1
0
mirror of https://github.com/RPCS3/llvm-mirror.git synced 2024-11-22 02:33:06 +01:00
llvm-mirror/lib/ProfileData/Coverage/CoverageMapping.cpp
Pirama Arumuga Nainar 7b5dc69f32 [CoverageMapping] Handle gaps in counter IDs for source-based coverage
For source-based coverage, the frontend sets the counter IDs and the
constraints of counter IDs is not defined.  For e.g., the Rust frontend
until recently had a reserved counter #0
(https://github.com/rust-lang/rust/pull/83774).  Rust coverage
instrumentation also creates counters on edges in addition to basic
blocks.  Some functions may have more counters than regions.

This breaks an assumption in CoverageMapping.cpp where the number of
counters in a function is assumed to be bounded by the number of
regions:
  Counts.assign(Record.MappingRegions.size(), 0);

This assumption causes CounterMappingContext::evaluate() to fail since
there are not enough counter values created in the above call to
`Counts.assign`.  Consequently, some uncovered functions are not
reported in coverage reports.

This change walks a Function's CoverageMappingRecord to find the maximum
counter ID, and uses it to initialize the counter array when instrprof
records are missing for a function in sparse profiles.

Differential Revision: https://reviews.llvm.org/D101780
2021-05-19 10:46:38 -07:00

905 lines
34 KiB
C++

//===- CoverageMapping.cpp - Code coverage mapping support ----------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file contains support for clang's and llvm's instrumentation based
// code coverage.
//
//===----------------------------------------------------------------------===//
#include "llvm/ProfileData/Coverage/CoverageMapping.h"
#include "llvm/ADT/ArrayRef.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/None.h"
#include "llvm/ADT/Optional.h"
#include "llvm/ADT/SmallBitVector.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/StringRef.h"
#include "llvm/ProfileData/Coverage/CoverageMappingReader.h"
#include "llvm/ProfileData/InstrProfReader.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/Errc.h"
#include "llvm/Support/Error.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/ManagedStatic.h"
#include "llvm/Support/MemoryBuffer.h"
#include "llvm/Support/raw_ostream.h"
#include <algorithm>
#include <cassert>
#include <cstdint>
#include <iterator>
#include <map>
#include <memory>
#include <string>
#include <system_error>
#include <utility>
#include <vector>
using namespace llvm;
using namespace coverage;
#define DEBUG_TYPE "coverage-mapping"
Counter CounterExpressionBuilder::get(const CounterExpression &E) {
auto It = ExpressionIndices.find(E);
if (It != ExpressionIndices.end())
return Counter::getExpression(It->second);
unsigned I = Expressions.size();
Expressions.push_back(E);
ExpressionIndices[E] = I;
return Counter::getExpression(I);
}
void CounterExpressionBuilder::extractTerms(Counter C, int Factor,
SmallVectorImpl<Term> &Terms) {
switch (C.getKind()) {
case Counter::Zero:
break;
case Counter::CounterValueReference:
Terms.emplace_back(C.getCounterID(), Factor);
break;
case Counter::Expression:
const auto &E = Expressions[C.getExpressionID()];
extractTerms(E.LHS, Factor, Terms);
extractTerms(
E.RHS, E.Kind == CounterExpression::Subtract ? -Factor : Factor, Terms);
break;
}
}
Counter CounterExpressionBuilder::simplify(Counter ExpressionTree) {
// Gather constant terms.
SmallVector<Term, 32> Terms;
extractTerms(ExpressionTree, +1, Terms);
// If there are no terms, this is just a zero. The algorithm below assumes at
// least one term.
if (Terms.size() == 0)
return Counter::getZero();
// Group the terms by counter ID.
llvm::sort(Terms, [](const Term &LHS, const Term &RHS) {
return LHS.CounterID < RHS.CounterID;
});
// Combine terms by counter ID to eliminate counters that sum to zero.
auto Prev = Terms.begin();
for (auto I = Prev + 1, E = Terms.end(); I != E; ++I) {
if (I->CounterID == Prev->CounterID) {
Prev->Factor += I->Factor;
continue;
}
++Prev;
*Prev = *I;
}
Terms.erase(++Prev, Terms.end());
Counter C;
// Create additions. We do this before subtractions to avoid constructs like
// ((0 - X) + Y), as opposed to (Y - X).
for (auto T : Terms) {
if (T.Factor <= 0)
continue;
for (int I = 0; I < T.Factor; ++I)
if (C.isZero())
C = Counter::getCounter(T.CounterID);
else
C = get(CounterExpression(CounterExpression::Add, C,
Counter::getCounter(T.CounterID)));
}
// Create subtractions.
for (auto T : Terms) {
if (T.Factor >= 0)
continue;
for (int I = 0; I < -T.Factor; ++I)
C = get(CounterExpression(CounterExpression::Subtract, C,
Counter::getCounter(T.CounterID)));
}
return C;
}
Counter CounterExpressionBuilder::add(Counter LHS, Counter RHS) {
return simplify(get(CounterExpression(CounterExpression::Add, LHS, RHS)));
}
Counter CounterExpressionBuilder::subtract(Counter LHS, Counter RHS) {
return simplify(
get(CounterExpression(CounterExpression::Subtract, LHS, RHS)));
}
void CounterMappingContext::dump(const Counter &C, raw_ostream &OS) const {
switch (C.getKind()) {
case Counter::Zero:
OS << '0';
return;
case Counter::CounterValueReference:
OS << '#' << C.getCounterID();
break;
case Counter::Expression: {
if (C.getExpressionID() >= Expressions.size())
return;
const auto &E = Expressions[C.getExpressionID()];
OS << '(';
dump(E.LHS, OS);
OS << (E.Kind == CounterExpression::Subtract ? " - " : " + ");
dump(E.RHS, OS);
OS << ')';
break;
}
}
if (CounterValues.empty())
return;
Expected<int64_t> Value = evaluate(C);
if (auto E = Value.takeError()) {
consumeError(std::move(E));
return;
}
OS << '[' << *Value << ']';
}
Expected<int64_t> CounterMappingContext::evaluate(const Counter &C) const {
switch (C.getKind()) {
case Counter::Zero:
return 0;
case Counter::CounterValueReference:
if (C.getCounterID() >= CounterValues.size())
return errorCodeToError(errc::argument_out_of_domain);
return CounterValues[C.getCounterID()];
case Counter::Expression: {
if (C.getExpressionID() >= Expressions.size())
return errorCodeToError(errc::argument_out_of_domain);
const auto &E = Expressions[C.getExpressionID()];
Expected<int64_t> LHS = evaluate(E.LHS);
if (!LHS)
return LHS;
Expected<int64_t> RHS = evaluate(E.RHS);
if (!RHS)
return RHS;
return E.Kind == CounterExpression::Subtract ? *LHS - *RHS : *LHS + *RHS;
}
}
llvm_unreachable("Unhandled CounterKind");
}
unsigned CounterMappingContext::getMaxCounterID(const Counter &C) const {
switch (C.getKind()) {
case Counter::Zero:
return 0;
case Counter::CounterValueReference:
return C.getCounterID();
case Counter::Expression: {
if (C.getExpressionID() >= Expressions.size())
return 0;
const auto &E = Expressions[C.getExpressionID()];
return std::max(getMaxCounterID(E.LHS), getMaxCounterID(E.RHS));
}
}
llvm_unreachable("Unhandled CounterKind");
}
void FunctionRecordIterator::skipOtherFiles() {
while (Current != Records.end() && !Filename.empty() &&
Filename != Current->Filenames[0])
++Current;
if (Current == Records.end())
*this = FunctionRecordIterator();
}
ArrayRef<unsigned> CoverageMapping::getImpreciseRecordIndicesForFilename(
StringRef Filename) const {
size_t FilenameHash = hash_value(Filename);
auto RecordIt = FilenameHash2RecordIndices.find(FilenameHash);
if (RecordIt == FilenameHash2RecordIndices.end())
return {};
return RecordIt->second;
}
static unsigned getMaxCounterID(const CounterMappingContext &Ctx,
const CoverageMappingRecord &Record) {
unsigned MaxCounterID = 0;
for (const auto &Region : Record.MappingRegions) {
MaxCounterID = std::max(MaxCounterID, Ctx.getMaxCounterID(Region.Count));
}
return MaxCounterID;
}
Error CoverageMapping::loadFunctionRecord(
const CoverageMappingRecord &Record,
IndexedInstrProfReader &ProfileReader) {
StringRef OrigFuncName = Record.FunctionName;
if (OrigFuncName.empty())
return make_error<CoverageMapError>(coveragemap_error::malformed);
if (Record.Filenames.empty())
OrigFuncName = getFuncNameWithoutPrefix(OrigFuncName);
else
OrigFuncName = getFuncNameWithoutPrefix(OrigFuncName, Record.Filenames[0]);
CounterMappingContext Ctx(Record.Expressions);
std::vector<uint64_t> Counts;
if (Error E = ProfileReader.getFunctionCounts(Record.FunctionName,
Record.FunctionHash, Counts)) {
instrprof_error IPE = InstrProfError::take(std::move(E));
if (IPE == instrprof_error::hash_mismatch) {
FuncHashMismatches.emplace_back(std::string(Record.FunctionName),
Record.FunctionHash);
return Error::success();
} else if (IPE != instrprof_error::unknown_function)
return make_error<InstrProfError>(IPE);
Counts.assign(getMaxCounterID(Ctx, Record) + 1, 0);
}
Ctx.setCounts(Counts);
assert(!Record.MappingRegions.empty() && "Function has no regions");
// This coverage record is a zero region for a function that's unused in
// some TU, but used in a different TU. Ignore it. The coverage maps from the
// the other TU will either be loaded (providing full region counts) or they
// won't (in which case we don't unintuitively report functions as uncovered
// when they have non-zero counts in the profile).
if (Record.MappingRegions.size() == 1 &&
Record.MappingRegions[0].Count.isZero() && Counts[0] > 0)
return Error::success();
FunctionRecord Function(OrigFuncName, Record.Filenames);
for (const auto &Region : Record.MappingRegions) {
Expected<int64_t> ExecutionCount = Ctx.evaluate(Region.Count);
if (auto E = ExecutionCount.takeError()) {
consumeError(std::move(E));
return Error::success();
}
Expected<int64_t> AltExecutionCount = Ctx.evaluate(Region.FalseCount);
if (auto E = AltExecutionCount.takeError()) {
consumeError(std::move(E));
return Error::success();
}
Function.pushRegion(Region, *ExecutionCount, *AltExecutionCount);
}
// Don't create records for (filenames, function) pairs we've already seen.
auto FilenamesHash = hash_combine_range(Record.Filenames.begin(),
Record.Filenames.end());
if (!RecordProvenance[FilenamesHash].insert(hash_value(OrigFuncName)).second)
return Error::success();
Functions.push_back(std::move(Function));
// Performance optimization: keep track of the indices of the function records
// which correspond to each filename. This can be used to substantially speed
// up queries for coverage info in a file.
unsigned RecordIndex = Functions.size() - 1;
for (StringRef Filename : Record.Filenames) {
auto &RecordIndices = FilenameHash2RecordIndices[hash_value(Filename)];
// Note that there may be duplicates in the filename set for a function
// record, because of e.g. macro expansions in the function in which both
// the macro and the function are defined in the same file.
if (RecordIndices.empty() || RecordIndices.back() != RecordIndex)
RecordIndices.push_back(RecordIndex);
}
return Error::success();
}
// This function is for memory optimization by shortening the lifetimes
// of CoverageMappingReader instances.
Error CoverageMapping::loadFromReaders(
ArrayRef<std::unique_ptr<CoverageMappingReader>> CoverageReaders,
IndexedInstrProfReader &ProfileReader, CoverageMapping &Coverage) {
for (const auto &CoverageReader : CoverageReaders) {
for (auto RecordOrErr : *CoverageReader) {
if (Error E = RecordOrErr.takeError())
return E;
const auto &Record = *RecordOrErr;
if (Error E = Coverage.loadFunctionRecord(Record, ProfileReader))
return E;
}
}
return Error::success();
}
Expected<std::unique_ptr<CoverageMapping>> CoverageMapping::load(
ArrayRef<std::unique_ptr<CoverageMappingReader>> CoverageReaders,
IndexedInstrProfReader &ProfileReader) {
auto Coverage = std::unique_ptr<CoverageMapping>(new CoverageMapping());
if (Error E = loadFromReaders(CoverageReaders, ProfileReader, *Coverage))
return std::move(E);
return std::move(Coverage);
}
// If E is a no_data_found error, returns success. Otherwise returns E.
static Error handleMaybeNoDataFoundError(Error E) {
return handleErrors(
std::move(E), [](const CoverageMapError &CME) {
if (CME.get() == coveragemap_error::no_data_found)
return static_cast<Error>(Error::success());
return make_error<CoverageMapError>(CME.get());
});
}
Expected<std::unique_ptr<CoverageMapping>>
CoverageMapping::load(ArrayRef<StringRef> ObjectFilenames,
StringRef ProfileFilename, ArrayRef<StringRef> Arches,
StringRef CompilationDir) {
auto ProfileReaderOrErr = IndexedInstrProfReader::create(ProfileFilename);
if (Error E = ProfileReaderOrErr.takeError())
return std::move(E);
auto ProfileReader = std::move(ProfileReaderOrErr.get());
auto Coverage = std::unique_ptr<CoverageMapping>(new CoverageMapping());
bool DataFound = false;
for (const auto &File : llvm::enumerate(ObjectFilenames)) {
auto CovMappingBufOrErr = MemoryBuffer::getFileOrSTDIN(
File.value(), /*IsText=*/false, /*RequiresNullTerminator=*/false);
if (std::error_code EC = CovMappingBufOrErr.getError())
return errorCodeToError(EC);
StringRef Arch = Arches.empty() ? StringRef() : Arches[File.index()];
MemoryBufferRef CovMappingBufRef =
CovMappingBufOrErr.get()->getMemBufferRef();
SmallVector<std::unique_ptr<MemoryBuffer>, 4> Buffers;
auto CoverageReadersOrErr = BinaryCoverageReader::create(
CovMappingBufRef, Arch, Buffers, CompilationDir);
if (Error E = CoverageReadersOrErr.takeError()) {
E = handleMaybeNoDataFoundError(std::move(E));
if (E)
return std::move(E);
// E == success (originally a no_data_found error).
continue;
}
SmallVector<std::unique_ptr<CoverageMappingReader>, 4> Readers;
for (auto &Reader : CoverageReadersOrErr.get())
Readers.push_back(std::move(Reader));
DataFound |= !Readers.empty();
if (Error E = loadFromReaders(Readers, *ProfileReader, *Coverage))
return std::move(E);
}
// If no readers were created, either no objects were provided or none of them
// had coverage data. Return an error in the latter case.
if (!DataFound && !ObjectFilenames.empty())
return make_error<CoverageMapError>(coveragemap_error::no_data_found);
return std::move(Coverage);
}
namespace {
/// Distributes functions into instantiation sets.
///
/// An instantiation set is a collection of functions that have the same source
/// code, ie, template functions specializations.
class FunctionInstantiationSetCollector {
using MapT = std::map<LineColPair, std::vector<const FunctionRecord *>>;
MapT InstantiatedFunctions;
public:
void insert(const FunctionRecord &Function, unsigned FileID) {
auto I = Function.CountedRegions.begin(), E = Function.CountedRegions.end();
while (I != E && I->FileID != FileID)
++I;
assert(I != E && "function does not cover the given file");
auto &Functions = InstantiatedFunctions[I->startLoc()];
Functions.push_back(&Function);
}
MapT::iterator begin() { return InstantiatedFunctions.begin(); }
MapT::iterator end() { return InstantiatedFunctions.end(); }
};
class SegmentBuilder {
std::vector<CoverageSegment> &Segments;
SmallVector<const CountedRegion *, 8> ActiveRegions;
SegmentBuilder(std::vector<CoverageSegment> &Segments) : Segments(Segments) {}
/// Emit a segment with the count from \p Region starting at \p StartLoc.
//
/// \p IsRegionEntry: The segment is at the start of a new non-gap region.
/// \p EmitSkippedRegion: The segment must be emitted as a skipped region.
void startSegment(const CountedRegion &Region, LineColPair StartLoc,
bool IsRegionEntry, bool EmitSkippedRegion = false) {
bool HasCount = !EmitSkippedRegion &&
(Region.Kind != CounterMappingRegion::SkippedRegion);
// If the new segment wouldn't affect coverage rendering, skip it.
if (!Segments.empty() && !IsRegionEntry && !EmitSkippedRegion) {
const auto &Last = Segments.back();
if (Last.HasCount == HasCount && Last.Count == Region.ExecutionCount &&
!Last.IsRegionEntry)
return;
}
if (HasCount)
Segments.emplace_back(StartLoc.first, StartLoc.second,
Region.ExecutionCount, IsRegionEntry,
Region.Kind == CounterMappingRegion::GapRegion);
else
Segments.emplace_back(StartLoc.first, StartLoc.second, IsRegionEntry);
LLVM_DEBUG({
const auto &Last = Segments.back();
dbgs() << "Segment at " << Last.Line << ":" << Last.Col
<< " (count = " << Last.Count << ")"
<< (Last.IsRegionEntry ? ", RegionEntry" : "")
<< (!Last.HasCount ? ", Skipped" : "")
<< (Last.IsGapRegion ? ", Gap" : "") << "\n";
});
}
/// Emit segments for active regions which end before \p Loc.
///
/// \p Loc: The start location of the next region. If None, all active
/// regions are completed.
/// \p FirstCompletedRegion: Index of the first completed region.
void completeRegionsUntil(Optional<LineColPair> Loc,
unsigned FirstCompletedRegion) {
// Sort the completed regions by end location. This makes it simple to
// emit closing segments in sorted order.
auto CompletedRegionsIt = ActiveRegions.begin() + FirstCompletedRegion;
std::stable_sort(CompletedRegionsIt, ActiveRegions.end(),
[](const CountedRegion *L, const CountedRegion *R) {
return L->endLoc() < R->endLoc();
});
// Emit segments for all completed regions.
for (unsigned I = FirstCompletedRegion + 1, E = ActiveRegions.size(); I < E;
++I) {
const auto *CompletedRegion = ActiveRegions[I];
assert((!Loc || CompletedRegion->endLoc() <= *Loc) &&
"Completed region ends after start of new region");
const auto *PrevCompletedRegion = ActiveRegions[I - 1];
auto CompletedSegmentLoc = PrevCompletedRegion->endLoc();
// Don't emit any more segments if they start where the new region begins.
if (Loc && CompletedSegmentLoc == *Loc)
break;
// Don't emit a segment if the next completed region ends at the same
// location as this one.
if (CompletedSegmentLoc == CompletedRegion->endLoc())
continue;
// Use the count from the last completed region which ends at this loc.
for (unsigned J = I + 1; J < E; ++J)
if (CompletedRegion->endLoc() == ActiveRegions[J]->endLoc())
CompletedRegion = ActiveRegions[J];
startSegment(*CompletedRegion, CompletedSegmentLoc, false);
}
auto Last = ActiveRegions.back();
if (FirstCompletedRegion && Last->endLoc() != *Loc) {
// If there's a gap after the end of the last completed region and the
// start of the new region, use the last active region to fill the gap.
startSegment(*ActiveRegions[FirstCompletedRegion - 1], Last->endLoc(),
false);
} else if (!FirstCompletedRegion && (!Loc || *Loc != Last->endLoc())) {
// Emit a skipped segment if there are no more active regions. This
// ensures that gaps between functions are marked correctly.
startSegment(*Last, Last->endLoc(), false, true);
}
// Pop the completed regions.
ActiveRegions.erase(CompletedRegionsIt, ActiveRegions.end());
}
void buildSegmentsImpl(ArrayRef<CountedRegion> Regions) {
for (const auto &CR : enumerate(Regions)) {
auto CurStartLoc = CR.value().startLoc();
// Active regions which end before the current region need to be popped.
auto CompletedRegions =
std::stable_partition(ActiveRegions.begin(), ActiveRegions.end(),
[&](const CountedRegion *Region) {
return !(Region->endLoc() <= CurStartLoc);
});
if (CompletedRegions != ActiveRegions.end()) {
unsigned FirstCompletedRegion =
std::distance(ActiveRegions.begin(), CompletedRegions);
completeRegionsUntil(CurStartLoc, FirstCompletedRegion);
}
bool GapRegion = CR.value().Kind == CounterMappingRegion::GapRegion;
// Try to emit a segment for the current region.
if (CurStartLoc == CR.value().endLoc()) {
// Avoid making zero-length regions active. If it's the last region,
// emit a skipped segment. Otherwise use its predecessor's count.
const bool Skipped =
(CR.index() + 1) == Regions.size() ||
CR.value().Kind == CounterMappingRegion::SkippedRegion;
startSegment(ActiveRegions.empty() ? CR.value() : *ActiveRegions.back(),
CurStartLoc, !GapRegion, Skipped);
// If it is skipped segment, create a segment with last pushed
// regions's count at CurStartLoc.
if (Skipped && !ActiveRegions.empty())
startSegment(*ActiveRegions.back(), CurStartLoc, false);
continue;
}
if (CR.index() + 1 == Regions.size() ||
CurStartLoc != Regions[CR.index() + 1].startLoc()) {
// Emit a segment if the next region doesn't start at the same location
// as this one.
startSegment(CR.value(), CurStartLoc, !GapRegion);
}
// This region is active (i.e not completed).
ActiveRegions.push_back(&CR.value());
}
// Complete any remaining active regions.
if (!ActiveRegions.empty())
completeRegionsUntil(None, 0);
}
/// Sort a nested sequence of regions from a single file.
static void sortNestedRegions(MutableArrayRef<CountedRegion> Regions) {
llvm::sort(Regions, [](const CountedRegion &LHS, const CountedRegion &RHS) {
if (LHS.startLoc() != RHS.startLoc())
return LHS.startLoc() < RHS.startLoc();
if (LHS.endLoc() != RHS.endLoc())
// When LHS completely contains RHS, we sort LHS first.
return RHS.endLoc() < LHS.endLoc();
// If LHS and RHS cover the same area, we need to sort them according
// to their kinds so that the most suitable region will become "active"
// in combineRegions(). Because we accumulate counter values only from
// regions of the same kind as the first region of the area, prefer
// CodeRegion to ExpansionRegion and ExpansionRegion to SkippedRegion.
static_assert(CounterMappingRegion::CodeRegion <
CounterMappingRegion::ExpansionRegion &&
CounterMappingRegion::ExpansionRegion <
CounterMappingRegion::SkippedRegion,
"Unexpected order of region kind values");
return LHS.Kind < RHS.Kind;
});
}
/// Combine counts of regions which cover the same area.
static ArrayRef<CountedRegion>
combineRegions(MutableArrayRef<CountedRegion> Regions) {
if (Regions.empty())
return Regions;
auto Active = Regions.begin();
auto End = Regions.end();
for (auto I = Regions.begin() + 1; I != End; ++I) {
if (Active->startLoc() != I->startLoc() ||
Active->endLoc() != I->endLoc()) {
// Shift to the next region.
++Active;
if (Active != I)
*Active = *I;
continue;
}
// Merge duplicate region.
// If CodeRegions and ExpansionRegions cover the same area, it's probably
// a macro which is fully expanded to another macro. In that case, we need
// to accumulate counts only from CodeRegions, or else the area will be
// counted twice.
// On the other hand, a macro may have a nested macro in its body. If the
// outer macro is used several times, the ExpansionRegion for the nested
// macro will also be added several times. These ExpansionRegions cover
// the same source locations and have to be combined to reach the correct
// value for that area.
// We add counts of the regions of the same kind as the active region
// to handle the both situations.
if (I->Kind == Active->Kind)
Active->ExecutionCount += I->ExecutionCount;
}
return Regions.drop_back(std::distance(++Active, End));
}
public:
/// Build a sorted list of CoverageSegments from a list of Regions.
static std::vector<CoverageSegment>
buildSegments(MutableArrayRef<CountedRegion> Regions) {
std::vector<CoverageSegment> Segments;
SegmentBuilder Builder(Segments);
sortNestedRegions(Regions);
ArrayRef<CountedRegion> CombinedRegions = combineRegions(Regions);
LLVM_DEBUG({
dbgs() << "Combined regions:\n";
for (const auto &CR : CombinedRegions)
dbgs() << " " << CR.LineStart << ":" << CR.ColumnStart << " -> "
<< CR.LineEnd << ":" << CR.ColumnEnd
<< " (count=" << CR.ExecutionCount << ")\n";
});
Builder.buildSegmentsImpl(CombinedRegions);
#ifndef NDEBUG
for (unsigned I = 1, E = Segments.size(); I < E; ++I) {
const auto &L = Segments[I - 1];
const auto &R = Segments[I];
if (!(L.Line < R.Line) && !(L.Line == R.Line && L.Col < R.Col)) {
if (L.Line == R.Line && L.Col == R.Col && !L.HasCount)
continue;
LLVM_DEBUG(dbgs() << " ! Segment " << L.Line << ":" << L.Col
<< " followed by " << R.Line << ":" << R.Col << "\n");
assert(false && "Coverage segments not unique or sorted");
}
}
#endif
return Segments;
}
};
} // end anonymous namespace
std::vector<StringRef> CoverageMapping::getUniqueSourceFiles() const {
std::vector<StringRef> Filenames;
for (const auto &Function : getCoveredFunctions())
llvm::append_range(Filenames, Function.Filenames);
llvm::sort(Filenames);
auto Last = std::unique(Filenames.begin(), Filenames.end());
Filenames.erase(Last, Filenames.end());
return Filenames;
}
static SmallBitVector gatherFileIDs(StringRef SourceFile,
const FunctionRecord &Function) {
SmallBitVector FilenameEquivalence(Function.Filenames.size(), false);
for (unsigned I = 0, E = Function.Filenames.size(); I < E; ++I)
if (SourceFile == Function.Filenames[I])
FilenameEquivalence[I] = true;
return FilenameEquivalence;
}
/// Return the ID of the file where the definition of the function is located.
static Optional<unsigned> findMainViewFileID(const FunctionRecord &Function) {
SmallBitVector IsNotExpandedFile(Function.Filenames.size(), true);
for (const auto &CR : Function.CountedRegions)
if (CR.Kind == CounterMappingRegion::ExpansionRegion)
IsNotExpandedFile[CR.ExpandedFileID] = false;
int I = IsNotExpandedFile.find_first();
if (I == -1)
return None;
return I;
}
/// Check if SourceFile is the file that contains the definition of
/// the Function. Return the ID of the file in that case or None otherwise.
static Optional<unsigned> findMainViewFileID(StringRef SourceFile,
const FunctionRecord &Function) {
Optional<unsigned> I = findMainViewFileID(Function);
if (I && SourceFile == Function.Filenames[*I])
return I;
return None;
}
static bool isExpansion(const CountedRegion &R, unsigned FileID) {
return R.Kind == CounterMappingRegion::ExpansionRegion && R.FileID == FileID;
}
CoverageData CoverageMapping::getCoverageForFile(StringRef Filename) const {
CoverageData FileCoverage(Filename);
std::vector<CountedRegion> Regions;
// Look up the function records in the given file. Due to hash collisions on
// the filename, we may get back some records that are not in the file.
ArrayRef<unsigned> RecordIndices =
getImpreciseRecordIndicesForFilename(Filename);
for (unsigned RecordIndex : RecordIndices) {
const FunctionRecord &Function = Functions[RecordIndex];
auto MainFileID = findMainViewFileID(Filename, Function);
auto FileIDs = gatherFileIDs(Filename, Function);
for (const auto &CR : Function.CountedRegions)
if (FileIDs.test(CR.FileID)) {
Regions.push_back(CR);
if (MainFileID && isExpansion(CR, *MainFileID))
FileCoverage.Expansions.emplace_back(CR, Function);
}
// Capture branch regions specific to the function (excluding expansions).
for (const auto &CR : Function.CountedBranchRegions)
if (FileIDs.test(CR.FileID) && (CR.FileID == CR.ExpandedFileID))
FileCoverage.BranchRegions.push_back(CR);
}
LLVM_DEBUG(dbgs() << "Emitting segments for file: " << Filename << "\n");
FileCoverage.Segments = SegmentBuilder::buildSegments(Regions);
return FileCoverage;
}
std::vector<InstantiationGroup>
CoverageMapping::getInstantiationGroups(StringRef Filename) const {
FunctionInstantiationSetCollector InstantiationSetCollector;
// Look up the function records in the given file. Due to hash collisions on
// the filename, we may get back some records that are not in the file.
ArrayRef<unsigned> RecordIndices =
getImpreciseRecordIndicesForFilename(Filename);
for (unsigned RecordIndex : RecordIndices) {
const FunctionRecord &Function = Functions[RecordIndex];
auto MainFileID = findMainViewFileID(Filename, Function);
if (!MainFileID)
continue;
InstantiationSetCollector.insert(Function, *MainFileID);
}
std::vector<InstantiationGroup> Result;
for (auto &InstantiationSet : InstantiationSetCollector) {
InstantiationGroup IG{InstantiationSet.first.first,
InstantiationSet.first.second,
std::move(InstantiationSet.second)};
Result.emplace_back(std::move(IG));
}
return Result;
}
CoverageData
CoverageMapping::getCoverageForFunction(const FunctionRecord &Function) const {
auto MainFileID = findMainViewFileID(Function);
if (!MainFileID)
return CoverageData();
CoverageData FunctionCoverage(Function.Filenames[*MainFileID]);
std::vector<CountedRegion> Regions;
for (const auto &CR : Function.CountedRegions)
if (CR.FileID == *MainFileID) {
Regions.push_back(CR);
if (isExpansion(CR, *MainFileID))
FunctionCoverage.Expansions.emplace_back(CR, Function);
}
// Capture branch regions specific to the function (excluding expansions).
for (const auto &CR : Function.CountedBranchRegions)
if (CR.FileID == *MainFileID)
FunctionCoverage.BranchRegions.push_back(CR);
LLVM_DEBUG(dbgs() << "Emitting segments for function: " << Function.Name
<< "\n");
FunctionCoverage.Segments = SegmentBuilder::buildSegments(Regions);
return FunctionCoverage;
}
CoverageData CoverageMapping::getCoverageForExpansion(
const ExpansionRecord &Expansion) const {
CoverageData ExpansionCoverage(
Expansion.Function.Filenames[Expansion.FileID]);
std::vector<CountedRegion> Regions;
for (const auto &CR : Expansion.Function.CountedRegions)
if (CR.FileID == Expansion.FileID) {
Regions.push_back(CR);
if (isExpansion(CR, Expansion.FileID))
ExpansionCoverage.Expansions.emplace_back(CR, Expansion.Function);
}
for (const auto &CR : Expansion.Function.CountedBranchRegions)
// Capture branch regions that only pertain to the corresponding expansion.
if (CR.FileID == Expansion.FileID)
ExpansionCoverage.BranchRegions.push_back(CR);
LLVM_DEBUG(dbgs() << "Emitting segments for expansion of file "
<< Expansion.FileID << "\n");
ExpansionCoverage.Segments = SegmentBuilder::buildSegments(Regions);
return ExpansionCoverage;
}
LineCoverageStats::LineCoverageStats(
ArrayRef<const CoverageSegment *> LineSegments,
const CoverageSegment *WrappedSegment, unsigned Line)
: ExecutionCount(0), HasMultipleRegions(false), Mapped(false), Line(Line),
LineSegments(LineSegments), WrappedSegment(WrappedSegment) {
// Find the minimum number of regions which start in this line.
unsigned MinRegionCount = 0;
auto isStartOfRegion = [](const CoverageSegment *S) {
return !S->IsGapRegion && S->HasCount && S->IsRegionEntry;
};
for (unsigned I = 0; I < LineSegments.size() && MinRegionCount < 2; ++I)
if (isStartOfRegion(LineSegments[I]))
++MinRegionCount;
bool StartOfSkippedRegion = !LineSegments.empty() &&
!LineSegments.front()->HasCount &&
LineSegments.front()->IsRegionEntry;
HasMultipleRegions = MinRegionCount > 1;
Mapped =
!StartOfSkippedRegion &&
((WrappedSegment && WrappedSegment->HasCount) || (MinRegionCount > 0));
if (!Mapped)
return;
// Pick the max count from the non-gap, region entry segments and the
// wrapped count.
if (WrappedSegment)
ExecutionCount = WrappedSegment->Count;
if (!MinRegionCount)
return;
for (const auto *LS : LineSegments)
if (isStartOfRegion(LS))
ExecutionCount = std::max(ExecutionCount, LS->Count);
}
LineCoverageIterator &LineCoverageIterator::operator++() {
if (Next == CD.end()) {
Stats = LineCoverageStats();
Ended = true;
return *this;
}
if (Segments.size())
WrappedSegment = Segments.back();
Segments.clear();
while (Next != CD.end() && Next->Line == Line)
Segments.push_back(&*Next++);
Stats = LineCoverageStats(Segments, WrappedSegment, Line);
++Line;
return *this;
}
static std::string getCoverageMapErrString(coveragemap_error Err) {
switch (Err) {
case coveragemap_error::success:
return "Success";
case coveragemap_error::eof:
return "End of File";
case coveragemap_error::no_data_found:
return "No coverage data found";
case coveragemap_error::unsupported_version:
return "Unsupported coverage format version";
case coveragemap_error::truncated:
return "Truncated coverage data";
case coveragemap_error::malformed:
return "Malformed coverage data";
case coveragemap_error::decompression_failed:
return "Failed to decompress coverage data (zlib)";
case coveragemap_error::invalid_or_missing_arch_specifier:
return "`-arch` specifier is invalid or missing for universal binary";
}
llvm_unreachable("A value of coveragemap_error has no message.");
}
namespace {
// FIXME: This class is only here to support the transition to llvm::Error. It
// will be removed once this transition is complete. Clients should prefer to
// deal with the Error value directly, rather than converting to error_code.
class CoverageMappingErrorCategoryType : public std::error_category {
const char *name() const noexcept override { return "llvm.coveragemap"; }
std::string message(int IE) const override {
return getCoverageMapErrString(static_cast<coveragemap_error>(IE));
}
};
} // end anonymous namespace
std::string CoverageMapError::message() const {
return getCoverageMapErrString(Err);
}
static ManagedStatic<CoverageMappingErrorCategoryType> ErrorCategory;
const std::error_category &llvm::coverage::coveragemap_category() {
return *ErrorCategory;
}
char CoverageMapError::ID = 0;