
|
void SlotTracker::processFunction() {
|
|
ST_DEBUG("begin processFunction!\n");
|
|
fNext = 0;
|
|
|
|
// Process function metadata if it wasn't hit at the module-level.
|
|
if (!ShouldInitializeAllMetadata)
|
|
processFunctionMetadata(*TheFunction);
|
|
|
|
// Add all the function arguments with no names.
|
|
for(Function::const_arg_iterator AI = TheFunction->arg_begin(),
|
|
AE = TheFunction->arg_end(); AI != AE; ++AI)
|
|
if (!AI->hasName())
|
|
CreateFunctionSlot(&*AI);
|
|
|
|
ST_DEBUG("Inserting Instructions:\n");
|
|
|
|
// Add all of the basic blocks and instructions with no names.
|
|
for (auto &BB : *TheFunction) {
|
|
if (!BB.hasName())
|
|
CreateFunctionSlot(&BB);
|
|
|
|
for (auto &I : BB) {
|
|
if (!I.getType()->isVoidTy() && !I.hasName())
|
|
CreateFunctionSlot(&I);
|
|
|
|
// We allow direct calls to any llvm.foo function here, because the
|
|
// target may not be linked into the optimizer.
|
|
if (const auto *Call = dyn_cast<CallBase>(&I)) {
|
|
// Add all the call attributes to the table.
|
|
AttributeSet Attrs = Call->getAttributes().getFnAttributes();
|
|
if (Attrs.hasAttributes())
|
|
CreateAttributeSetSlot(Attrs);
|
|
}
|
|
}
|
|
}
|
|
|
|
if (ProcessFunctionHookFn)
|
|
ProcessFunctionHookFn(this, TheFunction, ShouldInitializeAllMetadata);
|
|
|
|
FunctionProcessed = true;
|
|
|
|
ST_DEBUG("end processFunction!\n");
|
|
}
|
|
|
|
// Iterate through all the GUID in the index and create slots for them.
|
|
int SlotTracker::processIndex() {
|
|
ST_DEBUG("begin processIndex!\n");
|
|
assert(TheIndex);
|
|
|
|
// The first block of slots are just the module ids, which start at 0 and are
|
|
// assigned consecutively. Since the StringMap iteration order isn't
|
|
// guaranteed, use a std::map to order by module ID before assigning slots.
|
|
std::map<uint64_t, StringRef> ModuleIdToPathMap;
|
|
for (auto &ModPath : TheIndex->modulePaths())
|
|
ModuleIdToPathMap[ModPath.second.first] = ModPath.first();
|
|
for (auto &ModPair : ModuleIdToPathMap)
|
|
CreateModulePathSlot(ModPair.second);
|
|
|
|
// Start numbering the GUIDs after the module ids.
|
|
GUIDNext = ModulePathNext;
|
|
|
|
for (auto &GlobalList : *TheIndex)
|
|
CreateGUIDSlot(GlobalList.first);
|
|
|
|
for (auto &TId : TheIndex->typeIdCompatibleVtableMap())
|
|
CreateGUIDSlot(GlobalValue::getGUID(TId.first));
|
|
|
|
// Start numbering the TypeIds after the GUIDs.
|
|
TypeIdNext = GUIDNext;
|
|
for (const auto &TID : TheIndex->typeIds())
|
|
CreateTypeIdSlot(TID.second.first);
|
|
|
|
ST_DEBUG("end processIndex!\n");
|
|
return TypeIdNext;
|
|
}
|
|
|
|
void SlotTracker::processGlobalObjectMetadata(const GlobalObject &GO) {
|
|
SmallVector<std::pair<unsigned, MDNode *>, 4> MDs;
|
|
GO.getAllMetadata(MDs);
|
|
for (auto &MD : MDs)
|
|
CreateMetadataSlot(MD.second);
|
|
}
|
|
|
|
void SlotTracker::processFunctionMetadata(const Function &F) {
|
|
processGlobalObjectMetadata(F);
|
|
for (auto &BB : F) {
|
|
for (auto &I : BB)
|
|
processInstructionMetadata(I);
|
|
}
|
|
}
|
|
|
|
void SlotTracker::processInstructionMetadata(const Instruction &I) {
|
|
// Process metadata used directly by intrinsics.
|
|
if (const CallInst *CI = dyn_cast<CallInst>(&I))
|
|
if (Function *F = CI->getCalledFunction())
|
|
if (F->isIntrinsic())
|
|
for (auto &Op : I.operands())
|
|
if (auto *V = dyn_cast_or_null<MetadataAsValue>(Op))
|
|
if (MDNode *N = dyn_cast<MDNode>(V->getMetadata()))
|
|
CreateMetadataSlot(N);
|
|
|
|
// Process metadata attached to this instruction.
|
|
SmallVector<std::pair<unsigned, MDNode *>, 4> MDs;
|
|
I.getAllMetadata(MDs);
|
|
for (auto &MD : MDs)
|
|
CreateMetadataSlot(MD.second);
|
|
}
|
|
|
|
/// Clean up after incorporating a function. This is the only way to get out of
|
|
/// the function incorporation state that affects get*Slot/Create*Slot. Function
|
|
/// incorporation state is indicated by TheFunction != 0.
|
|
void SlotTracker::purgeFunction() {
|
|
ST_DEBUG("begin purgeFunction!\n");
|
|
fMap.clear(); // Simply discard the function level map
|
|
TheFunction = nullptr;
|
|
FunctionProcessed = false;
|
|
ST_DEBUG("end purgeFunction!\n");
|
|
}
|
|
|
|
/// getGlobalSlot - Get the slot number of a global value.
|
|
int SlotTracker::getGlobalSlot(const GlobalValue *V) {
|
|
// Check for uninitialized state and do lazy initialization.
|
|
initializeIfNeeded();
|
|
|
|
// Find the value in the module map
|
|
ValueMap::iterator MI = mMap.find(V);
|
|
return MI == mMap.end() ? -1 : (int)MI->second;
|
|
}
|
|
|
|
void SlotTracker::setProcessHook(
|
|
std::function<void(AbstractSlotTrackerStorage *, const Module *, bool)>
|
|
Fn) {
|
|
ProcessModuleHookFn = Fn;
|
|
}
|
|
|
|
void SlotTracker::setProcessHook(
|
|
std::function<void(AbstractSlotTrackerStorage *, const Function *, bool)>
|
|
Fn) {
|
|
ProcessFunctionHookFn = Fn;
|
|
}
|
|
|
|
/// getMetadataSlot - Get the slot number of a MDNode.
|
|
void SlotTracker::createMetadataSlot(const MDNode *N) { CreateMetadataSlot(N); }
|
|
|
|
/// getMetadataSlot - Get the slot number of a MDNode.
|
|
int SlotTracker::getMetadataSlot(const MDNode *N) {
|
|
// Check for uninitialized state and do lazy initialization.
|
|
initializeIfNeeded();
|
|
|
|
// Find the MDNode in the module map
|
|
mdn_iterator MI = mdnMap.find(N);
|
|
return MI == mdnMap.end() ? -1 : (int)MI->second;
|
|
}
|
|
|
|
/// getLocalSlot - Get the slot number for a value that is local to a function.
|
|
int SlotTracker::getLocalSlot(const Value *V) {
|
|
assert(!isa<Constant>(V) && "Can't get a constant or global slot with this!");
|
|
|
|
// Check for uninitialized state and do lazy initialization.
|
|
initializeIfNeeded();
|
|
|
|
ValueMap::iterator FI = fMap.find(V);
|
|
return FI == fMap.end() ? -1 : (int)FI->second;
|
|
}
|
|
|
|
int SlotTracker::getAttributeGroupSlot(AttributeSet AS) {
|
|
// Check for uninitialized state and do lazy initialization.
|
|
initializeIfNeeded();
|
|
|
|
// Find the AttributeSet in the module map.
|
|
as_iterator AI = asMap.find(AS);
|
|
return AI == asMap.end() ? -1 : (int)AI->second;
|
|
}
|
|
|
|
int SlotTracker::getModulePathSlot(StringRef Path) {
|
|
// Check for uninitialized state and do lazy initialization.
|
|
initializeIndexIfNeeded();
|
|
|
|
// Find the Module path in the map
|
|
auto I = ModulePathMap.find(Path);
|
|
return I == ModulePathMap.end() ? -1 : (int)I->second;
|
|
}
|
|
|
|
int SlotTracker::getGUIDSlot(GlobalValue::GUID GUID) {
|
|
// Check for uninitialized state and do lazy initialization.
|
|
initializeIndexIfNeeded();
|
|
|
|
// Find the GUID in the map
|
|
guid_iterator I = GUIDMap.find(GUID);
|
|
return I == GUIDMap.end() ? -1 : (int)I->second;
|
|
}
|
|
|
|
int SlotTracker::getTypeIdSlot(StringRef Id) {
|
|
// Check for uninitialized state and do lazy initialization.
|
|
initializeIndexIfNeeded();
|
|
|
|
// Find the TypeId string in the map
|
|
auto I = TypeIdMap.find(Id);
|
|
return I == TypeIdMap.end() ? -1 : (int)I->second;
|
|
}
|
|
|
|
/// CreateModuleSlot - Insert the specified GlobalValue* into the slot table.
|
|
void SlotTracker::CreateModuleSlot(const GlobalValue *V) {
|
|
assert(V && "Can't insert a null Value into SlotTracker!");
|
|
assert(!V->getType()->isVoidTy() && "Doesn't need a slot!");
|
|
assert(!V->hasName() && "Doesn't need a slot!");
|
|
|
|
unsigned DestSlot = mNext++;
|
|
mMap[V] = DestSlot;
|
|
|
|
ST_DEBUG(" Inserting value [" << V->getType() << "] = " << V << " slot=" <<
|
|
DestSlot << " [");
|
|
// G = Global, F = Function, A = Alias, I = IFunc, o = other
|
|
ST_DEBUG((isa<GlobalVariable>(V) ? 'G' :
|
|
(isa<Function>(V) ? 'F' :
|
|
(isa<GlobalAlias>(V) ? 'A' :
|
|
(isa<GlobalIFunc>(V) ? 'I' : 'o')))) << "]\n");
|
|
}
|
|
|
|
/// CreateSlot - Create a new slot for the specified value if it has no name.
|
|
void SlotTracker::CreateFunctionSlot(const Value *V) {
|
|
assert(!V->getType()->isVoidTy() && !V->hasName() && "Doesn't need a slot!");
|
|
|
|
unsigned DestSlot = fNext++;
|
|
fMap[V] = DestSlot;
|
|
|
|
// G = Global, F = Function, o = other
|
|
ST_DEBUG(" Inserting value [" << V->getType() << "] = " << V << " slot=" <<
|
|
DestSlot << " [o]\n");
|
|
}
|
|
|
|
/// CreateModuleSlot - Insert the specified MDNode* into the slot table.
|
|
void SlotTracker::CreateMetadataSlot(const MDNode *N) {
|
|
assert(N && "Can't insert a null Value into SlotTracker!");
|
|
|
|
// Don't make slots for DIExpressions or DIArgLists. We just print them inline
|
|
// everywhere.
|
|
if (isa<DIExpression>(N) || isa<DIArgList>(N))
|
|
return;
|
|
|
|
unsigned DestSlot = mdnNext;
|
|
if (!mdnMap.insert(std::make_pair(N, DestSlot)).second)
|
|
return;
|
|
++mdnNext;
|
|
|
|
// Recursively add any MDNodes referenced by operands.
|
|
for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
|
|
if (const MDNode *Op = dyn_cast_or_null<MDNode>(N->getOperand(i)))
|
|
CreateMetadataSlot(Op);
|
|
}
|
|
|
|
void SlotTracker::CreateAttributeSetSlot(AttributeSet AS) {
|
|
assert(AS.hasAttributes() && "Doesn't need a slot!");
|
|
|
|
as_iterator I = asMap.find(AS);
|
|
if (I != asMap.end())
|
|
return;
|
|
|
|
unsigned DestSlot = asNext++;
|
|
asMap[AS] = DestSlot;
|
|
}
|
|
|
|
/// Create a new slot for the specified Module
|
|
void SlotTracker::CreateModulePathSlot(StringRef Path) {
|
|
ModulePathMap[Path] = ModulePathNext++;
|
|
}
|
|
|
|
/// Create a new slot for the specified GUID
|
|
void SlotTracker::CreateGUIDSlot(GlobalValue::GUID GUID) {
|
|
GUIDMap[GUID] = GUIDNext++;
|
|
}
|
|
|
|
/// Create a new slot for the specified Id
|
|
void SlotTracker::CreateTypeIdSlot(StringRef Id) {
|
|
TypeIdMap[Id] = TypeIdNext++;
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// AsmWriter Implementation
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
static void WriteAsOperandInternal(raw_ostream &Out, const Value *V,
|
|
TypePrinting *TypePrinter,
|
|
SlotTracker *Machine,
|
|
const Module *Context);
|
|
|
|
static void WriteAsOperandInternal(raw_ostream &Out, const Metadata *MD,
|
|
TypePrinting *TypePrinter,
|
|
SlotTracker *Machine, const Module *Context,
|
|
bool FromValue = false);
|
|
|
|
static void WriteOptimizationInfo(raw_ostream &Out, const User *U) {
|
|
if (const FPMathOperator *FPO = dyn_cast<const FPMathOperator>(U)) {
|
|
// 'Fast' is an abbreviation for all fast-math-flags.
|
|
if (FPO->isFast())
|
|
Out << " fast";
|
|
else {
|
|
if (FPO->hasAllowReassoc())
|
|
Out << " reassoc";
|
|
if (FPO->hasNoNaNs())
|
|
Out << " nnan";
|
|
if (FPO->hasNoInfs())
|
|
Out << " ninf";
|
|
if (FPO->hasNoSignedZeros())
|
|
Out << " nsz";
|
|
if (FPO->hasAllowReciprocal())
|
|
Out << " arcp";
|
|
if (FPO->hasAllowContract())
|
|
Out << " contract";
|
|
if (FPO->hasApproxFunc())
|
|
Out << " afn";
|
|
}
|
|
}
|
|
|
|
if (const OverflowingBinaryOperator *OBO =
|
|
dyn_cast<OverflowingBinaryOperator>(U)) {
|
|
if (OBO->hasNoUnsignedWrap())
|
|
Out << " nuw";
|
|
if (OBO->hasNoSignedWrap())
|
|
Out << " nsw";
|
|
} else if (const PossiblyExactOperator *Div =
|
|
dyn_cast<PossiblyExactOperator>(U)) {
|
|
if (Div->isExact())
|
|
Out << " exact";
|
|
} else if (const GEPOperator *GEP = dyn_cast<GEPOperator>(U)) {
|
|
if (GEP->isInBounds())
|
|
Out << " inbounds";
|
|
}
|
|
}
|
|
|
|
static void WriteConstantInternal(raw_ostream &Out, const Constant *CV,
|
|
TypePrinting &TypePrinter,
|
|
SlotTracker *Machine,
|
|
const Module *Context) {
|
|
if (const ConstantInt *CI = dyn_cast<ConstantInt>(CV)) {
|
|
if (CI->getType()->isIntegerTy(1)) {
|
|
Out << (CI->getZExtValue() ? "true" : "false");
|
|
return;
|
|
}
|
|
Out << CI->getValue();
|
|
return;
|
|
}
|
|
|
|
if (const ConstantFP *CFP = dyn_cast<ConstantFP>(CV)) {
|
|
const APFloat &APF = CFP->getValueAPF();
|
|
if (&APF.getSemantics() == &APFloat::IEEEsingle() ||
|
|
&APF.getSemantics() == &APFloat::IEEEdouble()) {
|
|
// We would like to output the FP constant value in exponential notation,
|
|
// but we cannot do this if doing so will lose precision. Check here to
|
|
// make sure that we only output it in exponential format if we can parse
|
|
// the value back and get the same value.
|
|
//
|
|
bool ignored;
|
|
bool isDouble = &APF.getSemantics() == &APFloat::IEEEdouble();
|
|
bool isInf = APF.isInfinity();
|
|
bool isNaN = APF.isNaN();
|
|
if (!isInf && !isNaN) {
|
|
double Val = APF.convertToDouble();
|
|
SmallString<128> StrVal;
|
|
APF.toString(StrVal, 6, 0, false);
|
|
// Check to make sure that the stringized number is not some string like
|
|
// "Inf" or NaN, that atof will accept, but the lexer will not. Check
|
|
// that the string matches the "[-+]?[0-9]" regex.
|
|
//
|
|
assert((isDigit(StrVal[0]) || ((StrVal[0] == '-' || StrVal[0] == '+') &&
|
|
isDigit(StrVal[1]))) &&
|
|
"[-+]?[0-9] regex does not match!");
|
|
// Reparse stringized version!
|
|
if (APFloat(APFloat::IEEEdouble(), StrVal).convertToDouble() == Val) {
|
|
Out << StrVal;
|
|
return;
|
|
}
|
|
}
|
|
// Otherwise we could not reparse it to exactly the same value, so we must
|
|
// output the string in hexadecimal format! Note that loading and storing
|
|
// floating point types changes the bits of NaNs on some hosts, notably
|
|
// x86, so we must not use these types.
|
|
static_assert(sizeof(double) == sizeof(uint64_t),
|
|
"assuming that double is 64 bits!");
|
|
APFloat apf = APF;
|
|
// Floats are represented in ASCII IR as double, convert.
|
|
// FIXME: We should allow 32-bit hex float and remove this.
|
|
if (!isDouble) {
|
|
// A signaling NaN is quieted on conversion, so we need to recreate the
|
|
// expected value after convert (quiet bit of the payload is clear).
|
|
bool IsSNAN = apf.isSignaling();
|
|
apf.convert(APFloat::IEEEdouble(), APFloat::rmNearestTiesToEven,
|
|
&ignored);
|
|
if (IsSNAN) {
|
|
APInt Payload = apf.bitcastToAPInt();
|
|
apf = APFloat::getSNaN(APFloat::IEEEdouble(), apf.isNegative(),
|
|
&Payload);
|
|
}
|
|
}
|
|
Out << format_hex(apf.bitcastToAPInt().getZExtValue(), 0, /*Upper=*/true);
|
|
return;
|
|
}
|
|
|
|
// Either half, bfloat or some form of long double.
|
|
// These appear as a magic letter identifying the type, then a
|
|
// fixed number of hex digits.
|
|
Out << "0x";
|
|
APInt API = APF.bitcastToAPInt();
|
|
if (&APF.getSemantics() == &APFloat::x87DoubleExtended()) {
|
|
Out << 'K';
|
|
Out << format_hex_no_prefix(API.getHiBits(16).getZExtValue(), 4,
|
|
/*Upper=*/true);
|
|
Out << format_hex_no_prefix(API.getLoBits(64).getZExtValue(), 16,
|
|
/*Upper=*/true);
|
|
return;
|
|
} else if (&APF.getSemantics() == &APFloat::IEEEquad()) {
|
|
Out << 'L';
|
|
Out << format_hex_no_prefix(API.getLoBits(64).getZExtValue(), 16,
|
|
/*Upper=*/true);
|
|
Out << format_hex_no_prefix(API.getHiBits(64).getZExtValue(), 16,
|
|
/*Upper=*/true);
|
|
} else if (&APF.getSemantics() == &APFloat::PPCDoubleDouble()) {
|
|
Out << 'M';
|
|
Out << format_hex_no_prefix(API.getLoBits(64).getZExtValue(), 16,
|
|
/*Upper=*/true);
|
|
Out << format_hex_no_prefix(API.getHiBits(64).getZExtValue(), 16,
|
|
/*Upper=*/true);
|
|
} else if (&APF.getSemantics() == &APFloat::IEEEhalf()) {
|
|
Out << 'H';
|
|
Out << format_hex_no_prefix(API.getZExtValue(), 4,
|
|
/*Upper=*/true);
|
|
} else if (&APF.getSemantics() == &APFloat::BFloat()) {
|
|
Out << 'R';
|
|
Out << format_hex_no_prefix(API.getZExtValue(), 4,
|
|
/*Upper=*/true);
|
|
} else
|
|
llvm_unreachable("Unsupported floating point type");
|
|
return;
|
|
}
|
|
|
|
if (isa<ConstantAggregateZero>(CV)) {
|
|
Out << "zeroinitializer";
|
|
return;
|
|
}
|
|
|
|
if (const BlockAddress *BA = dyn_cast<BlockAddress>(CV)) {
|
|
Out << "blockaddress(";
|
|
WriteAsOperandInternal(Out, BA->getFunction(), &TypePrinter, Machine,
|
|
Context);
|
|
Out << ", ";
|
|
WriteAsOperandInternal(Out, BA->getBasicBlock(), &TypePrinter, Machine,
|
|
Context);
|
|
Out << ")";
|
|
return;
|
|
}
|
|
|
|
if (const auto *Equiv = dyn_cast<DSOLocalEquivalent>(CV)) {
|
|
Out << "dso_local_equivalent ";
|
|
WriteAsOperandInternal(Out, Equiv->getGlobalValue(), &TypePrinter, Machine,
|
|
Context);
|
|
return;
|
|
}
|
|
|
|
if (const ConstantArray *CA = dyn_cast<ConstantArray>(CV)) {
|
|
Type *ETy = CA->getType()->getElementType();
|
|
Out << '[';
|
|
TypePrinter.print(ETy, Out);
|
|
Out << ' ';
|
|
WriteAsOperandInternal(Out, CA->getOperand(0),
|
|
&TypePrinter, Machine,
|
|
Context);
|
|
for (unsigned i = 1, e = CA->getNumOperands(); i != e; ++i) {
|
|
Out << ", ";
|
|
TypePrinter.print(ETy, Out);
|
|
Out << ' ';
|
|
WriteAsOperandInternal(Out, CA->getOperand(i), &TypePrinter, Machine,
|
|
Context);
|
|
}
|
|
Out << ']';
|
|
return;
|
|
}
|
|
|
|
if (const ConstantDataArray *CA = dyn_cast<ConstantDataArray>(CV)) {
|
|
// As a special case, print the array as a string if it is an array of
|
|
// i8 with ConstantInt values.
|
|
if (CA->isString()) {
|
|
Out << "c\"";
|
|
printEscapedString(CA->getAsString(), Out);
|
|
Out << '"';
|
|
return;
|
|
}
|
|
|
|
Type *ETy = CA->getType()->getElementType();
|
|
Out << '[';
|
|
TypePrinter.print(ETy, Out);
|
|
Out << ' ';
|
|
WriteAsOperandInternal(Out, CA->getElementAsConstant(0),
|
|
&TypePrinter, Machine,
|
|
Context);
|
|
for (unsigned i = 1, e = CA->getNumElements(); i != e; ++i) {
|
|
Out << ", ";
|
|
TypePrinter.print(ETy, Out);
|
|
Out << ' ';
|
|
WriteAsOperandInternal(Out, CA->getElementAsConstant(i), &TypePrinter,
|
|
Machine, Context);
|
|
}
|
|
Out << ']';
|
|
return;
|
|
}
|
|
|
|
if (const ConstantStruct *CS = dyn_cast<ConstantStruct>(CV)) {
|
|
if (CS->getType()->isPacked())
|
|
Out << '<';
|
|
Out << '{';
|
|
unsigned N = CS->getNumOperands();
|
|
if (N) {
|
|
Out << ' ';
|
|
TypePrinter.print(CS->getOperand(0)->getType(), Out);
|
|
Out << ' ';
|
|
|
|
WriteAsOperandInternal(Out, CS->getOperand(0), &TypePrinter, Machine,
|
|
Context);
|
|
|
|
for (unsigned i = 1; i < N; i++) {
|
|
Out << ", ";
|
|
TypePrinter.print(CS->getOperand(i)->getType(), Out);
|
|
Out << ' ';
|
|
|
|
WriteAsOperandInternal(Out, CS->getOperand(i), &TypePrinter, Machine,
|
|
Context);
|
|
}
|
|
Out << ' ';
|
|
}
|
|
|
|
Out << '}';
|
|
if (CS->getType()->isPacked())
|
|
Out << '>';
|
|
return;
|
|
}
|
|
|
|
if (isa<ConstantVector>(CV) || isa<ConstantDataVector>(CV)) {
|
|
auto *CVVTy = cast<FixedVectorType>(CV->getType());
|
|
Type *ETy = CVVTy->getElementType();
|
|
Out << '<';
|
|
TypePrinter.print(ETy, Out);
|
|
Out << ' ';
|
|
WriteAsOperandInternal(Out, CV->getAggregateElement(0U), &TypePrinter,
|
|
Machine, Context);
|
|
for (unsigned i = 1, e = CVVTy->getNumElements(); i != e; ++i) {
|
|
Out << ", ";
|
|
TypePrinter.print(ETy, Out);
|
|
Out << ' ';
|
|
WriteAsOperandInternal(Out, CV->getAggregateElement(i), &TypePrinter,
|
|
Machine, Context);
|
|
}
|
|
Out << '>';
|
|
return;
|
|
}
|
|
|
|
if (isa<ConstantPointerNull>(CV)) {
|
|
Out << "null";
|
|
return;
|
|
}
|
|
|
|
if (isa<ConstantTokenNone>(CV)) {
|
|
Out << "none";
|
|
return;
|
|
}
|
|
|
|
if (isa<PoisonValue>(CV)) {
|
|
Out << "poison";
|
|
return;
|
|
}
|
|
|
|
if (isa<UndefValue>(CV)) {
|
|
Out << "undef";
|
|
return;
|
|
}
|
|
|
|
if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(CV)) {
|
|
Out << CE->getOpcodeName();
|
|
WriteOptimizationInfo(Out, CE);
|
|
if (CE->isCompare())
|
|
Out << ' ' << CmpInst::getPredicateName(
|
|
static_cast<CmpInst::Predicate>(CE->getPredicate()));
|
|
Out << " (";
|
|
|
|
Optional<unsigned> InRangeOp;
|
|
if (const GEPOperator *GEP = dyn_cast<GEPOperator>(CE)) {
|
|
TypePrinter.print(GEP->getSourceElementType(), Out);
|
|
Out << ", ";
|
|
InRangeOp = GEP->getInRangeIndex();
|
|
if (InRangeOp)
|
|
++*InRangeOp;
|
|
}
|
|
|
|
for (User::const_op_iterator OI=CE->op_begin(); OI != CE->op_end(); ++OI) {
|
|
if (InRangeOp && unsigned(OI - CE->op_begin()) == *InRangeOp)
|
|
Out << "inrange ";
|
|
TypePrinter.print((*OI)->getType(), Out);
|
|
Out << ' ';
|
|
WriteAsOperandInternal(Out, *OI, &TypePrinter, Machine, Context);
|
|
if (OI+1 != CE->op_end())
|
|
Out << ", ";
|
|
}
|
|
|
|
if (CE->hasIndices()) {
|
|
ArrayRef<unsigned> Indices = CE->getIndices();
|
|
for (unsigned i = 0, e = Indices.size(); i != e; ++i)
|
|
Out << ", " << Indices[i];
|
|
}
|
|
|
|
if (CE->isCast()) {
|
|
Out << " to ";
|
|
TypePrinter.print(CE->getType(), Out);
|
|
}
|
|
|
|
if (CE->getOpcode() == Instruction::ShuffleVector)
|
|
PrintShuffleMask(Out, CE->getType(), CE->getShuffleMask());
|
|
|
|
Out << ')';
|
|
return;
|
|
}
|
|
|
|
Out << "<placeholder or erroneous Constant>";
|
|
}
|
|
|
|
static void writeMDTuple(raw_ostream &Out, const MDTuple *Node,
|
|
TypePrinting *TypePrinter, SlotTracker *Machine,
|
|
const Module *Context) {
|
|
Out << "!{";
|
|
for (unsigned mi = 0, me = Node->getNumOperands(); mi != me; ++mi) {
|
|
const Metadata *MD = Node->getOperand(mi);
|
|
if (!MD)
|
|
Out << "null";
|
|
else if (auto *MDV = dyn_cast<ValueAsMetadata>(MD)) {
|
|
Value *V = MDV->getValue();
|
|
TypePrinter->print(V->getType(), Out);
|
|
Out << ' ';
|
|
WriteAsOperandInternal(Out, V, TypePrinter, Machine, Context);
|
|
} else {
|
|
WriteAsOperandInternal(Out, MD, TypePrinter, Machine, Context);
|
|
}
|
|
if (mi + 1 != me)
|
|
Out << ", ";
|
|
}
|
|
|
|
Out << "}";
|
|
}
|
|
|
|
namespace {
|
|
|
|
struct FieldSeparator {
|
|
bool Skip = true;
|
|
const char *Sep;
|
|
|
|
FieldSeparator(const char *Sep = ", ") : Sep(Sep) {}
|
|
};
|
|
|
|
raw_ostream &operator<<(raw_ostream &OS, FieldSeparator &FS) {
|
|
if (FS.Skip) {
|
|
FS.Skip = false;
|
|
return OS;
|
|
}
|
|
return OS << FS.Sep;
|
|
}
|
|
|
|
struct MDFieldPrinter {
|
|
raw_ostream &Out;
|
|
FieldSeparator FS;
|
|
TypePrinting *TypePrinter = nullptr;
|
|
SlotTracker *Machine = nullptr;
|
|
const Module *Context = nullptr;
|
|
|
|
explicit MDFieldPrinter(raw_ostream &Out) : Out(Out) {}
|
|
MDFieldPrinter(raw_ostream &Out, TypePrinting *TypePrinter,
|
|
SlotTracker *Machine, const Module *Context)
|
|
: Out(Out), TypePrinter(TypePrinter), Machine(Machine), Context(Context) {
|
|
}
|
|
|
|
void printTag(const DINode *N);
|
|
void printMacinfoType(const DIMacroNode *N);
|
|
void printChecksum(const DIFile::ChecksumInfo<StringRef> &N);
|
|
void printString(StringRef Name, StringRef Value,
|
|
bool ShouldSkipEmpty = true);
|
|
void printMetadata(StringRef Name, const Metadata *MD,
|
|
bool ShouldSkipNull = true);
|
|
template <class IntTy>
|
|
void printInt(StringRef Name, IntTy Int, bool ShouldSkipZero = true);
|
|
void printAPInt(StringRef Name, const APInt &Int, bool IsUnsigned,
|
|
bool ShouldSkipZero);
|
|
void printBool(StringRef Name, bool Value, Optional<bool> Default = None);
|
|
void printDIFlags(StringRef Name, DINode::DIFlags Flags);
|
|
void printDISPFlags(StringRef Name, DISubprogram::DISPFlags Flags);
|
|
template <class IntTy, class Stringifier>
|
|
void printDwarfEnum(StringRef Name, IntTy Value, Stringifier toString,
|
|
bool ShouldSkipZero = true);
|
|
void printEmissionKind(StringRef Name, DICompileUnit::DebugEmissionKind EK);
|
|
void printNameTableKind(StringRef Name,
|
|
DICompileUnit::DebugNameTableKind NTK);
|
|
};
|
|
|
|
} // end anonymous namespace
|
|
|
|
void MDFieldPrinter::printTag(const DINode *N) {
|
|
Out << FS << "tag: ";
|
|
auto Tag = dwarf::TagString(N->getTag());
|
|
if (!Tag.empty())
|
|
Out << Tag;
|
|
else
|
|
Out << N->getTag();
|
|
}
|
|
|
|
void MDFieldPrinter::printMacinfoType(const DIMacroNode *N) {
|
|
Out << FS << "type: ";
|
|
auto Type = dwarf::MacinfoString(N->getMacinfoType());
|
|
if (!Type.empty())
|
|
Out << Type;
|
|
else
|
|
Out << N->getMacinfoType();
|
|
}
|
|
|
|
void MDFieldPrinter::printChecksum(
|
|
const DIFile::ChecksumInfo<StringRef> &Checksum) {
|
|
Out << FS << "checksumkind: " << Checksum.getKindAsString();
|
|
printString("checksum", Checksum.Value, /* ShouldSkipEmpty */ false);
|
|
}
|
|
|
|
void MDFieldPrinter::printString(StringRef Name, StringRef Value,
|
|
bool ShouldSkipEmpty) {
|
|
if (ShouldSkipEmpty && Value.empty())
|
|
return;
|
|
|
|
Out << FS << Name << ": \"";
|
|
printEscapedString(Value, Out);
|
|
Out << "\"";
|
|
}
|
|
|
|
static void writeMetadataAsOperand(raw_ostream &Out, const Metadata *MD,
|
|
TypePrinting *TypePrinter,
|
|
SlotTracker *Machine,
|
|
const Module *Context) {
|
|
if (!MD) {
|
|
Out << "null";
|
|
return;
|
|
}
|
|
WriteAsOperandInternal(Out, MD, TypePrinter, Machine, Context);
|
|
}
|
|
|
|
void MDFieldPrinter::printMetadata(StringRef Name, const Metadata *MD,
|
|
bool ShouldSkipNull) {
|
|
if (ShouldSkipNull && !MD)
|
|
return;
|
|
|
|
Out << FS << Name << ": ";
|
|
writeMetadataAsOperand(Out, MD, TypePrinter, Machine, Context);
|
|
}
|
|
|
|
template <class IntTy>
|
|
void MDFieldPrinter::printInt(StringRef Name, IntTy Int, bool ShouldSkipZero) {
|
|
if (ShouldSkipZero && !Int)
|
|
return;
|
|
|
|
Out << FS << Name << ": " << Int;
|
|
}
|
|
|
|
void MDFieldPrinter::printAPInt(StringRef Name, const APInt &Int,
|
|
bool IsUnsigned, bool ShouldSkipZero) {
|
|
if (ShouldSkipZero && Int.isNullValue())
|
|
return;
|
|
|
|
Out << FS << Name << ": ";
|
|
Int.print(Out, !IsUnsigned);
|
|
}
|
|
|
|
void MDFieldPrinter::printBool(StringRef Name, bool Value,
|
|
Optional<bool> Default) {
|
|
if (Default && Value == *Default)
|
|
return;
|
|
Out << FS << Name << ": " << (Value ? "true" : "false");
|
|
}
|
|
|
|
void MDFieldPrinter::printDIFlags(StringRef Name, DINode::DIFlags Flags) {
|
|
if (!Flags)
|
|
return;
|
|
|
|
Out << FS << Name << ": ";
|
|
|
|
SmallVector<DINode::DIFlags, 8> SplitFlags;
|
|
auto Extra = DINode::splitFlags(Flags, SplitFlags);
|
|
|
|
FieldSeparator FlagsFS(" | ");
|
|
for (auto F : SplitFlags) {
|
|
auto StringF = DINode::getFlagString(F);
|
|
assert(!StringF.empty() && "Expected valid flag");
|
|
Out << FlagsFS << StringF;
|
|
}
|
|
if (Extra || SplitFlags.empty())
|
|
Out << FlagsFS << Extra;
|
|
}
|
|
|
|
void MDFieldPrinter::printDISPFlags(StringRef Name,
|
|
DISubprogram::DISPFlags Flags) {
|
|
// Always print this field, because no flags in the IR at all will be
|
|
// interpreted as old-style isDefinition: true.
|
|
Out << FS << Name << ": ";
|
|
|
|
if (!Flags) {
|
|
Out << 0;
|
|
return;
|
|
}
|
|
|
|
SmallVector<DISubprogram::DISPFlags, 8> SplitFlags;
|
|
auto Extra = DISubprogram::splitFlags(Flags, SplitFlags);
|
|
|
|
FieldSeparator FlagsFS(" | ");
|
|
for (auto F : SplitFlags) {
|
|
auto StringF = DISubprogram::getFlagString(F);
|
|
assert(!StringF.empty() && "Expected valid flag");
|
|
Out << FlagsFS << StringF;
|
|
}
|
|
if (Extra || SplitFlags.empty())
|
|
Out << FlagsFS << Extra;
|
|
}
|
|
|
|
void MDFieldPrinter::printEmissionKind(StringRef Name,
|
|
DICompileUnit::DebugEmissionKind EK) {
|
|
Out << FS << Name << ": " << DICompileUnit::emissionKindString(EK);
|
|
}
|
|
|
|
void MDFieldPrinter::printNameTableKind(StringRef Name,
|
|
DICompileUnit::DebugNameTableKind NTK) {
|
|
if (NTK == DICompileUnit::DebugNameTableKind::Default)
|
|
return;
|
|
Out << FS << Name << ": " << DICompileUnit::nameTableKindString(NTK);
|
|
}
|
|
|
|
template <class IntTy, class Stringifier>
|
|
void MDFieldPrinter::printDwarfEnum(StringRef Name, IntTy Value,
|
|
Stringifier toString, bool ShouldSkipZero) {
|
|
if (!Value)
|
|
return;
|
|
|
|
Out << FS << Name << ": ";
|
|
auto S = toString(Value);
|
|
if (!S.empty())
|
|
Out << S;
|
|
else
|
|
Out << Value;
|
|
}
|
|
|
|
static void writeGenericDINode(raw_ostream &Out, const GenericDINode *N,
|
|
TypePrinting *TypePrinter, SlotTracker *Machine,
|
|
const Module *Context) {
|
|
Out << "!GenericDINode(";
|
|
MDFieldPrinter Printer(Out, TypePrinter, Machine, Context);
|
|
Printer.printTag(N);
|
|
Printer.printString("header", N->getHeader());
|
|
if (N->getNumDwarfOperands()) {
|
|
Out << Printer.FS << "operands: {";
|
|
FieldSeparator IFS;
|
|
for (auto &I : N->dwarf_operands()) {
|
|
Out << IFS;
|
|
writeMetadataAsOperand(Out, I, TypePrinter, Machine, Context);
|
|
}
|
|
Out << "}";
|
|
}
|
|
Out << ")";
|
|
}
|
|
|
|
static void writeDILocation(raw_ostream &Out, const DILocation *DL,
|
|
TypePrinting *TypePrinter, SlotTracker *Machine,
|
|
const Module *Context) {
|
|
Out << "!DILocation(";
|
|
MDFieldPrinter Printer(Out, TypePrinter, Machine, Context);
|
|
// Always output the line, since 0 is a relevant and important value for it.
|
|
Printer.printInt("line", DL->getLine(), /* ShouldSkipZero */ false);
|
|
Printer.printInt("column", DL->getColumn());
|
|
Printer.printMetadata("scope", DL->getRawScope(), /* ShouldSkipNull */ false);
|
|
Printer.printMetadata("inlinedAt", DL->getRawInlinedAt());
|
|
Printer.printBool("isImplicitCode", DL->isImplicitCode(),
|
|
/* Default */ false);
|
|
Out << ")";
|
|
}
|
|
|
|
static void writeDISubrange(raw_ostream &Out, const DISubrange *N,
|
|
TypePrinting *TypePrinter, SlotTracker *Machine,
|
|
const Module *Context) {
|
|
Out << "!DISubrange(";
|
|
MDFieldPrinter Printer(Out, TypePrinter, Machine, Context);
|
|
|
|
auto *Count = N->getRawCountNode();
|
|
if (auto *CE = dyn_cast_or_null<ConstantAsMetadata>(Count)) {
|
|
auto *CV = cast<ConstantInt>(CE->getValue());
|
|
Printer.printInt("count", CV->getSExtValue(),
|
|
/* ShouldSkipZero */ false);
|
|
} else
|
|
Printer.printMetadata("count", Count, /*ShouldSkipNull */ true);
|
|
|
|
// A lowerBound of constant 0 should not be skipped, since it is different
|
|
// from an unspecified lower bound (= nullptr).
|
|
auto *LBound = N->getRawLowerBound();
|
|
if (auto *LE = dyn_cast_or_null<ConstantAsMetadata>(LBound)) {
|
|
auto *LV = cast<ConstantInt>(LE->getValue());
|
|
Printer.printInt("lowerBound", LV->getSExtValue(),
|
|
/* ShouldSkipZero */ false);
|
|
} else
|
|
Printer.printMetadata("lowerBound", LBound, /*ShouldSkipNull */ true);
|
|
|
|
auto *UBound = N->getRawUpperBound();
|
|
if (auto *UE = dyn_cast_or_null<ConstantAsMetadata>(UBound)) {
|
|
auto *UV = cast<ConstantInt>(UE->getValue());
|
|
Printer.printInt("upperBound", UV->getSExtValue(),
|
|
/* ShouldSkipZero */ false);
|
|
} else
|
|
Printer.printMetadata("upperBound", UBound, /*ShouldSkipNull */ true);
|
|
|
|
auto *Stride = N->getRawStride();
|
|
if (auto *SE = dyn_cast_or_null<ConstantAsMetadata>(Stride)) {
|
|
auto *SV = cast<ConstantInt>(SE->getValue());
|
|
Printer.printInt("stride", SV->getSExtValue(), /* ShouldSkipZero */ false);
|
|
} else
|
|
Printer.printMetadata("stride", Stride, /*ShouldSkipNull */ true);
|
|
|
|
Out << ")";
|
|
}
|
|
|
|
static void writeDIGenericSubrange(raw_ostream &Out, const DIGenericSubrange *N,
|
|
TypePrinting *TypePrinter,
|
|
SlotTracker *Machine,
|
|
const Module *Context) {
|
|
Out << "!DIGenericSubrange(";
|
|
MDFieldPrinter Printer(Out, TypePrinter, Machine, Context);
|
|
|
|
auto IsConstant = [&](Metadata *Bound) -> bool {
|
|
if (auto *BE = dyn_cast_or_null<DIExpression>(Bound)) {
|
|
return BE->isConstant()
|
|
? DIExpression::SignedOrUnsignedConstant::SignedConstant ==
|
|
*BE->isConstant()
|
|
: false;
|
|
}
|
|
return false;
|
|
};
|
|
|
|
auto GetConstant = [&](Metadata *Bound) -> int64_t {
|
|
assert(IsConstant(Bound) && "Expected constant");
|
|
auto *BE = dyn_cast_or_null<DIExpression>(Bound);
|
|
return static_cast<int64_t>(BE->getElement(1));
|
|
};
|
|
|
|
auto *Count = N->getRawCountNode();
|
|
if (IsConstant(Count))
|
|
Printer.printInt("count", GetConstant(Count),
|
|
/* ShouldSkipZero */ false);
|
|
else
|
|
Printer.printMetadata("count", Count, /*ShouldSkipNull */ true);
|
|
|
|
auto *LBound = N->getRawLowerBound();
|
|
if (IsConstant(LBound))
|
|
Printer.printInt("lowerBound", GetConstant(LBound),
|
|
/* ShouldSkipZero */ false);
|
|
else
|
|
Printer.printMetadata("lowerBound", LBound, /*ShouldSkipNull */ true);
|
|
|
|
auto *UBound = N->getRawUpperBound();
|
|
if (IsConstant(UBound))
|
|
Printer.printInt("upperBound", GetConstant(UBound),
|
|
/* ShouldSkipZero */ false);
|
|
else
|
|
Printer.printMetadata("upperBound", UBound, /*ShouldSkipNull */ true);
|
|
|
|
auto *Stride = N->getRawStride();
|
|
if (IsConstant(Stride))
|
|
Printer.printInt("stride", GetConstant(Stride),
|
|
/* ShouldSkipZero */ false);
|
|
else
|
|
Printer.printMetadata("stride", Stride, /*ShouldSkipNull */ true);
|
|
|
|
Out << ")";
|
|
}
|
|
|
|
static void writeDIEnumerator(raw_ostream &Out, const DIEnumerator *N,
|
|
TypePrinting *, SlotTracker *, const Module *) {
|
|
Out << "!DIEnumerator(";
|
|
MDFieldPrinter Printer(Out);
|
|
Printer.printString("name", N->getName(), /* ShouldSkipEmpty */ false);
|
|
Printer.printAPInt("value", N->getValue(), N->isUnsigned(),
|
|
/*ShouldSkipZero=*/false);
|
|
if (N->isUnsigned())
|
|
Printer.printBool("isUnsigned", true);
|
|
Out << ")";
|
|
}
|
|
|
|
static void writeDIBasicType(raw_ostream &Out, const DIBasicType *N,
|
|
TypePrinting *, SlotTracker *, const Module *) {
|
|
Out << "!DIBasicType(";
|
|
MDFieldPrinter Printer(Out);
|
|
if (N->getTag() != dwarf::DW_TAG_base_type)
|
|
Printer.printTag(N);
|
|
Printer.printString("name", N->getName());
|
|
Printer.printInt("size", N->getSizeInBits());
|
|
Printer.printInt("align", N->getAlignInBits());
|
|
Printer.printDwarfEnum("encoding", N->getEncoding(),
|
|
dwarf::AttributeEncodingString);
|
|
Printer.printDIFlags("flags", N->getFlags());
|
|
Out << ")";
|
|
}
|
|
|
|
static void writeDIStringType(raw_ostream &Out, const DIStringType *N,
|
|
TypePrinting *TypePrinter, SlotTracker *Machine,
|
|
const Module *Context) {
|
|
Out << "!DIStringType(";
|
|
MDFieldPrinter Printer(Out, TypePrinter, Machine, Context);
|
|
if (N->getTag() != dwarf::DW_TAG_string_type)
|
|
Printer.printTag(N);
|
|
Printer.printString("name", N->getName());
|
|
Printer.printMetadata("stringLength", N->getRawStringLength());
|
|
Printer.printMetadata("stringLengthExpression", N->getRawStringLengthExp());
|
|
Printer.printInt("size", N->getSizeInBits());
|
|
Printer.printInt("align", N->getAlignInBits());
|
|
Printer.printDwarfEnum("encoding", N->getEncoding(),
|
|
dwarf::AttributeEncodingString);
|
|
Out << ")";
|
|
}
|
|
|
|
static void writeDIDerivedType(raw_ostream &Out, const DIDerivedType *N,
|
|
TypePrinting *TypePrinter, SlotTracker *Machine,
|
|
const Module *Context) {
|
|
Out << "!DIDerivedType(";
|
|
MDFieldPrinter Printer(Out, TypePrinter, Machine, Context);
|
|
Printer.printTag(N);
|
|
Printer.printString("name", N->getName());
|
|
Printer.printMetadata("scope", N->getRawScope());
|
|
Printer.printMetadata("file", N->getRawFile());
|
|
Printer.printInt("line", N->getLine());
|
|
Printer.printMetadata("baseType", N->getRawBaseType(),
|
|
/* ShouldSkipNull */ false);
|
|
Printer.printInt("size", N->getSizeInBits());
|
|
Printer.printInt("align", N->getAlignInBits());
|
|
Printer.printInt("offset", N->getOffsetInBits());
|
|
Printer.printDIFlags("flags", N->getFlags());
|
|
Printer.printMetadata("extraData", N->getRawExtraData());
|
|
if (const auto &DWARFAddressSpace = N->getDWARFAddressSpace())
|
|
Printer.printInt("dwarfAddressSpace", *DWARFAddressSpace,
|
|
/* ShouldSkipZero */ false);
|
|
Out << ")";
|
|
}
|
|
|
|
static void writeDICompositeType(raw_ostream &Out, const DICompositeType *N,
|
|
TypePrinting *TypePrinter,
|
|
SlotTracker *Machine, const Module *Context) {
|
|
Out << "!DICompositeType(";
|
|
MDFieldPrinter Printer(Out, TypePrinter, Machine, Context);
|
|
Printer.printTag(N);
|
|
Printer.printString("name", N->getName());
|
|
Printer.printMetadata("scope", N->getRawScope());
|
|
Printer.printMetadata("file", N->getRawFile());
|
|
Printer.printInt("line", N->getLine());
|
|
Printer.printMetadata("baseType", N->getRawBaseType());
|
|
Printer.printInt("size", N->getSizeInBits());
|
|
Printer.printInt("align", N->getAlignInBits());
|
|
Printer.printInt("offset", N->getOffsetInBits());
|
|
Printer.printDIFlags("flags", N->getFlags());
|
|
Printer.printMetadata("elements", N->getRawElements());
|
|
Printer.printDwarfEnum("runtimeLang", N->getRuntimeLang(),
|
|
dwarf::LanguageString);
|
|
Printer.printMetadata("vtableHolder", N->getRawVTableHolder());
|
|
Printer.printMetadata("templateParams", N->getRawTemplateParams());
|
|
Printer.printString("identifier", N->getIdentifier());
|
|
Printer.printMetadata("discriminator", N->getRawDiscriminator());
|
|
Printer.printMetadata("dataLocation", N->getRawDataLocation());
|
|
Printer.printMetadata("associated", N->getRawAssociated());
|
|
Printer.printMetadata("allocated", N->getRawAllocated());
|
|
if (auto *RankConst = N->getRankConst())
|
|
Printer.printInt("rank", RankConst->getSExtValue(),
|
|
/* ShouldSkipZero */ false);
|
|
else
|
|
Printer.printMetadata("rank", N->getRawRank(), /*ShouldSkipNull */ true);
|
|
Out << ")";
|
|
}
|
|
|
|
static void writeDISubroutineType(raw_ostream &Out, const DISubroutineType *N,
|
|
TypePrinting *TypePrinter,
|
|
SlotTracker *Machine, const Module *Context) {
|
|
Out << "!DISubroutineType(";
|
|
MDFieldPrinter Printer(Out, TypePrinter, Machine, Context);
|
|
Printer.printDIFlags("flags", N->getFlags());
|
|
Printer.printDwarfEnum("cc", N->getCC(), dwarf::ConventionString);
|
|
Printer.printMetadata("types", N->getRawTypeArray(),
|
|
/* ShouldSkipNull */ false);
|
|
Out << ")";
|
|
}
|
|
|
|
static void writeDIFile(raw_ostream &Out, const DIFile *N, TypePrinting *,
|
|
SlotTracker *, const Module *) {
|
|
Out << "!DIFile(";
|
|
MDFieldPrinter Printer(Out);
|
|
Printer.printString("filename", N->getFilename(),
|
|
/* ShouldSkipEmpty */ false);
|
|
Printer.printString("directory", N->getDirectory(),
|
|
/* ShouldSkipEmpty */ false);
|
|
// Print all values for checksum together, or not at all.
|
|
if (N->getChecksum())
|
|
Printer.printChecksum(*N->getChecksum());
|
|
Printer.printString("source", N->getSource().getValueOr(StringRef()),
|
|
/* ShouldSkipEmpty */ true);
|
|
Out << ")";
|
|
}
|
|
|
|
static void writeDICompileUnit(raw_ostream &Out, const DICompileUnit *N,
|
|
TypePrinting *TypePrinter, SlotTracker *Machine,
|
|
const Module *Context) {
|
|
Out << "!DICompileUnit(";
|
|
MDFieldPrinter Printer(Out, TypePrinter, Machine, Context);
|
|
Printer.printDwarfEnum("language", N->getSourceLanguage(),
|
|
dwarf::LanguageString, /* ShouldSkipZero */ false);
|
|
Printer.printMetadata("file", N->getRawFile(), /* ShouldSkipNull */ false);
|
|
Printer.printString("producer", N->getProducer());
|
|
Printer.printBool("isOptimized", N->isOptimized());
|
|
Printer.printString("flags", N->getFlags());
|
|
Printer.printInt("runtimeVersion", N->getRuntimeVersion(),
|
|
/* ShouldSkipZero */ false);
|
|
Printer.printString("splitDebugFilename", N->getSplitDebugFilename());
|
|
Printer.printEmissionKind("emissionKind", N->getEmissionKind());
|
|
Printer.printMetadata("enums", N->getRawEnumTypes());
|
|
Printer.printMetadata("retainedTypes", N->getRawRetainedTypes());
|
|
Printer.printMetadata("globals", N->getRawGlobalVariables());
|
|
Printer.printMetadata("imports", N->getRawImportedEntities());
|
|
Printer.printMetadata("macros", N->getRawMacros());
|
|
Printer.printInt("dwoId", N->getDWOId());
|
|
Printer.printBool("splitDebugInlining", N->getSplitDebugInlining(), true);
|
|
Printer.printBool("debugInfoForProfiling", N->getDebugInfoForProfiling(),
|
|
false);
|
|
Printer.printNameTableKind("nameTableKind", N->getNameTableKind());
|
|
Printer.printBool("rangesBaseAddress", N->getRangesBaseAddress(), false);
|
|
Printer.printString("sysroot", N->getSysRoot());
|
|
Printer.printString("sdk", N->getSDK());
|
|
Out << ")";
|
|
}
|
|
|
|
static void writeDISubprogram(raw_ostream &Out, const DISubprogram *N,
|
|
TypePrinting *TypePrinter, SlotTracker *Machine,
|
|
const Module *Context) {
|
|
Out << "!DISubprogram(";
|
|
MDFieldPrinter Printer(Out, TypePrinter, Machine, Context);
|
|
Printer.printString("name", N->getName());
|
|
Printer.printString("linkageName", N->getLinkageName());
|
|
Printer.printMetadata("scope", N->getRawScope(), /* ShouldSkipNull */ false);
|
|
Printer.printMetadata("file", N->getRawFile());
|
|
Printer.printInt("line", N->getLine());
|
|
Printer.printMetadata("type", N->getRawType());
|
|
Printer.printInt("scopeLine", N->getScopeLine());
|
|
Printer.printMetadata("containingType", N->getRawContainingType());
|
|
if (N->getVirtuality() != dwarf::DW_VIRTUALITY_none ||
|
|
N->getVirtualIndex() != 0)
|
|
Printer.printInt("virtualIndex", N->getVirtualIndex(), false);
|
|
Printer.printInt("thisAdjustment", N->getThisAdjustment());
|
|
Printer.printDIFlags("flags", N->getFlags());
|
|
Printer.printDISPFlags("spFlags", N->getSPFlags());
|
|
Printer.printMetadata("unit", N->getRawUnit());
|
|
Printer.printMetadata("templateParams", N->getRawTemplateParams());
|
|
Printer.printMetadata("declaration", N->getRawDeclaration());
|
|
Printer.printMetadata("retainedNodes", N->getRawRetainedNodes());
|
|
Printer.printMetadata("thrownTypes", N->getRawThrownTypes());
|
|
Out << ")";
|
|
}
|
|
|
|
static void writeDILexicalBlock(raw_ostream &Out, const DILexicalBlock *N,
|
|
TypePrinting *TypePrinter, SlotTracker *Machine,
|
|
const Module *Context) {
|
|
Out << "!DILexicalBlock(";
|
|
MDFieldPrinter Printer(Out, TypePrinter, Machine, Context);
|
|
Printer.printMetadata("scope", N->getRawScope(), /* ShouldSkipNull */ false);
|
|
Printer.printMetadata("file", N->getRawFile());
|
|
Printer.printInt("line", N->getLine());
|
|
Printer.printInt("column", N->getColumn());
|
|
Out << ")";
|
|
}
|
|
|
|
static void writeDILexicalBlockFile(raw_ostream &Out,
|
|
const DILexicalBlockFile *N,
|
|
TypePrinting *TypePrinter,
|
|
SlotTracker *Machine,
|
|
const Module *Context) {
|
|
Out << "!DILexicalBlockFile(";
|
|
MDFieldPrinter Printer(Out, TypePrinter, Machine, Context);
|
|
Printer.printMetadata("scope", N->getRawScope(), /* ShouldSkipNull */ false);
|
|
Printer.printMetadata("file", N->getRawFile());
|
|
Printer.printInt("discriminator", N->getDiscriminator(),
|
|
/* ShouldSkipZero */ false);
|
|
Out << ")";
|
|
}
|
|
|
|
static void writeDINamespace(raw_ostream &Out, const DINamespace *N,
|
|
TypePrinting *TypePrinter, SlotTracker *Machine,
|
|
const Module *Context) {
|
|
Out << "!DINamespace(";
|
|
MDFieldPrinter Printer(Out, TypePrinter, Machine, Context);
|
|
Printer.printString("name", N->getName());
|
|
Printer.printMetadata("scope", N->getRawScope(), /* ShouldSkipNull */ false);
|
|
Printer.printBool("exportSymbols", N->getExportSymbols(), false);
|
|
Out << ")";
|
|
}
|
|
|
|
static void writeDICommonBlock(raw_ostream &Out, const DICommonBlock *N,
|
|
TypePrinting *TypePrinter, SlotTracker *Machine,
|
|
const Module *Context) {
|
|
Out << "!DICommonBlock(";
|
|
MDFieldPrinter Printer(Out, TypePrinter, Machine, Context);
|
|
Printer.printMetadata("scope", N->getRawScope(), false);
|
|
Printer.printMetadata("declaration", N->getRawDecl(), false);
|
|
Printer.printString("name", N->getName());
|
|
Printer.printMetadata("file", N->getRawFile());
|
|
Printer.printInt("line", N->getLineNo());
|
|
Out << ")";
|
|
}
|
|
|
|
static void writeDIMacro(raw_ostream &Out, const DIMacro *N,
|
|
TypePrinting *TypePrinter, SlotTracker *Machine,
|
|
const Module *Context) {
|
|
Out << "!DIMacro(";
|
|
MDFieldPrinter Printer(Out, TypePrinter, Machine, Context);
|
|
Printer.printMacinfoType(N);
|
|
Printer.printInt("line", N->getLine());
|
|
Printer.printString("name", N->getName());
|
|
Printer.printString("value", N->getValue());
|
|
Out << ")";
|
|
}
|
|
|
|
static void writeDIMacroFile(raw_ostream &Out, const DIMacroFile *N,
|
|
TypePrinting *TypePrinter, SlotTracker *Machine,
|
|
const Module *Context) {
|
|
Out << "!DIMacroFile(";
|
|
MDFieldPrinter Printer(Out, TypePrinter, Machine, Context);
|
|
Printer.printInt("line", N->getLine());
|
|
Printer.printMetadata("file", N->getRawFile(), /* ShouldSkipNull */ false);
|
|
Printer.printMetadata("nodes", N->getRawElements());
|
|
Out << ")";
|
|
}
|
|
|
|
static void writeDIModule(raw_ostream &Out, const DIModule *N,
|
|
TypePrinting *TypePrinter, SlotTracker *Machine,
|
|
const Module *Context) {
|
|
Out << "!DIModule(";
|
|
MDFieldPrinter Printer(Out, TypePrinter, Machine, Context);
|
|
Printer.printMetadata("scope", N->getRawScope(), /* ShouldSkipNull */ false);
|
|
Printer.printString("name", N->getName());
|
|
Printer.printString("configMacros", N->getConfigurationMacros());
|
|
Printer.printString("includePath", N->getIncludePath());
|
|
Printer.printString("apinotes", N->getAPINotesFile());
|
|
Printer.printMetadata("file", N->getRawFile());
|
|
Printer.printInt("line", N->getLineNo());
|
|
Printer.printBool("isDecl", N->getIsDecl(), /* Default */ false);
|
|
Out << ")";
|
|
}
|
|
|
|
|
|
static void writeDITemplateTypeParameter(raw_ostream &Out,
|
|
const DITemplateTypeParameter *N,
|
|
TypePrinting *TypePrinter,
|
|
SlotTracker *Machine,
|
|
const Module *Context) {
|
|
Out << "!DITemplateTypeParameter(";
|
|
MDFieldPrinter Printer(Out, TypePrinter, Machine, Context);
|
|
Printer.printString("name", N->getName());
|
|
Printer.printMetadata("type", N->getRawType(), /* ShouldSkipNull */ false);
|
|
Printer.printBool("defaulted", N->isDefault(), /* Default= */ false);
|
|
Out << ")";
|
|
}
|
|
|
|
static void writeDITemplateValueParameter(raw_ostream &Out,
|
|
const DITemplateValueParameter *N,
|
|
TypePrinting *TypePrinter,
|
|
SlotTracker *Machine,
|
|
const Module *Context) {
|
|
Out << "!DITemplateValueParameter(";
|
|
MDFieldPrinter Printer(Out, TypePrinter, Machine, Context);
|
|
if (N->getTag() != dwarf::DW_TAG_template_value_parameter)
|
|
Printer.printTag(N);
|
|
Printer.printString("name", N->getName());
|
|
Printer.printMetadata("type", N->getRawType());
|
|
Printer.printBool("defaulted", N->isDefault(), /* Default= */ false);
|
|
Printer.printMetadata("value", N->getValue(), /* ShouldSkipNull */ false);
|
|
Out << ")";
|
|
}
|
|
|
|
static void writeDIGlobalVariable(raw_ostream &Out, const DIGlobalVariable *N,
|
|
TypePrinting *TypePrinter,
|
|
SlotTracker *Machine, const Module *Context) {
|
|
Out << "!DIGlobalVariable(";
|
|
MDFieldPrinter Printer(Out, TypePrinter, Machine, Context);
|
|
Printer.printString("name", N->getName());
|
|
Printer.printString("linkageName", N->getLinkageName());
|
|
Printer.printMetadata("scope", N->getRawScope(), /* ShouldSkipNull */ false);
|
|
Printer.printMetadata("file", N->getRawFile());
|
|
Printer.printInt("line", N->getLine());
|
|
Printer.printMetadata("type", N->getRawType());
|
|
Printer.printBool("isLocal", N->isLocalToUnit());
|
|
Printer.printBool("isDefinition", N->isDefinition());
|
|
Printer.printMetadata("declaration", N->getRawStaticDataMemberDeclaration());
|
|
Printer.printMetadata("templateParams", N->getRawTemplateParams());
|
|
Printer.printInt("align", N->getAlignInBits());
|
|
Out << ")";
|
|
}
|
|
|
|
static void writeDILocalVariable(raw_ostream &Out, const DILocalVariable *N,
|
|
TypePrinting *TypePrinter,
|
|
SlotTracker *Machine, const Module *Context) {
|
|
Out << "!DILocalVariable(";
|
|
MDFieldPrinter Printer(Out, TypePrinter, Machine, Context);
|
|
Printer.printString("name", N->getName());
|
|
Printer.printInt("arg", N->getArg());
|
|
Printer.printMetadata("scope", N->getRawScope(), /* ShouldSkipNull */ false);
|
|
Printer.printMetadata("file", N->getRawFile());
|
|
Printer.printInt("line", N->getLine());
|
|
Printer.printMetadata("type", N->getRawType());
|
|
Printer.printDIFlags("flags", N->getFlags());
|
|
Printer.printInt("align", N->getAlignInBits());
|
|
Out << ")";
|
|
}
|
|
|
|
static void writeDILabel(raw_ostream &Out, const DILabel *N,
|
|
TypePrinting *TypePrinter,
|
|
SlotTracker *Machine, const Module *Context) {
|
|
Out << "!DILabel(";
|
|
MDFieldPrinter Printer(Out, TypePrinter, Machine, Context);
|
|
Printer.printMetadata("scope", N->getRawScope(), /* ShouldSkipNull */ false);
|
|
Printer.printString("name", N->getName());
|
|
Printer.printMetadata("file", N->getRawFile());
|
|
Printer.printInt("line", N->getLine());
|
|
Out << ")";
|
|
}
|
|
|
|
static void writeDIExpression(raw_ostream &Out, const DIExpression *N,
|
|
TypePrinting *TypePrinter, SlotTracker *Machine,
|
|
const Module *Context) {
|
|
Out << "!DIExpression(";
|
|
FieldSeparator FS;
|
|
if (N->isValid()) {
|
|
for (const DIExpression::ExprOperand &Op : N->expr_ops()) {
|
|
auto OpStr = dwarf::OperationEncodingString(Op.getOp());
|
|
assert(!OpStr.empty() && "Expected valid opcode");
|
|
|
|
Out << FS << OpStr;
|
|
if (Op.getOp() == dwarf::DW_OP_LLVM_convert) {
|
|
Out << FS << Op.getArg(0);
|
|
Out << FS << dwarf::AttributeEncodingString(Op.getArg(1));
|
|
} else {
|
|
for (unsigned A = 0, AE = Op.getNumArgs(); A != AE; ++A)
|
|
Out << FS << Op.getArg(A);
|
|
}
|
|
}
|
|
} else {
|
|
for (const auto &I : N->getElements())
|
|
Out << FS << I;
|
|
}
|
|
Out << ")";
|
|
}
|
|
|
|
static void writeDIArgList(raw_ostream &Out, const DIArgList *N,
|
|
TypePrinting *TypePrinter, SlotTracker *Machine,
|
|
const Module *Context, bool FromValue = false) {
|
|
assert(FromValue &&
|
|
"Unexpected DIArgList metadata outside of value argument");
|
|
Out << "!DIArgList(";
|
|
FieldSeparator FS;
|
|
MDFieldPrinter Printer(Out, TypePrinter, Machine, Context);
|
|
for (Metadata *Arg : N->getArgs()) {
|
|
Out << FS;
|
|
WriteAsOperandInternal(Out, Arg, TypePrinter, Machine, Context, true);
|
|
}
|
|
Out << ")";
|
|
}
|
|
|
|
static void writeDIGlobalVariableExpression(raw_ostream &Out,
|
|
const DIGlobalVariableExpression *N,
|
|
TypePrinting *TypePrinter,
|
|
SlotTracker *Machine,
|
|
const Module *Context) {
|
|
Out << "!DIGlobalVariableExpression(";
|
|
MDFieldPrinter Printer(Out, TypePrinter, Machine, Context);
|
|
Printer.printMetadata("var", N->getVariable());
|
|
Printer.printMetadata("expr", N->getExpression());
|
|
Out << ")";
|
|
}
|
|
|
|
static void writeDIObjCProperty(raw_ostream &Out, const DIObjCProperty *N,
|
|
TypePrinting *TypePrinter, SlotTracker *Machine,
|
|
const Module *Context) {
|
|
Out << "!DIObjCProperty(";
|
|
MDFieldPrinter Printer(Out, TypePrinter, Machine, Context);
|
|
Printer.printString("name", N->getName());
|
|
Printer.printMetadata("file", N->getRawFile());
|
|
Printer.printInt("line", N->getLine());
|
|
Printer.printString("setter", N->getSetterName());
|
|
Printer.printString("getter", N->getGetterName());
|
|
Printer.printInt("attributes", N->getAttributes());
|
|
Printer.printMetadata("type", N->getRawType());
|
|
Out << ")";
|
|
}
|
|
|
|
static void writeDIImportedEntity(raw_ostream &Out, const DIImportedEntity *N,
|
|
TypePrinting *TypePrinter,
|
|
SlotTracker *Machine, const Module *Context) {
|
|
Out << "!DIImportedEntity(";
|
|
MDFieldPrinter Printer(Out, TypePrinter, Machine, Context);
|
|
Printer.printTag(N);
|
|
Printer.printString("name", N->getName());
|
|
Printer.printMetadata("scope", N->getRawScope(), /* ShouldSkipNull */ false);
|
|
Printer.printMetadata("entity", N->getRawEntity());
|
|
Printer.printMetadata("file", N->getRawFile());
|
|
Printer.printInt("line", N->getLine());
|
|
Out << ")";
|
|
}
|
|
|
|
static void WriteMDNodeBodyInternal(raw_ostream &Out, const MDNode *Node,
|
|
TypePrinting *TypePrinter,
|
|
SlotTracker *Machine,
|
|
const Module *Context) {
|
|
if (Node->isDistinct())
|
|
Out << "distinct ";
|
|
else if (Node->isTemporary())
|
|
Out << "<temporary!> "; // Handle broken code.
|
|
|
|
switch (Node->getMetadataID()) {
|
|
default:
|
|
llvm_unreachable("Expected uniquable MDNode");
|
|
#define HANDLE_MDNODE_LEAF(CLASS) \
|
|
case Metadata::CLASS##Kind: \
|
|
write##CLASS(Out, cast<CLASS>(Node), TypePrinter, Machine, Context); \
|
|
break;
|
|
#include "llvm/IR/Metadata.def"
|
|
}
|
|
}
|
|
|
|
// Full implementation of printing a Value as an operand with support for
|
|
// TypePrinting, etc.
|
|
static void WriteAsOperandInternal(raw_ostream &Out, const Value *V,
|
|
TypePrinting *TypePrinter,
|
|
SlotTracker *Machine,
|
|
const Module *Context) {
|
|
if (V->hasName()) {
|
|
PrintLLVMName(Out, V);
|
|
return;
|
|
}
|
|
|
|
const Constant *CV = dyn_cast<Constant>(V);
|
|
if (CV && !isa<GlobalValue>(CV)) {
|
|
assert(TypePrinter && "Constants require TypePrinting!");
|
|
WriteConstantInternal(Out, CV, *TypePrinter, Machine, Context);
|
|
return;
|
|
}
|
|
|
|
if (const InlineAsm *IA = dyn_cast<InlineAsm>(V)) {
|
|
Out << "asm ";
|
|
if (IA->hasSideEffects())
|
|
Out << "sideeffect ";
|
|
if (IA->isAlignStack())
|
|
Out << "alignstack ";
|
|
// We don't emit the AD_ATT dialect as it's the assumed default.
|
|
if (IA->getDialect() == InlineAsm::AD_Intel)
|
|
Out << "inteldialect ";
|
|
if (IA->canThrow())
|
|
Out << "unwind ";
|
|
Out << '"';
|
|
printEscapedString(IA->getAsmString(), Out);
|
|
Out << "\", \"";
|
|
printEscapedString(IA->getConstraintString(), Out);
|
|
Out << '"';
|
|
return;
|
|
}
|
|
|
|
if (auto *MD = dyn_cast<MetadataAsValue>(V)) {
|
|
WriteAsOperandInternal(Out, MD->getMetadata(), TypePrinter, Machine,
|
|
Context, /* FromValue */ true);
|
|
return;
|
|
}
|
|
|
|
char Prefix = '%';
|
|
int Slot;
|
|
// If we have a SlotTracker, use it.
|
|
if (Machine) {
|
|
if (const GlobalValue *GV = dyn_cast<GlobalValue>(V)) {
|
|
Slot = Machine->getGlobalSlot(GV);
|
|
Prefix = '@';
|
|
} else {
|
|
Slot = Machine->getLocalSlot(V);
|
|
|
|
// If the local value didn't succeed, then we may be referring to a value
|
|
// from a different function. Translate it, as this can happen when using
|
|
// address of blocks.
|
|
if (Slot == -1)
|
|
if ((Machine = createSlotTracker(V))) {
|
|
Slot = Machine->getLocalSlot(V);
|
|
delete Machine;
|
|
}
|
|
}
|
|
} else if ((Machine = createSlotTracker(V))) {
|
|
// Otherwise, create one to get the # and then destroy it.
|
|
if (const GlobalValue *GV = dyn_cast<GlobalValue>(V)) {
|
|
Slot = Machine->getGlobalSlot(GV);
|
|
Prefix = '@';
|
|
} else {
|
|
Slot = Machine->getLocalSlot(V);
|
|
}
|
|
delete Machine;
|
|
Machine = nullptr;
|
|
} else {
|
|
Slot = -1;
|
|
}
|
|
|
|
if (Slot != -1)
|
|
Out << Prefix << Slot;
|
|
else
|
|
Out << "<badref>";
|
|
}
|
|
|
|
static void WriteAsOperandInternal(raw_ostream &Out, const Metadata *MD,
|
|
TypePrinting *TypePrinter,
|
|
SlotTracker *Machine, const Module *Context,
|
|
bool FromValue) {
|
|
// Write DIExpressions and DIArgLists inline when used as a value. Improves
|
|
// readability of debug info intrinsics.
|
|
if (const DIExpression *Expr = dyn_cast<DIExpression>(MD)) {
|
|
writeDIExpression(Out, Expr, TypePrinter, Machine, Context);
|
|
return;
|
|
}
|
|
if (const DIArgList *ArgList = dyn_cast<DIArgList>(MD)) {
|
|
writeDIArgList(Out, ArgList, TypePrinter, Machine, Context, FromValue);
|
|
return;
|
|
}
|
|
|
|
if (const MDNode *N = dyn_cast<MDNode>(MD)) {
|
|
std::unique_ptr<SlotTracker> MachineStorage;
|
|
if (!Machine) {
|
|
MachineStorage = std::make_unique<SlotTracker>(Context);
|
|
Machine = MachineStorage.get();
|
|
}
|
|
int Slot = Machine->getMetadataSlot(N);
|
|
if (Slot == -1) {
|
|
if (const DILocation *Loc = dyn_cast<DILocation>(N)) {
|
|
writeDILocation(Out, Loc, TypePrinter, Machine, Context);
|
|
return;
|
|
}
|
|
// Give the pointer value instead of "badref", since this comes up all
|
|
// the time when debugging.
|
|
Out << "<" << N << ">";
|
|
} else
|
|
Out << '!' << Slot;
|
|
return;
|
|
}
|
|
|
|
if (const MDString *MDS = dyn_cast<MDString>(MD)) {
|
|
Out << "!\"";
|
|
printEscapedString(MDS->getString(), Out);
|
|
Out << '"';
|
|
return;
|
|
}
|
|
|
|
auto *V = cast<ValueAsMetadata>(MD);
|
|
assert(TypePrinter && "TypePrinter required for metadata values");
|
|
assert((FromValue || !isa<LocalAsMetadata>(V)) &&
|
|
"Unexpected function-local metadata outside of value argument");
|
|
|
|
TypePrinter->print(V->getValue()->getType(), Out);
|
|
Out << ' ';
|
|
WriteAsOperandInternal(Out, V->getValue(), TypePrinter, Machine, Context);
|
|
}
|
|
|
|
namespace {
|
|
|
|
class AssemblyWriter {
|
|
formatted_raw_ostream &Out;
|
|
const Module *TheModule = nullptr;
|
|
const ModuleSummaryIndex *TheIndex = nullptr;
|
|
std::unique_ptr<SlotTracker> SlotTrackerStorage;
|
|
SlotTracker &Machine;
|
|
TypePrinting TypePrinter;
|
|
AssemblyAnnotationWriter *AnnotationWriter = nullptr;
|
|
SetVector<const Comdat *> Comdats;
|
|
bool IsForDebug;
|
|
bool ShouldPreserveUseListOrder;
|
|
UseListOrderMap UseListOrders;
|
|
SmallVector<StringRef, 8> MDNames;
|
|
/// Synchronization scope names registered with LLVMContext.
|
|
SmallVector<StringRef, 8> SSNs;
|
|
DenseMap<const GlobalValueSummary *, GlobalValue::GUID> SummaryToGUIDMap;
|
|
|
|
public:
|
|
/// Construct an AssemblyWriter with an external SlotTracker
|
|
AssemblyWriter(formatted_raw_ostream &o, SlotTracker &Mac, const Module *M,
|
|
AssemblyAnnotationWriter *AAW, bool IsForDebug,
|
|
bool ShouldPreserveUseListOrder = false);
|
|
|
|
AssemblyWriter(formatted_raw_ostream &o, SlotTracker &Mac,
|
|
const ModuleSummaryIndex *Index, bool IsForDebug);
|
|
|
|
void printMDNodeBody(const MDNode *MD);
|
|
void printNamedMDNode(const NamedMDNode *NMD);
|
|
|
|
void printModule(const Module *M);
|
|
|
|
void writeOperand(const Value *Op, bool PrintType);
|
|
void writeParamOperand(const Value *Operand, AttributeSet Attrs);
|
|
void writeOperandBundles(const CallBase *Call);
|
|
void writeSyncScope(const LLVMContext &Context,
|
|
SyncScope::ID SSID);
|
|
void writeAtomic(const LLVMContext &Context,
|
|
AtomicOrdering Ordering,
|
|
SyncScope::ID SSID);
|
|
void writeAtomicCmpXchg(const LLVMContext &Context,
|
|
AtomicOrdering SuccessOrdering,
|
|
AtomicOrdering FailureOrdering,
|
|
SyncScope::ID SSID);
|
|
|
|
void writeAllMDNodes();
|
|
void writeMDNode(unsigned Slot, const MDNode *Node);
|
|
void writeAttribute(const Attribute &Attr, bool InAttrGroup = false);
|
|
void writeAttributeSet(const AttributeSet &AttrSet, bool InAttrGroup = false);
|
|
void writeAllAttributeGroups();
|
|
|
|
void printTypeIdentities();
|
|
void printGlobal(const GlobalVariable *GV);
|
|
void printIndirectSymbol(const GlobalIndirectSymbol *GIS);
|
|
void printComdat(const Comdat *C);
|
|
void printFunction(const Function *F);
|
|
void printArgument(const Argument *FA, AttributeSet Attrs);
|
|
void printBasicBlock(const BasicBlock *BB);
|
|
void printInstructionLine(const Instruction &I);
|
|
void printInstruction(const Instruction &I);
|
|
|
|
void printUseListOrder(const Value *V, const std::vector<unsigned> &Shuffle);
|
|
void printUseLists(const Function *F);
|
|
|
|
void printModuleSummaryIndex();
|
|
void printSummaryInfo(unsigned Slot, const ValueInfo &VI);
|
|
void printSummary(const GlobalValueSummary &Summary);
|
|
void printAliasSummary(const AliasSummary *AS);
|
|
void printGlobalVarSummary(const GlobalVarSummary *GS);
|
|
void printFunctionSummary(const FunctionSummary *FS);
|
|
void printTypeIdSummary(const TypeIdSummary &TIS);
|
|
void printTypeIdCompatibleVtableSummary(const TypeIdCompatibleVtableInfo &TI);
|
|
void printTypeTestResolution(const TypeTestResolution &TTRes);
|
|
void printArgs(const std::vector<uint64_t> &Args);
|
|
void printWPDRes(const WholeProgramDevirtResolution &WPDRes);
|
|
void printTypeIdInfo(const FunctionSummary::TypeIdInfo &TIDInfo);
|
|
void printVFuncId(const FunctionSummary::VFuncId VFId);
|
|
void
|
|
printNonConstVCalls(const std::vector<FunctionSummary::VFuncId> &VCallList,
|
|
const char *Tag);
|
|
void
|
|
printConstVCalls(const std::vector<FunctionSummary::ConstVCall> &VCallList,
|
|
const char *Tag);
|
|
|
|
private:
|
|
/// Print out metadata attachments.
|
|
void printMetadataAttachments(
|
|
const SmallVectorImpl<std::pair<unsigned, MDNode *>> &MDs,
|
|
StringRef Separator);
|
|
|
|
// printInfoComment - Print a little comment after the instruction indicating
|
|
// which slot it occupies.
|
|
void printInfoComment(const Value &V);
|
|
|
|
// printGCRelocateComment - print comment after call to the gc.relocate
|
|
// intrinsic indicating base and derived pointer names.
|
|
void printGCRelocateComment(const GCRelocateInst &Relocate);
|
|
};
|
|
|
|
} // end anonymous namespace
|
|
|
|
AssemblyWriter::AssemblyWriter(formatted_raw_ostream &o, SlotTracker &Mac,
|
|
const Module *M, AssemblyAnnotationWriter *AAW,
|
|
bool IsForDebug, bool ShouldPreserveUseListOrder)
|
|
: Out(o), TheModule(M), Machine(Mac), TypePrinter(M), AnnotationWriter(AAW),
|
|
IsForDebug(IsForDebug),
|
|
ShouldPreserveUseListOrder(ShouldPreserveUseListOrder) {
|
|
if (!TheModule)
|
|
return;
|
|
for (const GlobalObject &GO : TheModule->global_objects())
|
|
if (const Comdat *C = GO.getComdat())
|
|
Comdats.insert(C);
|
|
}
|
|
|
|
AssemblyWriter::AssemblyWriter(formatted_raw_ostream &o, SlotTracker &Mac,
|
|
const ModuleSummaryIndex *Index, bool IsForDebug)
|
|
: Out(o), TheIndex(Index), Machine(Mac), TypePrinter(/*Module=*/nullptr),
|
|
IsForDebug(IsForDebug), ShouldPreserveUseListOrder(false) {}
|
|
|
|
void AssemblyWriter::writeOperand(const Value *Operand, bool PrintType) {
|
|
if (!Operand) {
|
|
Out << "<null operand!>";
|
|
return;
|
|
}
|
|
if (PrintType) {
|
|
TypePrinter.print(Operand->getType(), Out);
|
|
Out << ' ';
|
|
}
|
|
WriteAsOperandInternal(Out, Operand, &TypePrinter, &Machine, TheModule);
|
|
}
|
|
|
|
void AssemblyWriter::writeSyncScope(const LLVMContext &Context,
|
|
SyncScope::ID SSID) {
|
|
switch (SSID) {
|
|
case SyncScope::System: {
|
|
break;
|
|
}
|
|
default: {
|
|
if (SSNs.empty())
|
|
Context.getSyncScopeNames(SSNs);
|
|
|
|
Out << " syncscope(\"";
|
|
printEscapedString(SSNs[SSID], Out);
|
|
Out << "\")";
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
void AssemblyWriter::writeAtomic(const LLVMContext &Context,
|
|
AtomicOrdering Ordering,
|
|
SyncScope::ID SSID) {
|
|
if (Ordering == AtomicOrdering::NotAtomic)
|
|
return;
|
|
|
|
writeSyncScope(Context, SSID);
|
|
Out << " " << toIRString(Ordering);
|
|
}
|
|
|
|
void AssemblyWriter::writeAtomicCmpXchg(const LLVMContext &Context,
|
|
AtomicOrdering SuccessOrdering,
|
|
AtomicOrdering FailureOrdering,
|
|
SyncScope::ID SSID) {
|
|
assert(SuccessOrdering != AtomicOrdering::NotAtomic &&
|
|
FailureOrdering != AtomicOrdering::NotAtomic);
|
|
|
|
writeSyncScope(Context, SSID);
|
|
Out << " " << toIRString(SuccessOrdering);
|
|
Out << " " << toIRString(FailureOrdering);
|
|
}
|
|
|
|
void AssemblyWriter::writeParamOperand(const Value *Operand,
|
|
AttributeSet Attrs) {
|
|
if (!Operand) {
|
|
Out << "<null operand!>";
|
|
return;
|
|
}
|
|
|
|
// Print the type
|
|
TypePrinter.print(Operand->getType(), Out);
|
|
// Print parameter attributes list
|
|
if (Attrs.hasAttributes()) {
|
|
Out << ' ';
|
|
writeAttributeSet(Attrs);
|
|
}
|
|
Out << ' ';
|
|
// Print the operand
|
|
WriteAsOperandInternal(Out, Operand, &TypePrinter, &Machine, TheModule);
|
|
}
|
|
|
|
void AssemblyWriter::writeOperandBundles(const CallBase *Call) {
|
|
if (!Call->hasOperandBundles())
|
|
return;
|
|
|
|
Out << " [ ";
|
|
|
|
bool FirstBundle = true;
|
|
for (unsigned i = 0, e = Call->getNumOperandBundles(); i != e; ++i) {
|
|
OperandBundleUse BU = Call->getOperandBundleAt(i);
|
|
|
|
if (!FirstBundle)
|
|
Out << ", ";
|
|
FirstBundle = false;
|
|
|
|
Out << '"';
|
|
printEscapedString(BU.getTagName(), Out);
|
|
Out << '"';
|
|
|
|
Out << '(';
|
|
|
|
bool FirstInput = true;
|
|
for (const auto &Input : BU.Inputs) {
|
|
if (!FirstInput)
|
|
Out << ", ";
|
|
FirstInput = false;
|
|
|
|
TypePrinter.print(Input->getType(), Out);
|
|
Out << " ";
|
|
WriteAsOperandInternal(Out, Input, &TypePrinter, &Machine, TheModule);
|
|
}
|
|
|
|
Out << ')';
|
|
}
|
|
|
|
Out << " ]";
|
|
}
|
|
|
|
void AssemblyWriter::printModule(const Module *M) {
|
|
Machine.initializeIfNeeded();
|
|
|
|
if (ShouldPreserveUseListOrder)
|
|
UseListOrders = predictUseListOrder(M);
|
|
|
|
if (!M->getModuleIdentifier().empty() &&
|
|
// Don't print the ID if it will start a new line (which would
|
|
// require a comment char before it).
|
|
M->getModuleIdentifier().find('\n') == std::string::npos)
|
|
Out << "; ModuleID = '" << M->getModuleIdentifier() << "'\n";
|
|
|
|
if (!M->getSourceFileName().empty()) {
|
|
Out << "source_filename = \"";
|
|
printEscapedString(M->getSourceFileName(), Out);
|
|
Out << "\"\n";
|
|
}
|
|
|
|
const std::string &DL = M->getDataLayoutStr();
|
|
if (!DL.empty())
|
|
Out << "target datalayout = \"" << DL << "\"\n";
|
|
if (!M->getTargetTriple().empty())
|
|
Out << "target triple = \"" << M->getTargetTriple() << "\"\n";
|
|
|
|
if (!M->getModuleInlineAsm().empty()) {
|
|
Out << '\n';
|
|
|
|
// Split the string into lines, to make it easier to read the .ll file.
|
|
StringRef Asm = M->getModuleInlineAsm();
|
|
do {
|
|
StringRef Front;
|
|
std::tie(Front, Asm) = Asm.split('\n');
|
|
|
|
// We found a newline, print the portion of the asm string from the
|
|
// last newline up to this newline.
|
|
Out << "module asm \"";
|
|
printEscapedString(Front, Out);
|
|
Out << "\"\n";
|
|
} while (!Asm.empty());
|
|
}
|
|
|
|
printTypeIdentities();
|
|
|
|
// Output all comdats.
|
|
if (!Comdats.empty())
|
|
Out << '\n';
|
|
for (const Comdat *C : Comdats) {
|
|
printComdat(C);
|
|
if (C != Comdats.back())
|
|
Out << '\n';
|
|
}
|
|
|
|
// Output all globals.
|
|
if (!M->global_empty()) Out << '\n';
|
|
for (const GlobalVariable &GV : M->globals()) {
|
|
printGlobal(&GV); Out << '\n';
|
|
}
|
|
|
|
// Output all aliases.
|
|
if (!M->alias_empty()) Out << "\n";
|
|
for (const GlobalAlias &GA : M->aliases())
|
|
printIndirectSymbol(&GA);
|
|
|
|
// Output all ifuncs.
|
|
if (!M->ifunc_empty()) Out << "\n";
|
|
for (const GlobalIFunc &GI : M->ifuncs())
|
|
printIndirectSymbol(&GI);
|
|
|
|
// Output all of the functions.
|
|
for (const Function &F : *M) {
|
|
Out << '\n';
|
|
printFunction(&F);
|
|
}
|
|
|
|
// Output global use-lists.
|
|
printUseLists(nullptr);
|
|
|
|
// Output all attribute groups.
|
|
if (!Machine.as_empty()) {
|
|
Out << '\n';
|
|
writeAllAttributeGroups();
|
|
}
|
|
|
|
// Output named metadata.
|
|
if (!M->named_metadata_empty()) Out << '\n';
|
|
|
|
for (const NamedMDNode &Node : M->named_metadata())
|
|
printNamedMDNode(&Node);
|
|
|
|
// Output metadata.
|
|
if (!Machine.mdn_empty()) {
|
|
Out << '\n';
|
|
writeAllMDNodes();
|
|
}
|
|
}
|
|
|
|
void AssemblyWriter::printModuleSummaryIndex() {
|
|
assert(TheIndex);
|
|
int NumSlots = Machine.initializeIndexIfNeeded();
|
|
|
|
Out << "\n";
|
|
|
|
// Print module path entries. To print in order, add paths to a vector
|
|
// indexed by module slot.
|
|
std::vector<std::pair<std::string, ModuleHash>> moduleVec;
|
|
std::string RegularLTOModuleName =
|
|
ModuleSummaryIndex::getRegularLTOModuleName();
|
|
moduleVec.resize(TheIndex->modulePaths().size());
|
|
for (auto &ModPath : TheIndex->modulePaths())
|
|
moduleVec[Machine.getModulePathSlot(ModPath.first())] = std::make_pair(
|
|
// A module id of -1 is a special entry for a regular LTO module created
|
|
// during the thin link.
|
|
ModPath.second.first == -1u ? RegularLTOModuleName
|
|
: (std::string)std::string(ModPath.first()),
|
|
ModPath.second.second);
|
|
|
|
unsigned i = 0;
|
|
for (auto &ModPair : moduleVec) {
|
|
Out << "^" << i++ << " = module: (";
|
|
Out << "path: \"";
|
|
printEscapedString(ModPair.first, Out);
|
|
Out << "\", hash: (";
|
|
FieldSeparator FS;
|
|
for (auto Hash : ModPair.second)
|
|
Out << FS << Hash;
|
|
Out << "))\n";
|
|
}
|
|
|
|
// FIXME: Change AliasSummary to hold a ValueInfo instead of summary pointer
|
|
// for aliasee (then update BitcodeWriter.cpp and remove get/setAliaseeGUID).
|
|
for (auto &GlobalList : *TheIndex) {
|
|
auto GUID = GlobalList.first;
|
|
for (auto &Summary : GlobalList.second.SummaryList)
|
|
SummaryToGUIDMap[Summary.get()] = GUID;
|
|
}
|
|
|
|
// Print the global value summary entries.
|
|
for (auto &GlobalList : *TheIndex) {
|
|
auto GUID = GlobalList.first;
|
|
auto VI = TheIndex->getValueInfo(GlobalList);
|
|
printSummaryInfo(Machine.getGUIDSlot(GUID), VI);
|
|
}
|
|
|
|
// Print the TypeIdMap entries.
|
|
for (const auto &TID : TheIndex->typeIds()) {
|
|
Out << "^" << Machine.getTypeIdSlot(TID.second.first)
|
|
<< " = typeid: (name: \"" << TID.second.first << "\"";
|
|
printTypeIdSummary(TID.second.second);
|
|
Out << ") ; guid = " << TID.first << "\n";
|
|
}
|
|
|
|
// Print the TypeIdCompatibleVtableMap entries.
|
|
for (auto &TId : TheIndex->typeIdCompatibleVtableMap()) {
|
|
auto GUID = GlobalValue::getGUID(TId.first);
|
|
Out << "^" << Machine.getGUIDSlot(GUID)
|
|
<< " = typeidCompatibleVTable: (name: \"" << TId.first << "\"";
|
|
printTypeIdCompatibleVtableSummary(TId.second);
|
|
Out << ") ; guid = " << GUID << "\n";
|
|
}
|
|
|
|
// Don't emit flags when it's not really needed (value is zero by default).
|
|
if (TheIndex->getFlags()) {
|
|
Out << "^" << NumSlots << " = flags: " << TheIndex->getFlags() << "\n";
|
|
++NumSlots;
|
|
}
|
|
|
|
Out << "^" << NumSlots << " = blockcount: " << TheIndex->getBlockCount()
|
|
<< "\n";
|
|
}
|
|
|
|
static const char *
|
|
getWholeProgDevirtResKindName(WholeProgramDevirtResolution::Kind K) {
|
|
switch (K) {
|
|
case WholeProgramDevirtResolution::Indir:
|
|
return "indir";
|
|
case WholeProgramDevirtResolution::SingleImpl:
|
|
return "singleImpl";
|
|
case WholeProgramDevirtResolution::BranchFunnel:
|
|
return "branchFunnel";
|
|
}
|
|
llvm_unreachable("invalid WholeProgramDevirtResolution kind");
|
|
}
|
|
|
|
static const char *getWholeProgDevirtResByArgKindName(
|
|
WholeProgramDevirtResolution::ByArg::Kind K) {
|
|
switch (K) {
|
|
case WholeProgramDevirtResolution::ByArg::Indir:
|
|
return "indir";
|
|
case WholeProgramDevirtResolution::ByArg::UniformRetVal:
|
|
return "uniformRetVal";
|
|
case WholeProgramDevirtResolution::ByArg::UniqueRetVal:
|
|
return "uniqueRetVal";
|
|
case WholeProgramDevirtResolution::ByArg::VirtualConstProp:
|
|
return "virtualConstProp";
|
|
}
|
|
llvm_unreachable("invalid WholeProgramDevirtResolution::ByArg kind");
|
|
}
|
|
|
|
static const char *getTTResKindName(TypeTestResolution::Kind K) {
|
|
switch (K) {
|
|
case TypeTestResolution::Unknown:
|
|
return "unknown";
|
|
case TypeTestResolution::Unsat:
|
|
return "unsat";
|
|
case TypeTestResolution::ByteArray:
|
|
return "byteArray";
|
|
case TypeTestResolution::Inline:
|
|
return "inline";
|
|
case TypeTestResolution::Single:
|
|
return "single";
|
|
case TypeTestResolution::AllOnes:
|
|
return "allOnes";
|
|
}
|
|
llvm_unreachable("invalid TypeTestResolution kind");
|
|
}
|
|
|
|
void AssemblyWriter::printTypeTestResolution(const TypeTestResolution &TTRes) {
|
|
Out << "typeTestRes: (kind: " << getTTResKindName(TTRes.TheKind)
|
|
<< ", sizeM1BitWidth: " << TTRes.SizeM1BitWidth;
|
|
|
|
// The following fields are only used if the target does not support the use
|
|
// of absolute symbols to store constants. Print only if non-zero.
|
|
if (TTRes.AlignLog2)
|
|
Out << ", alignLog2: " << TTRes.AlignLog2;
|
|
if (TTRes.SizeM1)
|
|
Out << ", sizeM1: " << TTRes.SizeM1;
|
|
if (TTRes.BitMask)
|
|
// BitMask is uint8_t which causes it to print the corresponding char.
|
|
Out << ", bitMask: " << (unsigned)TTRes.BitMask;
|
|
if (TTRes.InlineBits)
|
|
Out << ", inlineBits: " << TTRes.InlineBits;
|
|
|
|
Out << ")";
|
|
}
|
|
|
|
void AssemblyWriter::printTypeIdSummary(const TypeIdSummary &TIS) {
|
|
Out << ", summary: (";
|
|
printTypeTestResolution(TIS.TTRes);
|
|
if (!TIS.WPDRes.empty()) {
|
|
Out << ", wpdResolutions: (";
|
|
FieldSeparator FS;
|
|
for (auto &WPDRes : TIS.WPDRes) {
|
|
Out << FS;
|
|
Out << "(offset: " << WPDRes.first << ", ";
|
|
printWPDRes(WPDRes.second);
|
|
Out << ")";
|
|
}
|
|
Out << ")";
|
|
}
|
|
Out << ")";
|
|
}
|
|
|
|
void AssemblyWriter::printTypeIdCompatibleVtableSummary(
|
|
const TypeIdCompatibleVtableInfo &TI) {
|
|
Out << ", summary: (";
|
|
FieldSeparator FS;
|
|
for (auto &P : TI) {
|
|
Out << FS;
|
|
Out << "(offset: " << P.AddressPointOffset << ", ";
|
|
Out << "^" << Machine.getGUIDSlot(P.VTableVI.getGUID());
|
|
Out << ")";
|
|
}
|
|
Out << ")";
|
|
}
|
|
|
|
void AssemblyWriter::printArgs(const std::vector<uint64_t> &Args) {
|
|
Out << "args: (";
|
|
FieldSeparator FS;
|
|
for (auto arg : Args) {
|
|
Out << FS;
|
|
Out << arg;
|
|
}
|
|
Out << ")";
|
|
}
|
|
|
|
void AssemblyWriter::printWPDRes(const WholeProgramDevirtResolution &WPDRes) {
|
|
Out << "wpdRes: (kind: ";
|
|
Out << getWholeProgDevirtResKindName(WPDRes.TheKind);
|
|
|
|
if (WPDRes.TheKind == WholeProgramDevirtResolution::SingleImpl)
|
|
Out << ", singleImplName: \"" << WPDRes.SingleImplName << "\"";
|
|
|
|
if (!WPDRes.ResByArg.empty()) {
|
|
Out << ", resByArg: (";
|
|
FieldSeparator FS;
|
|
for (auto &ResByArg : WPDRes.ResByArg) {
|
|
Out << FS;
|
|
printArgs(ResByArg.first);
|
|
Out << ", byArg: (kind: ";
|
|
Out << getWholeProgDevirtResByArgKindName(ResByArg.second.TheKind);
|
|
if (ResByArg.second.TheKind ==
|
|
WholeProgramDevirtResolution::ByArg::UniformRetVal ||
|
|
ResByArg.second.TheKind ==
|
|
WholeProgramDevirtResolution::ByArg::UniqueRetVal)
|
|
Out << ", info: " << ResByArg.second.Info;
|
|
|
|
// The following fields are only used if the target does not support the
|
|
// use of absolute symbols to store constants. Print only if non-zero.
|
|
if (ResByArg.second.Byte || ResByArg.second.Bit)
|
|
Out << ", byte: " << ResByArg.second.Byte
|
|
<< ", bit: " << ResByArg.second.Bit;
|
|
|
|
Out << ")";
|
|
}
|
|
Out << ")";
|
|
}
|
|
Out << ")";
|
|
}
|
|
|
|
static const char *getSummaryKindName(GlobalValueSummary::SummaryKind SK) {
|
|
switch (SK) {
|
|
case GlobalValueSummary::AliasKind:
|
|
return "alias";
|
|
case GlobalValueSummary::FunctionKind:
|
|
return "function";
|
|
case GlobalValueSummary::GlobalVarKind:
|
|
return "variable";
|
|
}
|
|
llvm_unreachable("invalid summary kind");
|
|
}
|
|
|
|
void AssemblyWriter::printAliasSummary(const AliasSummary *AS) {
|
|
Out << ", aliasee: ";
|
|
// The indexes emitted for distributed backends may not include the
|
|
// aliasee summary (only if it is being imported directly). Handle
|
|
// that case by just emitting "null" as the aliasee.
|
|
if (AS->hasAliasee())
|
|
Out << "^" << Machine.getGUIDSlot(SummaryToGUIDMap[&AS->getAliasee()]);
|
|
else
|
|
Out << "null";
|
|
}
|
|
|
|
void AssemblyWriter::printGlobalVarSummary(const GlobalVarSummary *GS) {
|
|
auto VTableFuncs = GS->vTableFuncs();
|
|
Out << ", varFlags: (readonly: " << GS->VarFlags.MaybeReadOnly << ", "
|
|
<< "writeonly: " << GS->VarFlags.MaybeWriteOnly << ", "
|
|
<< "constant: " << GS->VarFlags.Constant;
|
|
if (!VTableFuncs.empty())
|
|
Out << ", "
|
|
<< "vcall_visibility: " << GS->VarFlags.VCallVisibility;
|
|
Out << ")";
|
|
|
|
if (!VTableFuncs.empty()) {
|
|
Out << ", vTableFuncs: (";
|
|
FieldSeparator FS;
|
|
for (auto &P : VTableFuncs) {
|
|
Out << FS;
|
|
Out << "(virtFunc: ^" << Machine.getGUIDSlot(P.FuncVI.getGUID())
|
|
<< ", offset: " << P.VTableOffset;
|
|
Out << ")";
|
|
}
|
|
Out << ")";
|
|
}
|
|
}
|
|
|
|
static std::string getLinkageName(GlobalValue::LinkageTypes LT) {
|
|
switch (LT) {
|
|
case GlobalValue::ExternalLinkage:
|
|
return "external";
|
|
case GlobalValue::PrivateLinkage:
|
|
return "private";
|
|
case GlobalValue::InternalLinkage:
|
|
return "internal";
|
|
case GlobalValue::LinkOnceAnyLinkage:
|
|
return "linkonce";
|
|
case GlobalValue::LinkOnceODRLinkage:
|
|
return "linkonce_odr";
|
|
case GlobalValue::WeakAnyLinkage:
|
|
return "weak";
|
|
case GlobalValue::WeakODRLinkage:
|
|
return "weak_odr";
|
|
case GlobalValue::CommonLinkage:
|
|
return "common";
|
|
case GlobalValue::AppendingLinkage:
|
|
return "appending";
|
|
case GlobalValue::ExternalWeakLinkage:
|
|
return "extern_weak";
|
|
case GlobalValue::AvailableExternallyLinkage:
|
|
return "available_externally";
|
|
}
|
|
llvm_unreachable("invalid linkage");
|
|
}
|
|
|
|
// When printing the linkage types in IR where the ExternalLinkage is
|
|
// not printed, and other linkage types are expected to be printed with
|
|
// a space after the name.
|
|
static std::string getLinkageNameWithSpace(GlobalValue::LinkageTypes LT) {
|
|
if (LT == GlobalValue::ExternalLinkage)
|
|
return "";
|
|
return getLinkageName(LT) + " ";
|
|
}
|
|
|
|
static const char *getVisibilityName(GlobalValue::VisibilityTypes Vis) {
|
|
switch (Vis) {
|
|
case GlobalValue::DefaultVisibility:
|
|
return "default";
|
|
case GlobalValue::HiddenVisibility:
|
|
return "hidden";
|
|
case GlobalValue::ProtectedVisibility:
|
|
return "protected";
|
|
}
|
|
llvm_unreachable("invalid visibility");
|
|
}
|
|
|
|
void AssemblyWriter::printFunctionSummary(const FunctionSummary *FS) {
|
|
Out << ", insts: " << FS->instCount();
|
|
|
|
FunctionSummary::FFlags FFlags = FS->fflags();
|
|
if (FFlags.ReadNone | FFlags.ReadOnly | FFlags.NoRecurse |
|
|
FFlags.ReturnDoesNotAlias | FFlags.NoInline | FFlags.AlwaysInline) {
|
|
Out << ", funcFlags: (";
|
|
Out << "readNone: " << FFlags.ReadNone;
|
|
Out << ", readOnly: " << FFlags.ReadOnly;
|
|
Out << ", noRecurse: " << FFlags.NoRecurse;
|
|
Out << ", returnDoesNotAlias: " << FFlags.ReturnDoesNotAlias;
|
|
Out << ", noInline: " << FFlags.NoInline;
|
|
Out << ", alwaysInline: " << FFlags.AlwaysInline;
|
|
Out << ")";
|
|
}
|
|
if (!FS->calls().empty()) {
|
|
Out << ", calls: (";
|
|
FieldSeparator IFS;
|
|
for (auto &Call : FS->calls()) {
|
|
Out << IFS;
|
|
Out << "(callee: ^" << Machine.getGUIDSlot(Call.first.getGUID());
|
|
if (Call.second.getHotness() != CalleeInfo::HotnessType::Unknown)
|
|
Out << ", hotness: " << getHotnessName(Call.second.getHotness());
|
|
else if (Call.second.RelBlockFreq)
|
|
Out << ", relbf: " << Call.second.RelBlockFreq;
|
|
Out << ")";
|
|
}
|
|
Out << ")";
|
|
}
|
|
|
|
if (const auto *TIdInfo = FS->getTypeIdInfo())
|
|
printTypeIdInfo(*TIdInfo);
|
|
|
|
auto PrintRange = [&](const ConstantRange &Range) {
|
|
Out << "[" << Range.getSignedMin() << ", " << Range.getSignedMax() << "]";
|
|
};
|
|
|
|
if (!FS->paramAccesses().empty()) {
|
|
Out << ", params: (";
|
|
FieldSeparator IFS;
|
|
for (auto &PS : FS->paramAccesses()) {
|
|
Out << IFS;
|
|
Out << "(param: " << PS.ParamNo;
|
|
Out << ", offset: ";
|
|
PrintRange(PS.Use);
|
|
if (!PS.Calls.empty()) {
|
|
Out << ", calls: (";
|
|
FieldSeparator IFS;
|
|
for (auto &Call : PS.Calls) {
|
|
Out << IFS;
|
|
Out << "(callee: ^" << Machine.getGUIDSlot(Call.Callee.getGUID());
|
|
Out << ", param: " << Call.ParamNo;
|
|
Out << ", offset: ";
|
|
PrintRange(Call.Offsets);
|
|
Out << ")";
|
|
}
|
|
Out << ")";
|
|
}
|
|
Out << ")";
|
|
}
|
|
Out << ")";
|
|
}
|
|
}
|
|
|
|
void AssemblyWriter::printTypeIdInfo(
|
|
const FunctionSummary::TypeIdInfo &TIDInfo) {
|
|
Out << ", typeIdInfo: (";
|
|
FieldSeparator TIDFS;
|
|
if (!TIDInfo.TypeTests.empty()) {
|
|
Out << TIDFS;
|
|
Out << "typeTests: (";
|
|
FieldSeparator FS;
|
|
for (auto &GUID : TIDInfo.TypeTests) {
|
|
auto TidIter = TheIndex->typeIds().equal_range(GUID);
|
|
if (TidIter.first == TidIter.second) {
|
|
Out << FS;
|
|
Out << GUID;
|
|
continue;
|
|
}
|
|
// Print all type id that correspond to this GUID.
|
|
for (auto It = TidIter.first; It != TidIter.second; ++It) {
|
|
Out << FS;
|
|
auto Slot = Machine.getTypeIdSlot(It->second.first);
|
|
assert(Slot != -1);
|
|
Out << "^" << Slot;
|
|
}
|
|
}
|
|
Out << ")";
|
|
}
|
|
if (!TIDInfo.TypeTestAssumeVCalls.empty()) {
|
|
Out << TIDFS;
|
|
printNonConstVCalls(TIDInfo.TypeTestAssumeVCalls, "typeTestAssumeVCalls");
|
|
}
|
|
if (!TIDInfo.TypeCheckedLoadVCalls.empty()) {
|
|
Out << TIDFS;
|
|
printNonConstVCalls(TIDInfo.TypeCheckedLoadVCalls, "typeCheckedLoadVCalls");
|
|
}
|
|
if (!TIDInfo.TypeTestAssumeConstVCalls.empty()) {
|
|
Out << TIDFS;
|
|
printConstVCalls(TIDInfo.TypeTestAssumeConstVCalls,
|
|
"typeTestAssumeConstVCalls");
|
|
}
|
|
if (!TIDInfo.TypeCheckedLoadConstVCalls.empty()) {
|
|
Out << TIDFS;
|
|
printConstVCalls(TIDInfo.TypeCheckedLoadConstVCalls,
|
|
"typeCheckedLoadConstVCalls");
|
|
}
|
|
Out << ")";
|
|
}
|
|
|
|
void AssemblyWriter::printVFuncId(const FunctionSummary::VFuncId VFId) {
|
|
auto TidIter = TheIndex->typeIds().equal_range(VFId.GUID);
|
|
if (TidIter.first == TidIter.second) {
|
|
Out << "vFuncId: (";
|
|
Out << "guid: " << VFId.GUID;
|
|
Out << ", offset: " << VFId.Offset;
|
|
Out << ")";
|
|
return;
|
|
}
|
|
// Print all type id that correspond to this GUID.
|
|
FieldSeparator FS;
|
|
for (auto It = TidIter.first; It != TidIter.second; ++It) {
|
|
Out << FS;
|
|
Out << "vFuncId: (";
|
|
auto Slot = Machine.getTypeIdSlot(It->second.first);
|
|
assert(Slot != -1);
|
|
Out << "^" << Slot;
|
|
Out << ", offset: " << VFId.Offset;
|
|
Out << ")";
|
|
}
|
|
}
|
|
|
|
void AssemblyWriter::printNonConstVCalls(
|
|
const std::vector<FunctionSummary::VFuncId> &VCallList, const char *Tag) {
|
|
Out << Tag << ": (";
|
|
FieldSeparator FS;
|
|
for (auto &VFuncId : VCallList) {
|
|
Out << FS;
|
|
printVFuncId(VFuncId);
|
|
}
|
|
Out << ")";
|
|
}
|
|
|
|
void AssemblyWriter::printConstVCalls(
|
|
const std::vector<FunctionSummary::ConstVCall> &VCallList,
|
|
const char *Tag) {
|
|
Out << Tag << ": (";
|
|
FieldSeparator FS;
|
|
for (auto &ConstVCall : VCallList) {
|
|
Out << FS;
|
|
Out << "(";
|
|
printVFuncId(ConstVCall.VFunc);
|
|
if (!ConstVCall.Args.empty()) {
|
|
Out << ", ";
|
|
printArgs(ConstVCall.Args);
|
|
}
|
|
Out << ")";
|
|
}
|
|
Out << ")";
|
|
}
|
|
|
|
void AssemblyWriter::printSummary(const GlobalValueSummary &Summary) {
|
|
GlobalValueSummary::GVFlags GVFlags = Summary.flags();
|
|
GlobalValue::LinkageTypes LT = (GlobalValue::LinkageTypes)GVFlags.Linkage;
|
|
Out << getSummaryKindName(Summary.getSummaryKind()) << ": ";
|
|
Out << "(module: ^" << Machine.getModulePathSlot(Summary.modulePath())
|
|
<< ", flags: (";
|
|
Out << "linkage: " << getLinkageName(LT);
|
|
Out << ", visibility: "
|
|
<< getVisibilityName((GlobalValue::VisibilityTypes)GVFlags.Visibility);
|
|
Out << ", notEligibleToImport: " << GVFlags.NotEligibleToImport;
|
|
Out << ", live: " << GVFlags.Live;
|
|
Out << ", dsoLocal: " << GVFlags.DSOLocal;
|
|
Out << ", canAutoHide: " << GVFlags.CanAutoHide;
|
|
Out << ")";
|
|
|
|
if (Summary.getSummaryKind() == GlobalValueSummary::AliasKind)
|
|
printAliasSummary(cast<AliasSummary>(&Summary));
|
|
else if (Summary.getSummaryKind() == GlobalValueSummary::FunctionKind)
|
|
printFunctionSummary(cast<FunctionSummary>(&Summary));
|
|
else
|
|
printGlobalVarSummary(cast<GlobalVarSummary>(&Summary));
|
|
|
|
auto RefList = Summary.refs();
|
|
if (!RefList.empty()) {
|
|
Out << ", refs: (";
|
|
FieldSeparator FS;
|
|
for (auto &Ref : RefList) {
|
|
Out << FS;
|
|
if (Ref.isReadOnly())
|
|
Out << "readonly ";
|
|
else if (Ref.isWriteOnly())
|
|
Out << "writeonly ";
|
|
Out << "^" << Machine.getGUIDSlot(Ref.getGUID());
|
|
}
|
|
Out << ")";
|
|
}
|
|
|
|
Out << ")";
|
|
}
|
|
|
|
void AssemblyWriter::printSummaryInfo(unsigned Slot, const ValueInfo &VI) {
|
|
Out << "^" << Slot << " = gv: (";
|
|
if (!VI.name().empty())
|
|
Out << "name: \"" << VI.name() << "\"";
|
|
else
|
|
Out << "guid: " << VI.getGUID();
|
|
if (!VI.getSummaryList().empty()) {
|
|
Out << ", summaries: (";
|
|
FieldSeparator FS;
|
|
for (auto &Summary : VI.getSummaryList()) {
|
|
Out << FS;
|
|
printSummary(*Summary);
|
|
}
|
|
Out << ")";
|
|
}
|
|
Out << ")";
|
|
if (!VI.name().empty())
|
|
Out << " ; guid = " << VI.getGUID();
|
|
Out << "\n";
|
|
}
|
|
|
|
static void printMetadataIdentifier(StringRef Name,
|
|
formatted_raw_ostream &Out) {
|
|
if (Name.empty()) {
|
|
Out << "<empty name> ";
|
|
} else {
|
|
if (isalpha(static_cast<unsigned char>(Name[0])) || Name[0] == '-' ||
|
|
Name[0] == '$' || Name[0] == '.' || Name[0] == '_')
|
|
Out << Name[0];
|
|
else
|
|
Out << '\\' << hexdigit(Name[0] >> 4) << hexdigit(Name[0] & 0x0F);
|
|
for (unsigned i = 1, e = Name.size(); i != e; ++i) {
|
|
unsigned char C = Name[i];
|
|
if (isalnum(static_cast<unsigned char>(C)) || C == '-' || C == '$' ||
|
|
C == '.' || C == '_')
|
|
Out << C;
|
|
else
|
|
Out << '\\' << hexdigit(C >> 4) << hexdigit(C & 0x0F);
|
|
}
|
|
}
|
|
}
|
|
|
|
void AssemblyWriter::printNamedMDNode(const NamedMDNode *NMD) {
|
|
Out << '!';
|
|
printMetadataIdentifier(NMD->getName(), Out);
|
|
Out << " = !{";
|
|
for (unsigned i = 0, e = NMD->getNumOperands(); i != e; ++i) {
|
|
if (i)
|
|
Out << ", ";
|
|
|
|
// Write DIExpressions inline.
|
|
// FIXME: Ban DIExpressions in NamedMDNodes, they will serve no purpose.
|
|
MDNode *Op = NMD->getOperand(i);
|
|
assert(!isa<DIArgList>(Op) &&
|
|
"DIArgLists should not appear in NamedMDNodes");
|
|
if (auto *Expr = dyn_cast<DIExpression>(Op)) {
|
|
writeDIExpression(Out, Expr, nullptr, nullptr, nullptr);
|
|
continue;
|
|
}
|
|
|
|
int Slot = Machine.getMetadataSlot(Op);
|
|
if (Slot == -1)
|
|
Out << "<badref>";
|
|
else
|
|
Out << '!' << Slot;
|
|
}
|
|
Out << "}\n";
|
|
}
|
|
|
|
static void PrintVisibility(GlobalValue::VisibilityTypes Vis,
|
|
formatted_raw_ostream &Out) {
|
|
switch (Vis) {
|
|
case GlobalValue::DefaultVisibility: break;
|
|
case GlobalValue::HiddenVisibility: Out << "hidden "; break;
|
|
case GlobalValue::ProtectedVisibility: Out << "protected "; break;
|
|
}
|
|
}
|
|
|
|
static void PrintDSOLocation(const GlobalValue &GV,
|
|
formatted_raw_ostream &Out) {
|
|
if (GV.isDSOLocal() && !GV.isImplicitDSOLocal())
|
|
Out << "dso_local ";
|
|
}
|
|
|
|
static void PrintDLLStorageClass(GlobalValue::DLLStorageClassTypes SCT,
|
|
formatted_raw_ostream &Out) {
|
|
switch (SCT) {
|
|
case GlobalValue::DefaultStorageClass: break;
|
|
case GlobalValue::DLLImportStorageClass: Out << "dllimport "; break;
|
|
case GlobalValue::DLLExportStorageClass: Out << "dllexport "; break;
|
|
}
|
|
}
|
|
|
|
static void PrintThreadLocalModel(GlobalVariable::ThreadLocalMode TLM,
|
|
formatted_raw_ostream &Out) {
|
|
switch (TLM) {
|
|
case GlobalVariable::NotThreadLocal:
|
|
break;
|
|
case GlobalVariable::GeneralDynamicTLSModel:
|
|
Out << "thread_local ";
|
|
break;
|
|
case GlobalVariable::LocalDynamicTLSModel:
|
|
Out << "thread_local(localdynamic) ";
|
|
break;
|
|
case GlobalVariable::InitialExecTLSModel:
|
|
Out << "thread_local(initialexec) ";
|
|
break;
|
|
case GlobalVariable::LocalExecTLSModel:
|
|
Out << "thread_local(localexec) ";
|
|
break;
|
|
}
|
|
}
|
|
|
|
static StringRef getUnnamedAddrEncoding(GlobalVariable::UnnamedAddr UA) {
|
|
switch (UA) {
|
|
case GlobalVariable::UnnamedAddr::None:
|
|
return "";
|
|
case GlobalVariable::UnnamedAddr::Local:
|
|
return "local_unnamed_addr";
|
|
case GlobalVariable::UnnamedAddr::Global:
|
|
return "unnamed_addr";
|
|
}
|
|
llvm_unreachable("Unknown UnnamedAddr");
|
|
}
|
|
|
|
static void maybePrintComdat(formatted_raw_ostream &Out,
|
|
const GlobalObject &GO) {
|
|
const Comdat *C = GO.getComdat();
|
|
if (!C)
|
|
return;
|
|
|
|
if (isa<GlobalVariable>(GO))
|
|
Out << ',';
|
|
Out << " comdat";
|
|
|
|
if (GO.getName() == C->getName())
|
|
return;
|
|
|
|
Out << '(';
|
|
PrintLLVMName(Out, C->getName(), ComdatPrefix);
|
|
Out << ')';
|
|
}
|
|
|
|
void AssemblyWriter::printGlobal(const GlobalVariable *GV) {
|
|
if (GV->isMaterializable())
|
|
Out << "; Materializable\n";
|
|
|
|
WriteAsOperandInternal(Out, GV, &TypePrinter, &Machine, GV->getParent());
|
|
Out << " = ";
|
|
|
|
if (!GV->hasInitializer() && GV->hasExternalLinkage())
|
|
Out << "external ";
|
|
|
|
Out << getLinkageNameWithSpace(GV->getLinkage());
|
|
PrintDSOLocation(*GV, Out);
|
|
PrintVisibility(GV->getVisibility(), Out);
|
|
PrintDLLStorageClass(GV->getDLLStorageClass(), Out);
|
|
PrintThreadLocalModel(GV->getThreadLocalMode(), Out);
|
|
StringRef UA = getUnnamedAddrEncoding(GV->getUnnamedAddr());
|
|
if (!UA.empty())
|
|
Out << UA << ' ';
|
|
|
|
if (unsigned AddressSpace = GV->getType()->getAddressSpace())
|
|
Out << "addrspace(" << AddressSpace << ") ";
|
|
if (GV->isExternallyInitialized()) Out << "externally_initialized ";
|
|
Out << (GV->isConstant() ? "constant " : "global ");
|
|
TypePrinter.print(GV->getValueType(), Out);
|
|
|
|
if (GV->hasInitializer()) {
|
|
Out << ' ';
|
|
writeOperand(GV->getInitializer(), false);
|
|
}
|
|
|
|
if (GV->hasSection()) {
|
|
Out << ", section \"";
|
|
printEscapedString(GV->getSection(), Out);
|
|
Out << '"';
|
|
}
|
|
if (GV->hasPartition()) {
|
|
Out << ", partition \"";
|
|
printEscapedString(GV->getPartition(), Out);
|
|
Out << '"';
|
|
}
|
|
|
|
maybePrintComdat(Out, *GV);
|
|
if (GV->getAlignment())
|
|
Out << ", align " << GV->getAlignment();
|
|
|
|
SmallVector<std::pair<unsigned, MDNode *>, 4> MDs;
|
|
GV->getAllMetadata(MDs);
|
|
printMetadataAttachments(MDs, ", ");
|
|
|
|
auto Attrs = GV->getAttributes();
|
|
if (Attrs.hasAttributes())
|
|
Out << " #" << Machine.getAttributeGroupSlot(Attrs);
|
|
|
|
printInfoComment(*GV);
|
|
}
|
|
|
|
void AssemblyWriter::printIndirectSymbol(const GlobalIndirectSymbol *GIS) {
|
|
if (GIS->isMaterializable())
|
|
Out << "; Materializable\n";
|
|
|
|
WriteAsOperandInternal(Out, GIS, &TypePrinter, &Machine, GIS->getParent());
|
|
Out << " = ";
|
|
|
|
Out << getLinkageNameWithSpace(GIS->getLinkage());
|
|
PrintDSOLocation(*GIS, Out);
|
|
PrintVisibility(GIS->getVisibility(), Out);
|
|
PrintDLLStorageClass(GIS->getDLLStorageClass(), Out);
|
|
PrintThreadLocalModel(GIS->getThreadLocalMode(), Out);
|
|
StringRef UA = getUnnamedAddrEncoding(GIS->getUnnamedAddr());
|
|
if (!UA.empty())
|
|
Out << UA << ' ';
|
|
|
|
if (isa<GlobalAlias>(GIS))
|
|
Out << "alias ";
|
|
else if (isa<GlobalIFunc>(GIS))
|
|
Out << "ifunc ";
|
|
else
|
|
llvm_unreachable("Not an alias or ifunc!");
|
|
|
|
TypePrinter.print(GIS->getValueType(), Out);
|
|
|
|
Out << ", ";
|
|
|
|
const Constant *IS = GIS->getIndirectSymbol();
|
|
|
|
if (!IS) {
|
|
TypePrinter.print(GIS->getType(), Out);
|
|
Out << " <<NULL ALIASEE>>";
|
|
} else {
|
|
writeOperand(IS, !isa<ConstantExpr>(IS));
|
|
}
|
|
|
|
if (GIS->hasPartition()) {
|
|
Out << ", partition \"";
|
|
printEscapedString(GIS->getPartition(), Out);
|
|
Out << '"';
|
|
}
|
|
|
|
printInfoComment(*GIS);
|
|
Out << '\n';
|
|
}
|
|
|
|
void AssemblyWriter::printComdat(const Comdat *C) {
|
|
C->print(Out);
|
|
}
|
|
|
|
void AssemblyWriter::printTypeIdentities() {
|
|
if (TypePrinter.empty())
|
|
return;
|
|
|
|
Out << '\n';
|
|
|
|
// Emit all numbered types.
|
|
auto &NumberedTypes = TypePrinter.getNumberedTypes();
|
|
for (unsigned I = 0, E = NumberedTypes.size(); I != E; ++I) {
|
|
Out << '%' << I << " = type ";
|
|
|
|
// Make sure we print out at least one level of the type structure, so
|
|
// that we do not get %2 = type %2
|
|
TypePrinter.printStructBody(NumberedTypes[I], Out);
|
|
Out << '\n';
|
|
}
|
|
|
|
auto &NamedTypes = TypePrinter.getNamedTypes();
|
|
for (unsigned I = 0, E = NamedTypes.size(); I != E; ++I) {
|
|
PrintLLVMName(Out, NamedTypes[I]->getName(), LocalPrefix);
|
|
Out << " = type ";
|
|
|
|
// Make sure we print out at least one level of the type structure, so
|
|
// that we do not get %FILE = type %FILE
|
|
TypePrinter.printStructBody(NamedTypes[I], Out);
|
|
Out << '\n';
|
|
}
|
|
}
|
|
|
|
/// printFunction - Print all aspects of a function.
|
|
void AssemblyWriter::printFunction(const Function *F) {
|
|
if (AnnotationWriter) AnnotationWriter->emitFunctionAnnot(F, Out);
|
|
|
|
if (F->isMaterializable())
|
|
Out << "; Materializable\n";
|
|
|
|
const AttributeList &Attrs = F->getAttributes();
|
|
if (Attrs.hasAttributes(AttributeList::FunctionIndex)) {
|
|
AttributeSet AS = Attrs.getFnAttributes();
|
|
std::string AttrStr;
|
|
|
|
for (const Attribute &Attr : AS) {
|
|
if (!Attr.isStringAttribute()) {
|
|
if (!AttrStr.empty()) AttrStr += ' ';
|
|
AttrStr += Attr.getAsString();
|
|
}
|
|
}
|
|
|
|
if (!AttrStr.empty())
|
|
Out << "; Function Attrs: " << AttrStr << '\n';
|
|
}
|
|
|
|
Machine.incorporateFunction(F);
|
|
|
|
if (F->isDeclaration()) {
|
|
Out << "declare";
|
|
SmallVector<std::pair<unsigned, MDNode *>, 4> MDs;
|
|
F->getAllMetadata(MDs);
|
|
printMetadataAttachments(MDs, " ");
|
|
Out << ' ';
|
|
} else
|
|
Out << "define ";
|
|
|
|
Out << getLinkageNameWithSpace(F->getLinkage());
|
|
PrintDSOLocation(*F, Out);
|
|
PrintVisibility(F->getVisibility(), Out);
|
|
PrintDLLStorageClass(F->getDLLStorageClass(), Out);
|
|
|
|
// Print the calling convention.
|
|
if (F->getCallingConv() != CallingConv::C) {
|
|
PrintCallingConv(F->getCallingConv(), Out);
|
|
Out << " ";
|
|
}
|
|
|
|
FunctionType *FT = F->getFunctionType();
|
|
if (Attrs.hasAttributes(AttributeList::ReturnIndex))
|
|
Out << Attrs.getAsString(AttributeList::ReturnIndex) << ' ';
|
|
TypePrinter.print(F->getReturnType(), Out);
|
|
Out << ' ';
|
|
WriteAsOperandInternal(Out, F, &TypePrinter, &Machine, F->getParent());
|
|
Out << '(';
|
|
|
|
// Loop over the arguments, printing them...
|
|
if (F->isDeclaration() && !IsForDebug) {
|
|
// We're only interested in the type here - don't print argument names.
|
|
for (unsigned I = 0, E = FT->getNumParams(); I != E; ++I) {
|
|
// Insert commas as we go... the first arg doesn't get a comma
|
|
if (I)
|
|
Out << ", ";
|
|
// Output type...
|
|
TypePrinter.print(FT->getParamType(I), Out);
|
|
|
|
AttributeSet ArgAttrs = Attrs.getParamAttributes(I);
|
|
if (ArgAttrs.hasAttributes()) {
|
|
Out << ' ';
|
|
writeAttributeSet(ArgAttrs);
|
|
}
|
|
}
|
|
} else {
|
|
// The arguments are meaningful here, print them in detail.
|
|
for (const Argument &Arg : F->args()) {
|
|
// Insert commas as we go... the first arg doesn't get a comma
|
|
if (Arg.getArgNo() != 0)
|
|
Out << ", ";
|
|
printArgument(&Arg, Attrs.getParamAttributes(Arg.getArgNo()));
|
|
}
|
|
}
|
|
|
|
// Finish printing arguments...
|
|
if (FT->isVarArg()) {
|
|
if (FT->getNumParams()) Out << ", ";
|
|
Out << "..."; // Output varargs portion of signature!
|
|
}
|
|
Out << ')';
|
|
StringRef UA = getUnnamedAddrEncoding(F->getUnnamedAddr());
|
|
if (!UA.empty())
|
|
Out << ' ' << UA;
|
|
// We print the function address space if it is non-zero or if we are writing
|
|
// a module with a non-zero program address space or if there is no valid
|
|
// Module* so that the file can be parsed without the datalayout string.
|
|
const Module *Mod = F->getParent();
|
|
if (F->getAddressSpace() != 0 || !Mod ||
|
|
Mod->getDataLayout().getProgramAddressSpace() != 0)
|
|
Out << " addrspace(" << F->getAddressSpace() << ")";
|
|
if (Attrs.hasAttributes(AttributeList::FunctionIndex))
|
|
Out << " #" << Machine.getAttributeGroupSlot(Attrs.getFnAttributes());
|
|
if (F->hasSection()) {
|
|
Out << " section \"";
|
|
printEscapedString(F->getSection(), Out);
|
|
Out << '"';
|
|
}
|
|
if (F->hasPartition()) {
|
|
Out << " partition \"";
|
|
printEscapedString(F->getPartition(), Out);
|
|
Out << '"';
|
|
}
|
|
maybePrintComdat(Out, *F);
|
|
if (F->getAlignment())
|
|
Out << " align " << F->getAlignment();
|
|
if (F->hasGC())
|
|
Out << " gc \"" << F->getGC() << '"';
|
|
if (F->hasPrefixData()) {
|
|
Out << " prefix ";
|
|
writeOperand(F->getPrefixData(), true);
|
|
}
|
|
if (F->hasPrologueData()) {
|
|
Out << " prologue ";
|
|
writeOperand(F->getPrologueData(), true);
|
|
}
|
|
if (F->hasPersonalityFn()) {
|
|
Out << " personality ";
|
|
writeOperand(F->getPersonalityFn(), /*PrintType=*/true);
|
|
}
|
|
|
|
if (F->isDeclaration()) {
|
|
Out << '\n';
|
|
} else {
|
|
SmallVector<std::pair<unsigned, MDNode *>, 4> MDs;
|
|
F->getAllMetadata(MDs);
|
|
printMetadataAttachments(MDs, " ");
|
|
|
|
Out << " {";
|
|
// Output all of the function's basic blocks.
|
|
for (const BasicBlock &BB : *F)
|
|
printBasicBlock(&BB);
|
|
|
|
// Output the function's use-lists.
|
|
printUseLists(F);
|
|
|
|
Out << "}\n";
|
|
}
|
|
|
|
Machine.purgeFunction();
|
|
}
|
|
|
|
/// printArgument - This member is called for every argument that is passed into
|
|
/// the function. Simply print it out
|
|
void AssemblyWriter::printArgument(const Argument *Arg, AttributeSet Attrs) {
|
|
// Output type...
|
|
TypePrinter.print(Arg->getType(), Out);
|
|
|
|
// Output parameter attributes list
|
|
if (Attrs.hasAttributes()) {
|
|
Out << ' ';
|
|
writeAttributeSet(Attrs);
|
|
}
|
|
|
|
// Output name, if available...
|
|
if (Arg->hasName()) {
|
|
Out << ' ';
|
|
PrintLLVMName(Out, Arg);
|
|
} else {
|
|
int Slot = Machine.getLocalSlot(Arg);
|
|
assert(Slot != -1 && "expect argument in function here");
|
|
Out << " %" << Slot;
|
|
}
|
|
}
|
|
|
|
/// printBasicBlock - This member is called for each basic block in a method.
|
|
void AssemblyWriter::printBasicBlock(const BasicBlock *BB) {
|
|
bool IsEntryBlock = BB->getParent() && BB->isEntryBlock();
|
|
if (BB->hasName()) { // Print out the label if it exists...
|
|
Out << "\n";
|
|
PrintLLVMName(Out, BB->getName(), LabelPrefix);
|
|
Out << ':';
|
|
} else if (!IsEntryBlock) {
|
|
Out << "\n";
|
|
int Slot = Machine.getLocalSlot(BB);
|
|
if (Slot != -1)
|
|
Out << Slot << ":";
|
|
else
|
|
Out << "<badref>:";
|
|
}
|
|
|
|
if (!IsEntryBlock) {
|
|
// Output predecessors for the block.
|
|
Out.PadToColumn(50);
|
|
Out << ";";
|
|
const_pred_iterator PI = pred_begin(BB), PE = pred_end(BB);
|
|
|
|
if (PI == PE) {
|
|
Out << " No predecessors!";
|
|
} else {
|
|
Out << " preds = ";
|
|
writeOperand(*PI, false);
|
|
for (++PI; PI != PE; ++PI) {
|
|
Out << ", ";
|
|
writeOperand(*PI, false);
|
|
}
|
|
}
|
|
}
|
|
|
|
Out << "\n";
|
|
|
|
if (AnnotationWriter) AnnotationWriter->emitBasicBlockStartAnnot(BB, Out);
|
|
|
|
// Output all of the instructions in the basic block...
|
|
for (const Instruction &I : *BB) {
|
|
printInstructionLine(I);
|
|
}
|
|
|
|
if (AnnotationWriter) AnnotationWriter->emitBasicBlockEndAnnot(BB, Out);
|
|
}
|
|
|
|
/// printInstructionLine - Print an instruction and a newline character.
|
|
void AssemblyWriter::printInstructionLine(const Instruction &I) {
|
|
printInstruction(I);
|
|
Out << '\n';
|
|
}
|
|
|
|
/// printGCRelocateComment - print comment after call to the gc.relocate
|
|
/// intrinsic indicating base and derived pointer names.
|
|
void AssemblyWriter::printGCRelocateComment(const GCRelocateInst &Relocate) {
|
|
Out << " ; (";
|
|
writeOperand(Relocate.getBasePtr(), false);
|
|
Out << ", ";
|
|
writeOperand(Relocate.getDerivedPtr(), false);
|
|
Out << ")";
|
|
}
|
|
|
|
/// printInfoComment - Print a little comment after the instruction indicating
|
|
/// which slot it occupies.
|
|
void AssemblyWriter::printInfoComment(const Value &V) {
|
|
if (const auto *Relocate = dyn_cast<GCRelocateInst>(&V))
|
|
printGCRelocateComment(*Relocate);
|
|
|
|
if (AnnotationWriter)
|
|
AnnotationWriter->printInfoComment(V, Out);
|
|
}
|
|
|
|
static void maybePrintCallAddrSpace(const Value *Operand, const Instruction *I,
|
|
raw_ostream &Out) {
|
|
// We print the address space of the call if it is non-zero.
|
|
unsigned CallAddrSpace = Operand->getType()->getPointerAddressSpace();
|
|
bool PrintAddrSpace = CallAddrSpace != 0;
|
|
if (!PrintAddrSpace) {
|
|
const Module *Mod = getModuleFromVal(I);
|
|
// We also print it if it is zero but not equal to the program address space
|
|
// or if we can't find a valid Module* to make it possible to parse
|
|
// the resulting file even without a datalayout string.
|
|
if (!Mod || Mod->getDataLayout().getProgramAddressSpace() != 0)
|
|
PrintAddrSpace = true;
|
|
}
|
|
if (PrintAddrSpace)
|
|
Out << " addrspace(" << CallAddrSpace << ")";
|
|
}
|
|
|
|
// This member is called for each Instruction in a function..
|
|
void AssemblyWriter::printInstruction(const Instruction &I) {
|
|
if (AnnotationWriter) AnnotationWriter->emitInstructionAnnot(&I, Out);
|
|
|
|
// Print out indentation for an instruction.
|
|
Out << " ";
|
|
|
|
// Print out name if it exists...
|
|
if (I.hasName()) {
|
|
PrintLLVMName(Out, &I);
|
|
Out << " = ";
|
|
} else if (!I.getType()->isVoidTy()) {
|
|
// Print out the def slot taken.
|
|
int SlotNum = Machine.getLocalSlot(&I);
|
|
if (SlotNum == -1)
|
|
Out << "<badref> = ";
|
|
else
|
|
Out << '%' << SlotNum << " = ";
|
|
}
|
|
|
|
if (const CallInst *CI = dyn_cast<CallInst>(&I)) {
|
|
if (CI->isMustTailCall())
|
|
Out << "musttail ";
|
|
else if (CI->isTailCall())
|
|
Out << "tail ";
|
|
else if (CI->isNoTailCall())
|
|
Out << "notail ";
|
|
}
|
|
|
|
// Print out the opcode...
|
|
Out << I.getOpcodeName();
|
|
|
|
// If this is an atomic load or store, print out the atomic marker.
|
|
if ((isa<LoadInst>(I) && cast<LoadInst>(I).isAtomic()) ||
|
|
(isa<StoreInst>(I) && cast<StoreInst>(I).isAtomic()))
|
|
Out << " atomic";
|
|
|
|
if (isa<AtomicCmpXchgInst>(I) && cast<AtomicCmpXchgInst>(I).isWeak())
|
|
Out << " weak";
|
|
|
|
// If this is a volatile operation, print out the volatile marker.
|
|
if ((isa<LoadInst>(I) && cast<LoadInst>(I).isVolatile()) ||
|
|
(isa<StoreInst>(I) && cast<StoreInst>(I).isVolatile()) ||
|
|
(isa<AtomicCmpXchgInst>(I) && cast<AtomicCmpXchgInst>(I).isVolatile()) ||
|
|
(isa<AtomicRMWInst>(I) && cast<AtomicRMWInst>(I).isVolatile()))
|
|
Out << " volatile";
|
|
|
|
// Print out optimization information.
|
|
WriteOptimizationInfo(Out, &I);
|
|
|
|
// Print out the compare instruction predicates
|
|
if (const CmpInst *CI = dyn_cast<CmpInst>(&I))
|
|
Out << ' ' << CmpInst::getPredicateName(CI->getPredicate());
|
|
|
|
// Print out the atomicrmw operation
|
|
if (const AtomicRMWInst *RMWI = dyn_cast<AtomicRMWInst>(&I))
|
|
Out << ' ' << AtomicRMWInst::getOperationName(RMWI->getOperation());
|
|
|
|
// Print out the type of the operands...
|
|
const Value *Operand = I.getNumOperands() ? I.getOperand(0) : nullptr;
|
|
|
|
// Special case conditional branches to swizzle the condition out to the front
|
|
if (isa<BranchInst>(I) && cast<BranchInst>(I).isConditional()) {
|
|
const BranchInst &BI(cast<BranchInst>(I));
|
|
Out << ' ';
|
|
writeOperand(BI.getCondition(), true);
|
|
Out << ", ";
|
|
writeOperand(BI.getSuccessor(0), true);
|
|
Out << ", ";
|
|
writeOperand(BI.getSuccessor(1), true);
|
|
|
|
} else if (isa<SwitchInst>(I)) {
|
|
const SwitchInst& SI(cast<SwitchInst>(I));
|
|
// Special case switch instruction to get formatting nice and correct.
|
|
Out << ' ';
|
|
writeOperand(SI.getCondition(), true);
|
|
Out << ", ";
|
|
writeOperand(SI.getDefaultDest(), true);
|
|
Out << " [";
|
|
for (auto Case : SI.cases()) {
|
|
Out << "\n ";
|
|
writeOperand(Case.getCaseValue(), true);
|
|
Out << ", ";
|
|
writeOperand(Case.getCaseSuccessor(), true);
|
|
}
|
|
Out << "\n ]";
|
|
} else if (isa<IndirectBrInst>(I)) {
|
|
// Special case indirectbr instruction to get formatting nice and correct.
|
|
Out << ' ';
|
|
writeOperand(Operand, true);
|
|
Out << ", [";
|
|
|
|
for (unsigned i = 1, e = I.getNumOperands(); i != e; ++i) {
|
|
if (i != 1)
|
|
Out << ", ";
|
|
writeOperand(I.getOperand(i), true);
|
|
}
|
|
Out << ']';
|
|
} else if (const PHINode *PN = dyn_cast<PHINode>(&I)) {
|
|
Out << ' ';
|
|
TypePrinter.print(I.getType(), Out);
|
|
Out << ' ';
|
|
|
|
for (unsigned op = 0, Eop = PN->getNumIncomingValues(); op < Eop; ++op) {
|
|
if (op) Out << ", ";
|
|
Out << "[ ";
|
|
writeOperand(PN->getIncomingValue(op), false); Out << ", ";
|
|
writeOperand(PN->getIncomingBlock(op), false); Out << " ]";
|
|
}
|
|
} else if (const ExtractValueInst *EVI = dyn_cast<ExtractValueInst>(&I)) {
|
|
Out << ' ';
|
|
writeOperand(I.getOperand(0), true);
|
|
for (unsigned i : EVI->indices())
|
|
Out << ", " << i;
|
|
} else if (const InsertValueInst *IVI = dyn_cast<InsertValueInst>(&I)) {
|
|
Out << ' ';
|
|
writeOperand(I.getOperand(0), true); Out << ", ";
|
|
writeOperand(I.getOperand(1), true);
|
|
for (unsigned i : IVI->indices())
|
|
Out << ", " << i;
|
|
} else if (const LandingPadInst *LPI = dyn_cast<LandingPadInst>(&I)) {
|
|
Out << ' ';
|
|
TypePrinter.print(I.getType(), Out);
|
|
if (LPI->isCleanup() || LPI->getNumClauses() != 0)
|
|
Out << '\n';
|
|
|
|
if (LPI->isCleanup())
|
|
Out << " cleanup";
|
|
|
|
for (unsigned i = 0, e = LPI->getNumClauses(); i != e; ++i) {
|
|
if (i != 0 || LPI->isCleanup()) Out << "\n";
|
|
if (LPI->isCatch(i))
|
|
Out << " catch ";
|
|
else
|
|
Out << " filter ";
|
|
|
|
writeOperand(LPI->getClause(i), true);
|
|
}
|
|
} else if (const auto *CatchSwitch = dyn_cast<CatchSwitchInst>(&I)) {
|
|
Out << " within ";
|
|
writeOperand(CatchSwitch->getParentPad(), /*PrintType=*/false);
|
|
Out << " [";
|
|
unsigned Op = 0;
|
|
for (const BasicBlock *PadBB : CatchSwitch->handlers()) {
|
|
if (Op > 0)
|
|
Out << ", ";
|
|
writeOperand(PadBB, /*PrintType=*/true);
|
|
++Op;
|
|
}
|
|
Out << "] unwind ";
|
|
if (const BasicBlock *UnwindDest = CatchSwitch->getUnwindDest())
|
|
writeOperand(UnwindDest, /*PrintType=*/true);
|
|
else
|
|
Out << "to caller";
|
|
} else if (const auto *FPI = dyn_cast<FuncletPadInst>(&I)) {
|
|
Out << " within ";
|
|
writeOperand(FPI->getParentPad(), /*PrintType=*/false);
|
|
Out << " [";
|
|
for (unsigned Op = 0, NumOps = FPI->getNumArgOperands(); Op < NumOps;
|
|
++Op) {
|
|
if (Op > 0)
|
|
Out << ", ";
|
|
writeOperand(FPI->getArgOperand(Op), /*PrintType=*/true);
|
|
}
|
|
Out << ']';
|
|
} else if (isa<ReturnInst>(I) && !Operand) {
|
|
Out << " void";
|
|
} else if (const auto *CRI = dyn_cast<CatchReturnInst>(&I)) {
|
|
Out << " from ";
|
|
writeOperand(CRI->getOperand(0), /*PrintType=*/false);
|
|
|
|
Out << " to ";
|
|
writeOperand(CRI->getOperand(1), /*PrintType=*/true);
|
|
} else if (const auto *CRI = dyn_cast<CleanupReturnInst>(&I)) {
|
|
Out << " from ";
|
|
writeOperand(CRI->getOperand(0), /*PrintType=*/false);
|
|
|
|
Out << " unwind ";
|
|
if (CRI->hasUnwindDest())
|
|
writeOperand(CRI->getOperand(1), /*PrintType=*/true);
|
|
else
|
|
Out << "to caller";
|
|
} else if (const CallInst *CI = dyn_cast<CallInst>(&I)) {
|
|
// Print the calling convention being used.
|
|
if (CI->getCallingConv() != CallingConv::C) {
|
|
Out << " ";
|
|
PrintCallingConv(CI->getCallingConv(), Out);
|
|
}
|
|
|
|
Operand = CI->getCalledOperand();
|
|
FunctionType *FTy = CI->getFunctionType();
|
|
Type *RetTy = FTy->getReturnType();
|
|
const AttributeList &PAL = CI->getAttributes();
|
|
|
|
if (PAL.hasAttributes(AttributeList::ReturnIndex))
|
|
Out << ' ' << PAL.getAsString(AttributeList::ReturnIndex);
|
|
|
|
// Only print addrspace(N) if necessary:
|
|
maybePrintCallAddrSpace(Operand, &I, Out);
|
|
|
|
// If possible, print out the short form of the call instruction. We can
|
|
// only do this if the first argument is a pointer to a nonvararg function,
|
|
// and if the return type is not a pointer to a function.
|
|
//
|
|
Out << ' ';
|
|
TypePrinter.print(FTy->isVarArg() ? FTy : RetTy, Out);
|
|
Out << ' ';
|
|
writeOperand(Operand, false);
|
|
Out << '(';
|
|
for (unsigned op = 0, Eop = CI->getNumArgOperands(); op < Eop; ++op) {
|
|
if (op > 0)
|
|
Out << ", ";
|
|
writeParamOperand(CI->getArgOperand(op), PAL.getParamAttributes(op));
|
|
}
|
|
|
|
// Emit an ellipsis if this is a musttail call in a vararg function. This
|
|
// is only to aid readability, musttail calls forward varargs by default.
|
|
if (CI->isMustTailCall() && CI->getParent() &&
|
|
CI->getParent()->getParent() &&
|
|
CI->getParent()->getParent()->isVarArg())
|
|
Out << ", ...";
|
|
|
|
Out << ')';
|
|
if (PAL.hasAttributes(AttributeList::FunctionIndex))
|
|
Out << " #" << Machine.getAttributeGroupSlot(PAL.getFnAttributes());
|
|
|
|
writeOperandBundles(CI);
|
|
} else if (const InvokeInst *II = dyn_cast<InvokeInst>(&I)) {
|
|
Operand = II->getCalledOperand();
|
|
FunctionType *FTy = II->getFunctionType();
|
|
Type *RetTy = FTy->getReturnType();
|
|
const AttributeList &PAL = II->getAttributes();
|
|
|
|
// Print the calling convention being used.
|
|
if (II->getCallingConv() != CallingConv::C) {
|
|
Out << " ";
|
|
PrintCallingConv(II->getCallingConv(), Out);
|
|
}
|
|
|
|
if (PAL.hasAttributes(AttributeList::ReturnIndex))
|
|
Out << ' ' << PAL.getAsString(AttributeList::ReturnIndex);
|
|
|
|
// Only print addrspace(N) if necessary:
|
|
maybePrintCallAddrSpace(Operand, &I, Out);
|
|
|
|
// If possible, print out the short form of the invoke instruction. We can
|
|
// only do this if the first argument is a pointer to a nonvararg function,
|
|
// and if the return type is not a pointer to a function.
|
|
//
|
|
Out << ' ';
|
|
TypePrinter.print(FTy->isVarArg() ? FTy : RetTy, Out);
|
|
Out << ' ';
|
|
writeOperand(Operand, false);
|
|
Out << '(';
|
|
for (unsigned op = 0, Eop = II->getNumArgOperands(); op < Eop; ++op) {
|
|
if (op)
|
|
Out << ", ";
|
|
writeParamOperand(II->getArgOperand(op), PAL.getParamAttributes(op));
|
|
}
|
|
|
|
Out << ')';
|
|
if (PAL.hasAttributes(AttributeList::FunctionIndex))
|
|
Out << " #" << Machine.getAttributeGroupSlot(PAL.getFnAttributes());
|
|
|
|
writeOperandBundles(II);
|
|
|
|
Out << "\n to ";
|
|
writeOperand(II->getNormalDest(), true);
|
|
Out << " unwind ";
|
|
writeOperand(II->getUnwindDest(), true);
|
|
} else if (const CallBrInst *CBI = dyn_cast<CallBrInst>(&I)) {
|
|
Operand = CBI->getCalledOperand();
|
|
FunctionType *FTy = CBI->getFunctionType();
|
|
Type *RetTy = FTy->getReturnType();
|
|
const AttributeList &PAL = CBI->getAttributes();
|
|
|
|
// Print the calling convention being used.
|
|
if (CBI->getCallingConv() != CallingConv::C) {
|
|
Out << " ";
|
|
PrintCallingConv(CBI->getCallingConv(), Out);
|
|
}
|
|
|
|
if (PAL.hasAttributes(AttributeList::ReturnIndex))
|
|
Out << ' ' << PAL.getAsString(AttributeList::ReturnIndex);
|
|
|
|
// If possible, print out the short form of the callbr instruction. We can
|
|
// only do this if the first argument is a pointer to a nonvararg function,
|
|
// and if the return type is not a pointer to a function.
|
|
//
|
|
Out << ' ';
|
|
TypePrinter.print(FTy->isVarArg() ? FTy : RetTy, Out);
|
|
Out << ' ';
|
|
writeOperand(Operand, false);
|
|
Out << '(';
|
|
for (unsigned op = 0, Eop = CBI->getNumArgOperands(); op < Eop; ++op) {
|
|
if (op)
|
|
Out << ", ";
|
|
writeParamOperand(CBI->getArgOperand(op), PAL.getParamAttributes(op));
|
|
}
|
|
|
|
Out << ')';
|
|
if (PAL.hasAttributes(AttributeList::FunctionIndex))
|
|
Out << " #" << Machine.getAttributeGroupSlot(PAL.getFnAttributes());
|
|
|
|
writeOperandBundles(CBI);
|
|
|
|
Out << "\n to ";
|
|
writeOperand(CBI->getDefaultDest(), true);
|
|
Out << " [";
|
|
for (unsigned i = 0, e = CBI->getNumIndirectDests(); i != e; ++i) {
|
|
if (i != 0)
|
|
Out << ", ";
|
|
writeOperand(CBI->getIndirectDest(i), true);
|
|
}
|
|
Out << ']';
|
|
} else if (const AllocaInst *AI = dyn_cast<AllocaInst>(&I)) {
|
|
Out << ' ';
|
|
if (AI->isUsedWithInAlloca())
|
|
Out << "inalloca ";
|
|
if (AI->isSwiftError())
|
|
Out << "swifterror ";
|
|
TypePrinter.print(AI->getAllocatedType(), Out);
|
|
|
|
// Explicitly write the array size if the code is broken, if it's an array
|
|
// allocation, or if the type is not canonical for scalar allocations. The
|
|
// latter case prevents the type from mutating when round-tripping through
|
|
// assembly.
|
|
if (!AI->getArraySize() || AI->isArrayAllocation() ||
|
|
!AI->getArraySize()->getType()->isIntegerTy(32)) {
|
|
Out << ", ";
|
|
writeOperand(AI->getArraySize(), true);
|
|
}
|
|
if (AI->getAlignment()) {
|
|
Out << ", align " << AI->getAlignment();
|
|
}
|
|
|
|
unsigned AddrSpace = AI->getType()->getAddressSpace();
|
|
if (AddrSpace != 0) {
|
|
Out << ", addrspace(" << AddrSpace << ')';
|
|
}
|
|
} else if (isa<CastInst>(I)) {
|
|
if (Operand) {
|
|
Out << ' ';
|
|
writeOperand(Operand, true); // Work with broken code
|
|
}
|
|
Out << " to ";
|
|
TypePrinter.print(I.getType(), Out);
|
|
} else if (isa<VAArgInst>(I)) {
|
|
if (Operand) {
|
|
Out << ' ';
|
|
writeOperand(Operand, true); // Work with broken code
|
|
}
|
|
Out << ", ";
|
|
TypePrinter.print(I.getType(), Out);
|
|
} else if (Operand) { // Print the normal way.
|
|
if (const auto *GEP = dyn_cast<GetElementPtrInst>(&I)) {
|
|
Out << ' ';
|
|
TypePrinter.print(GEP->getSourceElementType(), Out);
|
|
Out << ',';
|
|
} else if (const auto *LI = dyn_cast<LoadInst>(&I)) {
|
|
Out << ' ';
|
|
TypePrinter.print(LI->getType(), Out);
|
|
Out << ',';
|
|
}
|
|
|
|
// PrintAllTypes - Instructions who have operands of all the same type
|
|
// omit the type from all but the first operand. If the instruction has
|
|
// different type operands (for example br), then they are all printed.
|
|
bool PrintAllTypes = false;
|
|
Type *TheType = Operand->getType();
|
|
|
|
// Select, Store and ShuffleVector always print all types.
|
|
if (isa<SelectInst>(I) || isa<StoreInst>(I) || isa<ShuffleVectorInst>(I)
|
|
|| isa<ReturnInst>(I)) {
|
|
PrintAllTypes = true;
|
|
} else {
|
|
for (unsigned i = 1, E = I.getNumOperands(); i != E; ++i) {
|
|
Operand = I.getOperand(i);
|
|
// note that Operand shouldn't be null, but the test helps make dump()
|
|
// more tolerant of malformed IR
|
|
if (Operand && Operand->getType() != TheType) {
|
|
PrintAllTypes = true; // We have differing types! Print them all!
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
if (!PrintAllTypes) {
|
|
Out << ' ';
|
|
TypePrinter.print(TheType, Out);
|
|
}
|
|
|
|
Out << ' ';
|
|
for (unsigned i = 0, E = I.getNumOperands(); i != E; ++i) {
|
|
if (i) Out << ", ";
|
|
writeOperand(I.getOperand(i), PrintAllTypes);
|
|
}
|
|
}
|
|
|
|
// Print atomic ordering/alignment for memory operations
|
|
if (const LoadInst *LI = dyn_cast<LoadInst>(&I)) {
|
|
if (LI->isAtomic())
|
|
writeAtomic(LI->getContext(), LI->getOrdering(), LI->getSyncScopeID());
|
|
if (LI->getAlignment())
|
|
Out << ", align " << LI->getAlignment();
|
|
} else if (const StoreInst *SI = dyn_cast<StoreInst>(&I)) {
|
|
if (SI->isAtomic())
|
|
writeAtomic(SI->getContext(), SI->getOrdering(), SI->getSyncScopeID());
|
|
if (SI->getAlignment())
|
|
Out << ", align " << SI->getAlignment();
|
|
} else if (const AtomicCmpXchgInst *CXI = dyn_cast<AtomicCmpXchgInst>(&I)) {
|
|
writeAtomicCmpXchg(CXI->getContext(), CXI->getSuccessOrdering(),
|
|
CXI->getFailureOrdering(), CXI->getSyncScopeID());
|
|
Out << ", align " << CXI->getAlign().value();
|
|
} else if (const AtomicRMWInst *RMWI = dyn_cast<AtomicRMWInst>(&I)) {
|
|
writeAtomic(RMWI->getContext(), RMWI->getOrdering(),
|
|
RMWI->getSyncScopeID());
|
|
Out << ", align " << RMWI->getAlign().value();
|
|
} else if (const FenceInst *FI = dyn_cast<FenceInst>(&I)) {
|
|
writeAtomic(FI->getContext(), FI->getOrdering(), FI->getSyncScopeID());
|
|
} else if (const ShuffleVectorInst *SVI = dyn_cast<ShuffleVectorInst>(&I)) {
|
|
PrintShuffleMask(Out, SVI->getType(), SVI->getShuffleMask());
|
|
}
|
|
|
|
// Print Metadata info.
|
|
SmallVector<std::pair<unsigned, MDNode *>, 4> InstMD;
|
|
I.getAllMetadata(InstMD);
|
|
printMetadataAttachments(InstMD, ", ");
|
|
|
|
// Print a nice comment.
|
|
printInfoComment(I);
|
|
}
|
|
|
|
void AssemblyWriter::printMetadataAttachments(
|
|
const SmallVectorImpl<std::pair<unsigned, MDNode *>> &MDs,
|
|
StringRef Separator) {
|
|
if (MDs.empty())
|
|
return;
|
|
|
|
if (MDNames.empty())
|
|
MDs[0].second->getContext().getMDKindNames(MDNames);
|
|
|
|
for (const auto &I : MDs) {
|
|
unsigned Kind = I.first;
|
|
Out << Separator;
|
|
if (Kind < MDNames.size()) {
|
|
Out << "!";
|
|
printMetadataIdentifier(MDNames[Kind], Out);
|
|
} else
|
|
Out << "!<unknown kind #" << Kind << ">";
|
|
Out << ' ';
|
|
WriteAsOperandInternal(Out, I.second, &TypePrinter, &Machine, TheModule);
|
|
}
|
|
}
|
|
|
|
void AssemblyWriter::writeMDNode(unsigned Slot, const MDNode *Node) {
|
|
Out << '!' << Slot << " = ";
|
|
printMDNodeBody(Node);
|
|
Out << "\n";
|
|
}
|
|
|
|
void AssemblyWriter::writeAllMDNodes() {
|
|
SmallVector<const MDNode *, 16> Nodes;
|
|
Nodes.resize(Machine.mdn_size());
|
|
for (auto &I : llvm::make_range(Machine.mdn_begin(), Machine.mdn_end()))
|
|
Nodes[I.second] = cast<MDNode>(I.first);
|
|
|
|
for (unsigned i = 0, e = Nodes.size(); i != e; ++i) {
|
|
writeMDNode(i, Nodes[i]);
|
|
}
|
|
}
|
|
|
|
void AssemblyWriter::printMDNodeBody(const MDNode *Node) {
|
|
WriteMDNodeBodyInternal(Out, Node, &TypePrinter, &Machine, TheModule);
|
|
}
|
|
|
|
void AssemblyWriter::writeAttribute(const Attribute &Attr, bool InAttrGroup) {
|
|
if (!Attr.isTypeAttribute()) {
|
|
Out << Attr.getAsString(InAttrGroup);
|
|
return;
|
|
}
|
|
|
|
Out << Attribute::getNameFromAttrKind(Attr.getKindAsEnum());
|
|
if (Type *Ty = Attr.getValueAsType()) {
|
|
Out << '(';
|
|
TypePrinter.print(Ty, Out);
|
|
Out << ')';
|
|
}
|
|
}
|
|
|
|
void AssemblyWriter::writeAttributeSet(const AttributeSet &AttrSet,
|
|
bool InAttrGroup) {
|
|
bool FirstAttr = true;
|
|
for (const auto &Attr : AttrSet) {
|
|
if (!FirstAttr)
|
|
Out << ' ';
|
|
writeAttribute(Attr, InAttrGroup);
|
|
FirstAttr = false;
|
|
}
|
|
}
|
|
|
|
void AssemblyWriter::writeAllAttributeGroups() {
|
|
std::vector<std::pair<AttributeSet, unsigned>> asVec;
|
|
asVec.resize(Machine.as_size());
|
|
|
|
for (auto &I : llvm::make_range(Machine.as_begin(), Machine.as_end()))
|
|
asVec[I.second] = I;
|
|
|
|
for (const auto &I : asVec)
|
|
Out << "attributes #" << I.second << " = { "
|
|
<< I.first.getAsString(true) << " }\n";
|
|
}
|
|
|
|
void AssemblyWriter::printUseListOrder(const Value *V,
|
|
const std::vector<unsigned> &Shuffle) {
|
|
bool IsInFunction = Machine.getFunction();
|
|
if (IsInFunction)
|
|
Out << " ";
|
|
|
|
Out << "uselistorder";
|
|
if (const BasicBlock *BB = IsInFunction ? nullptr : dyn_cast<BasicBlock>(V)) {
|
|
Out << "_bb ";
|
|
writeOperand(BB->getParent(), false);
|
|
Out << ", ";
|
|
writeOperand(BB, false);
|
|
} else {
|
|
Out << " ";
|
|
writeOperand(V, true);
|
|
}
|
|
Out << ", { ";
|
|
|
|
assert(Shuffle.size() >= 2 && "Shuffle too small");
|
|
Out << Shuffle[0];
|
|
for (unsigned I = 1, E = Shuffle.size(); I != E; ++I)
|
|
Out << ", " << Shuffle[I];
|
|
Out << " }\n";
|
|
}
|
|
|
|
void AssemblyWriter::printUseLists(const Function *F) {
|
|
auto It = UseListOrders.find(F);
|
|
if (It == UseListOrders.end())
|
|
return;
|
|
|
|
Out << "\n; uselistorder directives\n";
|
|
for (const auto &Pair : It->second)
|
|
printUseListOrder(Pair.first, Pair.second);
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// External Interface declarations
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
void Function::print(raw_ostream &ROS, AssemblyAnnotationWriter *AAW,
|
|
bool ShouldPreserveUseListOrder,
|
|
bool IsForDebug) const {
|
|
SlotTracker SlotTable(this->getParent());
|
|
formatted_raw_ostream OS(ROS);
|
|
AssemblyWriter W(OS, SlotTable, this->getParent(), AAW,
|
|
IsForDebug,
|
|
ShouldPreserveUseListOrder);
|
|
W.printFunction(this);
|
|
}
|
|
|
|
void BasicBlock::print(raw_ostream &ROS, AssemblyAnnotationWriter *AAW,
|
|
bool ShouldPreserveUseListOrder,
|
|
bool IsForDebug) const {
|
|
SlotTracker SlotTable(this->getParent());
|
|
formatted_raw_ostream OS(ROS);
|
|
AssemblyWriter W(OS, SlotTable, this->getModule(), AAW,
|
|
IsForDebug,
|
|
ShouldPreserveUseListOrder);
|
|
W.printBasicBlock(this);
|
|
}
|
|
|
|
void Module::print(raw_ostream &ROS, AssemblyAnnotationWriter *AAW,
|
|
bool ShouldPreserveUseListOrder, bool IsForDebug) const {
|
|
SlotTracker SlotTable(this);
|
|
formatted_raw_ostream OS(ROS);
|
|
AssemblyWriter W(OS, SlotTable, this, AAW, IsForDebug,
|
|
ShouldPreserveUseListOrder);
|
|
W.printModule(this);
|
|
}
|
|
|
|
void NamedMDNode::print(raw_ostream &ROS, bool IsForDebug) const {
|
|
SlotTracker SlotTable(getParent());
|
|
formatted_raw_ostream OS(ROS);
|
|
AssemblyWriter W(OS, SlotTable, getParent(), nullptr, IsForDebug);
|
|
W.printNamedMDNode(this);
|
|
}
|
|
|
|
void NamedMDNode::print(raw_ostream &ROS, ModuleSlotTracker &MST,
|
|
bool IsForDebug) const {
|
|
Optional<SlotTracker> LocalST;
|
|
SlotTracker *SlotTable;
|
|
if (auto *ST = MST.getMachine())
|
|
SlotTable = ST;
|
|
else {
|
|
LocalST.emplace(getParent());
|
|
SlotTable = &*LocalST;
|
|
}
|
|
|
|
formatted_raw_ostream OS(ROS);
|
|
AssemblyWriter W(OS, *SlotTable, getParent(), nullptr, IsForDebug);
|
|
W.printNamedMDNode(this);
|
|
}
|
|
|
|
void Comdat::print(raw_ostream &ROS, bool /*IsForDebug*/) const {
|
|
PrintLLVMName(ROS, getName(), ComdatPrefix);
|
|
ROS << " = comdat ";
|
|
|
|
switch (getSelectionKind()) {
|
|
case Comdat::Any:
|
|
ROS << "any";
|
|
break;
|
|
case Comdat::ExactMatch:
|
|
ROS << "exactmatch";
|
|
break;
|
|
case Comdat::Largest:
|
|
ROS << "largest";
|
|
break;
|
|
case Comdat::NoDeduplicate:
|
|
ROS << "nodeduplicate";
|
|
break;
|
|
case Comdat::SameSize:
|
|
ROS << "samesize";
|
|
break;
|
|
}
|
|
|
|
ROS << '\n';
|
|
}
|
|
|
|
void Type::print(raw_ostream &OS, bool /*IsForDebug*/, bool NoDetails) const {
|
|
TypePrinting TP;
|
|
TP.print(const_cast<Type*>(this), OS);
|
|
|
|
if (NoDetails)
|
|
return;
|
|
|
|
// If the type is a named struct type, print the body as well.
|
|
if (StructType *STy = dyn_cast<StructType>(const_cast<Type*>(this)))
|
|
if (!STy->isLiteral()) {
|
|
OS << " = type ";
|
|
TP.printStructBody(STy, OS);
|
|
}
|
|
}
|
|
|
|
static bool isReferencingMDNode(const Instruction &I) {
|
|
if (const auto *CI = dyn_cast<CallInst>(&I))
|
|
if (Function *F = CI->getCalledFunction())
|
|
if (F->isIntrinsic())
|
|
for (auto &Op : I.operands())
|
|
if (auto *V = dyn_cast_or_null<MetadataAsValue>(Op))
|
|
if (isa<MDNode>(V->getMetadata()))
|
|
return true;
|
|
return false;
|
|
}
|
|
|
|
void Value::print(raw_ostream &ROS, bool IsForDebug) const {
|
|
bool ShouldInitializeAllMetadata = false;
|
|
if (auto *I = dyn_cast<Instruction>(this))
|
|
ShouldInitializeAllMetadata = isReferencingMDNode(*I);
|
|
else if (isa<Function>(this) || isa<MetadataAsValue>(this))
|
|
ShouldInitializeAllMetadata = true;
|
|
|
|
ModuleSlotTracker MST(getModuleFromVal(this), ShouldInitializeAllMetadata);
|
|
print(ROS, MST, IsForDebug);
|
|
}
|
|
|
|
void Value::print(raw_ostream &ROS, ModuleSlotTracker &MST,
|
|
bool IsForDebug) const {
|
|
formatted_raw_ostream OS(ROS);
|
|
SlotTracker EmptySlotTable(static_cast<const Module *>(nullptr));
|
|
SlotTracker &SlotTable =
|
|
MST.getMachine() ? *MST.getMachine() : EmptySlotTable;
|
|
auto incorporateFunction = [&](const Function *F) {
|
|
if (F)
|
|
MST.incorporateFunction(*F);
|
|
};
|
|
|
|
if (const Instruction *I = dyn_cast<Instruction>(this)) {
|
|
incorporateFunction(I->getParent() ? I->getParent()->getParent() : nullptr);
|
|
AssemblyWriter W(OS, SlotTable, getModuleFromVal(I), nullptr, IsForDebug);
|
|
W.printInstruction(*I);
|
|
} else if (const BasicBlock *BB = dyn_cast<BasicBlock>(this)) {
|
|
incorporateFunction(BB->getParent());
|
|
AssemblyWriter W(OS, SlotTable, getModuleFromVal(BB), nullptr, IsForDebug);
|
|
W.printBasicBlock(BB);
|
|
} else if (const GlobalValue *GV = dyn_cast<GlobalValue>(this)) {
|
|
AssemblyWriter W(OS, SlotTable, GV->getParent(), nullptr, IsForDebug);
|
|
if (const GlobalVariable *V = dyn_cast<GlobalVariable>(GV))
|
|
W.printGlobal(V);
|
|
else if (const Function *F = dyn_cast<Function>(GV))
|
|
W.printFunction(F);
|
|
else
|
|
W.printIndirectSymbol(cast<GlobalIndirectSymbol>(GV));
|
|
} else if (const MetadataAsValue *V = dyn_cast<MetadataAsValue>(this)) {
|
|
V->getMetadata()->print(ROS, MST, getModuleFromVal(V));
|
|
} else if (const Constant *C = dyn_cast<Constant>(this)) {
|
|
TypePrinting TypePrinter;
|
|
TypePrinter.print(C->getType(), OS);
|
|
OS << ' ';
|
|
WriteConstantInternal(OS, C, TypePrinter, MST.getMachine(), nullptr);
|
|
} else if (isa<InlineAsm>(this) || isa<Argument>(this)) {
|
|
this->printAsOperand(OS, /* PrintType */ true, MST);
|
|
} else {
|
|
llvm_unreachable("Unknown value to print out!");
|
|
}
|
|
}
|
|
|
|
/// Print without a type, skipping the TypePrinting object.
|
|
///
|
|
/// \return \c true iff printing was successful.
|
|
static bool printWithoutType(const Value &V, raw_ostream &O,
|
|
SlotTracker *Machine, const Module *M) {
|
|
if (V.hasName() || isa<GlobalValue>(V) ||
|
|
(!isa<Constant>(V) && !isa<MetadataAsValue>(V))) {
|
|
WriteAsOperandInternal(O, &V, nullptr, Machine, M);
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
static void printAsOperandImpl(const Value &V, raw_ostream &O, bool PrintType,
|
|
ModuleSlotTracker &MST) {
|
|
TypePrinting TypePrinter(MST.getModule());
|
|
if (PrintType) {
|
|
TypePrinter.print(V.getType(), O);
|
|
O << ' ';
|
|
}
|
|
|
|
WriteAsOperandInternal(O, &V, &TypePrinter, MST.getMachine(),
|
|
MST.getModule());
|
|
}
|
|
|
|
void Value::printAsOperand(raw_ostream &O, bool PrintType,
|
|
const Module *M) const {
|
|
if (!M)
|
|
M = getModuleFromVal(this);
|
|
|
|
if (!PrintType)
|
|
if (printWithoutType(*this, O, nullptr, M))
|
|
return;
|
|
|
|
SlotTracker Machine(
|
|
M, /* ShouldInitializeAllMetadata */ isa<MetadataAsValue>(this));
|
|
ModuleSlotTracker MST(Machine, M);
|
|
printAsOperandImpl(*this, O, PrintType, MST);
|
|
}
|
|
|
|
void Value::printAsOperand(raw_ostream &O, bool PrintType,
|
|
ModuleSlotTracker &MST) const {
|
|
if (!PrintType)
|
|
if (printWithoutType(*this, O, MST.getMachine(), MST.getModule()))
|
|
return;
|
|
|
|
printAsOperandImpl(*this, O, PrintType, MST);
|
|
}
|
|
|
|
static void printMetadataImpl(raw_ostream &ROS, const Metadata &MD,
|
|
ModuleSlotTracker &MST, const Module *M,
|
|
bool OnlyAsOperand) {
|
|
formatted_raw_ostream OS(ROS);
|
|
|
|
TypePrinting TypePrinter(M);
|
|
|
|
WriteAsOperandInternal(OS, &MD, &TypePrinter, MST.getMachine(), M,
|
|
/* FromValue */ true);
|
|
|
|
auto *N = dyn_cast<MDNode>(&MD);
|
|
if (OnlyAsOperand || !N || isa<DIExpression>(MD) || isa<DIArgList>(MD))
|
|
return;
|
|
|
|
OS << " = ";
|
|
WriteMDNodeBodyInternal(OS, N, &TypePrinter, MST.getMachine(), M);
|
|
}
|
|
|
|
void Metadata::printAsOperand(raw_ostream &OS, const Module *M) const {
|
|
ModuleSlotTracker MST(M, isa<MDNode>(this));
|
|
printMetadataImpl(OS, *this, MST, M, /* OnlyAsOperand */ true);
|
|
}
|
|
|
|
void Metadata::printAsOperand(raw_ostream &OS, ModuleSlotTracker &MST,
|
|
const Module *M) const {
|
|
printMetadataImpl(OS, *this, MST, M, /* OnlyAsOperand */ true);
|
|
}
|
|
|
|
void Metadata::print(raw_ostream &OS, const Module *M,
|
|
bool /*IsForDebug*/) const {
|
|
ModuleSlotTracker MST(M, isa<MDNode>(this));
|
|
printMetadataImpl(OS, *this, MST, M, /* OnlyAsOperand */ false);
|
|
}
|
|
|
|
void Metadata::print(raw_ostream &OS, ModuleSlotTracker &MST,
|
|
const Module *M, bool /*IsForDebug*/) const {
|
|
printMetadataImpl(OS, *this, MST, M, /* OnlyAsOperand */ false);
|
|
}
|
|
|
|
void ModuleSummaryIndex::print(raw_ostream &ROS, bool IsForDebug) const {
|
|
SlotTracker SlotTable(this);
|
|
formatted_raw_ostream OS(ROS);
|
|
AssemblyWriter W(OS, SlotTable, this, IsForDebug);
|
|
W.printModuleSummaryIndex();
|
|
}
|
|
|
|
void ModuleSlotTracker::collectMDNodes(MachineMDNodeListType &L, unsigned LB,
|
|
unsigned UB) const {
|
|
SlotTracker *ST = MachineStorage.get();
|
|
if (!ST)
|
|
return;
|
|
|
|
for (auto &I : llvm::make_range(ST->mdn_begin(), ST->mdn_end()))
|
|
if (I.second >= LB && I.second < UB)
|
|
L.push_back(std::make_pair(I.second, I.first));
|
|
}
|
|
|
|
#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
|
|
// Value::dump - allow easy printing of Values from the debugger.
|
|
LLVM_DUMP_METHOD
|
|
void Value::dump() const { print(dbgs(), /*IsForDebug=*/true); dbgs() << '\n'; }
|
|
|
|
// Type::dump - allow easy printing of Types from the debugger.
|
|
LLVM_DUMP_METHOD
|
|
void Type::dump() const { print(dbgs(), /*IsForDebug=*/true); dbgs() << '\n'; }
|
|
|
|
// Module::dump() - Allow printing of Modules from the debugger.
|
|
LLVM_DUMP_METHOD
|
|
void Module::dump() const {
|
|
print(dbgs(), nullptr,
|
|
/*ShouldPreserveUseListOrder=*/false, /*IsForDebug=*/true);
|
|
}
|
|
|
|
// Allow printing of Comdats from the debugger.
|
|
LLVM_DUMP_METHOD
|
|
void Comdat::dump() const { print(dbgs(), /*IsForDebug=*/true); }
|
|
|
|
// NamedMDNode::dump() - Allow printing of NamedMDNodes from the debugger.
|
|
LLVM_DUMP_METHOD
|
|
void NamedMDNode::dump() const { print(dbgs(), /*IsForDebug=*/true); }
|
|
|
|
LLVM_DUMP_METHOD
|
|
void Metadata::dump() const { dump(nullptr); }
|
|
|
|
LLVM_DUMP_METHOD
|
|
void Metadata::dump(const Module *M) const {
|
|
print(dbgs(), M, /*IsForDebug=*/true);
|
|
dbgs() << '\n';
|
|
}
|
|
|
|
// Allow printing of ModuleSummaryIndex from the debugger.
|
|
LLVM_DUMP_METHOD
|
|
void ModuleSummaryIndex::dump() const { print(dbgs(), /*IsForDebug=*/true); }
|
|
#endif
|