1
0
mirror of https://github.com/RPCS3/llvm-mirror.git synced 2024-11-25 04:02:41 +01:00
llvm-mirror/lib/Target/AArch64/AArch64ISelDAGToDAG.cpp
Paul Walker 6d505ef4dd [SVE] Use reg+reg addressing mode for immediate offsets.
For reg+imm SVE addressing mode imm is implictly scaled by VL,
making them impractical for truely immediate offsets.  However, if
the offset can be unscaled based on the storage element type we
can use the reg+reg SVE addressing mode and thus either reduce the
number of generate add instructions or replace them with a mov
instruction that can be hoisted from the hot code path.

Differential Revision: https://reviews.llvm.org/D106744
2021-07-26 16:24:16 +01:00

5076 lines
185 KiB
C++

//===-- AArch64ISelDAGToDAG.cpp - A dag to dag inst selector for AArch64 --===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file defines an instruction selector for the AArch64 target.
//
//===----------------------------------------------------------------------===//
#include "AArch64MachineFunctionInfo.h"
#include "AArch64TargetMachine.h"
#include "MCTargetDesc/AArch64AddressingModes.h"
#include "llvm/ADT/APSInt.h"
#include "llvm/CodeGen/SelectionDAGISel.h"
#include "llvm/IR/Function.h" // To access function attributes.
#include "llvm/IR/GlobalValue.h"
#include "llvm/IR/Intrinsics.h"
#include "llvm/IR/IntrinsicsAArch64.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/KnownBits.h"
#include "llvm/Support/MathExtras.h"
#include "llvm/Support/raw_ostream.h"
using namespace llvm;
#define DEBUG_TYPE "aarch64-isel"
//===--------------------------------------------------------------------===//
/// AArch64DAGToDAGISel - AArch64 specific code to select AArch64 machine
/// instructions for SelectionDAG operations.
///
namespace {
class AArch64DAGToDAGISel : public SelectionDAGISel {
/// Subtarget - Keep a pointer to the AArch64Subtarget around so that we can
/// make the right decision when generating code for different targets.
const AArch64Subtarget *Subtarget;
public:
explicit AArch64DAGToDAGISel(AArch64TargetMachine &tm,
CodeGenOpt::Level OptLevel)
: SelectionDAGISel(tm, OptLevel), Subtarget(nullptr) {}
StringRef getPassName() const override {
return "AArch64 Instruction Selection";
}
bool runOnMachineFunction(MachineFunction &MF) override {
Subtarget = &MF.getSubtarget<AArch64Subtarget>();
return SelectionDAGISel::runOnMachineFunction(MF);
}
void Select(SDNode *Node) override;
/// SelectInlineAsmMemoryOperand - Implement addressing mode selection for
/// inline asm expressions.
bool SelectInlineAsmMemoryOperand(const SDValue &Op,
unsigned ConstraintID,
std::vector<SDValue> &OutOps) override;
template <signed Low, signed High, signed Scale>
bool SelectRDVLImm(SDValue N, SDValue &Imm);
bool tryMLAV64LaneV128(SDNode *N);
bool tryMULLV64LaneV128(unsigned IntNo, SDNode *N);
bool SelectArithExtendedRegister(SDValue N, SDValue &Reg, SDValue &Shift);
bool SelectArithImmed(SDValue N, SDValue &Val, SDValue &Shift);
bool SelectNegArithImmed(SDValue N, SDValue &Val, SDValue &Shift);
bool SelectArithShiftedRegister(SDValue N, SDValue &Reg, SDValue &Shift) {
return SelectShiftedRegister(N, false, Reg, Shift);
}
bool SelectLogicalShiftedRegister(SDValue N, SDValue &Reg, SDValue &Shift) {
return SelectShiftedRegister(N, true, Reg, Shift);
}
bool SelectAddrModeIndexed7S8(SDValue N, SDValue &Base, SDValue &OffImm) {
return SelectAddrModeIndexed7S(N, 1, Base, OffImm);
}
bool SelectAddrModeIndexed7S16(SDValue N, SDValue &Base, SDValue &OffImm) {
return SelectAddrModeIndexed7S(N, 2, Base, OffImm);
}
bool SelectAddrModeIndexed7S32(SDValue N, SDValue &Base, SDValue &OffImm) {
return SelectAddrModeIndexed7S(N, 4, Base, OffImm);
}
bool SelectAddrModeIndexed7S64(SDValue N, SDValue &Base, SDValue &OffImm) {
return SelectAddrModeIndexed7S(N, 8, Base, OffImm);
}
bool SelectAddrModeIndexed7S128(SDValue N, SDValue &Base, SDValue &OffImm) {
return SelectAddrModeIndexed7S(N, 16, Base, OffImm);
}
bool SelectAddrModeIndexedS9S128(SDValue N, SDValue &Base, SDValue &OffImm) {
return SelectAddrModeIndexedBitWidth(N, true, 9, 16, Base, OffImm);
}
bool SelectAddrModeIndexedU6S128(SDValue N, SDValue &Base, SDValue &OffImm) {
return SelectAddrModeIndexedBitWidth(N, false, 6, 16, Base, OffImm);
}
bool SelectAddrModeIndexed8(SDValue N, SDValue &Base, SDValue &OffImm) {
return SelectAddrModeIndexed(N, 1, Base, OffImm);
}
bool SelectAddrModeIndexed16(SDValue N, SDValue &Base, SDValue &OffImm) {
return SelectAddrModeIndexed(N, 2, Base, OffImm);
}
bool SelectAddrModeIndexed32(SDValue N, SDValue &Base, SDValue &OffImm) {
return SelectAddrModeIndexed(N, 4, Base, OffImm);
}
bool SelectAddrModeIndexed64(SDValue N, SDValue &Base, SDValue &OffImm) {
return SelectAddrModeIndexed(N, 8, Base, OffImm);
}
bool SelectAddrModeIndexed128(SDValue N, SDValue &Base, SDValue &OffImm) {
return SelectAddrModeIndexed(N, 16, Base, OffImm);
}
bool SelectAddrModeUnscaled8(SDValue N, SDValue &Base, SDValue &OffImm) {
return SelectAddrModeUnscaled(N, 1, Base, OffImm);
}
bool SelectAddrModeUnscaled16(SDValue N, SDValue &Base, SDValue &OffImm) {
return SelectAddrModeUnscaled(N, 2, Base, OffImm);
}
bool SelectAddrModeUnscaled32(SDValue N, SDValue &Base, SDValue &OffImm) {
return SelectAddrModeUnscaled(N, 4, Base, OffImm);
}
bool SelectAddrModeUnscaled64(SDValue N, SDValue &Base, SDValue &OffImm) {
return SelectAddrModeUnscaled(N, 8, Base, OffImm);
}
bool SelectAddrModeUnscaled128(SDValue N, SDValue &Base, SDValue &OffImm) {
return SelectAddrModeUnscaled(N, 16, Base, OffImm);
}
template <unsigned Size, unsigned Max>
bool SelectAddrModeIndexedUImm(SDValue N, SDValue &Base, SDValue &OffImm) {
// Test if there is an appropriate addressing mode and check if the
// immediate fits.
bool Found = SelectAddrModeIndexed(N, Size, Base, OffImm);
if (Found) {
if (auto *CI = dyn_cast<ConstantSDNode>(OffImm)) {
int64_t C = CI->getSExtValue();
if (C <= Max)
return true;
}
}
// Otherwise, base only, materialize address in register.
Base = N;
OffImm = CurDAG->getTargetConstant(0, SDLoc(N), MVT::i64);
return true;
}
template<int Width>
bool SelectAddrModeWRO(SDValue N, SDValue &Base, SDValue &Offset,
SDValue &SignExtend, SDValue &DoShift) {
return SelectAddrModeWRO(N, Width / 8, Base, Offset, SignExtend, DoShift);
}
template<int Width>
bool SelectAddrModeXRO(SDValue N, SDValue &Base, SDValue &Offset,
SDValue &SignExtend, SDValue &DoShift) {
return SelectAddrModeXRO(N, Width / 8, Base, Offset, SignExtend, DoShift);
}
bool SelectDupZeroOrUndef(SDValue N) {
switch(N->getOpcode()) {
case ISD::UNDEF:
return true;
case AArch64ISD::DUP:
case ISD::SPLAT_VECTOR: {
auto Opnd0 = N->getOperand(0);
if (auto CN = dyn_cast<ConstantSDNode>(Opnd0))
if (CN->isNullValue())
return true;
if (auto CN = dyn_cast<ConstantFPSDNode>(Opnd0))
if (CN->isZero())
return true;
break;
}
default:
break;
}
return false;
}
bool SelectDupZero(SDValue N) {
switch(N->getOpcode()) {
case AArch64ISD::DUP:
case ISD::SPLAT_VECTOR: {
auto Opnd0 = N->getOperand(0);
if (auto CN = dyn_cast<ConstantSDNode>(Opnd0))
if (CN->isNullValue())
return true;
if (auto CN = dyn_cast<ConstantFPSDNode>(Opnd0))
if (CN->isZero())
return true;
break;
}
}
return false;
}
template<MVT::SimpleValueType VT>
bool SelectSVEAddSubImm(SDValue N, SDValue &Imm, SDValue &Shift) {
return SelectSVEAddSubImm(N, VT, Imm, Shift);
}
template <MVT::SimpleValueType VT, bool Invert = false>
bool SelectSVELogicalImm(SDValue N, SDValue &Imm) {
return SelectSVELogicalImm(N, VT, Imm, Invert);
}
template <MVT::SimpleValueType VT>
bool SelectSVEArithImm(SDValue N, SDValue &Imm) {
return SelectSVEArithImm(N, VT, Imm);
}
template <unsigned Low, unsigned High, bool AllowSaturation = false>
bool SelectSVEShiftImm(SDValue N, SDValue &Imm) {
return SelectSVEShiftImm(N, Low, High, AllowSaturation, Imm);
}
// Returns a suitable CNT/INC/DEC/RDVL multiplier to calculate VSCALE*N.
template<signed Min, signed Max, signed Scale, bool Shift>
bool SelectCntImm(SDValue N, SDValue &Imm) {
if (!isa<ConstantSDNode>(N))
return false;
int64_t MulImm = cast<ConstantSDNode>(N)->getSExtValue();
if (Shift)
MulImm = 1LL << MulImm;
if ((MulImm % std::abs(Scale)) != 0)
return false;
MulImm /= Scale;
if ((MulImm >= Min) && (MulImm <= Max)) {
Imm = CurDAG->getTargetConstant(MulImm, SDLoc(N), MVT::i32);
return true;
}
return false;
}
template <signed Max, signed Scale>
bool SelectEXTImm(SDValue N, SDValue &Imm) {
if (!isa<ConstantSDNode>(N))
return false;
int64_t MulImm = cast<ConstantSDNode>(N)->getSExtValue();
if (MulImm >= 0 && MulImm <= Max) {
MulImm *= Scale;
Imm = CurDAG->getTargetConstant(MulImm, SDLoc(N), MVT::i32);
return true;
}
return false;
}
/// Form sequences of consecutive 64/128-bit registers for use in NEON
/// instructions making use of a vector-list (e.g. ldN, tbl). Vecs must have
/// between 1 and 4 elements. If it contains a single element that is returned
/// unchanged; otherwise a REG_SEQUENCE value is returned.
SDValue createDTuple(ArrayRef<SDValue> Vecs);
SDValue createQTuple(ArrayRef<SDValue> Vecs);
// Form a sequence of SVE registers for instructions using list of vectors,
// e.g. structured loads and stores (ldN, stN).
SDValue createZTuple(ArrayRef<SDValue> Vecs);
/// Generic helper for the createDTuple/createQTuple
/// functions. Those should almost always be called instead.
SDValue createTuple(ArrayRef<SDValue> Vecs, const unsigned RegClassIDs[],
const unsigned SubRegs[]);
void SelectTable(SDNode *N, unsigned NumVecs, unsigned Opc, bool isExt);
bool tryIndexedLoad(SDNode *N);
bool trySelectStackSlotTagP(SDNode *N);
void SelectTagP(SDNode *N);
void SelectLoad(SDNode *N, unsigned NumVecs, unsigned Opc,
unsigned SubRegIdx);
void SelectPostLoad(SDNode *N, unsigned NumVecs, unsigned Opc,
unsigned SubRegIdx);
void SelectLoadLane(SDNode *N, unsigned NumVecs, unsigned Opc);
void SelectPostLoadLane(SDNode *N, unsigned NumVecs, unsigned Opc);
void SelectPredicatedLoad(SDNode *N, unsigned NumVecs, unsigned Scale,
unsigned Opc_rr, unsigned Opc_ri);
bool SelectAddrModeFrameIndexSVE(SDValue N, SDValue &Base, SDValue &OffImm);
/// SVE Reg+Imm addressing mode.
template <int64_t Min, int64_t Max>
bool SelectAddrModeIndexedSVE(SDNode *Root, SDValue N, SDValue &Base,
SDValue &OffImm);
/// SVE Reg+Reg address mode.
template <unsigned Scale>
bool SelectSVERegRegAddrMode(SDValue N, SDValue &Base, SDValue &Offset) {
return SelectSVERegRegAddrMode(N, Scale, Base, Offset);
}
void SelectStore(SDNode *N, unsigned NumVecs, unsigned Opc);
void SelectPostStore(SDNode *N, unsigned NumVecs, unsigned Opc);
void SelectStoreLane(SDNode *N, unsigned NumVecs, unsigned Opc);
void SelectPostStoreLane(SDNode *N, unsigned NumVecs, unsigned Opc);
void SelectPredicatedStore(SDNode *N, unsigned NumVecs, unsigned Scale,
unsigned Opc_rr, unsigned Opc_ri);
std::tuple<unsigned, SDValue, SDValue>
findAddrModeSVELoadStore(SDNode *N, unsigned Opc_rr, unsigned Opc_ri,
const SDValue &OldBase, const SDValue &OldOffset,
unsigned Scale);
bool tryBitfieldExtractOp(SDNode *N);
bool tryBitfieldExtractOpFromSExt(SDNode *N);
bool tryBitfieldInsertOp(SDNode *N);
bool tryBitfieldInsertInZeroOp(SDNode *N);
bool tryShiftAmountMod(SDNode *N);
bool tryHighFPExt(SDNode *N);
bool tryReadRegister(SDNode *N);
bool tryWriteRegister(SDNode *N);
// Include the pieces autogenerated from the target description.
#include "AArch64GenDAGISel.inc"
private:
bool SelectShiftedRegister(SDValue N, bool AllowROR, SDValue &Reg,
SDValue &Shift);
bool SelectAddrModeIndexed7S(SDValue N, unsigned Size, SDValue &Base,
SDValue &OffImm) {
return SelectAddrModeIndexedBitWidth(N, true, 7, Size, Base, OffImm);
}
bool SelectAddrModeIndexedBitWidth(SDValue N, bool IsSignedImm, unsigned BW,
unsigned Size, SDValue &Base,
SDValue &OffImm);
bool SelectAddrModeIndexed(SDValue N, unsigned Size, SDValue &Base,
SDValue &OffImm);
bool SelectAddrModeUnscaled(SDValue N, unsigned Size, SDValue &Base,
SDValue &OffImm);
bool SelectAddrModeWRO(SDValue N, unsigned Size, SDValue &Base,
SDValue &Offset, SDValue &SignExtend,
SDValue &DoShift);
bool SelectAddrModeXRO(SDValue N, unsigned Size, SDValue &Base,
SDValue &Offset, SDValue &SignExtend,
SDValue &DoShift);
bool isWorthFolding(SDValue V) const;
bool SelectExtendedSHL(SDValue N, unsigned Size, bool WantExtend,
SDValue &Offset, SDValue &SignExtend);
template<unsigned RegWidth>
bool SelectCVTFixedPosOperand(SDValue N, SDValue &FixedPos) {
return SelectCVTFixedPosOperand(N, FixedPos, RegWidth);
}
bool SelectCVTFixedPosOperand(SDValue N, SDValue &FixedPos, unsigned Width);
bool SelectCMP_SWAP(SDNode *N);
bool SelectSVE8BitLslImm(SDValue N, SDValue &Imm, SDValue &Shift);
bool SelectSVEAddSubImm(SDValue N, MVT VT, SDValue &Imm, SDValue &Shift);
bool SelectSVELogicalImm(SDValue N, MVT VT, SDValue &Imm, bool Invert);
bool SelectSVESignedArithImm(SDValue N, SDValue &Imm);
bool SelectSVEShiftImm(SDValue N, uint64_t Low, uint64_t High,
bool AllowSaturation, SDValue &Imm);
bool SelectSVEArithImm(SDValue N, MVT VT, SDValue &Imm);
bool SelectSVERegRegAddrMode(SDValue N, unsigned Scale, SDValue &Base,
SDValue &Offset);
bool SelectAllActivePredicate(SDValue N);
};
} // end anonymous namespace
/// isIntImmediate - This method tests to see if the node is a constant
/// operand. If so Imm will receive the 32-bit value.
static bool isIntImmediate(const SDNode *N, uint64_t &Imm) {
if (const ConstantSDNode *C = dyn_cast<const ConstantSDNode>(N)) {
Imm = C->getZExtValue();
return true;
}
return false;
}
// isIntImmediate - This method tests to see if a constant operand.
// If so Imm will receive the value.
static bool isIntImmediate(SDValue N, uint64_t &Imm) {
return isIntImmediate(N.getNode(), Imm);
}
// isOpcWithIntImmediate - This method tests to see if the node is a specific
// opcode and that it has a immediate integer right operand.
// If so Imm will receive the 32 bit value.
static bool isOpcWithIntImmediate(const SDNode *N, unsigned Opc,
uint64_t &Imm) {
return N->getOpcode() == Opc &&
isIntImmediate(N->getOperand(1).getNode(), Imm);
}
bool AArch64DAGToDAGISel::SelectInlineAsmMemoryOperand(
const SDValue &Op, unsigned ConstraintID, std::vector<SDValue> &OutOps) {
switch(ConstraintID) {
default:
llvm_unreachable("Unexpected asm memory constraint");
case InlineAsm::Constraint_m:
case InlineAsm::Constraint_o:
case InlineAsm::Constraint_Q:
// We need to make sure that this one operand does not end up in XZR, thus
// require the address to be in a PointerRegClass register.
const TargetRegisterInfo *TRI = Subtarget->getRegisterInfo();
const TargetRegisterClass *TRC = TRI->getPointerRegClass(*MF);
SDLoc dl(Op);
SDValue RC = CurDAG->getTargetConstant(TRC->getID(), dl, MVT::i64);
SDValue NewOp =
SDValue(CurDAG->getMachineNode(TargetOpcode::COPY_TO_REGCLASS,
dl, Op.getValueType(),
Op, RC), 0);
OutOps.push_back(NewOp);
return false;
}
return true;
}
/// SelectArithImmed - Select an immediate value that can be represented as
/// a 12-bit value shifted left by either 0 or 12. If so, return true with
/// Val set to the 12-bit value and Shift set to the shifter operand.
bool AArch64DAGToDAGISel::SelectArithImmed(SDValue N, SDValue &Val,
SDValue &Shift) {
// This function is called from the addsub_shifted_imm ComplexPattern,
// which lists [imm] as the list of opcode it's interested in, however
// we still need to check whether the operand is actually an immediate
// here because the ComplexPattern opcode list is only used in
// root-level opcode matching.
if (!isa<ConstantSDNode>(N.getNode()))
return false;
uint64_t Immed = cast<ConstantSDNode>(N.getNode())->getZExtValue();
unsigned ShiftAmt;
if (Immed >> 12 == 0) {
ShiftAmt = 0;
} else if ((Immed & 0xfff) == 0 && Immed >> 24 == 0) {
ShiftAmt = 12;
Immed = Immed >> 12;
} else
return false;
unsigned ShVal = AArch64_AM::getShifterImm(AArch64_AM::LSL, ShiftAmt);
SDLoc dl(N);
Val = CurDAG->getTargetConstant(Immed, dl, MVT::i32);
Shift = CurDAG->getTargetConstant(ShVal, dl, MVT::i32);
return true;
}
/// SelectNegArithImmed - As above, but negates the value before trying to
/// select it.
bool AArch64DAGToDAGISel::SelectNegArithImmed(SDValue N, SDValue &Val,
SDValue &Shift) {
// This function is called from the addsub_shifted_imm ComplexPattern,
// which lists [imm] as the list of opcode it's interested in, however
// we still need to check whether the operand is actually an immediate
// here because the ComplexPattern opcode list is only used in
// root-level opcode matching.
if (!isa<ConstantSDNode>(N.getNode()))
return false;
// The immediate operand must be a 24-bit zero-extended immediate.
uint64_t Immed = cast<ConstantSDNode>(N.getNode())->getZExtValue();
// This negation is almost always valid, but "cmp wN, #0" and "cmn wN, #0"
// have the opposite effect on the C flag, so this pattern mustn't match under
// those circumstances.
if (Immed == 0)
return false;
if (N.getValueType() == MVT::i32)
Immed = ~((uint32_t)Immed) + 1;
else
Immed = ~Immed + 1ULL;
if (Immed & 0xFFFFFFFFFF000000ULL)
return false;
Immed &= 0xFFFFFFULL;
return SelectArithImmed(CurDAG->getConstant(Immed, SDLoc(N), MVT::i32), Val,
Shift);
}
/// getShiftTypeForNode - Translate a shift node to the corresponding
/// ShiftType value.
static AArch64_AM::ShiftExtendType getShiftTypeForNode(SDValue N) {
switch (N.getOpcode()) {
default:
return AArch64_AM::InvalidShiftExtend;
case ISD::SHL:
return AArch64_AM::LSL;
case ISD::SRL:
return AArch64_AM::LSR;
case ISD::SRA:
return AArch64_AM::ASR;
case ISD::ROTR:
return AArch64_AM::ROR;
}
}
/// Determine whether it is worth it to fold SHL into the addressing
/// mode.
static bool isWorthFoldingSHL(SDValue V) {
assert(V.getOpcode() == ISD::SHL && "invalid opcode");
// It is worth folding logical shift of up to three places.
auto *CSD = dyn_cast<ConstantSDNode>(V.getOperand(1));
if (!CSD)
return false;
unsigned ShiftVal = CSD->getZExtValue();
if (ShiftVal > 3)
return false;
// Check if this particular node is reused in any non-memory related
// operation. If yes, do not try to fold this node into the address
// computation, since the computation will be kept.
const SDNode *Node = V.getNode();
for (SDNode *UI : Node->uses())
if (!isa<MemSDNode>(*UI))
for (SDNode *UII : UI->uses())
if (!isa<MemSDNode>(*UII))
return false;
return true;
}
/// Determine whether it is worth to fold V into an extended register.
bool AArch64DAGToDAGISel::isWorthFolding(SDValue V) const {
// Trivial if we are optimizing for code size or if there is only
// one use of the value.
if (CurDAG->shouldOptForSize() || V.hasOneUse())
return true;
// If a subtarget has a fastpath LSL we can fold a logical shift into
// the addressing mode and save a cycle.
if (Subtarget->hasLSLFast() && V.getOpcode() == ISD::SHL &&
isWorthFoldingSHL(V))
return true;
if (Subtarget->hasLSLFast() && V.getOpcode() == ISD::ADD) {
const SDValue LHS = V.getOperand(0);
const SDValue RHS = V.getOperand(1);
if (LHS.getOpcode() == ISD::SHL && isWorthFoldingSHL(LHS))
return true;
if (RHS.getOpcode() == ISD::SHL && isWorthFoldingSHL(RHS))
return true;
}
// It hurts otherwise, since the value will be reused.
return false;
}
/// SelectShiftedRegister - Select a "shifted register" operand. If the value
/// is not shifted, set the Shift operand to default of "LSL 0". The logical
/// instructions allow the shifted register to be rotated, but the arithmetic
/// instructions do not. The AllowROR parameter specifies whether ROR is
/// supported.
bool AArch64DAGToDAGISel::SelectShiftedRegister(SDValue N, bool AllowROR,
SDValue &Reg, SDValue &Shift) {
AArch64_AM::ShiftExtendType ShType = getShiftTypeForNode(N);
if (ShType == AArch64_AM::InvalidShiftExtend)
return false;
if (!AllowROR && ShType == AArch64_AM::ROR)
return false;
if (ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(N.getOperand(1))) {
unsigned BitSize = N.getValueSizeInBits();
unsigned Val = RHS->getZExtValue() & (BitSize - 1);
unsigned ShVal = AArch64_AM::getShifterImm(ShType, Val);
Reg = N.getOperand(0);
Shift = CurDAG->getTargetConstant(ShVal, SDLoc(N), MVT::i32);
return isWorthFolding(N);
}
return false;
}
/// getExtendTypeForNode - Translate an extend node to the corresponding
/// ExtendType value.
static AArch64_AM::ShiftExtendType
getExtendTypeForNode(SDValue N, bool IsLoadStore = false) {
if (N.getOpcode() == ISD::SIGN_EXTEND ||
N.getOpcode() == ISD::SIGN_EXTEND_INREG) {
EVT SrcVT;
if (N.getOpcode() == ISD::SIGN_EXTEND_INREG)
SrcVT = cast<VTSDNode>(N.getOperand(1))->getVT();
else
SrcVT = N.getOperand(0).getValueType();
if (!IsLoadStore && SrcVT == MVT::i8)
return AArch64_AM::SXTB;
else if (!IsLoadStore && SrcVT == MVT::i16)
return AArch64_AM::SXTH;
else if (SrcVT == MVT::i32)
return AArch64_AM::SXTW;
assert(SrcVT != MVT::i64 && "extend from 64-bits?");
return AArch64_AM::InvalidShiftExtend;
} else if (N.getOpcode() == ISD::ZERO_EXTEND ||
N.getOpcode() == ISD::ANY_EXTEND) {
EVT SrcVT = N.getOperand(0).getValueType();
if (!IsLoadStore && SrcVT == MVT::i8)
return AArch64_AM::UXTB;
else if (!IsLoadStore && SrcVT == MVT::i16)
return AArch64_AM::UXTH;
else if (SrcVT == MVT::i32)
return AArch64_AM::UXTW;
assert(SrcVT != MVT::i64 && "extend from 64-bits?");
return AArch64_AM::InvalidShiftExtend;
} else if (N.getOpcode() == ISD::AND) {
ConstantSDNode *CSD = dyn_cast<ConstantSDNode>(N.getOperand(1));
if (!CSD)
return AArch64_AM::InvalidShiftExtend;
uint64_t AndMask = CSD->getZExtValue();
switch (AndMask) {
default:
return AArch64_AM::InvalidShiftExtend;
case 0xFF:
return !IsLoadStore ? AArch64_AM::UXTB : AArch64_AM::InvalidShiftExtend;
case 0xFFFF:
return !IsLoadStore ? AArch64_AM::UXTH : AArch64_AM::InvalidShiftExtend;
case 0xFFFFFFFF:
return AArch64_AM::UXTW;
}
}
return AArch64_AM::InvalidShiftExtend;
}
// Helper for SelectMLAV64LaneV128 - Recognize high lane extracts.
static bool checkHighLaneIndex(SDNode *DL, SDValue &LaneOp, int &LaneIdx) {
if (DL->getOpcode() != AArch64ISD::DUPLANE16 &&
DL->getOpcode() != AArch64ISD::DUPLANE32)
return false;
SDValue SV = DL->getOperand(0);
if (SV.getOpcode() != ISD::INSERT_SUBVECTOR)
return false;
SDValue EV = SV.getOperand(1);
if (EV.getOpcode() != ISD::EXTRACT_SUBVECTOR)
return false;
ConstantSDNode *DLidx = cast<ConstantSDNode>(DL->getOperand(1).getNode());
ConstantSDNode *EVidx = cast<ConstantSDNode>(EV.getOperand(1).getNode());
LaneIdx = DLidx->getSExtValue() + EVidx->getSExtValue();
LaneOp = EV.getOperand(0);
return true;
}
// Helper for SelectOpcV64LaneV128 - Recognize operations where one operand is a
// high lane extract.
static bool checkV64LaneV128(SDValue Op0, SDValue Op1, SDValue &StdOp,
SDValue &LaneOp, int &LaneIdx) {
if (!checkHighLaneIndex(Op0.getNode(), LaneOp, LaneIdx)) {
std::swap(Op0, Op1);
if (!checkHighLaneIndex(Op0.getNode(), LaneOp, LaneIdx))
return false;
}
StdOp = Op1;
return true;
}
/// SelectMLAV64LaneV128 - AArch64 supports vector MLAs where one multiplicand
/// is a lane in the upper half of a 128-bit vector. Recognize and select this
/// so that we don't emit unnecessary lane extracts.
bool AArch64DAGToDAGISel::tryMLAV64LaneV128(SDNode *N) {
SDLoc dl(N);
SDValue Op0 = N->getOperand(0);
SDValue Op1 = N->getOperand(1);
SDValue MLAOp1; // Will hold ordinary multiplicand for MLA.
SDValue MLAOp2; // Will hold lane-accessed multiplicand for MLA.
int LaneIdx = -1; // Will hold the lane index.
if (Op1.getOpcode() != ISD::MUL ||
!checkV64LaneV128(Op1.getOperand(0), Op1.getOperand(1), MLAOp1, MLAOp2,
LaneIdx)) {
std::swap(Op0, Op1);
if (Op1.getOpcode() != ISD::MUL ||
!checkV64LaneV128(Op1.getOperand(0), Op1.getOperand(1), MLAOp1, MLAOp2,
LaneIdx))
return false;
}
SDValue LaneIdxVal = CurDAG->getTargetConstant(LaneIdx, dl, MVT::i64);
SDValue Ops[] = { Op0, MLAOp1, MLAOp2, LaneIdxVal };
unsigned MLAOpc = ~0U;
switch (N->getSimpleValueType(0).SimpleTy) {
default:
llvm_unreachable("Unrecognized MLA.");
case MVT::v4i16:
MLAOpc = AArch64::MLAv4i16_indexed;
break;
case MVT::v8i16:
MLAOpc = AArch64::MLAv8i16_indexed;
break;
case MVT::v2i32:
MLAOpc = AArch64::MLAv2i32_indexed;
break;
case MVT::v4i32:
MLAOpc = AArch64::MLAv4i32_indexed;
break;
}
ReplaceNode(N, CurDAG->getMachineNode(MLAOpc, dl, N->getValueType(0), Ops));
return true;
}
bool AArch64DAGToDAGISel::tryMULLV64LaneV128(unsigned IntNo, SDNode *N) {
SDLoc dl(N);
SDValue SMULLOp0;
SDValue SMULLOp1;
int LaneIdx;
if (!checkV64LaneV128(N->getOperand(1), N->getOperand(2), SMULLOp0, SMULLOp1,
LaneIdx))
return false;
SDValue LaneIdxVal = CurDAG->getTargetConstant(LaneIdx, dl, MVT::i64);
SDValue Ops[] = { SMULLOp0, SMULLOp1, LaneIdxVal };
unsigned SMULLOpc = ~0U;
if (IntNo == Intrinsic::aarch64_neon_smull) {
switch (N->getSimpleValueType(0).SimpleTy) {
default:
llvm_unreachable("Unrecognized SMULL.");
case MVT::v4i32:
SMULLOpc = AArch64::SMULLv4i16_indexed;
break;
case MVT::v2i64:
SMULLOpc = AArch64::SMULLv2i32_indexed;
break;
}
} else if (IntNo == Intrinsic::aarch64_neon_umull) {
switch (N->getSimpleValueType(0).SimpleTy) {
default:
llvm_unreachable("Unrecognized SMULL.");
case MVT::v4i32:
SMULLOpc = AArch64::UMULLv4i16_indexed;
break;
case MVT::v2i64:
SMULLOpc = AArch64::UMULLv2i32_indexed;
break;
}
} else
llvm_unreachable("Unrecognized intrinsic.");
ReplaceNode(N, CurDAG->getMachineNode(SMULLOpc, dl, N->getValueType(0), Ops));
return true;
}
/// Instructions that accept extend modifiers like UXTW expect the register
/// being extended to be a GPR32, but the incoming DAG might be acting on a
/// GPR64 (either via SEXT_INREG or AND). Extract the appropriate low bits if
/// this is the case.
static SDValue narrowIfNeeded(SelectionDAG *CurDAG, SDValue N) {
if (N.getValueType() == MVT::i32)
return N;
SDLoc dl(N);
SDValue SubReg = CurDAG->getTargetConstant(AArch64::sub_32, dl, MVT::i32);
MachineSDNode *Node = CurDAG->getMachineNode(TargetOpcode::EXTRACT_SUBREG,
dl, MVT::i32, N, SubReg);
return SDValue(Node, 0);
}
// Returns a suitable CNT/INC/DEC/RDVL multiplier to calculate VSCALE*N.
template<signed Low, signed High, signed Scale>
bool AArch64DAGToDAGISel::SelectRDVLImm(SDValue N, SDValue &Imm) {
if (!isa<ConstantSDNode>(N))
return false;
int64_t MulImm = cast<ConstantSDNode>(N)->getSExtValue();
if ((MulImm % std::abs(Scale)) == 0) {
int64_t RDVLImm = MulImm / Scale;
if ((RDVLImm >= Low) && (RDVLImm <= High)) {
Imm = CurDAG->getTargetConstant(RDVLImm, SDLoc(N), MVT::i32);
return true;
}
}
return false;
}
/// SelectArithExtendedRegister - Select a "extended register" operand. This
/// operand folds in an extend followed by an optional left shift.
bool AArch64DAGToDAGISel::SelectArithExtendedRegister(SDValue N, SDValue &Reg,
SDValue &Shift) {
unsigned ShiftVal = 0;
AArch64_AM::ShiftExtendType Ext;
if (N.getOpcode() == ISD::SHL) {
ConstantSDNode *CSD = dyn_cast<ConstantSDNode>(N.getOperand(1));
if (!CSD)
return false;
ShiftVal = CSD->getZExtValue();
if (ShiftVal > 4)
return false;
Ext = getExtendTypeForNode(N.getOperand(0));
if (Ext == AArch64_AM::InvalidShiftExtend)
return false;
Reg = N.getOperand(0).getOperand(0);
} else {
Ext = getExtendTypeForNode(N);
if (Ext == AArch64_AM::InvalidShiftExtend)
return false;
Reg = N.getOperand(0);
// Don't match if free 32-bit -> 64-bit zext can be used instead.
if (Ext == AArch64_AM::UXTW &&
Reg->getValueType(0).getSizeInBits() == 32 && isDef32(*Reg.getNode()))
return false;
}
// AArch64 mandates that the RHS of the operation must use the smallest
// register class that could contain the size being extended from. Thus,
// if we're folding a (sext i8), we need the RHS to be a GPR32, even though
// there might not be an actual 32-bit value in the program. We can
// (harmlessly) synthesize one by injected an EXTRACT_SUBREG here.
assert(Ext != AArch64_AM::UXTX && Ext != AArch64_AM::SXTX);
Reg = narrowIfNeeded(CurDAG, Reg);
Shift = CurDAG->getTargetConstant(getArithExtendImm(Ext, ShiftVal), SDLoc(N),
MVT::i32);
return isWorthFolding(N);
}
/// If there's a use of this ADDlow that's not itself a load/store then we'll
/// need to create a real ADD instruction from it anyway and there's no point in
/// folding it into the mem op. Theoretically, it shouldn't matter, but there's
/// a single pseudo-instruction for an ADRP/ADD pair so over-aggressive folding
/// leads to duplicated ADRP instructions.
static bool isWorthFoldingADDlow(SDValue N) {
for (auto Use : N->uses()) {
if (Use->getOpcode() != ISD::LOAD && Use->getOpcode() != ISD::STORE &&
Use->getOpcode() != ISD::ATOMIC_LOAD &&
Use->getOpcode() != ISD::ATOMIC_STORE)
return false;
// ldar and stlr have much more restrictive addressing modes (just a
// register).
if (isStrongerThanMonotonic(cast<MemSDNode>(Use)->getSuccessOrdering()))
return false;
}
return true;
}
/// SelectAddrModeIndexedBitWidth - Select a "register plus scaled (un)signed BW-bit
/// immediate" address. The "Size" argument is the size in bytes of the memory
/// reference, which determines the scale.
bool AArch64DAGToDAGISel::SelectAddrModeIndexedBitWidth(SDValue N, bool IsSignedImm,
unsigned BW, unsigned Size,
SDValue &Base,
SDValue &OffImm) {
SDLoc dl(N);
const DataLayout &DL = CurDAG->getDataLayout();
const TargetLowering *TLI = getTargetLowering();
if (N.getOpcode() == ISD::FrameIndex) {
int FI = cast<FrameIndexSDNode>(N)->getIndex();
Base = CurDAG->getTargetFrameIndex(FI, TLI->getPointerTy(DL));
OffImm = CurDAG->getTargetConstant(0, dl, MVT::i64);
return true;
}
// As opposed to the (12-bit) Indexed addressing mode below, the 7/9-bit signed
// selected here doesn't support labels/immediates, only base+offset.
if (CurDAG->isBaseWithConstantOffset(N)) {
if (ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(N.getOperand(1))) {
if (IsSignedImm) {
int64_t RHSC = RHS->getSExtValue();
unsigned Scale = Log2_32(Size);
int64_t Range = 0x1LL << (BW - 1);
if ((RHSC & (Size - 1)) == 0 && RHSC >= -(Range << Scale) &&
RHSC < (Range << Scale)) {
Base = N.getOperand(0);
if (Base.getOpcode() == ISD::FrameIndex) {
int FI = cast<FrameIndexSDNode>(Base)->getIndex();
Base = CurDAG->getTargetFrameIndex(FI, TLI->getPointerTy(DL));
}
OffImm = CurDAG->getTargetConstant(RHSC >> Scale, dl, MVT::i64);
return true;
}
} else {
// unsigned Immediate
uint64_t RHSC = RHS->getZExtValue();
unsigned Scale = Log2_32(Size);
uint64_t Range = 0x1ULL << BW;
if ((RHSC & (Size - 1)) == 0 && RHSC < (Range << Scale)) {
Base = N.getOperand(0);
if (Base.getOpcode() == ISD::FrameIndex) {
int FI = cast<FrameIndexSDNode>(Base)->getIndex();
Base = CurDAG->getTargetFrameIndex(FI, TLI->getPointerTy(DL));
}
OffImm = CurDAG->getTargetConstant(RHSC >> Scale, dl, MVT::i64);
return true;
}
}
}
}
// Base only. The address will be materialized into a register before
// the memory is accessed.
// add x0, Xbase, #offset
// stp x1, x2, [x0]
Base = N;
OffImm = CurDAG->getTargetConstant(0, dl, MVT::i64);
return true;
}
/// SelectAddrModeIndexed - Select a "register plus scaled unsigned 12-bit
/// immediate" address. The "Size" argument is the size in bytes of the memory
/// reference, which determines the scale.
bool AArch64DAGToDAGISel::SelectAddrModeIndexed(SDValue N, unsigned Size,
SDValue &Base, SDValue &OffImm) {
SDLoc dl(N);
const DataLayout &DL = CurDAG->getDataLayout();
const TargetLowering *TLI = getTargetLowering();
if (N.getOpcode() == ISD::FrameIndex) {
int FI = cast<FrameIndexSDNode>(N)->getIndex();
Base = CurDAG->getTargetFrameIndex(FI, TLI->getPointerTy(DL));
OffImm = CurDAG->getTargetConstant(0, dl, MVT::i64);
return true;
}
if (N.getOpcode() == AArch64ISD::ADDlow && isWorthFoldingADDlow(N)) {
GlobalAddressSDNode *GAN =
dyn_cast<GlobalAddressSDNode>(N.getOperand(1).getNode());
Base = N.getOperand(0);
OffImm = N.getOperand(1);
if (!GAN)
return true;
if (GAN->getOffset() % Size == 0 &&
GAN->getGlobal()->getPointerAlignment(DL) >= Size)
return true;
}
if (CurDAG->isBaseWithConstantOffset(N)) {
if (ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(N.getOperand(1))) {
int64_t RHSC = (int64_t)RHS->getZExtValue();
unsigned Scale = Log2_32(Size);
if ((RHSC & (Size - 1)) == 0 && RHSC >= 0 && RHSC < (0x1000 << Scale)) {
Base = N.getOperand(0);
if (Base.getOpcode() == ISD::FrameIndex) {
int FI = cast<FrameIndexSDNode>(Base)->getIndex();
Base = CurDAG->getTargetFrameIndex(FI, TLI->getPointerTy(DL));
}
OffImm = CurDAG->getTargetConstant(RHSC >> Scale, dl, MVT::i64);
return true;
}
}
}
// Before falling back to our general case, check if the unscaled
// instructions can handle this. If so, that's preferable.
if (SelectAddrModeUnscaled(N, Size, Base, OffImm))
return false;
// Base only. The address will be materialized into a register before
// the memory is accessed.
// add x0, Xbase, #offset
// ldr x0, [x0]
Base = N;
OffImm = CurDAG->getTargetConstant(0, dl, MVT::i64);
return true;
}
/// SelectAddrModeUnscaled - Select a "register plus unscaled signed 9-bit
/// immediate" address. This should only match when there is an offset that
/// is not valid for a scaled immediate addressing mode. The "Size" argument
/// is the size in bytes of the memory reference, which is needed here to know
/// what is valid for a scaled immediate.
bool AArch64DAGToDAGISel::SelectAddrModeUnscaled(SDValue N, unsigned Size,
SDValue &Base,
SDValue &OffImm) {
if (!CurDAG->isBaseWithConstantOffset(N))
return false;
if (ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(N.getOperand(1))) {
int64_t RHSC = RHS->getSExtValue();
// If the offset is valid as a scaled immediate, don't match here.
if ((RHSC & (Size - 1)) == 0 && RHSC >= 0 &&
RHSC < (0x1000 << Log2_32(Size)))
return false;
if (RHSC >= -256 && RHSC < 256) {
Base = N.getOperand(0);
if (Base.getOpcode() == ISD::FrameIndex) {
int FI = cast<FrameIndexSDNode>(Base)->getIndex();
const TargetLowering *TLI = getTargetLowering();
Base = CurDAG->getTargetFrameIndex(
FI, TLI->getPointerTy(CurDAG->getDataLayout()));
}
OffImm = CurDAG->getTargetConstant(RHSC, SDLoc(N), MVT::i64);
return true;
}
}
return false;
}
static SDValue Widen(SelectionDAG *CurDAG, SDValue N) {
SDLoc dl(N);
SDValue SubReg = CurDAG->getTargetConstant(AArch64::sub_32, dl, MVT::i32);
SDValue ImpDef = SDValue(
CurDAG->getMachineNode(TargetOpcode::IMPLICIT_DEF, dl, MVT::i64), 0);
MachineSDNode *Node = CurDAG->getMachineNode(
TargetOpcode::INSERT_SUBREG, dl, MVT::i64, ImpDef, N, SubReg);
return SDValue(Node, 0);
}
/// Check if the given SHL node (\p N), can be used to form an
/// extended register for an addressing mode.
bool AArch64DAGToDAGISel::SelectExtendedSHL(SDValue N, unsigned Size,
bool WantExtend, SDValue &Offset,
SDValue &SignExtend) {
assert(N.getOpcode() == ISD::SHL && "Invalid opcode.");
ConstantSDNode *CSD = dyn_cast<ConstantSDNode>(N.getOperand(1));
if (!CSD || (CSD->getZExtValue() & 0x7) != CSD->getZExtValue())
return false;
SDLoc dl(N);
if (WantExtend) {
AArch64_AM::ShiftExtendType Ext =
getExtendTypeForNode(N.getOperand(0), true);
if (Ext == AArch64_AM::InvalidShiftExtend)
return false;
Offset = narrowIfNeeded(CurDAG, N.getOperand(0).getOperand(0));
SignExtend = CurDAG->getTargetConstant(Ext == AArch64_AM::SXTW, dl,
MVT::i32);
} else {
Offset = N.getOperand(0);
SignExtend = CurDAG->getTargetConstant(0, dl, MVT::i32);
}
unsigned LegalShiftVal = Log2_32(Size);
unsigned ShiftVal = CSD->getZExtValue();
if (ShiftVal != 0 && ShiftVal != LegalShiftVal)
return false;
return isWorthFolding(N);
}
bool AArch64DAGToDAGISel::SelectAddrModeWRO(SDValue N, unsigned Size,
SDValue &Base, SDValue &Offset,
SDValue &SignExtend,
SDValue &DoShift) {
if (N.getOpcode() != ISD::ADD)
return false;
SDValue LHS = N.getOperand(0);
SDValue RHS = N.getOperand(1);
SDLoc dl(N);
// We don't want to match immediate adds here, because they are better lowered
// to the register-immediate addressing modes.
if (isa<ConstantSDNode>(LHS) || isa<ConstantSDNode>(RHS))
return false;
// Check if this particular node is reused in any non-memory related
// operation. If yes, do not try to fold this node into the address
// computation, since the computation will be kept.
const SDNode *Node = N.getNode();
for (SDNode *UI : Node->uses()) {
if (!isa<MemSDNode>(*UI))
return false;
}
// Remember if it is worth folding N when it produces extended register.
bool IsExtendedRegisterWorthFolding = isWorthFolding(N);
// Try to match a shifted extend on the RHS.
if (IsExtendedRegisterWorthFolding && RHS.getOpcode() == ISD::SHL &&
SelectExtendedSHL(RHS, Size, true, Offset, SignExtend)) {
Base = LHS;
DoShift = CurDAG->getTargetConstant(true, dl, MVT::i32);
return true;
}
// Try to match a shifted extend on the LHS.
if (IsExtendedRegisterWorthFolding && LHS.getOpcode() == ISD::SHL &&
SelectExtendedSHL(LHS, Size, true, Offset, SignExtend)) {
Base = RHS;
DoShift = CurDAG->getTargetConstant(true, dl, MVT::i32);
return true;
}
// There was no shift, whatever else we find.
DoShift = CurDAG->getTargetConstant(false, dl, MVT::i32);
AArch64_AM::ShiftExtendType Ext = AArch64_AM::InvalidShiftExtend;
// Try to match an unshifted extend on the LHS.
if (IsExtendedRegisterWorthFolding &&
(Ext = getExtendTypeForNode(LHS, true)) !=
AArch64_AM::InvalidShiftExtend) {
Base = RHS;
Offset = narrowIfNeeded(CurDAG, LHS.getOperand(0));
SignExtend = CurDAG->getTargetConstant(Ext == AArch64_AM::SXTW, dl,
MVT::i32);
if (isWorthFolding(LHS))
return true;
}
// Try to match an unshifted extend on the RHS.
if (IsExtendedRegisterWorthFolding &&
(Ext = getExtendTypeForNode(RHS, true)) !=
AArch64_AM::InvalidShiftExtend) {
Base = LHS;
Offset = narrowIfNeeded(CurDAG, RHS.getOperand(0));
SignExtend = CurDAG->getTargetConstant(Ext == AArch64_AM::SXTW, dl,
MVT::i32);
if (isWorthFolding(RHS))
return true;
}
return false;
}
// Check if the given immediate is preferred by ADD. If an immediate can be
// encoded in an ADD, or it can be encoded in an "ADD LSL #12" and can not be
// encoded by one MOVZ, return true.
static bool isPreferredADD(int64_t ImmOff) {
// Constant in [0x0, 0xfff] can be encoded in ADD.
if ((ImmOff & 0xfffffffffffff000LL) == 0x0LL)
return true;
// Check if it can be encoded in an "ADD LSL #12".
if ((ImmOff & 0xffffffffff000fffLL) == 0x0LL)
// As a single MOVZ is faster than a "ADD of LSL #12", ignore such constant.
return (ImmOff & 0xffffffffff00ffffLL) != 0x0LL &&
(ImmOff & 0xffffffffffff0fffLL) != 0x0LL;
return false;
}
bool AArch64DAGToDAGISel::SelectAddrModeXRO(SDValue N, unsigned Size,
SDValue &Base, SDValue &Offset,
SDValue &SignExtend,
SDValue &DoShift) {
if (N.getOpcode() != ISD::ADD)
return false;
SDValue LHS = N.getOperand(0);
SDValue RHS = N.getOperand(1);
SDLoc DL(N);
// Check if this particular node is reused in any non-memory related
// operation. If yes, do not try to fold this node into the address
// computation, since the computation will be kept.
const SDNode *Node = N.getNode();
for (SDNode *UI : Node->uses()) {
if (!isa<MemSDNode>(*UI))
return false;
}
// Watch out if RHS is a wide immediate, it can not be selected into
// [BaseReg+Imm] addressing mode. Also it may not be able to be encoded into
// ADD/SUB. Instead it will use [BaseReg + 0] address mode and generate
// instructions like:
// MOV X0, WideImmediate
// ADD X1, BaseReg, X0
// LDR X2, [X1, 0]
// For such situation, using [BaseReg, XReg] addressing mode can save one
// ADD/SUB:
// MOV X0, WideImmediate
// LDR X2, [BaseReg, X0]
if (isa<ConstantSDNode>(RHS)) {
int64_t ImmOff = (int64_t)cast<ConstantSDNode>(RHS)->getZExtValue();
unsigned Scale = Log2_32(Size);
// Skip the immediate can be selected by load/store addressing mode.
// Also skip the immediate can be encoded by a single ADD (SUB is also
// checked by using -ImmOff).
if ((ImmOff % Size == 0 && ImmOff >= 0 && ImmOff < (0x1000 << Scale)) ||
isPreferredADD(ImmOff) || isPreferredADD(-ImmOff))
return false;
SDValue Ops[] = { RHS };
SDNode *MOVI =
CurDAG->getMachineNode(AArch64::MOVi64imm, DL, MVT::i64, Ops);
SDValue MOVIV = SDValue(MOVI, 0);
// This ADD of two X register will be selected into [Reg+Reg] mode.
N = CurDAG->getNode(ISD::ADD, DL, MVT::i64, LHS, MOVIV);
}
// Remember if it is worth folding N when it produces extended register.
bool IsExtendedRegisterWorthFolding = isWorthFolding(N);
// Try to match a shifted extend on the RHS.
if (IsExtendedRegisterWorthFolding && RHS.getOpcode() == ISD::SHL &&
SelectExtendedSHL(RHS, Size, false, Offset, SignExtend)) {
Base = LHS;
DoShift = CurDAG->getTargetConstant(true, DL, MVT::i32);
return true;
}
// Try to match a shifted extend on the LHS.
if (IsExtendedRegisterWorthFolding && LHS.getOpcode() == ISD::SHL &&
SelectExtendedSHL(LHS, Size, false, Offset, SignExtend)) {
Base = RHS;
DoShift = CurDAG->getTargetConstant(true, DL, MVT::i32);
return true;
}
// Match any non-shifted, non-extend, non-immediate add expression.
Base = LHS;
Offset = RHS;
SignExtend = CurDAG->getTargetConstant(false, DL, MVT::i32);
DoShift = CurDAG->getTargetConstant(false, DL, MVT::i32);
// Reg1 + Reg2 is free: no check needed.
return true;
}
SDValue AArch64DAGToDAGISel::createDTuple(ArrayRef<SDValue> Regs) {
static const unsigned RegClassIDs[] = {
AArch64::DDRegClassID, AArch64::DDDRegClassID, AArch64::DDDDRegClassID};
static const unsigned SubRegs[] = {AArch64::dsub0, AArch64::dsub1,
AArch64::dsub2, AArch64::dsub3};
return createTuple(Regs, RegClassIDs, SubRegs);
}
SDValue AArch64DAGToDAGISel::createQTuple(ArrayRef<SDValue> Regs) {
static const unsigned RegClassIDs[] = {
AArch64::QQRegClassID, AArch64::QQQRegClassID, AArch64::QQQQRegClassID};
static const unsigned SubRegs[] = {AArch64::qsub0, AArch64::qsub1,
AArch64::qsub2, AArch64::qsub3};
return createTuple(Regs, RegClassIDs, SubRegs);
}
SDValue AArch64DAGToDAGISel::createZTuple(ArrayRef<SDValue> Regs) {
static const unsigned RegClassIDs[] = {AArch64::ZPR2RegClassID,
AArch64::ZPR3RegClassID,
AArch64::ZPR4RegClassID};
static const unsigned SubRegs[] = {AArch64::zsub0, AArch64::zsub1,
AArch64::zsub2, AArch64::zsub3};
return createTuple(Regs, RegClassIDs, SubRegs);
}
SDValue AArch64DAGToDAGISel::createTuple(ArrayRef<SDValue> Regs,
const unsigned RegClassIDs[],
const unsigned SubRegs[]) {
// There's no special register-class for a vector-list of 1 element: it's just
// a vector.
if (Regs.size() == 1)
return Regs[0];
assert(Regs.size() >= 2 && Regs.size() <= 4);
SDLoc DL(Regs[0]);
SmallVector<SDValue, 4> Ops;
// First operand of REG_SEQUENCE is the desired RegClass.
Ops.push_back(
CurDAG->getTargetConstant(RegClassIDs[Regs.size() - 2], DL, MVT::i32));
// Then we get pairs of source & subregister-position for the components.
for (unsigned i = 0; i < Regs.size(); ++i) {
Ops.push_back(Regs[i]);
Ops.push_back(CurDAG->getTargetConstant(SubRegs[i], DL, MVT::i32));
}
SDNode *N =
CurDAG->getMachineNode(TargetOpcode::REG_SEQUENCE, DL, MVT::Untyped, Ops);
return SDValue(N, 0);
}
void AArch64DAGToDAGISel::SelectTable(SDNode *N, unsigned NumVecs, unsigned Opc,
bool isExt) {
SDLoc dl(N);
EVT VT = N->getValueType(0);
unsigned ExtOff = isExt;
// Form a REG_SEQUENCE to force register allocation.
unsigned Vec0Off = ExtOff + 1;
SmallVector<SDValue, 4> Regs(N->op_begin() + Vec0Off,
N->op_begin() + Vec0Off + NumVecs);
SDValue RegSeq = createQTuple(Regs);
SmallVector<SDValue, 6> Ops;
if (isExt)
Ops.push_back(N->getOperand(1));
Ops.push_back(RegSeq);
Ops.push_back(N->getOperand(NumVecs + ExtOff + 1));
ReplaceNode(N, CurDAG->getMachineNode(Opc, dl, VT, Ops));
}
bool AArch64DAGToDAGISel::tryIndexedLoad(SDNode *N) {
LoadSDNode *LD = cast<LoadSDNode>(N);
if (LD->isUnindexed())
return false;
EVT VT = LD->getMemoryVT();
EVT DstVT = N->getValueType(0);
ISD::MemIndexedMode AM = LD->getAddressingMode();
bool IsPre = AM == ISD::PRE_INC || AM == ISD::PRE_DEC;
// We're not doing validity checking here. That was done when checking
// if we should mark the load as indexed or not. We're just selecting
// the right instruction.
unsigned Opcode = 0;
ISD::LoadExtType ExtType = LD->getExtensionType();
bool InsertTo64 = false;
if (VT == MVT::i64)
Opcode = IsPre ? AArch64::LDRXpre : AArch64::LDRXpost;
else if (VT == MVT::i32) {
if (ExtType == ISD::NON_EXTLOAD)
Opcode = IsPre ? AArch64::LDRWpre : AArch64::LDRWpost;
else if (ExtType == ISD::SEXTLOAD)
Opcode = IsPre ? AArch64::LDRSWpre : AArch64::LDRSWpost;
else {
Opcode = IsPre ? AArch64::LDRWpre : AArch64::LDRWpost;
InsertTo64 = true;
// The result of the load is only i32. It's the subreg_to_reg that makes
// it into an i64.
DstVT = MVT::i32;
}
} else if (VT == MVT::i16) {
if (ExtType == ISD::SEXTLOAD) {
if (DstVT == MVT::i64)
Opcode = IsPre ? AArch64::LDRSHXpre : AArch64::LDRSHXpost;
else
Opcode = IsPre ? AArch64::LDRSHWpre : AArch64::LDRSHWpost;
} else {
Opcode = IsPre ? AArch64::LDRHHpre : AArch64::LDRHHpost;
InsertTo64 = DstVT == MVT::i64;
// The result of the load is only i32. It's the subreg_to_reg that makes
// it into an i64.
DstVT = MVT::i32;
}
} else if (VT == MVT::i8) {
if (ExtType == ISD::SEXTLOAD) {
if (DstVT == MVT::i64)
Opcode = IsPre ? AArch64::LDRSBXpre : AArch64::LDRSBXpost;
else
Opcode = IsPre ? AArch64::LDRSBWpre : AArch64::LDRSBWpost;
} else {
Opcode = IsPre ? AArch64::LDRBBpre : AArch64::LDRBBpost;
InsertTo64 = DstVT == MVT::i64;
// The result of the load is only i32. It's the subreg_to_reg that makes
// it into an i64.
DstVT = MVT::i32;
}
} else if (VT == MVT::f16) {
Opcode = IsPre ? AArch64::LDRHpre : AArch64::LDRHpost;
} else if (VT == MVT::bf16) {
Opcode = IsPre ? AArch64::LDRHpre : AArch64::LDRHpost;
} else if (VT == MVT::f32) {
Opcode = IsPre ? AArch64::LDRSpre : AArch64::LDRSpost;
} else if (VT == MVT::f64 || VT.is64BitVector()) {
Opcode = IsPre ? AArch64::LDRDpre : AArch64::LDRDpost;
} else if (VT.is128BitVector()) {
Opcode = IsPre ? AArch64::LDRQpre : AArch64::LDRQpost;
} else
return false;
SDValue Chain = LD->getChain();
SDValue Base = LD->getBasePtr();
ConstantSDNode *OffsetOp = cast<ConstantSDNode>(LD->getOffset());
int OffsetVal = (int)OffsetOp->getZExtValue();
SDLoc dl(N);
SDValue Offset = CurDAG->getTargetConstant(OffsetVal, dl, MVT::i64);
SDValue Ops[] = { Base, Offset, Chain };
SDNode *Res = CurDAG->getMachineNode(Opcode, dl, MVT::i64, DstVT,
MVT::Other, Ops);
// Transfer memoperands.
MachineMemOperand *MemOp = cast<MemSDNode>(N)->getMemOperand();
CurDAG->setNodeMemRefs(cast<MachineSDNode>(Res), {MemOp});
// Either way, we're replacing the node, so tell the caller that.
SDValue LoadedVal = SDValue(Res, 1);
if (InsertTo64) {
SDValue SubReg = CurDAG->getTargetConstant(AArch64::sub_32, dl, MVT::i32);
LoadedVal =
SDValue(CurDAG->getMachineNode(
AArch64::SUBREG_TO_REG, dl, MVT::i64,
CurDAG->getTargetConstant(0, dl, MVT::i64), LoadedVal,
SubReg),
0);
}
ReplaceUses(SDValue(N, 0), LoadedVal);
ReplaceUses(SDValue(N, 1), SDValue(Res, 0));
ReplaceUses(SDValue(N, 2), SDValue(Res, 2));
CurDAG->RemoveDeadNode(N);
return true;
}
void AArch64DAGToDAGISel::SelectLoad(SDNode *N, unsigned NumVecs, unsigned Opc,
unsigned SubRegIdx) {
SDLoc dl(N);
EVT VT = N->getValueType(0);
SDValue Chain = N->getOperand(0);
SDValue Ops[] = {N->getOperand(2), // Mem operand;
Chain};
const EVT ResTys[] = {MVT::Untyped, MVT::Other};
SDNode *Ld = CurDAG->getMachineNode(Opc, dl, ResTys, Ops);
SDValue SuperReg = SDValue(Ld, 0);
for (unsigned i = 0; i < NumVecs; ++i)
ReplaceUses(SDValue(N, i),
CurDAG->getTargetExtractSubreg(SubRegIdx + i, dl, VT, SuperReg));
ReplaceUses(SDValue(N, NumVecs), SDValue(Ld, 1));
// Transfer memoperands. In the case of AArch64::LD64B, there won't be one,
// because it's too simple to have needed special treatment during lowering.
if (auto *MemIntr = dyn_cast<MemIntrinsicSDNode>(N)) {
MachineMemOperand *MemOp = MemIntr->getMemOperand();
CurDAG->setNodeMemRefs(cast<MachineSDNode>(Ld), {MemOp});
}
CurDAG->RemoveDeadNode(N);
}
void AArch64DAGToDAGISel::SelectPostLoad(SDNode *N, unsigned NumVecs,
unsigned Opc, unsigned SubRegIdx) {
SDLoc dl(N);
EVT VT = N->getValueType(0);
SDValue Chain = N->getOperand(0);
SDValue Ops[] = {N->getOperand(1), // Mem operand
N->getOperand(2), // Incremental
Chain};
const EVT ResTys[] = {MVT::i64, // Type of the write back register
MVT::Untyped, MVT::Other};
SDNode *Ld = CurDAG->getMachineNode(Opc, dl, ResTys, Ops);
// Update uses of write back register
ReplaceUses(SDValue(N, NumVecs), SDValue(Ld, 0));
// Update uses of vector list
SDValue SuperReg = SDValue(Ld, 1);
if (NumVecs == 1)
ReplaceUses(SDValue(N, 0), SuperReg);
else
for (unsigned i = 0; i < NumVecs; ++i)
ReplaceUses(SDValue(N, i),
CurDAG->getTargetExtractSubreg(SubRegIdx + i, dl, VT, SuperReg));
// Update the chain
ReplaceUses(SDValue(N, NumVecs + 1), SDValue(Ld, 2));
CurDAG->RemoveDeadNode(N);
}
/// Optimize \param OldBase and \param OldOffset selecting the best addressing
/// mode. Returns a tuple consisting of an Opcode, an SDValue representing the
/// new Base and an SDValue representing the new offset.
std::tuple<unsigned, SDValue, SDValue>
AArch64DAGToDAGISel::findAddrModeSVELoadStore(SDNode *N, unsigned Opc_rr,
unsigned Opc_ri,
const SDValue &OldBase,
const SDValue &OldOffset,
unsigned Scale) {
SDValue NewBase = OldBase;
SDValue NewOffset = OldOffset;
// Detect a possible Reg+Imm addressing mode.
const bool IsRegImm = SelectAddrModeIndexedSVE</*Min=*/-8, /*Max=*/7>(
N, OldBase, NewBase, NewOffset);
// Detect a possible reg+reg addressing mode, but only if we haven't already
// detected a Reg+Imm one.
const bool IsRegReg =
!IsRegImm && SelectSVERegRegAddrMode(OldBase, Scale, NewBase, NewOffset);
// Select the instruction.
return std::make_tuple(IsRegReg ? Opc_rr : Opc_ri, NewBase, NewOffset);
}
void AArch64DAGToDAGISel::SelectPredicatedLoad(SDNode *N, unsigned NumVecs,
unsigned Scale, unsigned Opc_ri,
unsigned Opc_rr) {
assert(Scale < 4 && "Invalid scaling value.");
SDLoc DL(N);
EVT VT = N->getValueType(0);
SDValue Chain = N->getOperand(0);
// Optimize addressing mode.
SDValue Base, Offset;
unsigned Opc;
std::tie(Opc, Base, Offset) = findAddrModeSVELoadStore(
N, Opc_rr, Opc_ri, N->getOperand(2),
CurDAG->getTargetConstant(0, DL, MVT::i64), Scale);
SDValue Ops[] = {N->getOperand(1), // Predicate
Base, // Memory operand
Offset, Chain};
const EVT ResTys[] = {MVT::Untyped, MVT::Other};
SDNode *Load = CurDAG->getMachineNode(Opc, DL, ResTys, Ops);
SDValue SuperReg = SDValue(Load, 0);
for (unsigned i = 0; i < NumVecs; ++i)
ReplaceUses(SDValue(N, i), CurDAG->getTargetExtractSubreg(
AArch64::zsub0 + i, DL, VT, SuperReg));
// Copy chain
unsigned ChainIdx = NumVecs;
ReplaceUses(SDValue(N, ChainIdx), SDValue(Load, 1));
CurDAG->RemoveDeadNode(N);
}
void AArch64DAGToDAGISel::SelectStore(SDNode *N, unsigned NumVecs,
unsigned Opc) {
SDLoc dl(N);
EVT VT = N->getOperand(2)->getValueType(0);
// Form a REG_SEQUENCE to force register allocation.
bool Is128Bit = VT.getSizeInBits() == 128;
SmallVector<SDValue, 4> Regs(N->op_begin() + 2, N->op_begin() + 2 + NumVecs);
SDValue RegSeq = Is128Bit ? createQTuple(Regs) : createDTuple(Regs);
SDValue Ops[] = {RegSeq, N->getOperand(NumVecs + 2), N->getOperand(0)};
SDNode *St = CurDAG->getMachineNode(Opc, dl, N->getValueType(0), Ops);
// Transfer memoperands.
MachineMemOperand *MemOp = cast<MemIntrinsicSDNode>(N)->getMemOperand();
CurDAG->setNodeMemRefs(cast<MachineSDNode>(St), {MemOp});
ReplaceNode(N, St);
}
void AArch64DAGToDAGISel::SelectPredicatedStore(SDNode *N, unsigned NumVecs,
unsigned Scale, unsigned Opc_rr,
unsigned Opc_ri) {
SDLoc dl(N);
// Form a REG_SEQUENCE to force register allocation.
SmallVector<SDValue, 4> Regs(N->op_begin() + 2, N->op_begin() + 2 + NumVecs);
SDValue RegSeq = createZTuple(Regs);
// Optimize addressing mode.
unsigned Opc;
SDValue Offset, Base;
std::tie(Opc, Base, Offset) = findAddrModeSVELoadStore(
N, Opc_rr, Opc_ri, N->getOperand(NumVecs + 3),
CurDAG->getTargetConstant(0, dl, MVT::i64), Scale);
SDValue Ops[] = {RegSeq, N->getOperand(NumVecs + 2), // predicate
Base, // address
Offset, // offset
N->getOperand(0)}; // chain
SDNode *St = CurDAG->getMachineNode(Opc, dl, N->getValueType(0), Ops);
ReplaceNode(N, St);
}
bool AArch64DAGToDAGISel::SelectAddrModeFrameIndexSVE(SDValue N, SDValue &Base,
SDValue &OffImm) {
SDLoc dl(N);
const DataLayout &DL = CurDAG->getDataLayout();
const TargetLowering *TLI = getTargetLowering();
// Try to match it for the frame address
if (auto FINode = dyn_cast<FrameIndexSDNode>(N)) {
int FI = FINode->getIndex();
Base = CurDAG->getTargetFrameIndex(FI, TLI->getPointerTy(DL));
OffImm = CurDAG->getTargetConstant(0, dl, MVT::i64);
return true;
}
return false;
}
void AArch64DAGToDAGISel::SelectPostStore(SDNode *N, unsigned NumVecs,
unsigned Opc) {
SDLoc dl(N);
EVT VT = N->getOperand(2)->getValueType(0);
const EVT ResTys[] = {MVT::i64, // Type of the write back register
MVT::Other}; // Type for the Chain
// Form a REG_SEQUENCE to force register allocation.
bool Is128Bit = VT.getSizeInBits() == 128;
SmallVector<SDValue, 4> Regs(N->op_begin() + 1, N->op_begin() + 1 + NumVecs);
SDValue RegSeq = Is128Bit ? createQTuple(Regs) : createDTuple(Regs);
SDValue Ops[] = {RegSeq,
N->getOperand(NumVecs + 1), // base register
N->getOperand(NumVecs + 2), // Incremental
N->getOperand(0)}; // Chain
SDNode *St = CurDAG->getMachineNode(Opc, dl, ResTys, Ops);
ReplaceNode(N, St);
}
namespace {
/// WidenVector - Given a value in the V64 register class, produce the
/// equivalent value in the V128 register class.
class WidenVector {
SelectionDAG &DAG;
public:
WidenVector(SelectionDAG &DAG) : DAG(DAG) {}
SDValue operator()(SDValue V64Reg) {
EVT VT = V64Reg.getValueType();
unsigned NarrowSize = VT.getVectorNumElements();
MVT EltTy = VT.getVectorElementType().getSimpleVT();
MVT WideTy = MVT::getVectorVT(EltTy, 2 * NarrowSize);
SDLoc DL(V64Reg);
SDValue Undef =
SDValue(DAG.getMachineNode(TargetOpcode::IMPLICIT_DEF, DL, WideTy), 0);
return DAG.getTargetInsertSubreg(AArch64::dsub, DL, WideTy, Undef, V64Reg);
}
};
} // namespace
/// NarrowVector - Given a value in the V128 register class, produce the
/// equivalent value in the V64 register class.
static SDValue NarrowVector(SDValue V128Reg, SelectionDAG &DAG) {
EVT VT = V128Reg.getValueType();
unsigned WideSize = VT.getVectorNumElements();
MVT EltTy = VT.getVectorElementType().getSimpleVT();
MVT NarrowTy = MVT::getVectorVT(EltTy, WideSize / 2);
return DAG.getTargetExtractSubreg(AArch64::dsub, SDLoc(V128Reg), NarrowTy,
V128Reg);
}
void AArch64DAGToDAGISel::SelectLoadLane(SDNode *N, unsigned NumVecs,
unsigned Opc) {
SDLoc dl(N);
EVT VT = N->getValueType(0);
bool Narrow = VT.getSizeInBits() == 64;
// Form a REG_SEQUENCE to force register allocation.
SmallVector<SDValue, 4> Regs(N->op_begin() + 2, N->op_begin() + 2 + NumVecs);
if (Narrow)
transform(Regs, Regs.begin(),
WidenVector(*CurDAG));
SDValue RegSeq = createQTuple(Regs);
const EVT ResTys[] = {MVT::Untyped, MVT::Other};
unsigned LaneNo =
cast<ConstantSDNode>(N->getOperand(NumVecs + 2))->getZExtValue();
SDValue Ops[] = {RegSeq, CurDAG->getTargetConstant(LaneNo, dl, MVT::i64),
N->getOperand(NumVecs + 3), N->getOperand(0)};
SDNode *Ld = CurDAG->getMachineNode(Opc, dl, ResTys, Ops);
SDValue SuperReg = SDValue(Ld, 0);
EVT WideVT = RegSeq.getOperand(1)->getValueType(0);
static const unsigned QSubs[] = { AArch64::qsub0, AArch64::qsub1,
AArch64::qsub2, AArch64::qsub3 };
for (unsigned i = 0; i < NumVecs; ++i) {
SDValue NV = CurDAG->getTargetExtractSubreg(QSubs[i], dl, WideVT, SuperReg);
if (Narrow)
NV = NarrowVector(NV, *CurDAG);
ReplaceUses(SDValue(N, i), NV);
}
ReplaceUses(SDValue(N, NumVecs), SDValue(Ld, 1));
CurDAG->RemoveDeadNode(N);
}
void AArch64DAGToDAGISel::SelectPostLoadLane(SDNode *N, unsigned NumVecs,
unsigned Opc) {
SDLoc dl(N);
EVT VT = N->getValueType(0);
bool Narrow = VT.getSizeInBits() == 64;
// Form a REG_SEQUENCE to force register allocation.
SmallVector<SDValue, 4> Regs(N->op_begin() + 1, N->op_begin() + 1 + NumVecs);
if (Narrow)
transform(Regs, Regs.begin(),
WidenVector(*CurDAG));
SDValue RegSeq = createQTuple(Regs);
const EVT ResTys[] = {MVT::i64, // Type of the write back register
RegSeq->getValueType(0), MVT::Other};
unsigned LaneNo =
cast<ConstantSDNode>(N->getOperand(NumVecs + 1))->getZExtValue();
SDValue Ops[] = {RegSeq,
CurDAG->getTargetConstant(LaneNo, dl,
MVT::i64), // Lane Number
N->getOperand(NumVecs + 2), // Base register
N->getOperand(NumVecs + 3), // Incremental
N->getOperand(0)};
SDNode *Ld = CurDAG->getMachineNode(Opc, dl, ResTys, Ops);
// Update uses of the write back register
ReplaceUses(SDValue(N, NumVecs), SDValue(Ld, 0));
// Update uses of the vector list
SDValue SuperReg = SDValue(Ld, 1);
if (NumVecs == 1) {
ReplaceUses(SDValue(N, 0),
Narrow ? NarrowVector(SuperReg, *CurDAG) : SuperReg);
} else {
EVT WideVT = RegSeq.getOperand(1)->getValueType(0);
static const unsigned QSubs[] = { AArch64::qsub0, AArch64::qsub1,
AArch64::qsub2, AArch64::qsub3 };
for (unsigned i = 0; i < NumVecs; ++i) {
SDValue NV = CurDAG->getTargetExtractSubreg(QSubs[i], dl, WideVT,
SuperReg);
if (Narrow)
NV = NarrowVector(NV, *CurDAG);
ReplaceUses(SDValue(N, i), NV);
}
}
// Update the Chain
ReplaceUses(SDValue(N, NumVecs + 1), SDValue(Ld, 2));
CurDAG->RemoveDeadNode(N);
}
void AArch64DAGToDAGISel::SelectStoreLane(SDNode *N, unsigned NumVecs,
unsigned Opc) {
SDLoc dl(N);
EVT VT = N->getOperand(2)->getValueType(0);
bool Narrow = VT.getSizeInBits() == 64;
// Form a REG_SEQUENCE to force register allocation.
SmallVector<SDValue, 4> Regs(N->op_begin() + 2, N->op_begin() + 2 + NumVecs);
if (Narrow)
transform(Regs, Regs.begin(),
WidenVector(*CurDAG));
SDValue RegSeq = createQTuple(Regs);
unsigned LaneNo =
cast<ConstantSDNode>(N->getOperand(NumVecs + 2))->getZExtValue();
SDValue Ops[] = {RegSeq, CurDAG->getTargetConstant(LaneNo, dl, MVT::i64),
N->getOperand(NumVecs + 3), N->getOperand(0)};
SDNode *St = CurDAG->getMachineNode(Opc, dl, MVT::Other, Ops);
// Transfer memoperands.
MachineMemOperand *MemOp = cast<MemIntrinsicSDNode>(N)->getMemOperand();
CurDAG->setNodeMemRefs(cast<MachineSDNode>(St), {MemOp});
ReplaceNode(N, St);
}
void AArch64DAGToDAGISel::SelectPostStoreLane(SDNode *N, unsigned NumVecs,
unsigned Opc) {
SDLoc dl(N);
EVT VT = N->getOperand(2)->getValueType(0);
bool Narrow = VT.getSizeInBits() == 64;
// Form a REG_SEQUENCE to force register allocation.
SmallVector<SDValue, 4> Regs(N->op_begin() + 1, N->op_begin() + 1 + NumVecs);
if (Narrow)
transform(Regs, Regs.begin(),
WidenVector(*CurDAG));
SDValue RegSeq = createQTuple(Regs);
const EVT ResTys[] = {MVT::i64, // Type of the write back register
MVT::Other};
unsigned LaneNo =
cast<ConstantSDNode>(N->getOperand(NumVecs + 1))->getZExtValue();
SDValue Ops[] = {RegSeq, CurDAG->getTargetConstant(LaneNo, dl, MVT::i64),
N->getOperand(NumVecs + 2), // Base Register
N->getOperand(NumVecs + 3), // Incremental
N->getOperand(0)};
SDNode *St = CurDAG->getMachineNode(Opc, dl, ResTys, Ops);
// Transfer memoperands.
MachineMemOperand *MemOp = cast<MemIntrinsicSDNode>(N)->getMemOperand();
CurDAG->setNodeMemRefs(cast<MachineSDNode>(St), {MemOp});
ReplaceNode(N, St);
}
static bool isBitfieldExtractOpFromAnd(SelectionDAG *CurDAG, SDNode *N,
unsigned &Opc, SDValue &Opd0,
unsigned &LSB, unsigned &MSB,
unsigned NumberOfIgnoredLowBits,
bool BiggerPattern) {
assert(N->getOpcode() == ISD::AND &&
"N must be a AND operation to call this function");
EVT VT = N->getValueType(0);
// Here we can test the type of VT and return false when the type does not
// match, but since it is done prior to that call in the current context
// we turned that into an assert to avoid redundant code.
assert((VT == MVT::i32 || VT == MVT::i64) &&
"Type checking must have been done before calling this function");
// FIXME: simplify-demanded-bits in DAGCombine will probably have
// changed the AND node to a 32-bit mask operation. We'll have to
// undo that as part of the transform here if we want to catch all
// the opportunities.
// Currently the NumberOfIgnoredLowBits argument helps to recover
// form these situations when matching bigger pattern (bitfield insert).
// For unsigned extracts, check for a shift right and mask
uint64_t AndImm = 0;
if (!isOpcWithIntImmediate(N, ISD::AND, AndImm))
return false;
const SDNode *Op0 = N->getOperand(0).getNode();
// Because of simplify-demanded-bits in DAGCombine, the mask may have been
// simplified. Try to undo that
AndImm |= maskTrailingOnes<uint64_t>(NumberOfIgnoredLowBits);
// The immediate is a mask of the low bits iff imm & (imm+1) == 0
if (AndImm & (AndImm + 1))
return false;
bool ClampMSB = false;
uint64_t SrlImm = 0;
// Handle the SRL + ANY_EXTEND case.
if (VT == MVT::i64 && Op0->getOpcode() == ISD::ANY_EXTEND &&
isOpcWithIntImmediate(Op0->getOperand(0).getNode(), ISD::SRL, SrlImm)) {
// Extend the incoming operand of the SRL to 64-bit.
Opd0 = Widen(CurDAG, Op0->getOperand(0).getOperand(0));
// Make sure to clamp the MSB so that we preserve the semantics of the
// original operations.
ClampMSB = true;
} else if (VT == MVT::i32 && Op0->getOpcode() == ISD::TRUNCATE &&
isOpcWithIntImmediate(Op0->getOperand(0).getNode(), ISD::SRL,
SrlImm)) {
// If the shift result was truncated, we can still combine them.
Opd0 = Op0->getOperand(0).getOperand(0);
// Use the type of SRL node.
VT = Opd0->getValueType(0);
} else if (isOpcWithIntImmediate(Op0, ISD::SRL, SrlImm)) {
Opd0 = Op0->getOperand(0);
} else if (BiggerPattern) {
// Let's pretend a 0 shift right has been performed.
// The resulting code will be at least as good as the original one
// plus it may expose more opportunities for bitfield insert pattern.
// FIXME: Currently we limit this to the bigger pattern, because
// some optimizations expect AND and not UBFM.
Opd0 = N->getOperand(0);
} else
return false;
// Bail out on large immediates. This happens when no proper
// combining/constant folding was performed.
if (!BiggerPattern && (SrlImm <= 0 || SrlImm >= VT.getSizeInBits())) {
LLVM_DEBUG(
(dbgs() << N
<< ": Found large shift immediate, this should not happen\n"));
return false;
}
LSB = SrlImm;
MSB = SrlImm + (VT == MVT::i32 ? countTrailingOnes<uint32_t>(AndImm)
: countTrailingOnes<uint64_t>(AndImm)) -
1;
if (ClampMSB)
// Since we're moving the extend before the right shift operation, we need
// to clamp the MSB to make sure we don't shift in undefined bits instead of
// the zeros which would get shifted in with the original right shift
// operation.
MSB = MSB > 31 ? 31 : MSB;
Opc = VT == MVT::i32 ? AArch64::UBFMWri : AArch64::UBFMXri;
return true;
}
static bool isBitfieldExtractOpFromSExtInReg(SDNode *N, unsigned &Opc,
SDValue &Opd0, unsigned &Immr,
unsigned &Imms) {
assert(N->getOpcode() == ISD::SIGN_EXTEND_INREG);
EVT VT = N->getValueType(0);
unsigned BitWidth = VT.getSizeInBits();
assert((VT == MVT::i32 || VT == MVT::i64) &&
"Type checking must have been done before calling this function");
SDValue Op = N->getOperand(0);
if (Op->getOpcode() == ISD::TRUNCATE) {
Op = Op->getOperand(0);
VT = Op->getValueType(0);
BitWidth = VT.getSizeInBits();
}
uint64_t ShiftImm;
if (!isOpcWithIntImmediate(Op.getNode(), ISD::SRL, ShiftImm) &&
!isOpcWithIntImmediate(Op.getNode(), ISD::SRA, ShiftImm))
return false;
unsigned Width = cast<VTSDNode>(N->getOperand(1))->getVT().getSizeInBits();
if (ShiftImm + Width > BitWidth)
return false;
Opc = (VT == MVT::i32) ? AArch64::SBFMWri : AArch64::SBFMXri;
Opd0 = Op.getOperand(0);
Immr = ShiftImm;
Imms = ShiftImm + Width - 1;
return true;
}
static bool isSeveralBitsExtractOpFromShr(SDNode *N, unsigned &Opc,
SDValue &Opd0, unsigned &LSB,
unsigned &MSB) {
// We are looking for the following pattern which basically extracts several
// continuous bits from the source value and places it from the LSB of the
// destination value, all other bits of the destination value or set to zero:
//
// Value2 = AND Value, MaskImm
// SRL Value2, ShiftImm
//
// with MaskImm >> ShiftImm to search for the bit width.
//
// This gets selected into a single UBFM:
//
// UBFM Value, ShiftImm, BitWide + SrlImm -1
//
if (N->getOpcode() != ISD::SRL)
return false;
uint64_t AndMask = 0;
if (!isOpcWithIntImmediate(N->getOperand(0).getNode(), ISD::AND, AndMask))
return false;
Opd0 = N->getOperand(0).getOperand(0);
uint64_t SrlImm = 0;
if (!isIntImmediate(N->getOperand(1), SrlImm))
return false;
// Check whether we really have several bits extract here.
unsigned BitWide = 64 - countLeadingOnes(~(AndMask >> SrlImm));
if (BitWide && isMask_64(AndMask >> SrlImm)) {
if (N->getValueType(0) == MVT::i32)
Opc = AArch64::UBFMWri;
else
Opc = AArch64::UBFMXri;
LSB = SrlImm;
MSB = BitWide + SrlImm - 1;
return true;
}
return false;
}
static bool isBitfieldExtractOpFromShr(SDNode *N, unsigned &Opc, SDValue &Opd0,
unsigned &Immr, unsigned &Imms,
bool BiggerPattern) {
assert((N->getOpcode() == ISD::SRA || N->getOpcode() == ISD::SRL) &&
"N must be a SHR/SRA operation to call this function");
EVT VT = N->getValueType(0);
// Here we can test the type of VT and return false when the type does not
// match, but since it is done prior to that call in the current context
// we turned that into an assert to avoid redundant code.
assert((VT == MVT::i32 || VT == MVT::i64) &&
"Type checking must have been done before calling this function");
// Check for AND + SRL doing several bits extract.
if (isSeveralBitsExtractOpFromShr(N, Opc, Opd0, Immr, Imms))
return true;
// We're looking for a shift of a shift.
uint64_t ShlImm = 0;
uint64_t TruncBits = 0;
if (isOpcWithIntImmediate(N->getOperand(0).getNode(), ISD::SHL, ShlImm)) {
Opd0 = N->getOperand(0).getOperand(0);
} else if (VT == MVT::i32 && N->getOpcode() == ISD::SRL &&
N->getOperand(0).getNode()->getOpcode() == ISD::TRUNCATE) {
// We are looking for a shift of truncate. Truncate from i64 to i32 could
// be considered as setting high 32 bits as zero. Our strategy here is to
// always generate 64bit UBFM. This consistency will help the CSE pass
// later find more redundancy.
Opd0 = N->getOperand(0).getOperand(0);
TruncBits = Opd0->getValueType(0).getSizeInBits() - VT.getSizeInBits();
VT = Opd0.getValueType();
assert(VT == MVT::i64 && "the promoted type should be i64");
} else if (BiggerPattern) {
// Let's pretend a 0 shift left has been performed.
// FIXME: Currently we limit this to the bigger pattern case,
// because some optimizations expect AND and not UBFM
Opd0 = N->getOperand(0);
} else
return false;
// Missing combines/constant folding may have left us with strange
// constants.
if (ShlImm >= VT.getSizeInBits()) {
LLVM_DEBUG(
(dbgs() << N
<< ": Found large shift immediate, this should not happen\n"));
return false;
}
uint64_t SrlImm = 0;
if (!isIntImmediate(N->getOperand(1), SrlImm))
return false;
assert(SrlImm > 0 && SrlImm < VT.getSizeInBits() &&
"bad amount in shift node!");
int immr = SrlImm - ShlImm;
Immr = immr < 0 ? immr + VT.getSizeInBits() : immr;
Imms = VT.getSizeInBits() - ShlImm - TruncBits - 1;
// SRA requires a signed extraction
if (VT == MVT::i32)
Opc = N->getOpcode() == ISD::SRA ? AArch64::SBFMWri : AArch64::UBFMWri;
else
Opc = N->getOpcode() == ISD::SRA ? AArch64::SBFMXri : AArch64::UBFMXri;
return true;
}
bool AArch64DAGToDAGISel::tryBitfieldExtractOpFromSExt(SDNode *N) {
assert(N->getOpcode() == ISD::SIGN_EXTEND);
EVT VT = N->getValueType(0);
EVT NarrowVT = N->getOperand(0)->getValueType(0);
if (VT != MVT::i64 || NarrowVT != MVT::i32)
return false;
uint64_t ShiftImm;
SDValue Op = N->getOperand(0);
if (!isOpcWithIntImmediate(Op.getNode(), ISD::SRA, ShiftImm))
return false;
SDLoc dl(N);
// Extend the incoming operand of the shift to 64-bits.
SDValue Opd0 = Widen(CurDAG, Op.getOperand(0));
unsigned Immr = ShiftImm;
unsigned Imms = NarrowVT.getSizeInBits() - 1;
SDValue Ops[] = {Opd0, CurDAG->getTargetConstant(Immr, dl, VT),
CurDAG->getTargetConstant(Imms, dl, VT)};
CurDAG->SelectNodeTo(N, AArch64::SBFMXri, VT, Ops);
return true;
}
/// Try to form fcvtl2 instructions from a floating-point extend of a high-half
/// extract of a subvector.
bool AArch64DAGToDAGISel::tryHighFPExt(SDNode *N) {
assert(N->getOpcode() == ISD::FP_EXTEND);
// There are 2 forms of fcvtl2 - extend to double or extend to float.
SDValue Extract = N->getOperand(0);
EVT VT = N->getValueType(0);
EVT NarrowVT = Extract.getValueType();
if ((VT != MVT::v2f64 || NarrowVT != MVT::v2f32) &&
(VT != MVT::v4f32 || NarrowVT != MVT::v4f16))
return false;
// Optionally look past a bitcast.
Extract = peekThroughBitcasts(Extract);
if (Extract.getOpcode() != ISD::EXTRACT_SUBVECTOR)
return false;
// Match extract from start of high half index.
// Example: v8i16 -> v4i16 means the extract must begin at index 4.
unsigned ExtractIndex = Extract.getConstantOperandVal(1);
if (ExtractIndex != Extract.getValueType().getVectorNumElements())
return false;
auto Opcode = VT == MVT::v2f64 ? AArch64::FCVTLv4i32 : AArch64::FCVTLv8i16;
CurDAG->SelectNodeTo(N, Opcode, VT, Extract.getOperand(0));
return true;
}
static bool isBitfieldExtractOp(SelectionDAG *CurDAG, SDNode *N, unsigned &Opc,
SDValue &Opd0, unsigned &Immr, unsigned &Imms,
unsigned NumberOfIgnoredLowBits = 0,
bool BiggerPattern = false) {
if (N->getValueType(0) != MVT::i32 && N->getValueType(0) != MVT::i64)
return false;
switch (N->getOpcode()) {
default:
if (!N->isMachineOpcode())
return false;
break;
case ISD::AND:
return isBitfieldExtractOpFromAnd(CurDAG, N, Opc, Opd0, Immr, Imms,
NumberOfIgnoredLowBits, BiggerPattern);
case ISD::SRL:
case ISD::SRA:
return isBitfieldExtractOpFromShr(N, Opc, Opd0, Immr, Imms, BiggerPattern);
case ISD::SIGN_EXTEND_INREG:
return isBitfieldExtractOpFromSExtInReg(N, Opc, Opd0, Immr, Imms);
}
unsigned NOpc = N->getMachineOpcode();
switch (NOpc) {
default:
return false;
case AArch64::SBFMWri:
case AArch64::UBFMWri:
case AArch64::SBFMXri:
case AArch64::UBFMXri:
Opc = NOpc;
Opd0 = N->getOperand(0);
Immr = cast<ConstantSDNode>(N->getOperand(1).getNode())->getZExtValue();
Imms = cast<ConstantSDNode>(N->getOperand(2).getNode())->getZExtValue();
return true;
}
// Unreachable
return false;
}
bool AArch64DAGToDAGISel::tryBitfieldExtractOp(SDNode *N) {
unsigned Opc, Immr, Imms;
SDValue Opd0;
if (!isBitfieldExtractOp(CurDAG, N, Opc, Opd0, Immr, Imms))
return false;
EVT VT = N->getValueType(0);
SDLoc dl(N);
// If the bit extract operation is 64bit but the original type is 32bit, we
// need to add one EXTRACT_SUBREG.
if ((Opc == AArch64::SBFMXri || Opc == AArch64::UBFMXri) && VT == MVT::i32) {
SDValue Ops64[] = {Opd0, CurDAG->getTargetConstant(Immr, dl, MVT::i64),
CurDAG->getTargetConstant(Imms, dl, MVT::i64)};
SDNode *BFM = CurDAG->getMachineNode(Opc, dl, MVT::i64, Ops64);
SDValue SubReg = CurDAG->getTargetConstant(AArch64::sub_32, dl, MVT::i32);
ReplaceNode(N, CurDAG->getMachineNode(TargetOpcode::EXTRACT_SUBREG, dl,
MVT::i32, SDValue(BFM, 0), SubReg));
return true;
}
SDValue Ops[] = {Opd0, CurDAG->getTargetConstant(Immr, dl, VT),
CurDAG->getTargetConstant(Imms, dl, VT)};
CurDAG->SelectNodeTo(N, Opc, VT, Ops);
return true;
}
/// Does DstMask form a complementary pair with the mask provided by
/// BitsToBeInserted, suitable for use in a BFI instruction. Roughly speaking,
/// this asks whether DstMask zeroes precisely those bits that will be set by
/// the other half.
static bool isBitfieldDstMask(uint64_t DstMask, const APInt &BitsToBeInserted,
unsigned NumberOfIgnoredHighBits, EVT VT) {
assert((VT == MVT::i32 || VT == MVT::i64) &&
"i32 or i64 mask type expected!");
unsigned BitWidth = VT.getSizeInBits() - NumberOfIgnoredHighBits;
APInt SignificantDstMask = APInt(BitWidth, DstMask);
APInt SignificantBitsToBeInserted = BitsToBeInserted.zextOrTrunc(BitWidth);
return (SignificantDstMask & SignificantBitsToBeInserted) == 0 &&
(SignificantDstMask | SignificantBitsToBeInserted).isAllOnesValue();
}
// Look for bits that will be useful for later uses.
// A bit is consider useless as soon as it is dropped and never used
// before it as been dropped.
// E.g., looking for useful bit of x
// 1. y = x & 0x7
// 2. z = y >> 2
// After #1, x useful bits are 0x7, then the useful bits of x, live through
// y.
// After #2, the useful bits of x are 0x4.
// However, if x is used on an unpredicatable instruction, then all its bits
// are useful.
// E.g.
// 1. y = x & 0x7
// 2. z = y >> 2
// 3. str x, [@x]
static void getUsefulBits(SDValue Op, APInt &UsefulBits, unsigned Depth = 0);
static void getUsefulBitsFromAndWithImmediate(SDValue Op, APInt &UsefulBits,
unsigned Depth) {
uint64_t Imm =
cast<const ConstantSDNode>(Op.getOperand(1).getNode())->getZExtValue();
Imm = AArch64_AM::decodeLogicalImmediate(Imm, UsefulBits.getBitWidth());
UsefulBits &= APInt(UsefulBits.getBitWidth(), Imm);
getUsefulBits(Op, UsefulBits, Depth + 1);
}
static void getUsefulBitsFromBitfieldMoveOpd(SDValue Op, APInt &UsefulBits,
uint64_t Imm, uint64_t MSB,
unsigned Depth) {
// inherit the bitwidth value
APInt OpUsefulBits(UsefulBits);
OpUsefulBits = 1;
if (MSB >= Imm) {
OpUsefulBits <<= MSB - Imm + 1;
--OpUsefulBits;
// The interesting part will be in the lower part of the result
getUsefulBits(Op, OpUsefulBits, Depth + 1);
// The interesting part was starting at Imm in the argument
OpUsefulBits <<= Imm;
} else {
OpUsefulBits <<= MSB + 1;
--OpUsefulBits;
// The interesting part will be shifted in the result
OpUsefulBits <<= OpUsefulBits.getBitWidth() - Imm;
getUsefulBits(Op, OpUsefulBits, Depth + 1);
// The interesting part was at zero in the argument
OpUsefulBits.lshrInPlace(OpUsefulBits.getBitWidth() - Imm);
}
UsefulBits &= OpUsefulBits;
}
static void getUsefulBitsFromUBFM(SDValue Op, APInt &UsefulBits,
unsigned Depth) {
uint64_t Imm =
cast<const ConstantSDNode>(Op.getOperand(1).getNode())->getZExtValue();
uint64_t MSB =
cast<const ConstantSDNode>(Op.getOperand(2).getNode())->getZExtValue();
getUsefulBitsFromBitfieldMoveOpd(Op, UsefulBits, Imm, MSB, Depth);
}
static void getUsefulBitsFromOrWithShiftedReg(SDValue Op, APInt &UsefulBits,
unsigned Depth) {
uint64_t ShiftTypeAndValue =
cast<const ConstantSDNode>(Op.getOperand(2).getNode())->getZExtValue();
APInt Mask(UsefulBits);
Mask.clearAllBits();
Mask.flipAllBits();
if (AArch64_AM::getShiftType(ShiftTypeAndValue) == AArch64_AM::LSL) {
// Shift Left
uint64_t ShiftAmt = AArch64_AM::getShiftValue(ShiftTypeAndValue);
Mask <<= ShiftAmt;
getUsefulBits(Op, Mask, Depth + 1);
Mask.lshrInPlace(ShiftAmt);
} else if (AArch64_AM::getShiftType(ShiftTypeAndValue) == AArch64_AM::LSR) {
// Shift Right
// We do not handle AArch64_AM::ASR, because the sign will change the
// number of useful bits
uint64_t ShiftAmt = AArch64_AM::getShiftValue(ShiftTypeAndValue);
Mask.lshrInPlace(ShiftAmt);
getUsefulBits(Op, Mask, Depth + 1);
Mask <<= ShiftAmt;
} else
return;
UsefulBits &= Mask;
}
static void getUsefulBitsFromBFM(SDValue Op, SDValue Orig, APInt &UsefulBits,
unsigned Depth) {
uint64_t Imm =
cast<const ConstantSDNode>(Op.getOperand(2).getNode())->getZExtValue();
uint64_t MSB =
cast<const ConstantSDNode>(Op.getOperand(3).getNode())->getZExtValue();
APInt OpUsefulBits(UsefulBits);
OpUsefulBits = 1;
APInt ResultUsefulBits(UsefulBits.getBitWidth(), 0);
ResultUsefulBits.flipAllBits();
APInt Mask(UsefulBits.getBitWidth(), 0);
getUsefulBits(Op, ResultUsefulBits, Depth + 1);
if (MSB >= Imm) {
// The instruction is a BFXIL.
uint64_t Width = MSB - Imm + 1;
uint64_t LSB = Imm;
OpUsefulBits <<= Width;
--OpUsefulBits;
if (Op.getOperand(1) == Orig) {
// Copy the low bits from the result to bits starting from LSB.
Mask = ResultUsefulBits & OpUsefulBits;
Mask <<= LSB;
}
if (Op.getOperand(0) == Orig)
// Bits starting from LSB in the input contribute to the result.
Mask |= (ResultUsefulBits & ~OpUsefulBits);
} else {
// The instruction is a BFI.
uint64_t Width = MSB + 1;
uint64_t LSB = UsefulBits.getBitWidth() - Imm;
OpUsefulBits <<= Width;
--OpUsefulBits;
OpUsefulBits <<= LSB;
if (Op.getOperand(1) == Orig) {
// Copy the bits from the result to the zero bits.
Mask = ResultUsefulBits & OpUsefulBits;
Mask.lshrInPlace(LSB);
}
if (Op.getOperand(0) == Orig)
Mask |= (ResultUsefulBits & ~OpUsefulBits);
}
UsefulBits &= Mask;
}
static void getUsefulBitsForUse(SDNode *UserNode, APInt &UsefulBits,
SDValue Orig, unsigned Depth) {
// Users of this node should have already been instruction selected
// FIXME: Can we turn that into an assert?
if (!UserNode->isMachineOpcode())
return;
switch (UserNode->getMachineOpcode()) {
default:
return;
case AArch64::ANDSWri:
case AArch64::ANDSXri:
case AArch64::ANDWri:
case AArch64::ANDXri:
// We increment Depth only when we call the getUsefulBits
return getUsefulBitsFromAndWithImmediate(SDValue(UserNode, 0), UsefulBits,
Depth);
case AArch64::UBFMWri:
case AArch64::UBFMXri:
return getUsefulBitsFromUBFM(SDValue(UserNode, 0), UsefulBits, Depth);
case AArch64::ORRWrs:
case AArch64::ORRXrs:
if (UserNode->getOperand(0) != Orig && UserNode->getOperand(1) == Orig)
getUsefulBitsFromOrWithShiftedReg(SDValue(UserNode, 0), UsefulBits,
Depth);
return;
case AArch64::BFMWri:
case AArch64::BFMXri:
return getUsefulBitsFromBFM(SDValue(UserNode, 0), Orig, UsefulBits, Depth);
case AArch64::STRBBui:
case AArch64::STURBBi:
if (UserNode->getOperand(0) != Orig)
return;
UsefulBits &= APInt(UsefulBits.getBitWidth(), 0xff);
return;
case AArch64::STRHHui:
case AArch64::STURHHi:
if (UserNode->getOperand(0) != Orig)
return;
UsefulBits &= APInt(UsefulBits.getBitWidth(), 0xffff);
return;
}
}
static void getUsefulBits(SDValue Op, APInt &UsefulBits, unsigned Depth) {
if (Depth >= SelectionDAG::MaxRecursionDepth)
return;
// Initialize UsefulBits
if (!Depth) {
unsigned Bitwidth = Op.getScalarValueSizeInBits();
// At the beginning, assume every produced bits is useful
UsefulBits = APInt(Bitwidth, 0);
UsefulBits.flipAllBits();
}
APInt UsersUsefulBits(UsefulBits.getBitWidth(), 0);
for (SDNode *Node : Op.getNode()->uses()) {
// A use cannot produce useful bits
APInt UsefulBitsForUse = APInt(UsefulBits);
getUsefulBitsForUse(Node, UsefulBitsForUse, Op, Depth);
UsersUsefulBits |= UsefulBitsForUse;
}
// UsefulBits contains the produced bits that are meaningful for the
// current definition, thus a user cannot make a bit meaningful at
// this point
UsefulBits &= UsersUsefulBits;
}
/// Create a machine node performing a notional SHL of Op by ShlAmount. If
/// ShlAmount is negative, do a (logical) right-shift instead. If ShlAmount is
/// 0, return Op unchanged.
static SDValue getLeftShift(SelectionDAG *CurDAG, SDValue Op, int ShlAmount) {
if (ShlAmount == 0)
return Op;
EVT VT = Op.getValueType();
SDLoc dl(Op);
unsigned BitWidth = VT.getSizeInBits();
unsigned UBFMOpc = BitWidth == 32 ? AArch64::UBFMWri : AArch64::UBFMXri;
SDNode *ShiftNode;
if (ShlAmount > 0) {
// LSL wD, wN, #Amt == UBFM wD, wN, #32-Amt, #31-Amt
ShiftNode = CurDAG->getMachineNode(
UBFMOpc, dl, VT, Op,
CurDAG->getTargetConstant(BitWidth - ShlAmount, dl, VT),
CurDAG->getTargetConstant(BitWidth - 1 - ShlAmount, dl, VT));
} else {
// LSR wD, wN, #Amt == UBFM wD, wN, #Amt, #32-1
assert(ShlAmount < 0 && "expected right shift");
int ShrAmount = -ShlAmount;
ShiftNode = CurDAG->getMachineNode(
UBFMOpc, dl, VT, Op, CurDAG->getTargetConstant(ShrAmount, dl, VT),
CurDAG->getTargetConstant(BitWidth - 1, dl, VT));
}
return SDValue(ShiftNode, 0);
}
/// Does this tree qualify as an attempt to move a bitfield into position,
/// essentially "(and (shl VAL, N), Mask)".
static bool isBitfieldPositioningOp(SelectionDAG *CurDAG, SDValue Op,
bool BiggerPattern,
SDValue &Src, int &ShiftAmount,
int &MaskWidth) {
EVT VT = Op.getValueType();
unsigned BitWidth = VT.getSizeInBits();
(void)BitWidth;
assert(BitWidth == 32 || BitWidth == 64);
KnownBits Known = CurDAG->computeKnownBits(Op);
// Non-zero in the sense that they're not provably zero, which is the key
// point if we want to use this value
uint64_t NonZeroBits = (~Known.Zero).getZExtValue();
// Discard a constant AND mask if present. It's safe because the node will
// already have been factored into the computeKnownBits calculation above.
uint64_t AndImm;
if (isOpcWithIntImmediate(Op.getNode(), ISD::AND, AndImm)) {
assert((~APInt(BitWidth, AndImm) & ~Known.Zero) == 0);
Op = Op.getOperand(0);
}
// Don't match if the SHL has more than one use, since then we'll end up
// generating SHL+UBFIZ instead of just keeping SHL+AND.
if (!BiggerPattern && !Op.hasOneUse())
return false;
uint64_t ShlImm;
if (!isOpcWithIntImmediate(Op.getNode(), ISD::SHL, ShlImm))
return false;
Op = Op.getOperand(0);
if (!isShiftedMask_64(NonZeroBits))
return false;
ShiftAmount = countTrailingZeros(NonZeroBits);
MaskWidth = countTrailingOnes(NonZeroBits >> ShiftAmount);
// BFI encompasses sufficiently many nodes that it's worth inserting an extra
// LSL/LSR if the mask in NonZeroBits doesn't quite match up with the ISD::SHL
// amount. BiggerPattern is true when this pattern is being matched for BFI,
// BiggerPattern is false when this pattern is being matched for UBFIZ, in
// which case it is not profitable to insert an extra shift.
if (ShlImm - ShiftAmount != 0 && !BiggerPattern)
return false;
Src = getLeftShift(CurDAG, Op, ShlImm - ShiftAmount);
return true;
}
static bool isShiftedMask(uint64_t Mask, EVT VT) {
assert(VT == MVT::i32 || VT == MVT::i64);
if (VT == MVT::i32)
return isShiftedMask_32(Mask);
return isShiftedMask_64(Mask);
}
// Generate a BFI/BFXIL from 'or (and X, MaskImm), OrImm' iff the value being
// inserted only sets known zero bits.
static bool tryBitfieldInsertOpFromOrAndImm(SDNode *N, SelectionDAG *CurDAG) {
assert(N->getOpcode() == ISD::OR && "Expect a OR operation");
EVT VT = N->getValueType(0);
if (VT != MVT::i32 && VT != MVT::i64)
return false;
unsigned BitWidth = VT.getSizeInBits();
uint64_t OrImm;
if (!isOpcWithIntImmediate(N, ISD::OR, OrImm))
return false;
// Skip this transformation if the ORR immediate can be encoded in the ORR.
// Otherwise, we'll trade an AND+ORR for ORR+BFI/BFXIL, which is most likely
// performance neutral.
if (AArch64_AM::isLogicalImmediate(OrImm, BitWidth))
return false;
uint64_t MaskImm;
SDValue And = N->getOperand(0);
// Must be a single use AND with an immediate operand.
if (!And.hasOneUse() ||
!isOpcWithIntImmediate(And.getNode(), ISD::AND, MaskImm))
return false;
// Compute the Known Zero for the AND as this allows us to catch more general
// cases than just looking for AND with imm.
KnownBits Known = CurDAG->computeKnownBits(And);
// Non-zero in the sense that they're not provably zero, which is the key
// point if we want to use this value.
uint64_t NotKnownZero = (~Known.Zero).getZExtValue();
// The KnownZero mask must be a shifted mask (e.g., 1110..011, 11100..00).
if (!isShiftedMask(Known.Zero.getZExtValue(), VT))
return false;
// The bits being inserted must only set those bits that are known to be zero.
if ((OrImm & NotKnownZero) != 0) {
// FIXME: It's okay if the OrImm sets NotKnownZero bits to 1, but we don't
// currently handle this case.
return false;
}
// BFI/BFXIL dst, src, #lsb, #width.
int LSB = countTrailingOnes(NotKnownZero);
int Width = BitWidth - APInt(BitWidth, NotKnownZero).countPopulation();
// BFI/BFXIL is an alias of BFM, so translate to BFM operands.
unsigned ImmR = (BitWidth - LSB) % BitWidth;
unsigned ImmS = Width - 1;
// If we're creating a BFI instruction avoid cases where we need more
// instructions to materialize the BFI constant as compared to the original
// ORR. A BFXIL will use the same constant as the original ORR, so the code
// should be no worse in this case.
bool IsBFI = LSB != 0;
uint64_t BFIImm = OrImm >> LSB;
if (IsBFI && !AArch64_AM::isLogicalImmediate(BFIImm, BitWidth)) {
// We have a BFI instruction and we know the constant can't be materialized
// with a ORR-immediate with the zero register.
unsigned OrChunks = 0, BFIChunks = 0;
for (unsigned Shift = 0; Shift < BitWidth; Shift += 16) {
if (((OrImm >> Shift) & 0xFFFF) != 0)
++OrChunks;
if (((BFIImm >> Shift) & 0xFFFF) != 0)
++BFIChunks;
}
if (BFIChunks > OrChunks)
return false;
}
// Materialize the constant to be inserted.
SDLoc DL(N);
unsigned MOVIOpc = VT == MVT::i32 ? AArch64::MOVi32imm : AArch64::MOVi64imm;
SDNode *MOVI = CurDAG->getMachineNode(
MOVIOpc, DL, VT, CurDAG->getTargetConstant(BFIImm, DL, VT));
// Create the BFI/BFXIL instruction.
SDValue Ops[] = {And.getOperand(0), SDValue(MOVI, 0),
CurDAG->getTargetConstant(ImmR, DL, VT),
CurDAG->getTargetConstant(ImmS, DL, VT)};
unsigned Opc = (VT == MVT::i32) ? AArch64::BFMWri : AArch64::BFMXri;
CurDAG->SelectNodeTo(N, Opc, VT, Ops);
return true;
}
static bool tryBitfieldInsertOpFromOr(SDNode *N, const APInt &UsefulBits,
SelectionDAG *CurDAG) {
assert(N->getOpcode() == ISD::OR && "Expect a OR operation");
EVT VT = N->getValueType(0);
if (VT != MVT::i32 && VT != MVT::i64)
return false;
unsigned BitWidth = VT.getSizeInBits();
// Because of simplify-demanded-bits in DAGCombine, involved masks may not
// have the expected shape. Try to undo that.
unsigned NumberOfIgnoredLowBits = UsefulBits.countTrailingZeros();
unsigned NumberOfIgnoredHighBits = UsefulBits.countLeadingZeros();
// Given a OR operation, check if we have the following pattern
// ubfm c, b, imm, imm2 (or something that does the same jobs, see
// isBitfieldExtractOp)
// d = e & mask2 ; where mask is a binary sequence of 1..10..0 and
// countTrailingZeros(mask2) == imm2 - imm + 1
// f = d | c
// if yes, replace the OR instruction with:
// f = BFM Opd0, Opd1, LSB, MSB ; where LSB = imm, and MSB = imm2
// OR is commutative, check all combinations of operand order and values of
// BiggerPattern, i.e.
// Opd0, Opd1, BiggerPattern=false
// Opd1, Opd0, BiggerPattern=false
// Opd0, Opd1, BiggerPattern=true
// Opd1, Opd0, BiggerPattern=true
// Several of these combinations may match, so check with BiggerPattern=false
// first since that will produce better results by matching more instructions
// and/or inserting fewer extra instructions.
for (int I = 0; I < 4; ++I) {
SDValue Dst, Src;
unsigned ImmR, ImmS;
bool BiggerPattern = I / 2;
SDValue OrOpd0Val = N->getOperand(I % 2);
SDNode *OrOpd0 = OrOpd0Val.getNode();
SDValue OrOpd1Val = N->getOperand((I + 1) % 2);
SDNode *OrOpd1 = OrOpd1Val.getNode();
unsigned BFXOpc;
int DstLSB, Width;
if (isBitfieldExtractOp(CurDAG, OrOpd0, BFXOpc, Src, ImmR, ImmS,
NumberOfIgnoredLowBits, BiggerPattern)) {
// Check that the returned opcode is compatible with the pattern,
// i.e., same type and zero extended (U and not S)
if ((BFXOpc != AArch64::UBFMXri && VT == MVT::i64) ||
(BFXOpc != AArch64::UBFMWri && VT == MVT::i32))
continue;
// Compute the width of the bitfield insertion
DstLSB = 0;
Width = ImmS - ImmR + 1;
// FIXME: This constraint is to catch bitfield insertion we may
// want to widen the pattern if we want to grab general bitfied
// move case
if (Width <= 0)
continue;
// If the mask on the insertee is correct, we have a BFXIL operation. We
// can share the ImmR and ImmS values from the already-computed UBFM.
} else if (isBitfieldPositioningOp(CurDAG, OrOpd0Val,
BiggerPattern,
Src, DstLSB, Width)) {
ImmR = (BitWidth - DstLSB) % BitWidth;
ImmS = Width - 1;
} else
continue;
// Check the second part of the pattern
EVT VT = OrOpd1Val.getValueType();
assert((VT == MVT::i32 || VT == MVT::i64) && "unexpected OR operand");
// Compute the Known Zero for the candidate of the first operand.
// This allows to catch more general case than just looking for
// AND with imm. Indeed, simplify-demanded-bits may have removed
// the AND instruction because it proves it was useless.
KnownBits Known = CurDAG->computeKnownBits(OrOpd1Val);
// Check if there is enough room for the second operand to appear
// in the first one
APInt BitsToBeInserted =
APInt::getBitsSet(Known.getBitWidth(), DstLSB, DstLSB + Width);
if ((BitsToBeInserted & ~Known.Zero) != 0)
continue;
// Set the first operand
uint64_t Imm;
if (isOpcWithIntImmediate(OrOpd1, ISD::AND, Imm) &&
isBitfieldDstMask(Imm, BitsToBeInserted, NumberOfIgnoredHighBits, VT))
// In that case, we can eliminate the AND
Dst = OrOpd1->getOperand(0);
else
// Maybe the AND has been removed by simplify-demanded-bits
// or is useful because it discards more bits
Dst = OrOpd1Val;
// both parts match
SDLoc DL(N);
SDValue Ops[] = {Dst, Src, CurDAG->getTargetConstant(ImmR, DL, VT),
CurDAG->getTargetConstant(ImmS, DL, VT)};
unsigned Opc = (VT == MVT::i32) ? AArch64::BFMWri : AArch64::BFMXri;
CurDAG->SelectNodeTo(N, Opc, VT, Ops);
return true;
}
// Generate a BFXIL from 'or (and X, Mask0Imm), (and Y, Mask1Imm)' iff
// Mask0Imm and ~Mask1Imm are equivalent and one of the MaskImms is a shifted
// mask (e.g., 0x000ffff0).
uint64_t Mask0Imm, Mask1Imm;
SDValue And0 = N->getOperand(0);
SDValue And1 = N->getOperand(1);
if (And0.hasOneUse() && And1.hasOneUse() &&
isOpcWithIntImmediate(And0.getNode(), ISD::AND, Mask0Imm) &&
isOpcWithIntImmediate(And1.getNode(), ISD::AND, Mask1Imm) &&
APInt(BitWidth, Mask0Imm) == ~APInt(BitWidth, Mask1Imm) &&
(isShiftedMask(Mask0Imm, VT) || isShiftedMask(Mask1Imm, VT))) {
// ORR is commutative, so canonicalize to the form 'or (and X, Mask0Imm),
// (and Y, Mask1Imm)' where Mask1Imm is the shifted mask masking off the
// bits to be inserted.
if (isShiftedMask(Mask0Imm, VT)) {
std::swap(And0, And1);
std::swap(Mask0Imm, Mask1Imm);
}
SDValue Src = And1->getOperand(0);
SDValue Dst = And0->getOperand(0);
unsigned LSB = countTrailingZeros(Mask1Imm);
int Width = BitWidth - APInt(BitWidth, Mask0Imm).countPopulation();
// The BFXIL inserts the low-order bits from a source register, so right
// shift the needed bits into place.
SDLoc DL(N);
unsigned ShiftOpc = (VT == MVT::i32) ? AArch64::UBFMWri : AArch64::UBFMXri;
SDNode *LSR = CurDAG->getMachineNode(
ShiftOpc, DL, VT, Src, CurDAG->getTargetConstant(LSB, DL, VT),
CurDAG->getTargetConstant(BitWidth - 1, DL, VT));
// BFXIL is an alias of BFM, so translate to BFM operands.
unsigned ImmR = (BitWidth - LSB) % BitWidth;
unsigned ImmS = Width - 1;
// Create the BFXIL instruction.
SDValue Ops[] = {Dst, SDValue(LSR, 0),
CurDAG->getTargetConstant(ImmR, DL, VT),
CurDAG->getTargetConstant(ImmS, DL, VT)};
unsigned Opc = (VT == MVT::i32) ? AArch64::BFMWri : AArch64::BFMXri;
CurDAG->SelectNodeTo(N, Opc, VT, Ops);
return true;
}
return false;
}
bool AArch64DAGToDAGISel::tryBitfieldInsertOp(SDNode *N) {
if (N->getOpcode() != ISD::OR)
return false;
APInt NUsefulBits;
getUsefulBits(SDValue(N, 0), NUsefulBits);
// If all bits are not useful, just return UNDEF.
if (!NUsefulBits) {
CurDAG->SelectNodeTo(N, TargetOpcode::IMPLICIT_DEF, N->getValueType(0));
return true;
}
if (tryBitfieldInsertOpFromOr(N, NUsefulBits, CurDAG))
return true;
return tryBitfieldInsertOpFromOrAndImm(N, CurDAG);
}
/// SelectBitfieldInsertInZeroOp - Match a UBFIZ instruction that is the
/// equivalent of a left shift by a constant amount followed by an and masking
/// out a contiguous set of bits.
bool AArch64DAGToDAGISel::tryBitfieldInsertInZeroOp(SDNode *N) {
if (N->getOpcode() != ISD::AND)
return false;
EVT VT = N->getValueType(0);
if (VT != MVT::i32 && VT != MVT::i64)
return false;
SDValue Op0;
int DstLSB, Width;
if (!isBitfieldPositioningOp(CurDAG, SDValue(N, 0), /*BiggerPattern=*/false,
Op0, DstLSB, Width))
return false;
// ImmR is the rotate right amount.
unsigned ImmR = (VT.getSizeInBits() - DstLSB) % VT.getSizeInBits();
// ImmS is the most significant bit of the source to be moved.
unsigned ImmS = Width - 1;
SDLoc DL(N);
SDValue Ops[] = {Op0, CurDAG->getTargetConstant(ImmR, DL, VT),
CurDAG->getTargetConstant(ImmS, DL, VT)};
unsigned Opc = (VT == MVT::i32) ? AArch64::UBFMWri : AArch64::UBFMXri;
CurDAG->SelectNodeTo(N, Opc, VT, Ops);
return true;
}
/// tryShiftAmountMod - Take advantage of built-in mod of shift amount in
/// variable shift/rotate instructions.
bool AArch64DAGToDAGISel::tryShiftAmountMod(SDNode *N) {
EVT VT = N->getValueType(0);
unsigned Opc;
switch (N->getOpcode()) {
case ISD::ROTR:
Opc = (VT == MVT::i32) ? AArch64::RORVWr : AArch64::RORVXr;
break;
case ISD::SHL:
Opc = (VT == MVT::i32) ? AArch64::LSLVWr : AArch64::LSLVXr;
break;
case ISD::SRL:
Opc = (VT == MVT::i32) ? AArch64::LSRVWr : AArch64::LSRVXr;
break;
case ISD::SRA:
Opc = (VT == MVT::i32) ? AArch64::ASRVWr : AArch64::ASRVXr;
break;
default:
return false;
}
uint64_t Size;
uint64_t Bits;
if (VT == MVT::i32) {
Bits = 5;
Size = 32;
} else if (VT == MVT::i64) {
Bits = 6;
Size = 64;
} else
return false;
SDValue ShiftAmt = N->getOperand(1);
SDLoc DL(N);
SDValue NewShiftAmt;
// Skip over an extend of the shift amount.
if (ShiftAmt->getOpcode() == ISD::ZERO_EXTEND ||
ShiftAmt->getOpcode() == ISD::ANY_EXTEND)
ShiftAmt = ShiftAmt->getOperand(0);
if (ShiftAmt->getOpcode() == ISD::ADD || ShiftAmt->getOpcode() == ISD::SUB) {
SDValue Add0 = ShiftAmt->getOperand(0);
SDValue Add1 = ShiftAmt->getOperand(1);
uint64_t Add0Imm;
uint64_t Add1Imm;
// If we are shifting by X+/-N where N == 0 mod Size, then just shift by X
// to avoid the ADD/SUB.
if (isIntImmediate(Add1, Add1Imm) && (Add1Imm % Size == 0))
NewShiftAmt = Add0;
// If we are shifting by N-X where N == 0 mod Size, then just shift by -X to
// generate a NEG instead of a SUB of a constant.
else if (ShiftAmt->getOpcode() == ISD::SUB &&
isIntImmediate(Add0, Add0Imm) && Add0Imm != 0 &&
(Add0Imm % Size == 0)) {
unsigned NegOpc;
unsigned ZeroReg;
EVT SubVT = ShiftAmt->getValueType(0);
if (SubVT == MVT::i32) {
NegOpc = AArch64::SUBWrr;
ZeroReg = AArch64::WZR;
} else {
assert(SubVT == MVT::i64);
NegOpc = AArch64::SUBXrr;
ZeroReg = AArch64::XZR;
}
SDValue Zero =
CurDAG->getCopyFromReg(CurDAG->getEntryNode(), DL, ZeroReg, SubVT);
MachineSDNode *Neg =
CurDAG->getMachineNode(NegOpc, DL, SubVT, Zero, Add1);
NewShiftAmt = SDValue(Neg, 0);
} else
return false;
} else {
// If the shift amount is masked with an AND, check that the mask covers the
// bits that are implicitly ANDed off by the above opcodes and if so, skip
// the AND.
uint64_t MaskImm;
if (!isOpcWithIntImmediate(ShiftAmt.getNode(), ISD::AND, MaskImm) &&
!isOpcWithIntImmediate(ShiftAmt.getNode(), AArch64ISD::ANDS, MaskImm))
return false;
if (countTrailingOnes(MaskImm) < Bits)
return false;
NewShiftAmt = ShiftAmt->getOperand(0);
}
// Narrow/widen the shift amount to match the size of the shift operation.
if (VT == MVT::i32)
NewShiftAmt = narrowIfNeeded(CurDAG, NewShiftAmt);
else if (VT == MVT::i64 && NewShiftAmt->getValueType(0) == MVT::i32) {
SDValue SubReg = CurDAG->getTargetConstant(AArch64::sub_32, DL, MVT::i32);
MachineSDNode *Ext = CurDAG->getMachineNode(
AArch64::SUBREG_TO_REG, DL, VT,
CurDAG->getTargetConstant(0, DL, MVT::i64), NewShiftAmt, SubReg);
NewShiftAmt = SDValue(Ext, 0);
}
SDValue Ops[] = {N->getOperand(0), NewShiftAmt};
CurDAG->SelectNodeTo(N, Opc, VT, Ops);
return true;
}
bool
AArch64DAGToDAGISel::SelectCVTFixedPosOperand(SDValue N, SDValue &FixedPos,
unsigned RegWidth) {
APFloat FVal(0.0);
if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(N))
FVal = CN->getValueAPF();
else if (LoadSDNode *LN = dyn_cast<LoadSDNode>(N)) {
// Some otherwise illegal constants are allowed in this case.
if (LN->getOperand(1).getOpcode() != AArch64ISD::ADDlow ||
!isa<ConstantPoolSDNode>(LN->getOperand(1)->getOperand(1)))
return false;
ConstantPoolSDNode *CN =
dyn_cast<ConstantPoolSDNode>(LN->getOperand(1)->getOperand(1));
FVal = cast<ConstantFP>(CN->getConstVal())->getValueAPF();
} else
return false;
// An FCVT[SU] instruction performs: convertToInt(Val * 2^fbits) where fbits
// is between 1 and 32 for a destination w-register, or 1 and 64 for an
// x-register.
//
// By this stage, we've detected (fp_to_[su]int (fmul Val, THIS_NODE)) so we
// want THIS_NODE to be 2^fbits. This is much easier to deal with using
// integers.
bool IsExact;
// fbits is between 1 and 64 in the worst-case, which means the fmul
// could have 2^64 as an actual operand. Need 65 bits of precision.
APSInt IntVal(65, true);
FVal.convertToInteger(IntVal, APFloat::rmTowardZero, &IsExact);
// N.b. isPowerOf2 also checks for > 0.
if (!IsExact || !IntVal.isPowerOf2()) return false;
unsigned FBits = IntVal.logBase2();
// Checks above should have guaranteed that we haven't lost information in
// finding FBits, but it must still be in range.
if (FBits == 0 || FBits > RegWidth) return false;
FixedPos = CurDAG->getTargetConstant(FBits, SDLoc(N), MVT::i32);
return true;
}
// Inspects a register string of the form o0:op1:CRn:CRm:op2 gets the fields
// of the string and obtains the integer values from them and combines these
// into a single value to be used in the MRS/MSR instruction.
static int getIntOperandFromRegisterString(StringRef RegString) {
SmallVector<StringRef, 5> Fields;
RegString.split(Fields, ':');
if (Fields.size() == 1)
return -1;
assert(Fields.size() == 5
&& "Invalid number of fields in read register string");
SmallVector<int, 5> Ops;
bool AllIntFields = true;
for (StringRef Field : Fields) {
unsigned IntField;
AllIntFields &= !Field.getAsInteger(10, IntField);
Ops.push_back(IntField);
}
assert(AllIntFields &&
"Unexpected non-integer value in special register string.");
(void)AllIntFields;
// Need to combine the integer fields of the string into a single value
// based on the bit encoding of MRS/MSR instruction.
return (Ops[0] << 14) | (Ops[1] << 11) | (Ops[2] << 7) |
(Ops[3] << 3) | (Ops[4]);
}
// Lower the read_register intrinsic to an MRS instruction node if the special
// register string argument is either of the form detailed in the ALCE (the
// form described in getIntOperandsFromRegsterString) or is a named register
// known by the MRS SysReg mapper.
bool AArch64DAGToDAGISel::tryReadRegister(SDNode *N) {
const MDNodeSDNode *MD = dyn_cast<MDNodeSDNode>(N->getOperand(1));
const MDString *RegString = dyn_cast<MDString>(MD->getMD()->getOperand(0));
SDLoc DL(N);
int Reg = getIntOperandFromRegisterString(RegString->getString());
if (Reg != -1) {
ReplaceNode(N, CurDAG->getMachineNode(
AArch64::MRS, DL, N->getSimpleValueType(0), MVT::Other,
CurDAG->getTargetConstant(Reg, DL, MVT::i32),
N->getOperand(0)));
return true;
}
// Use the sysreg mapper to map the remaining possible strings to the
// value for the register to be used for the instruction operand.
auto TheReg = AArch64SysReg::lookupSysRegByName(RegString->getString());
if (TheReg && TheReg->Readable &&
TheReg->haveFeatures(Subtarget->getFeatureBits()))
Reg = TheReg->Encoding;
else
Reg = AArch64SysReg::parseGenericRegister(RegString->getString());
if (Reg != -1) {
ReplaceNode(N, CurDAG->getMachineNode(
AArch64::MRS, DL, N->getSimpleValueType(0), MVT::Other,
CurDAG->getTargetConstant(Reg, DL, MVT::i32),
N->getOperand(0)));
return true;
}
if (RegString->getString() == "pc") {
ReplaceNode(N, CurDAG->getMachineNode(
AArch64::ADR, DL, N->getSimpleValueType(0), MVT::Other,
CurDAG->getTargetConstant(0, DL, MVT::i32),
N->getOperand(0)));
return true;
}
return false;
}
// Lower the write_register intrinsic to an MSR instruction node if the special
// register string argument is either of the form detailed in the ALCE (the
// form described in getIntOperandsFromRegsterString) or is a named register
// known by the MSR SysReg mapper.
bool AArch64DAGToDAGISel::tryWriteRegister(SDNode *N) {
const MDNodeSDNode *MD = dyn_cast<MDNodeSDNode>(N->getOperand(1));
const MDString *RegString = dyn_cast<MDString>(MD->getMD()->getOperand(0));
SDLoc DL(N);
int Reg = getIntOperandFromRegisterString(RegString->getString());
if (Reg != -1) {
ReplaceNode(
N, CurDAG->getMachineNode(AArch64::MSR, DL, MVT::Other,
CurDAG->getTargetConstant(Reg, DL, MVT::i32),
N->getOperand(2), N->getOperand(0)));
return true;
}
// Check if the register was one of those allowed as the pstatefield value in
// the MSR (immediate) instruction. To accept the values allowed in the
// pstatefield for the MSR (immediate) instruction, we also require that an
// immediate value has been provided as an argument, we know that this is
// the case as it has been ensured by semantic checking.
auto PMapper = AArch64PState::lookupPStateByName(RegString->getString());
if (PMapper) {
assert (isa<ConstantSDNode>(N->getOperand(2))
&& "Expected a constant integer expression.");
unsigned Reg = PMapper->Encoding;
uint64_t Immed = cast<ConstantSDNode>(N->getOperand(2))->getZExtValue();
unsigned State;
if (Reg == AArch64PState::PAN || Reg == AArch64PState::UAO || Reg == AArch64PState::SSBS) {
assert(Immed < 2 && "Bad imm");
State = AArch64::MSRpstateImm1;
} else {
assert(Immed < 16 && "Bad imm");
State = AArch64::MSRpstateImm4;
}
ReplaceNode(N, CurDAG->getMachineNode(
State, DL, MVT::Other,
CurDAG->getTargetConstant(Reg, DL, MVT::i32),
CurDAG->getTargetConstant(Immed, DL, MVT::i16),
N->getOperand(0)));
return true;
}
// Use the sysreg mapper to attempt to map the remaining possible strings
// to the value for the register to be used for the MSR (register)
// instruction operand.
auto TheReg = AArch64SysReg::lookupSysRegByName(RegString->getString());
if (TheReg && TheReg->Writeable &&
TheReg->haveFeatures(Subtarget->getFeatureBits()))
Reg = TheReg->Encoding;
else
Reg = AArch64SysReg::parseGenericRegister(RegString->getString());
if (Reg != -1) {
ReplaceNode(N, CurDAG->getMachineNode(
AArch64::MSR, DL, MVT::Other,
CurDAG->getTargetConstant(Reg, DL, MVT::i32),
N->getOperand(2), N->getOperand(0)));
return true;
}
return false;
}
/// We've got special pseudo-instructions for these
bool AArch64DAGToDAGISel::SelectCMP_SWAP(SDNode *N) {
unsigned Opcode;
EVT MemTy = cast<MemSDNode>(N)->getMemoryVT();
// Leave IR for LSE if subtarget supports it.
if (Subtarget->hasLSE()) return false;
if (MemTy == MVT::i8)
Opcode = AArch64::CMP_SWAP_8;
else if (MemTy == MVT::i16)
Opcode = AArch64::CMP_SWAP_16;
else if (MemTy == MVT::i32)
Opcode = AArch64::CMP_SWAP_32;
else if (MemTy == MVT::i64)
Opcode = AArch64::CMP_SWAP_64;
else
llvm_unreachable("Unknown AtomicCmpSwap type");
MVT RegTy = MemTy == MVT::i64 ? MVT::i64 : MVT::i32;
SDValue Ops[] = {N->getOperand(1), N->getOperand(2), N->getOperand(3),
N->getOperand(0)};
SDNode *CmpSwap = CurDAG->getMachineNode(
Opcode, SDLoc(N),
CurDAG->getVTList(RegTy, MVT::i32, MVT::Other), Ops);
MachineMemOperand *MemOp = cast<MemSDNode>(N)->getMemOperand();
CurDAG->setNodeMemRefs(cast<MachineSDNode>(CmpSwap), {MemOp});
ReplaceUses(SDValue(N, 0), SDValue(CmpSwap, 0));
ReplaceUses(SDValue(N, 1), SDValue(CmpSwap, 2));
CurDAG->RemoveDeadNode(N);
return true;
}
bool AArch64DAGToDAGISel::SelectSVE8BitLslImm(SDValue N, SDValue &Base,
SDValue &Offset) {
auto C = dyn_cast<ConstantSDNode>(N);
if (!C)
return false;
auto Ty = N->getValueType(0);
int64_t Imm = C->getSExtValue();
SDLoc DL(N);
if ((Imm >= -128) && (Imm <= 127)) {
Base = CurDAG->getTargetConstant(Imm, DL, Ty);
Offset = CurDAG->getTargetConstant(0, DL, Ty);
return true;
}
if (((Imm % 256) == 0) && (Imm >= -32768) && (Imm <= 32512)) {
Base = CurDAG->getTargetConstant(Imm/256, DL, Ty);
Offset = CurDAG->getTargetConstant(8, DL, Ty);
return true;
}
return false;
}
bool AArch64DAGToDAGISel::SelectSVEAddSubImm(SDValue N, MVT VT, SDValue &Imm, SDValue &Shift) {
if (auto CNode = dyn_cast<ConstantSDNode>(N)) {
const int64_t ImmVal = CNode->getSExtValue();
SDLoc DL(N);
switch (VT.SimpleTy) {
case MVT::i8:
// Can always select i8s, no shift, mask the immediate value to
// deal with sign-extended value from lowering.
Shift = CurDAG->getTargetConstant(0, DL, MVT::i32);
Imm = CurDAG->getTargetConstant(ImmVal & 0xFF, DL, MVT::i32);
return true;
case MVT::i16:
// i16 values get sign-extended to 32-bits during lowering.
if ((ImmVal & 0xFF) == ImmVal) {
Shift = CurDAG->getTargetConstant(0, DL, MVT::i32);
Imm = CurDAG->getTargetConstant(ImmVal, DL, MVT::i32);
return true;
} else if ((ImmVal & 0xFF) == 0) {
assert((ImmVal >= -32768) && (ImmVal <= 32512));
Shift = CurDAG->getTargetConstant(8, DL, MVT::i32);
Imm = CurDAG->getTargetConstant((ImmVal >> 8) & 0xFF, DL, MVT::i32);
return true;
}
break;
case MVT::i32:
case MVT::i64:
// Range of immediate won't trigger signedness problems for 32/64b.
if ((ImmVal & 0xFF) == ImmVal) {
Shift = CurDAG->getTargetConstant(0, DL, MVT::i32);
Imm = CurDAG->getTargetConstant(ImmVal, DL, MVT::i32);
return true;
} else if ((ImmVal & 0xFF00) == ImmVal) {
Shift = CurDAG->getTargetConstant(8, DL, MVT::i32);
Imm = CurDAG->getTargetConstant(ImmVal >> 8, DL, MVT::i32);
return true;
}
break;
default:
break;
}
}
return false;
}
bool AArch64DAGToDAGISel::SelectSVESignedArithImm(SDValue N, SDValue &Imm) {
if (auto CNode = dyn_cast<ConstantSDNode>(N)) {
int64_t ImmVal = CNode->getSExtValue();
SDLoc DL(N);
if (ImmVal >= -128 && ImmVal < 128) {
Imm = CurDAG->getTargetConstant(ImmVal, DL, MVT::i32);
return true;
}
}
return false;
}
bool AArch64DAGToDAGISel::SelectSVEArithImm(SDValue N, MVT VT, SDValue &Imm) {
if (auto CNode = dyn_cast<ConstantSDNode>(N)) {
uint64_t ImmVal = CNode->getZExtValue();
switch (VT.SimpleTy) {
case MVT::i8:
ImmVal &= 0xFF;
break;
case MVT::i16:
ImmVal &= 0xFFFF;
break;
case MVT::i32:
ImmVal &= 0xFFFFFFFF;
break;
case MVT::i64:
break;
default:
llvm_unreachable("Unexpected type");
}
if (ImmVal < 256) {
Imm = CurDAG->getTargetConstant(ImmVal, SDLoc(N), MVT::i32);
return true;
}
}
return false;
}
bool AArch64DAGToDAGISel::SelectSVELogicalImm(SDValue N, MVT VT, SDValue &Imm,
bool Invert) {
if (auto CNode = dyn_cast<ConstantSDNode>(N)) {
uint64_t ImmVal = CNode->getZExtValue();
SDLoc DL(N);
if (Invert)
ImmVal = ~ImmVal;
// Shift mask depending on type size.
switch (VT.SimpleTy) {
case MVT::i8:
ImmVal &= 0xFF;
ImmVal |= ImmVal << 8;
ImmVal |= ImmVal << 16;
ImmVal |= ImmVal << 32;
break;
case MVT::i16:
ImmVal &= 0xFFFF;
ImmVal |= ImmVal << 16;
ImmVal |= ImmVal << 32;
break;
case MVT::i32:
ImmVal &= 0xFFFFFFFF;
ImmVal |= ImmVal << 32;
break;
case MVT::i64:
break;
default:
llvm_unreachable("Unexpected type");
}
uint64_t encoding;
if (AArch64_AM::processLogicalImmediate(ImmVal, 64, encoding)) {
Imm = CurDAG->getTargetConstant(encoding, DL, MVT::i64);
return true;
}
}
return false;
}
// SVE shift intrinsics allow shift amounts larger than the element's bitwidth.
// Rather than attempt to normalise everything we can sometimes saturate the
// shift amount during selection. This function also allows for consistent
// isel patterns by ensuring the resulting "Imm" node is of the i32 type
// required by the instructions.
bool AArch64DAGToDAGISel::SelectSVEShiftImm(SDValue N, uint64_t Low,
uint64_t High, bool AllowSaturation,
SDValue &Imm) {
if (auto *CN = dyn_cast<ConstantSDNode>(N)) {
uint64_t ImmVal = CN->getZExtValue();
// Reject shift amounts that are too small.
if (ImmVal < Low)
return false;
// Reject or saturate shift amounts that are too big.
if (ImmVal > High) {
if (!AllowSaturation)
return false;
ImmVal = High;
}
Imm = CurDAG->getTargetConstant(ImmVal, SDLoc(N), MVT::i32);
return true;
}
return false;
}
bool AArch64DAGToDAGISel::trySelectStackSlotTagP(SDNode *N) {
// tagp(FrameIndex, IRGstack, tag_offset):
// since the offset between FrameIndex and IRGstack is a compile-time
// constant, this can be lowered to a single ADDG instruction.
if (!(isa<FrameIndexSDNode>(N->getOperand(1)))) {
return false;
}
SDValue IRG_SP = N->getOperand(2);
if (IRG_SP->getOpcode() != ISD::INTRINSIC_W_CHAIN ||
cast<ConstantSDNode>(IRG_SP->getOperand(1))->getZExtValue() !=
Intrinsic::aarch64_irg_sp) {
return false;
}
const TargetLowering *TLI = getTargetLowering();
SDLoc DL(N);
int FI = cast<FrameIndexSDNode>(N->getOperand(1))->getIndex();
SDValue FiOp = CurDAG->getTargetFrameIndex(
FI, TLI->getPointerTy(CurDAG->getDataLayout()));
int TagOffset = cast<ConstantSDNode>(N->getOperand(3))->getZExtValue();
SDNode *Out = CurDAG->getMachineNode(
AArch64::TAGPstack, DL, MVT::i64,
{FiOp, CurDAG->getTargetConstant(0, DL, MVT::i64), N->getOperand(2),
CurDAG->getTargetConstant(TagOffset, DL, MVT::i64)});
ReplaceNode(N, Out);
return true;
}
void AArch64DAGToDAGISel::SelectTagP(SDNode *N) {
assert(isa<ConstantSDNode>(N->getOperand(3)) &&
"llvm.aarch64.tagp third argument must be an immediate");
if (trySelectStackSlotTagP(N))
return;
// FIXME: above applies in any case when offset between Op1 and Op2 is a
// compile-time constant, not just for stack allocations.
// General case for unrelated pointers in Op1 and Op2.
SDLoc DL(N);
int TagOffset = cast<ConstantSDNode>(N->getOperand(3))->getZExtValue();
SDNode *N1 = CurDAG->getMachineNode(AArch64::SUBP, DL, MVT::i64,
{N->getOperand(1), N->getOperand(2)});
SDNode *N2 = CurDAG->getMachineNode(AArch64::ADDXrr, DL, MVT::i64,
{SDValue(N1, 0), N->getOperand(2)});
SDNode *N3 = CurDAG->getMachineNode(
AArch64::ADDG, DL, MVT::i64,
{SDValue(N2, 0), CurDAG->getTargetConstant(0, DL, MVT::i64),
CurDAG->getTargetConstant(TagOffset, DL, MVT::i64)});
ReplaceNode(N, N3);
}
// NOTE: We cannot use EXTRACT_SUBREG in all cases because the fixed length
// vector types larger than NEON don't have a matching SubRegIndex.
static SDNode *extractSubReg(SelectionDAG *DAG, EVT VT, SDValue V) {
assert(V.getValueType().isScalableVector() &&
V.getValueType().getSizeInBits().getKnownMinSize() ==
AArch64::SVEBitsPerBlock &&
"Expected to extract from a packed scalable vector!");
assert(VT.isFixedLengthVector() &&
"Expected to extract a fixed length vector!");
SDLoc DL(V);
switch (VT.getSizeInBits()) {
case 64: {
auto SubReg = DAG->getTargetConstant(AArch64::dsub, DL, MVT::i32);
return DAG->getMachineNode(TargetOpcode::EXTRACT_SUBREG, DL, VT, V, SubReg);
}
case 128: {
auto SubReg = DAG->getTargetConstant(AArch64::zsub, DL, MVT::i32);
return DAG->getMachineNode(TargetOpcode::EXTRACT_SUBREG, DL, VT, V, SubReg);
}
default: {
auto RC = DAG->getTargetConstant(AArch64::ZPRRegClassID, DL, MVT::i64);
return DAG->getMachineNode(TargetOpcode::COPY_TO_REGCLASS, DL, VT, V, RC);
}
}
}
// NOTE: We cannot use INSERT_SUBREG in all cases because the fixed length
// vector types larger than NEON don't have a matching SubRegIndex.
static SDNode *insertSubReg(SelectionDAG *DAG, EVT VT, SDValue V) {
assert(VT.isScalableVector() &&
VT.getSizeInBits().getKnownMinSize() == AArch64::SVEBitsPerBlock &&
"Expected to insert into a packed scalable vector!");
assert(V.getValueType().isFixedLengthVector() &&
"Expected to insert a fixed length vector!");
SDLoc DL(V);
switch (V.getValueType().getSizeInBits()) {
case 64: {
auto SubReg = DAG->getTargetConstant(AArch64::dsub, DL, MVT::i32);
auto Container = DAG->getMachineNode(TargetOpcode::IMPLICIT_DEF, DL, VT);
return DAG->getMachineNode(TargetOpcode::INSERT_SUBREG, DL, VT,
SDValue(Container, 0), V, SubReg);
}
case 128: {
auto SubReg = DAG->getTargetConstant(AArch64::zsub, DL, MVT::i32);
auto Container = DAG->getMachineNode(TargetOpcode::IMPLICIT_DEF, DL, VT);
return DAG->getMachineNode(TargetOpcode::INSERT_SUBREG, DL, VT,
SDValue(Container, 0), V, SubReg);
}
default: {
auto RC = DAG->getTargetConstant(AArch64::ZPRRegClassID, DL, MVT::i64);
return DAG->getMachineNode(TargetOpcode::COPY_TO_REGCLASS, DL, VT, V, RC);
}
}
}
void AArch64DAGToDAGISel::Select(SDNode *Node) {
// If we have a custom node, we already have selected!
if (Node->isMachineOpcode()) {
LLVM_DEBUG(errs() << "== "; Node->dump(CurDAG); errs() << "\n");
Node->setNodeId(-1);
return;
}
// Few custom selection stuff.
EVT VT = Node->getValueType(0);
switch (Node->getOpcode()) {
default:
break;
case ISD::ATOMIC_CMP_SWAP:
if (SelectCMP_SWAP(Node))
return;
break;
case ISD::READ_REGISTER:
if (tryReadRegister(Node))
return;
break;
case ISD::WRITE_REGISTER:
if (tryWriteRegister(Node))
return;
break;
case ISD::ADD:
if (tryMLAV64LaneV128(Node))
return;
break;
case ISD::LOAD: {
// Try to select as an indexed load. Fall through to normal processing
// if we can't.
if (tryIndexedLoad(Node))
return;
break;
}
case ISD::SRL:
case ISD::AND:
case ISD::SRA:
case ISD::SIGN_EXTEND_INREG:
if (tryBitfieldExtractOp(Node))
return;
if (tryBitfieldInsertInZeroOp(Node))
return;
LLVM_FALLTHROUGH;
case ISD::ROTR:
case ISD::SHL:
if (tryShiftAmountMod(Node))
return;
break;
case ISD::SIGN_EXTEND:
if (tryBitfieldExtractOpFromSExt(Node))
return;
break;
case ISD::FP_EXTEND:
if (tryHighFPExt(Node))
return;
break;
case ISD::OR:
if (tryBitfieldInsertOp(Node))
return;
break;
case ISD::EXTRACT_SUBVECTOR: {
// Bail when not a "cast" like extract_subvector.
if (cast<ConstantSDNode>(Node->getOperand(1))->getZExtValue() != 0)
break;
// Bail when normal isel can do the job.
EVT InVT = Node->getOperand(0).getValueType();
if (VT.isScalableVector() || InVT.isFixedLengthVector())
break;
// NOTE: We can only get here when doing fixed length SVE code generation.
// We do manual selection because the types involved are not linked to real
// registers (despite being legal) and must be coerced into SVE registers.
//
// NOTE: If the above changes, be aware that selection will still not work
// because the td definition of extract_vector does not support extracting
// a fixed length vector from a scalable vector.
ReplaceNode(Node, extractSubReg(CurDAG, VT, Node->getOperand(0)));
return;
}
case ISD::INSERT_SUBVECTOR: {
// Bail when not a "cast" like insert_subvector.
if (cast<ConstantSDNode>(Node->getOperand(2))->getZExtValue() != 0)
break;
if (!Node->getOperand(0).isUndef())
break;
// Bail when normal isel should do the job.
EVT InVT = Node->getOperand(1).getValueType();
if (VT.isFixedLengthVector() || InVT.isScalableVector())
break;
// NOTE: We can only get here when doing fixed length SVE code generation.
// We do manual selection because the types involved are not linked to real
// registers (despite being legal) and must be coerced into SVE registers.
//
// NOTE: If the above changes, be aware that selection will still not work
// because the td definition of insert_vector does not support inserting a
// fixed length vector into a scalable vector.
ReplaceNode(Node, insertSubReg(CurDAG, VT, Node->getOperand(1)));
return;
}
case ISD::Constant: {
// Materialize zero constants as copies from WZR/XZR. This allows
// the coalescer to propagate these into other instructions.
ConstantSDNode *ConstNode = cast<ConstantSDNode>(Node);
if (ConstNode->isNullValue()) {
if (VT == MVT::i32) {
SDValue New = CurDAG->getCopyFromReg(
CurDAG->getEntryNode(), SDLoc(Node), AArch64::WZR, MVT::i32);
ReplaceNode(Node, New.getNode());
return;
} else if (VT == MVT::i64) {
SDValue New = CurDAG->getCopyFromReg(
CurDAG->getEntryNode(), SDLoc(Node), AArch64::XZR, MVT::i64);
ReplaceNode(Node, New.getNode());
return;
}
}
break;
}
case ISD::FrameIndex: {
// Selects to ADDXri FI, 0 which in turn will become ADDXri SP, imm.
int FI = cast<FrameIndexSDNode>(Node)->getIndex();
unsigned Shifter = AArch64_AM::getShifterImm(AArch64_AM::LSL, 0);
const TargetLowering *TLI = getTargetLowering();
SDValue TFI = CurDAG->getTargetFrameIndex(
FI, TLI->getPointerTy(CurDAG->getDataLayout()));
SDLoc DL(Node);
SDValue Ops[] = { TFI, CurDAG->getTargetConstant(0, DL, MVT::i32),
CurDAG->getTargetConstant(Shifter, DL, MVT::i32) };
CurDAG->SelectNodeTo(Node, AArch64::ADDXri, MVT::i64, Ops);
return;
}
case ISD::INTRINSIC_W_CHAIN: {
unsigned IntNo = cast<ConstantSDNode>(Node->getOperand(1))->getZExtValue();
switch (IntNo) {
default:
break;
case Intrinsic::aarch64_ldaxp:
case Intrinsic::aarch64_ldxp: {
unsigned Op =
IntNo == Intrinsic::aarch64_ldaxp ? AArch64::LDAXPX : AArch64::LDXPX;
SDValue MemAddr = Node->getOperand(2);
SDLoc DL(Node);
SDValue Chain = Node->getOperand(0);
SDNode *Ld = CurDAG->getMachineNode(Op, DL, MVT::i64, MVT::i64,
MVT::Other, MemAddr, Chain);
// Transfer memoperands.
MachineMemOperand *MemOp =
cast<MemIntrinsicSDNode>(Node)->getMemOperand();
CurDAG->setNodeMemRefs(cast<MachineSDNode>(Ld), {MemOp});
ReplaceNode(Node, Ld);
return;
}
case Intrinsic::aarch64_stlxp:
case Intrinsic::aarch64_stxp: {
unsigned Op =
IntNo == Intrinsic::aarch64_stlxp ? AArch64::STLXPX : AArch64::STXPX;
SDLoc DL(Node);
SDValue Chain = Node->getOperand(0);
SDValue ValLo = Node->getOperand(2);
SDValue ValHi = Node->getOperand(3);
SDValue MemAddr = Node->getOperand(4);
// Place arguments in the right order.
SDValue Ops[] = {ValLo, ValHi, MemAddr, Chain};
SDNode *St = CurDAG->getMachineNode(Op, DL, MVT::i32, MVT::Other, Ops);
// Transfer memoperands.
MachineMemOperand *MemOp =
cast<MemIntrinsicSDNode>(Node)->getMemOperand();
CurDAG->setNodeMemRefs(cast<MachineSDNode>(St), {MemOp});
ReplaceNode(Node, St);
return;
}
case Intrinsic::aarch64_neon_ld1x2:
if (VT == MVT::v8i8) {
SelectLoad(Node, 2, AArch64::LD1Twov8b, AArch64::dsub0);
return;
} else if (VT == MVT::v16i8) {
SelectLoad(Node, 2, AArch64::LD1Twov16b, AArch64::qsub0);
return;
} else if (VT == MVT::v4i16 || VT == MVT::v4f16 || VT == MVT::v4bf16) {
SelectLoad(Node, 2, AArch64::LD1Twov4h, AArch64::dsub0);
return;
} else if (VT == MVT::v8i16 || VT == MVT::v8f16 || VT == MVT::v8bf16) {
SelectLoad(Node, 2, AArch64::LD1Twov8h, AArch64::qsub0);
return;
} else if (VT == MVT::v2i32 || VT == MVT::v2f32) {
SelectLoad(Node, 2, AArch64::LD1Twov2s, AArch64::dsub0);
return;
} else if (VT == MVT::v4i32 || VT == MVT::v4f32) {
SelectLoad(Node, 2, AArch64::LD1Twov4s, AArch64::qsub0);
return;
} else if (VT == MVT::v1i64 || VT == MVT::v1f64) {
SelectLoad(Node, 2, AArch64::LD1Twov1d, AArch64::dsub0);
return;
} else if (VT == MVT::v2i64 || VT == MVT::v2f64) {
SelectLoad(Node, 2, AArch64::LD1Twov2d, AArch64::qsub0);
return;
}
break;
case Intrinsic::aarch64_neon_ld1x3:
if (VT == MVT::v8i8) {
SelectLoad(Node, 3, AArch64::LD1Threev8b, AArch64::dsub0);
return;
} else if (VT == MVT::v16i8) {
SelectLoad(Node, 3, AArch64::LD1Threev16b, AArch64::qsub0);
return;
} else if (VT == MVT::v4i16 || VT == MVT::v4f16 || VT == MVT::v4bf16) {
SelectLoad(Node, 3, AArch64::LD1Threev4h, AArch64::dsub0);
return;
} else if (VT == MVT::v8i16 || VT == MVT::v8f16 || VT == MVT::v8bf16) {
SelectLoad(Node, 3, AArch64::LD1Threev8h, AArch64::qsub0);
return;
} else if (VT == MVT::v2i32 || VT == MVT::v2f32) {
SelectLoad(Node, 3, AArch64::LD1Threev2s, AArch64::dsub0);
return;
} else if (VT == MVT::v4i32 || VT == MVT::v4f32) {
SelectLoad(Node, 3, AArch64::LD1Threev4s, AArch64::qsub0);
return;
} else if (VT == MVT::v1i64 || VT == MVT::v1f64) {
SelectLoad(Node, 3, AArch64::LD1Threev1d, AArch64::dsub0);
return;
} else if (VT == MVT::v2i64 || VT == MVT::v2f64) {
SelectLoad(Node, 3, AArch64::LD1Threev2d, AArch64::qsub0);
return;
}
break;
case Intrinsic::aarch64_neon_ld1x4:
if (VT == MVT::v8i8) {
SelectLoad(Node, 4, AArch64::LD1Fourv8b, AArch64::dsub0);
return;
} else if (VT == MVT::v16i8) {
SelectLoad(Node, 4, AArch64::LD1Fourv16b, AArch64::qsub0);
return;
} else if (VT == MVT::v4i16 || VT == MVT::v4f16 || VT == MVT::v4bf16) {
SelectLoad(Node, 4, AArch64::LD1Fourv4h, AArch64::dsub0);
return;
} else if (VT == MVT::v8i16 || VT == MVT::v8f16 || VT == MVT::v8bf16) {
SelectLoad(Node, 4, AArch64::LD1Fourv8h, AArch64::qsub0);
return;
} else if (VT == MVT::v2i32 || VT == MVT::v2f32) {
SelectLoad(Node, 4, AArch64::LD1Fourv2s, AArch64::dsub0);
return;
} else if (VT == MVT::v4i32 || VT == MVT::v4f32) {
SelectLoad(Node, 4, AArch64::LD1Fourv4s, AArch64::qsub0);
return;
} else if (VT == MVT::v1i64 || VT == MVT::v1f64) {
SelectLoad(Node, 4, AArch64::LD1Fourv1d, AArch64::dsub0);
return;
} else if (VT == MVT::v2i64 || VT == MVT::v2f64) {
SelectLoad(Node, 4, AArch64::LD1Fourv2d, AArch64::qsub0);
return;
}
break;
case Intrinsic::aarch64_neon_ld2:
if (VT == MVT::v8i8) {
SelectLoad(Node, 2, AArch64::LD2Twov8b, AArch64::dsub0);
return;
} else if (VT == MVT::v16i8) {
SelectLoad(Node, 2, AArch64::LD2Twov16b, AArch64::qsub0);
return;
} else if (VT == MVT::v4i16 || VT == MVT::v4f16 || VT == MVT::v4bf16) {
SelectLoad(Node, 2, AArch64::LD2Twov4h, AArch64::dsub0);
return;
} else if (VT == MVT::v8i16 || VT == MVT::v8f16 || VT == MVT::v8bf16) {
SelectLoad(Node, 2, AArch64::LD2Twov8h, AArch64::qsub0);
return;
} else if (VT == MVT::v2i32 || VT == MVT::v2f32) {
SelectLoad(Node, 2, AArch64::LD2Twov2s, AArch64::dsub0);
return;
} else if (VT == MVT::v4i32 || VT == MVT::v4f32) {
SelectLoad(Node, 2, AArch64::LD2Twov4s, AArch64::qsub0);
return;
} else if (VT == MVT::v1i64 || VT == MVT::v1f64) {
SelectLoad(Node, 2, AArch64::LD1Twov1d, AArch64::dsub0);
return;
} else if (VT == MVT::v2i64 || VT == MVT::v2f64) {
SelectLoad(Node, 2, AArch64::LD2Twov2d, AArch64::qsub0);
return;
}
break;
case Intrinsic::aarch64_neon_ld3:
if (VT == MVT::v8i8) {
SelectLoad(Node, 3, AArch64::LD3Threev8b, AArch64::dsub0);
return;
} else if (VT == MVT::v16i8) {
SelectLoad(Node, 3, AArch64::LD3Threev16b, AArch64::qsub0);
return;
} else if (VT == MVT::v4i16 || VT == MVT::v4f16 || VT == MVT::v4bf16) {
SelectLoad(Node, 3, AArch64::LD3Threev4h, AArch64::dsub0);
return;
} else if (VT == MVT::v8i16 || VT == MVT::v8f16 || VT == MVT::v8bf16) {
SelectLoad(Node, 3, AArch64::LD3Threev8h, AArch64::qsub0);
return;
} else if (VT == MVT::v2i32 || VT == MVT::v2f32) {
SelectLoad(Node, 3, AArch64::LD3Threev2s, AArch64::dsub0);
return;
} else if (VT == MVT::v4i32 || VT == MVT::v4f32) {
SelectLoad(Node, 3, AArch64::LD3Threev4s, AArch64::qsub0);
return;
} else if (VT == MVT::v1i64 || VT == MVT::v1f64) {
SelectLoad(Node, 3, AArch64::LD1Threev1d, AArch64::dsub0);
return;
} else if (VT == MVT::v2i64 || VT == MVT::v2f64) {
SelectLoad(Node, 3, AArch64::LD3Threev2d, AArch64::qsub0);
return;
}
break;
case Intrinsic::aarch64_neon_ld4:
if (VT == MVT::v8i8) {
SelectLoad(Node, 4, AArch64::LD4Fourv8b, AArch64::dsub0);
return;
} else if (VT == MVT::v16i8) {
SelectLoad(Node, 4, AArch64::LD4Fourv16b, AArch64::qsub0);
return;
} else if (VT == MVT::v4i16 || VT == MVT::v4f16 || VT == MVT::v4bf16) {
SelectLoad(Node, 4, AArch64::LD4Fourv4h, AArch64::dsub0);
return;
} else if (VT == MVT::v8i16 || VT == MVT::v8f16 || VT == MVT::v8bf16) {
SelectLoad(Node, 4, AArch64::LD4Fourv8h, AArch64::qsub0);
return;
} else if (VT == MVT::v2i32 || VT == MVT::v2f32) {
SelectLoad(Node, 4, AArch64::LD4Fourv2s, AArch64::dsub0);
return;
} else if (VT == MVT::v4i32 || VT == MVT::v4f32) {
SelectLoad(Node, 4, AArch64::LD4Fourv4s, AArch64::qsub0);
return;
} else if (VT == MVT::v1i64 || VT == MVT::v1f64) {
SelectLoad(Node, 4, AArch64::LD1Fourv1d, AArch64::dsub0);
return;
} else if (VT == MVT::v2i64 || VT == MVT::v2f64) {
SelectLoad(Node, 4, AArch64::LD4Fourv2d, AArch64::qsub0);
return;
}
break;
case Intrinsic::aarch64_neon_ld2r:
if (VT == MVT::v8i8) {
SelectLoad(Node, 2, AArch64::LD2Rv8b, AArch64::dsub0);
return;
} else if (VT == MVT::v16i8) {
SelectLoad(Node, 2, AArch64::LD2Rv16b, AArch64::qsub0);
return;
} else if (VT == MVT::v4i16 || VT == MVT::v4f16 || VT == MVT::v4bf16) {
SelectLoad(Node, 2, AArch64::LD2Rv4h, AArch64::dsub0);
return;
} else if (VT == MVT::v8i16 || VT == MVT::v8f16 || VT == MVT::v8bf16) {
SelectLoad(Node, 2, AArch64::LD2Rv8h, AArch64::qsub0);
return;
} else if (VT == MVT::v2i32 || VT == MVT::v2f32) {
SelectLoad(Node, 2, AArch64::LD2Rv2s, AArch64::dsub0);
return;
} else if (VT == MVT::v4i32 || VT == MVT::v4f32) {
SelectLoad(Node, 2, AArch64::LD2Rv4s, AArch64::qsub0);
return;
} else if (VT == MVT::v1i64 || VT == MVT::v1f64) {
SelectLoad(Node, 2, AArch64::LD2Rv1d, AArch64::dsub0);
return;
} else if (VT == MVT::v2i64 || VT == MVT::v2f64) {
SelectLoad(Node, 2, AArch64::LD2Rv2d, AArch64::qsub0);
return;
}
break;
case Intrinsic::aarch64_neon_ld3r:
if (VT == MVT::v8i8) {
SelectLoad(Node, 3, AArch64::LD3Rv8b, AArch64::dsub0);
return;
} else if (VT == MVT::v16i8) {
SelectLoad(Node, 3, AArch64::LD3Rv16b, AArch64::qsub0);
return;
} else if (VT == MVT::v4i16 || VT == MVT::v4f16 || VT == MVT::v4bf16) {
SelectLoad(Node, 3, AArch64::LD3Rv4h, AArch64::dsub0);
return;
} else if (VT == MVT::v8i16 || VT == MVT::v8f16 || VT == MVT::v8bf16) {
SelectLoad(Node, 3, AArch64::LD3Rv8h, AArch64::qsub0);
return;
} else if (VT == MVT::v2i32 || VT == MVT::v2f32) {
SelectLoad(Node, 3, AArch64::LD3Rv2s, AArch64::dsub0);
return;
} else if (VT == MVT::v4i32 || VT == MVT::v4f32) {
SelectLoad(Node, 3, AArch64::LD3Rv4s, AArch64::qsub0);
return;
} else if (VT == MVT::v1i64 || VT == MVT::v1f64) {
SelectLoad(Node, 3, AArch64::LD3Rv1d, AArch64::dsub0);
return;
} else if (VT == MVT::v2i64 || VT == MVT::v2f64) {
SelectLoad(Node, 3, AArch64::LD3Rv2d, AArch64::qsub0);
return;
}
break;
case Intrinsic::aarch64_neon_ld4r:
if (VT == MVT::v8i8) {
SelectLoad(Node, 4, AArch64::LD4Rv8b, AArch64::dsub0);
return;
} else if (VT == MVT::v16i8) {
SelectLoad(Node, 4, AArch64::LD4Rv16b, AArch64::qsub0);
return;
} else if (VT == MVT::v4i16 || VT == MVT::v4f16 || VT == MVT::v4bf16) {
SelectLoad(Node, 4, AArch64::LD4Rv4h, AArch64::dsub0);
return;
} else if (VT == MVT::v8i16 || VT == MVT::v8f16 || VT == MVT::v8bf16) {
SelectLoad(Node, 4, AArch64::LD4Rv8h, AArch64::qsub0);
return;
} else if (VT == MVT::v2i32 || VT == MVT::v2f32) {
SelectLoad(Node, 4, AArch64::LD4Rv2s, AArch64::dsub0);
return;
} else if (VT == MVT::v4i32 || VT == MVT::v4f32) {
SelectLoad(Node, 4, AArch64::LD4Rv4s, AArch64::qsub0);
return;
} else if (VT == MVT::v1i64 || VT == MVT::v1f64) {
SelectLoad(Node, 4, AArch64::LD4Rv1d, AArch64::dsub0);
return;
} else if (VT == MVT::v2i64 || VT == MVT::v2f64) {
SelectLoad(Node, 4, AArch64::LD4Rv2d, AArch64::qsub0);
return;
}
break;
case Intrinsic::aarch64_neon_ld2lane:
if (VT == MVT::v16i8 || VT == MVT::v8i8) {
SelectLoadLane(Node, 2, AArch64::LD2i8);
return;
} else if (VT == MVT::v8i16 || VT == MVT::v4i16 || VT == MVT::v4f16 ||
VT == MVT::v8f16 || VT == MVT::v4bf16 || VT == MVT::v8bf16) {
SelectLoadLane(Node, 2, AArch64::LD2i16);
return;
} else if (VT == MVT::v4i32 || VT == MVT::v2i32 || VT == MVT::v4f32 ||
VT == MVT::v2f32) {
SelectLoadLane(Node, 2, AArch64::LD2i32);
return;
} else if (VT == MVT::v2i64 || VT == MVT::v1i64 || VT == MVT::v2f64 ||
VT == MVT::v1f64) {
SelectLoadLane(Node, 2, AArch64::LD2i64);
return;
}
break;
case Intrinsic::aarch64_neon_ld3lane:
if (VT == MVT::v16i8 || VT == MVT::v8i8) {
SelectLoadLane(Node, 3, AArch64::LD3i8);
return;
} else if (VT == MVT::v8i16 || VT == MVT::v4i16 || VT == MVT::v4f16 ||
VT == MVT::v8f16 || VT == MVT::v4bf16 || VT == MVT::v8bf16) {
SelectLoadLane(Node, 3, AArch64::LD3i16);
return;
} else if (VT == MVT::v4i32 || VT == MVT::v2i32 || VT == MVT::v4f32 ||
VT == MVT::v2f32) {
SelectLoadLane(Node, 3, AArch64::LD3i32);
return;
} else if (VT == MVT::v2i64 || VT == MVT::v1i64 || VT == MVT::v2f64 ||
VT == MVT::v1f64) {
SelectLoadLane(Node, 3, AArch64::LD3i64);
return;
}
break;
case Intrinsic::aarch64_neon_ld4lane:
if (VT == MVT::v16i8 || VT == MVT::v8i8) {
SelectLoadLane(Node, 4, AArch64::LD4i8);
return;
} else if (VT == MVT::v8i16 || VT == MVT::v4i16 || VT == MVT::v4f16 ||
VT == MVT::v8f16 || VT == MVT::v4bf16 || VT == MVT::v8bf16) {
SelectLoadLane(Node, 4, AArch64::LD4i16);
return;
} else if (VT == MVT::v4i32 || VT == MVT::v2i32 || VT == MVT::v4f32 ||
VT == MVT::v2f32) {
SelectLoadLane(Node, 4, AArch64::LD4i32);
return;
} else if (VT == MVT::v2i64 || VT == MVT::v1i64 || VT == MVT::v2f64 ||
VT == MVT::v1f64) {
SelectLoadLane(Node, 4, AArch64::LD4i64);
return;
}
break;
case Intrinsic::aarch64_ld64b:
SelectLoad(Node, 8, AArch64::LD64B, AArch64::x8sub_0);
return;
}
} break;
case ISD::INTRINSIC_WO_CHAIN: {
unsigned IntNo = cast<ConstantSDNode>(Node->getOperand(0))->getZExtValue();
switch (IntNo) {
default:
break;
case Intrinsic::aarch64_tagp:
SelectTagP(Node);
return;
case Intrinsic::aarch64_neon_tbl2:
SelectTable(Node, 2,
VT == MVT::v8i8 ? AArch64::TBLv8i8Two : AArch64::TBLv16i8Two,
false);
return;
case Intrinsic::aarch64_neon_tbl3:
SelectTable(Node, 3, VT == MVT::v8i8 ? AArch64::TBLv8i8Three
: AArch64::TBLv16i8Three,
false);
return;
case Intrinsic::aarch64_neon_tbl4:
SelectTable(Node, 4, VT == MVT::v8i8 ? AArch64::TBLv8i8Four
: AArch64::TBLv16i8Four,
false);
return;
case Intrinsic::aarch64_neon_tbx2:
SelectTable(Node, 2,
VT == MVT::v8i8 ? AArch64::TBXv8i8Two : AArch64::TBXv16i8Two,
true);
return;
case Intrinsic::aarch64_neon_tbx3:
SelectTable(Node, 3, VT == MVT::v8i8 ? AArch64::TBXv8i8Three
: AArch64::TBXv16i8Three,
true);
return;
case Intrinsic::aarch64_neon_tbx4:
SelectTable(Node, 4, VT == MVT::v8i8 ? AArch64::TBXv8i8Four
: AArch64::TBXv16i8Four,
true);
return;
case Intrinsic::aarch64_neon_smull:
case Intrinsic::aarch64_neon_umull:
if (tryMULLV64LaneV128(IntNo, Node))
return;
break;
case Intrinsic::swift_async_context_addr: {
SDLoc DL(Node);
CurDAG->SelectNodeTo(Node, AArch64::SUBXri, MVT::i64,
CurDAG->getCopyFromReg(CurDAG->getEntryNode(), DL,
AArch64::FP, MVT::i64),
CurDAG->getTargetConstant(8, DL, MVT::i32),
CurDAG->getTargetConstant(0, DL, MVT::i32));
auto &MF = CurDAG->getMachineFunction();
MF.getFrameInfo().setFrameAddressIsTaken(true);
MF.getInfo<AArch64FunctionInfo>()->setHasSwiftAsyncContext(true);
return;
}
}
break;
}
case ISD::INTRINSIC_VOID: {
unsigned IntNo = cast<ConstantSDNode>(Node->getOperand(1))->getZExtValue();
if (Node->getNumOperands() >= 3)
VT = Node->getOperand(2)->getValueType(0);
switch (IntNo) {
default:
break;
case Intrinsic::aarch64_neon_st1x2: {
if (VT == MVT::v8i8) {
SelectStore(Node, 2, AArch64::ST1Twov8b);
return;
} else if (VT == MVT::v16i8) {
SelectStore(Node, 2, AArch64::ST1Twov16b);
return;
} else if (VT == MVT::v4i16 || VT == MVT::v4f16 ||
VT == MVT::v4bf16) {
SelectStore(Node, 2, AArch64::ST1Twov4h);
return;
} else if (VT == MVT::v8i16 || VT == MVT::v8f16 ||
VT == MVT::v8bf16) {
SelectStore(Node, 2, AArch64::ST1Twov8h);
return;
} else if (VT == MVT::v2i32 || VT == MVT::v2f32) {
SelectStore(Node, 2, AArch64::ST1Twov2s);
return;
} else if (VT == MVT::v4i32 || VT == MVT::v4f32) {
SelectStore(Node, 2, AArch64::ST1Twov4s);
return;
} else if (VT == MVT::v2i64 || VT == MVT::v2f64) {
SelectStore(Node, 2, AArch64::ST1Twov2d);
return;
} else if (VT == MVT::v1i64 || VT == MVT::v1f64) {
SelectStore(Node, 2, AArch64::ST1Twov1d);
return;
}
break;
}
case Intrinsic::aarch64_neon_st1x3: {
if (VT == MVT::v8i8) {
SelectStore(Node, 3, AArch64::ST1Threev8b);
return;
} else if (VT == MVT::v16i8) {
SelectStore(Node, 3, AArch64::ST1Threev16b);
return;
} else if (VT == MVT::v4i16 || VT == MVT::v4f16 ||
VT == MVT::v4bf16) {
SelectStore(Node, 3, AArch64::ST1Threev4h);
return;
} else if (VT == MVT::v8i16 || VT == MVT::v8f16 ||
VT == MVT::v8bf16) {
SelectStore(Node, 3, AArch64::ST1Threev8h);
return;
} else if (VT == MVT::v2i32 || VT == MVT::v2f32) {
SelectStore(Node, 3, AArch64::ST1Threev2s);
return;
} else if (VT == MVT::v4i32 || VT == MVT::v4f32) {
SelectStore(Node, 3, AArch64::ST1Threev4s);
return;
} else if (VT == MVT::v2i64 || VT == MVT::v2f64) {
SelectStore(Node, 3, AArch64::ST1Threev2d);
return;
} else if (VT == MVT::v1i64 || VT == MVT::v1f64) {
SelectStore(Node, 3, AArch64::ST1Threev1d);
return;
}
break;
}
case Intrinsic::aarch64_neon_st1x4: {
if (VT == MVT::v8i8) {
SelectStore(Node, 4, AArch64::ST1Fourv8b);
return;
} else if (VT == MVT::v16i8) {
SelectStore(Node, 4, AArch64::ST1Fourv16b);
return;
} else if (VT == MVT::v4i16 || VT == MVT::v4f16 ||
VT == MVT::v4bf16) {
SelectStore(Node, 4, AArch64::ST1Fourv4h);
return;
} else if (VT == MVT::v8i16 || VT == MVT::v8f16 ||
VT == MVT::v8bf16) {
SelectStore(Node, 4, AArch64::ST1Fourv8h);
return;
} else if (VT == MVT::v2i32 || VT == MVT::v2f32) {
SelectStore(Node, 4, AArch64::ST1Fourv2s);
return;
} else if (VT == MVT::v4i32 || VT == MVT::v4f32) {
SelectStore(Node, 4, AArch64::ST1Fourv4s);
return;
} else if (VT == MVT::v2i64 || VT == MVT::v2f64) {
SelectStore(Node, 4, AArch64::ST1Fourv2d);
return;
} else if (VT == MVT::v1i64 || VT == MVT::v1f64) {
SelectStore(Node, 4, AArch64::ST1Fourv1d);
return;
}
break;
}
case Intrinsic::aarch64_neon_st2: {
if (VT == MVT::v8i8) {
SelectStore(Node, 2, AArch64::ST2Twov8b);
return;
} else if (VT == MVT::v16i8) {
SelectStore(Node, 2, AArch64::ST2Twov16b);
return;
} else if (VT == MVT::v4i16 || VT == MVT::v4f16 ||
VT == MVT::v4bf16) {
SelectStore(Node, 2, AArch64::ST2Twov4h);
return;
} else if (VT == MVT::v8i16 || VT == MVT::v8f16 ||
VT == MVT::v8bf16) {
SelectStore(Node, 2, AArch64::ST2Twov8h);
return;
} else if (VT == MVT::v2i32 || VT == MVT::v2f32) {
SelectStore(Node, 2, AArch64::ST2Twov2s);
return;
} else if (VT == MVT::v4i32 || VT == MVT::v4f32) {
SelectStore(Node, 2, AArch64::ST2Twov4s);
return;
} else if (VT == MVT::v2i64 || VT == MVT::v2f64) {
SelectStore(Node, 2, AArch64::ST2Twov2d);
return;
} else if (VT == MVT::v1i64 || VT == MVT::v1f64) {
SelectStore(Node, 2, AArch64::ST1Twov1d);
return;
}
break;
}
case Intrinsic::aarch64_neon_st3: {
if (VT == MVT::v8i8) {
SelectStore(Node, 3, AArch64::ST3Threev8b);
return;
} else if (VT == MVT::v16i8) {
SelectStore(Node, 3, AArch64::ST3Threev16b);
return;
} else if (VT == MVT::v4i16 || VT == MVT::v4f16 ||
VT == MVT::v4bf16) {
SelectStore(Node, 3, AArch64::ST3Threev4h);
return;
} else if (VT == MVT::v8i16 || VT == MVT::v8f16 ||
VT == MVT::v8bf16) {
SelectStore(Node, 3, AArch64::ST3Threev8h);
return;
} else if (VT == MVT::v2i32 || VT == MVT::v2f32) {
SelectStore(Node, 3, AArch64::ST3Threev2s);
return;
} else if (VT == MVT::v4i32 || VT == MVT::v4f32) {
SelectStore(Node, 3, AArch64::ST3Threev4s);
return;
} else if (VT == MVT::v2i64 || VT == MVT::v2f64) {
SelectStore(Node, 3, AArch64::ST3Threev2d);
return;
} else if (VT == MVT::v1i64 || VT == MVT::v1f64) {
SelectStore(Node, 3, AArch64::ST1Threev1d);
return;
}
break;
}
case Intrinsic::aarch64_neon_st4: {
if (VT == MVT::v8i8) {
SelectStore(Node, 4, AArch64::ST4Fourv8b);
return;
} else if (VT == MVT::v16i8) {
SelectStore(Node, 4, AArch64::ST4Fourv16b);
return;
} else if (VT == MVT::v4i16 || VT == MVT::v4f16 ||
VT == MVT::v4bf16) {
SelectStore(Node, 4, AArch64::ST4Fourv4h);
return;
} else if (VT == MVT::v8i16 || VT == MVT::v8f16 ||
VT == MVT::v8bf16) {
SelectStore(Node, 4, AArch64::ST4Fourv8h);
return;
} else if (VT == MVT::v2i32 || VT == MVT::v2f32) {
SelectStore(Node, 4, AArch64::ST4Fourv2s);
return;
} else if (VT == MVT::v4i32 || VT == MVT::v4f32) {
SelectStore(Node, 4, AArch64::ST4Fourv4s);
return;
} else if (VT == MVT::v2i64 || VT == MVT::v2f64) {
SelectStore(Node, 4, AArch64::ST4Fourv2d);
return;
} else if (VT == MVT::v1i64 || VT == MVT::v1f64) {
SelectStore(Node, 4, AArch64::ST1Fourv1d);
return;
}
break;
}
case Intrinsic::aarch64_neon_st2lane: {
if (VT == MVT::v16i8 || VT == MVT::v8i8) {
SelectStoreLane(Node, 2, AArch64::ST2i8);
return;
} else if (VT == MVT::v8i16 || VT == MVT::v4i16 || VT == MVT::v4f16 ||
VT == MVT::v8f16 || VT == MVT::v4bf16 || VT == MVT::v8bf16) {
SelectStoreLane(Node, 2, AArch64::ST2i16);
return;
} else if (VT == MVT::v4i32 || VT == MVT::v2i32 || VT == MVT::v4f32 ||
VT == MVT::v2f32) {
SelectStoreLane(Node, 2, AArch64::ST2i32);
return;
} else if (VT == MVT::v2i64 || VT == MVT::v1i64 || VT == MVT::v2f64 ||
VT == MVT::v1f64) {
SelectStoreLane(Node, 2, AArch64::ST2i64);
return;
}
break;
}
case Intrinsic::aarch64_neon_st3lane: {
if (VT == MVT::v16i8 || VT == MVT::v8i8) {
SelectStoreLane(Node, 3, AArch64::ST3i8);
return;
} else if (VT == MVT::v8i16 || VT == MVT::v4i16 || VT == MVT::v4f16 ||
VT == MVT::v8f16 || VT == MVT::v4bf16 || VT == MVT::v8bf16) {
SelectStoreLane(Node, 3, AArch64::ST3i16);
return;
} else if (VT == MVT::v4i32 || VT == MVT::v2i32 || VT == MVT::v4f32 ||
VT == MVT::v2f32) {
SelectStoreLane(Node, 3, AArch64::ST3i32);
return;
} else if (VT == MVT::v2i64 || VT == MVT::v1i64 || VT == MVT::v2f64 ||
VT == MVT::v1f64) {
SelectStoreLane(Node, 3, AArch64::ST3i64);
return;
}
break;
}
case Intrinsic::aarch64_neon_st4lane: {
if (VT == MVT::v16i8 || VT == MVT::v8i8) {
SelectStoreLane(Node, 4, AArch64::ST4i8);
return;
} else if (VT == MVT::v8i16 || VT == MVT::v4i16 || VT == MVT::v4f16 ||
VT == MVT::v8f16 || VT == MVT::v4bf16 || VT == MVT::v8bf16) {
SelectStoreLane(Node, 4, AArch64::ST4i16);
return;
} else if (VT == MVT::v4i32 || VT == MVT::v2i32 || VT == MVT::v4f32 ||
VT == MVT::v2f32) {
SelectStoreLane(Node, 4, AArch64::ST4i32);
return;
} else if (VT == MVT::v2i64 || VT == MVT::v1i64 || VT == MVT::v2f64 ||
VT == MVT::v1f64) {
SelectStoreLane(Node, 4, AArch64::ST4i64);
return;
}
break;
}
case Intrinsic::aarch64_sve_st2: {
if (VT == MVT::nxv16i8) {
SelectPredicatedStore(Node, 2, 0, AArch64::ST2B, AArch64::ST2B_IMM);
return;
} else if (VT == MVT::nxv8i16 || VT == MVT::nxv8f16 ||
(VT == MVT::nxv8bf16 && Subtarget->hasBF16())) {
SelectPredicatedStore(Node, 2, 1, AArch64::ST2H, AArch64::ST2H_IMM);
return;
} else if (VT == MVT::nxv4i32 || VT == MVT::nxv4f32) {
SelectPredicatedStore(Node, 2, 2, AArch64::ST2W, AArch64::ST2W_IMM);
return;
} else if (VT == MVT::nxv2i64 || VT == MVT::nxv2f64) {
SelectPredicatedStore(Node, 2, 3, AArch64::ST2D, AArch64::ST2D_IMM);
return;
}
break;
}
case Intrinsic::aarch64_sve_st3: {
if (VT == MVT::nxv16i8) {
SelectPredicatedStore(Node, 3, 0, AArch64::ST3B, AArch64::ST3B_IMM);
return;
} else if (VT == MVT::nxv8i16 || VT == MVT::nxv8f16 ||
(VT == MVT::nxv8bf16 && Subtarget->hasBF16())) {
SelectPredicatedStore(Node, 3, 1, AArch64::ST3H, AArch64::ST3H_IMM);
return;
} else if (VT == MVT::nxv4i32 || VT == MVT::nxv4f32) {
SelectPredicatedStore(Node, 3, 2, AArch64::ST3W, AArch64::ST3W_IMM);
return;
} else if (VT == MVT::nxv2i64 || VT == MVT::nxv2f64) {
SelectPredicatedStore(Node, 3, 3, AArch64::ST3D, AArch64::ST3D_IMM);
return;
}
break;
}
case Intrinsic::aarch64_sve_st4: {
if (VT == MVT::nxv16i8) {
SelectPredicatedStore(Node, 4, 0, AArch64::ST4B, AArch64::ST4B_IMM);
return;
} else if (VT == MVT::nxv8i16 || VT == MVT::nxv8f16 ||
(VT == MVT::nxv8bf16 && Subtarget->hasBF16())) {
SelectPredicatedStore(Node, 4, 1, AArch64::ST4H, AArch64::ST4H_IMM);
return;
} else if (VT == MVT::nxv4i32 || VT == MVT::nxv4f32) {
SelectPredicatedStore(Node, 4, 2, AArch64::ST4W, AArch64::ST4W_IMM);
return;
} else if (VT == MVT::nxv2i64 || VT == MVT::nxv2f64) {
SelectPredicatedStore(Node, 4, 3, AArch64::ST4D, AArch64::ST4D_IMM);
return;
}
break;
}
}
break;
}
case AArch64ISD::LD2post: {
if (VT == MVT::v8i8) {
SelectPostLoad(Node, 2, AArch64::LD2Twov8b_POST, AArch64::dsub0);
return;
} else if (VT == MVT::v16i8) {
SelectPostLoad(Node, 2, AArch64::LD2Twov16b_POST, AArch64::qsub0);
return;
} else if (VT == MVT::v4i16 || VT == MVT::v4f16 || VT == MVT::v4bf16) {
SelectPostLoad(Node, 2, AArch64::LD2Twov4h_POST, AArch64::dsub0);
return;
} else if (VT == MVT::v8i16 || VT == MVT::v8f16 || VT == MVT::v8bf16) {
SelectPostLoad(Node, 2, AArch64::LD2Twov8h_POST, AArch64::qsub0);
return;
} else if (VT == MVT::v2i32 || VT == MVT::v2f32) {
SelectPostLoad(Node, 2, AArch64::LD2Twov2s_POST, AArch64::dsub0);
return;
} else if (VT == MVT::v4i32 || VT == MVT::v4f32) {
SelectPostLoad(Node, 2, AArch64::LD2Twov4s_POST, AArch64::qsub0);
return;
} else if (VT == MVT::v1i64 || VT == MVT::v1f64) {
SelectPostLoad(Node, 2, AArch64::LD1Twov1d_POST, AArch64::dsub0);
return;
} else if (VT == MVT::v2i64 || VT == MVT::v2f64) {
SelectPostLoad(Node, 2, AArch64::LD2Twov2d_POST, AArch64::qsub0);
return;
}
break;
}
case AArch64ISD::LD3post: {
if (VT == MVT::v8i8) {
SelectPostLoad(Node, 3, AArch64::LD3Threev8b_POST, AArch64::dsub0);
return;
} else if (VT == MVT::v16i8) {
SelectPostLoad(Node, 3, AArch64::LD3Threev16b_POST, AArch64::qsub0);
return;
} else if (VT == MVT::v4i16 || VT == MVT::v4f16 || VT == MVT::v4bf16) {
SelectPostLoad(Node, 3, AArch64::LD3Threev4h_POST, AArch64::dsub0);
return;
} else if (VT == MVT::v8i16 || VT == MVT::v8f16 || VT == MVT::v8bf16) {
SelectPostLoad(Node, 3, AArch64::LD3Threev8h_POST, AArch64::qsub0);
return;
} else if (VT == MVT::v2i32 || VT == MVT::v2f32) {
SelectPostLoad(Node, 3, AArch64::LD3Threev2s_POST, AArch64::dsub0);
return;
} else if (VT == MVT::v4i32 || VT == MVT::v4f32) {
SelectPostLoad(Node, 3, AArch64::LD3Threev4s_POST, AArch64::qsub0);
return;
} else if (VT == MVT::v1i64 || VT == MVT::v1f64) {
SelectPostLoad(Node, 3, AArch64::LD1Threev1d_POST, AArch64::dsub0);
return;
} else if (VT == MVT::v2i64 || VT == MVT::v2f64) {
SelectPostLoad(Node, 3, AArch64::LD3Threev2d_POST, AArch64::qsub0);
return;
}
break;
}
case AArch64ISD::LD4post: {
if (VT == MVT::v8i8) {
SelectPostLoad(Node, 4, AArch64::LD4Fourv8b_POST, AArch64::dsub0);
return;
} else if (VT == MVT::v16i8) {
SelectPostLoad(Node, 4, AArch64::LD4Fourv16b_POST, AArch64::qsub0);
return;
} else if (VT == MVT::v4i16 || VT == MVT::v4f16 || VT == MVT::v4bf16) {
SelectPostLoad(Node, 4, AArch64::LD4Fourv4h_POST, AArch64::dsub0);
return;
} else if (VT == MVT::v8i16 || VT == MVT::v8f16 || VT == MVT::v8bf16) {
SelectPostLoad(Node, 4, AArch64::LD4Fourv8h_POST, AArch64::qsub0);
return;
} else if (VT == MVT::v2i32 || VT == MVT::v2f32) {
SelectPostLoad(Node, 4, AArch64::LD4Fourv2s_POST, AArch64::dsub0);
return;
} else if (VT == MVT::v4i32 || VT == MVT::v4f32) {
SelectPostLoad(Node, 4, AArch64::LD4Fourv4s_POST, AArch64::qsub0);
return;
} else if (VT == MVT::v1i64 || VT == MVT::v1f64) {
SelectPostLoad(Node, 4, AArch64::LD1Fourv1d_POST, AArch64::dsub0);
return;
} else if (VT == MVT::v2i64 || VT == MVT::v2f64) {
SelectPostLoad(Node, 4, AArch64::LD4Fourv2d_POST, AArch64::qsub0);
return;
}
break;
}
case AArch64ISD::LD1x2post: {
if (VT == MVT::v8i8) {
SelectPostLoad(Node, 2, AArch64::LD1Twov8b_POST, AArch64::dsub0);
return;
} else if (VT == MVT::v16i8) {
SelectPostLoad(Node, 2, AArch64::LD1Twov16b_POST, AArch64::qsub0);
return;
} else if (VT == MVT::v4i16 || VT == MVT::v4f16 || VT == MVT::v4bf16) {
SelectPostLoad(Node, 2, AArch64::LD1Twov4h_POST, AArch64::dsub0);
return;
} else if (VT == MVT::v8i16 || VT == MVT::v8f16 || VT == MVT::v8bf16) {
SelectPostLoad(Node, 2, AArch64::LD1Twov8h_POST, AArch64::qsub0);
return;
} else if (VT == MVT::v2i32 || VT == MVT::v2f32) {
SelectPostLoad(Node, 2, AArch64::LD1Twov2s_POST, AArch64::dsub0);
return;
} else if (VT == MVT::v4i32 || VT == MVT::v4f32) {
SelectPostLoad(Node, 2, AArch64::LD1Twov4s_POST, AArch64::qsub0);
return;
} else if (VT == MVT::v1i64 || VT == MVT::v1f64) {
SelectPostLoad(Node, 2, AArch64::LD1Twov1d_POST, AArch64::dsub0);
return;
} else if (VT == MVT::v2i64 || VT == MVT::v2f64) {
SelectPostLoad(Node, 2, AArch64::LD1Twov2d_POST, AArch64::qsub0);
return;
}
break;
}
case AArch64ISD::LD1x3post: {
if (VT == MVT::v8i8) {
SelectPostLoad(Node, 3, AArch64::LD1Threev8b_POST, AArch64::dsub0);
return;
} else if (VT == MVT::v16i8) {
SelectPostLoad(Node, 3, AArch64::LD1Threev16b_POST, AArch64::qsub0);
return;
} else if (VT == MVT::v4i16 || VT == MVT::v4f16 || VT == MVT::v4bf16) {
SelectPostLoad(Node, 3, AArch64::LD1Threev4h_POST, AArch64::dsub0);
return;
} else if (VT == MVT::v8i16 || VT == MVT::v8f16 || VT == MVT::v8bf16) {
SelectPostLoad(Node, 3, AArch64::LD1Threev8h_POST, AArch64::qsub0);
return;
} else if (VT == MVT::v2i32 || VT == MVT::v2f32) {
SelectPostLoad(Node, 3, AArch64::LD1Threev2s_POST, AArch64::dsub0);
return;
} else if (VT == MVT::v4i32 || VT == MVT::v4f32) {
SelectPostLoad(Node, 3, AArch64::LD1Threev4s_POST, AArch64::qsub0);
return;
} else if (VT == MVT::v1i64 || VT == MVT::v1f64) {
SelectPostLoad(Node, 3, AArch64::LD1Threev1d_POST, AArch64::dsub0);
return;
} else if (VT == MVT::v2i64 || VT == MVT::v2f64) {
SelectPostLoad(Node, 3, AArch64::LD1Threev2d_POST, AArch64::qsub0);
return;
}
break;
}
case AArch64ISD::LD1x4post: {
if (VT == MVT::v8i8) {
SelectPostLoad(Node, 4, AArch64::LD1Fourv8b_POST, AArch64::dsub0);
return;
} else if (VT == MVT::v16i8) {
SelectPostLoad(Node, 4, AArch64::LD1Fourv16b_POST, AArch64::qsub0);
return;
} else if (VT == MVT::v4i16 || VT == MVT::v4f16 || VT == MVT::v4bf16) {
SelectPostLoad(Node, 4, AArch64::LD1Fourv4h_POST, AArch64::dsub0);
return;
} else if (VT == MVT::v8i16 || VT == MVT::v8f16 || VT == MVT::v8bf16) {
SelectPostLoad(Node, 4, AArch64::LD1Fourv8h_POST, AArch64::qsub0);
return;
} else if (VT == MVT::v2i32 || VT == MVT::v2f32) {
SelectPostLoad(Node, 4, AArch64::LD1Fourv2s_POST, AArch64::dsub0);
return;
} else if (VT == MVT::v4i32 || VT == MVT::v4f32) {
SelectPostLoad(Node, 4, AArch64::LD1Fourv4s_POST, AArch64::qsub0);
return;
} else if (VT == MVT::v1i64 || VT == MVT::v1f64) {
SelectPostLoad(Node, 4, AArch64::LD1Fourv1d_POST, AArch64::dsub0);
return;
} else if (VT == MVT::v2i64 || VT == MVT::v2f64) {
SelectPostLoad(Node, 4, AArch64::LD1Fourv2d_POST, AArch64::qsub0);
return;
}
break;
}
case AArch64ISD::LD1DUPpost: {
if (VT == MVT::v8i8) {
SelectPostLoad(Node, 1, AArch64::LD1Rv8b_POST, AArch64::dsub0);
return;
} else if (VT == MVT::v16i8) {
SelectPostLoad(Node, 1, AArch64::LD1Rv16b_POST, AArch64::qsub0);
return;
} else if (VT == MVT::v4i16 || VT == MVT::v4f16 || VT == MVT::v4bf16) {
SelectPostLoad(Node, 1, AArch64::LD1Rv4h_POST, AArch64::dsub0);
return;
} else if (VT == MVT::v8i16 || VT == MVT::v8f16 || VT == MVT::v8bf16) {
SelectPostLoad(Node, 1, AArch64::LD1Rv8h_POST, AArch64::qsub0);
return;
} else if (VT == MVT::v2i32 || VT == MVT::v2f32) {
SelectPostLoad(Node, 1, AArch64::LD1Rv2s_POST, AArch64::dsub0);
return;
} else if (VT == MVT::v4i32 || VT == MVT::v4f32) {
SelectPostLoad(Node, 1, AArch64::LD1Rv4s_POST, AArch64::qsub0);
return;
} else if (VT == MVT::v1i64 || VT == MVT::v1f64) {
SelectPostLoad(Node, 1, AArch64::LD1Rv1d_POST, AArch64::dsub0);
return;
} else if (VT == MVT::v2i64 || VT == MVT::v2f64) {
SelectPostLoad(Node, 1, AArch64::LD1Rv2d_POST, AArch64::qsub0);
return;
}
break;
}
case AArch64ISD::LD2DUPpost: {
if (VT == MVT::v8i8) {
SelectPostLoad(Node, 2, AArch64::LD2Rv8b_POST, AArch64::dsub0);
return;
} else if (VT == MVT::v16i8) {
SelectPostLoad(Node, 2, AArch64::LD2Rv16b_POST, AArch64::qsub0);
return;
} else if (VT == MVT::v4i16 || VT == MVT::v4f16 || VT == MVT::v4bf16) {
SelectPostLoad(Node, 2, AArch64::LD2Rv4h_POST, AArch64::dsub0);
return;
} else if (VT == MVT::v8i16 || VT == MVT::v8f16 || VT == MVT::v8bf16) {
SelectPostLoad(Node, 2, AArch64::LD2Rv8h_POST, AArch64::qsub0);
return;
} else if (VT == MVT::v2i32 || VT == MVT::v2f32) {
SelectPostLoad(Node, 2, AArch64::LD2Rv2s_POST, AArch64::dsub0);
return;
} else if (VT == MVT::v4i32 || VT == MVT::v4f32) {
SelectPostLoad(Node, 2, AArch64::LD2Rv4s_POST, AArch64::qsub0);
return;
} else if (VT == MVT::v1i64 || VT == MVT::v1f64) {
SelectPostLoad(Node, 2, AArch64::LD2Rv1d_POST, AArch64::dsub0);
return;
} else if (VT == MVT::v2i64 || VT == MVT::v2f64) {
SelectPostLoad(Node, 2, AArch64::LD2Rv2d_POST, AArch64::qsub0);
return;
}
break;
}
case AArch64ISD::LD3DUPpost: {
if (VT == MVT::v8i8) {
SelectPostLoad(Node, 3, AArch64::LD3Rv8b_POST, AArch64::dsub0);
return;
} else if (VT == MVT::v16i8) {
SelectPostLoad(Node, 3, AArch64::LD3Rv16b_POST, AArch64::qsub0);
return;
} else if (VT == MVT::v4i16 || VT == MVT::v4f16 || VT == MVT::v4bf16) {
SelectPostLoad(Node, 3, AArch64::LD3Rv4h_POST, AArch64::dsub0);
return;
} else if (VT == MVT::v8i16 || VT == MVT::v8f16 || VT == MVT::v8bf16) {
SelectPostLoad(Node, 3, AArch64::LD3Rv8h_POST, AArch64::qsub0);
return;
} else if (VT == MVT::v2i32 || VT == MVT::v2f32) {
SelectPostLoad(Node, 3, AArch64::LD3Rv2s_POST, AArch64::dsub0);
return;
} else if (VT == MVT::v4i32 || VT == MVT::v4f32) {
SelectPostLoad(Node, 3, AArch64::LD3Rv4s_POST, AArch64::qsub0);
return;
} else if (VT == MVT::v1i64 || VT == MVT::v1f64) {
SelectPostLoad(Node, 3, AArch64::LD3Rv1d_POST, AArch64::dsub0);
return;
} else if (VT == MVT::v2i64 || VT == MVT::v2f64) {
SelectPostLoad(Node, 3, AArch64::LD3Rv2d_POST, AArch64::qsub0);
return;
}
break;
}
case AArch64ISD::LD4DUPpost: {
if (VT == MVT::v8i8) {
SelectPostLoad(Node, 4, AArch64::LD4Rv8b_POST, AArch64::dsub0);
return;
} else if (VT == MVT::v16i8) {
SelectPostLoad(Node, 4, AArch64::LD4Rv16b_POST, AArch64::qsub0);
return;
} else if (VT == MVT::v4i16 || VT == MVT::v4f16 || VT == MVT::v4bf16) {
SelectPostLoad(Node, 4, AArch64::LD4Rv4h_POST, AArch64::dsub0);
return;
} else if (VT == MVT::v8i16 || VT == MVT::v8f16 || VT == MVT::v8bf16) {
SelectPostLoad(Node, 4, AArch64::LD4Rv8h_POST, AArch64::qsub0);
return;
} else if (VT == MVT::v2i32 || VT == MVT::v2f32) {
SelectPostLoad(Node, 4, AArch64::LD4Rv2s_POST, AArch64::dsub0);
return;
} else if (VT == MVT::v4i32 || VT == MVT::v4f32) {
SelectPostLoad(Node, 4, AArch64::LD4Rv4s_POST, AArch64::qsub0);
return;
} else if (VT == MVT::v1i64 || VT == MVT::v1f64) {
SelectPostLoad(Node, 4, AArch64::LD4Rv1d_POST, AArch64::dsub0);
return;
} else if (VT == MVT::v2i64 || VT == MVT::v2f64) {
SelectPostLoad(Node, 4, AArch64::LD4Rv2d_POST, AArch64::qsub0);
return;
}
break;
}
case AArch64ISD::LD1LANEpost: {
if (VT == MVT::v16i8 || VT == MVT::v8i8) {
SelectPostLoadLane(Node, 1, AArch64::LD1i8_POST);
return;
} else if (VT == MVT::v8i16 || VT == MVT::v4i16 || VT == MVT::v4f16 ||
VT == MVT::v8f16 || VT == MVT::v4bf16 || VT == MVT::v8bf16) {
SelectPostLoadLane(Node, 1, AArch64::LD1i16_POST);
return;
} else if (VT == MVT::v4i32 || VT == MVT::v2i32 || VT == MVT::v4f32 ||
VT == MVT::v2f32) {
SelectPostLoadLane(Node, 1, AArch64::LD1i32_POST);
return;
} else if (VT == MVT::v2i64 || VT == MVT::v1i64 || VT == MVT::v2f64 ||
VT == MVT::v1f64) {
SelectPostLoadLane(Node, 1, AArch64::LD1i64_POST);
return;
}
break;
}
case AArch64ISD::LD2LANEpost: {
if (VT == MVT::v16i8 || VT == MVT::v8i8) {
SelectPostLoadLane(Node, 2, AArch64::LD2i8_POST);
return;
} else if (VT == MVT::v8i16 || VT == MVT::v4i16 || VT == MVT::v4f16 ||
VT == MVT::v8f16 || VT == MVT::v4bf16 || VT == MVT::v8bf16) {
SelectPostLoadLane(Node, 2, AArch64::LD2i16_POST);
return;
} else if (VT == MVT::v4i32 || VT == MVT::v2i32 || VT == MVT::v4f32 ||
VT == MVT::v2f32) {
SelectPostLoadLane(Node, 2, AArch64::LD2i32_POST);
return;
} else if (VT == MVT::v2i64 || VT == MVT::v1i64 || VT == MVT::v2f64 ||
VT == MVT::v1f64) {
SelectPostLoadLane(Node, 2, AArch64::LD2i64_POST);
return;
}
break;
}
case AArch64ISD::LD3LANEpost: {
if (VT == MVT::v16i8 || VT == MVT::v8i8) {
SelectPostLoadLane(Node, 3, AArch64::LD3i8_POST);
return;
} else if (VT == MVT::v8i16 || VT == MVT::v4i16 || VT == MVT::v4f16 ||
VT == MVT::v8f16 || VT == MVT::v4bf16 || VT == MVT::v8bf16) {
SelectPostLoadLane(Node, 3, AArch64::LD3i16_POST);
return;
} else if (VT == MVT::v4i32 || VT == MVT::v2i32 || VT == MVT::v4f32 ||
VT == MVT::v2f32) {
SelectPostLoadLane(Node, 3, AArch64::LD3i32_POST);
return;
} else if (VT == MVT::v2i64 || VT == MVT::v1i64 || VT == MVT::v2f64 ||
VT == MVT::v1f64) {
SelectPostLoadLane(Node, 3, AArch64::LD3i64_POST);
return;
}
break;
}
case AArch64ISD::LD4LANEpost: {
if (VT == MVT::v16i8 || VT == MVT::v8i8) {
SelectPostLoadLane(Node, 4, AArch64::LD4i8_POST);
return;
} else if (VT == MVT::v8i16 || VT == MVT::v4i16 || VT == MVT::v4f16 ||
VT == MVT::v8f16 || VT == MVT::v4bf16 || VT == MVT::v8bf16) {
SelectPostLoadLane(Node, 4, AArch64::LD4i16_POST);
return;
} else if (VT == MVT::v4i32 || VT == MVT::v2i32 || VT == MVT::v4f32 ||
VT == MVT::v2f32) {
SelectPostLoadLane(Node, 4, AArch64::LD4i32_POST);
return;
} else if (VT == MVT::v2i64 || VT == MVT::v1i64 || VT == MVT::v2f64 ||
VT == MVT::v1f64) {
SelectPostLoadLane(Node, 4, AArch64::LD4i64_POST);
return;
}
break;
}
case AArch64ISD::ST2post: {
VT = Node->getOperand(1).getValueType();
if (VT == MVT::v8i8) {
SelectPostStore(Node, 2, AArch64::ST2Twov8b_POST);
return;
} else if (VT == MVT::v16i8) {
SelectPostStore(Node, 2, AArch64::ST2Twov16b_POST);
return;
} else if (VT == MVT::v4i16 || VT == MVT::v4f16 || VT == MVT::v4bf16) {
SelectPostStore(Node, 2, AArch64::ST2Twov4h_POST);
return;
} else if (VT == MVT::v8i16 || VT == MVT::v8f16 || VT == MVT::v8bf16) {
SelectPostStore(Node, 2, AArch64::ST2Twov8h_POST);
return;
} else if (VT == MVT::v2i32 || VT == MVT::v2f32) {
SelectPostStore(Node, 2, AArch64::ST2Twov2s_POST);
return;
} else if (VT == MVT::v4i32 || VT == MVT::v4f32) {
SelectPostStore(Node, 2, AArch64::ST2Twov4s_POST);
return;
} else if (VT == MVT::v2i64 || VT == MVT::v2f64) {
SelectPostStore(Node, 2, AArch64::ST2Twov2d_POST);
return;
} else if (VT == MVT::v1i64 || VT == MVT::v1f64) {
SelectPostStore(Node, 2, AArch64::ST1Twov1d_POST);
return;
}
break;
}
case AArch64ISD::ST3post: {
VT = Node->getOperand(1).getValueType();
if (VT == MVT::v8i8) {
SelectPostStore(Node, 3, AArch64::ST3Threev8b_POST);
return;
} else if (VT == MVT::v16i8) {
SelectPostStore(Node, 3, AArch64::ST3Threev16b_POST);
return;
} else if (VT == MVT::v4i16 || VT == MVT::v4f16 || VT == MVT::v4bf16) {
SelectPostStore(Node, 3, AArch64::ST3Threev4h_POST);
return;
} else if (VT == MVT::v8i16 || VT == MVT::v8f16 || VT == MVT::v8bf16) {
SelectPostStore(Node, 3, AArch64::ST3Threev8h_POST);
return;
} else if (VT == MVT::v2i32 || VT == MVT::v2f32) {
SelectPostStore(Node, 3, AArch64::ST3Threev2s_POST);
return;
} else if (VT == MVT::v4i32 || VT == MVT::v4f32) {
SelectPostStore(Node, 3, AArch64::ST3Threev4s_POST);
return;
} else if (VT == MVT::v2i64 || VT == MVT::v2f64) {
SelectPostStore(Node, 3, AArch64::ST3Threev2d_POST);
return;
} else if (VT == MVT::v1i64 || VT == MVT::v1f64) {
SelectPostStore(Node, 3, AArch64::ST1Threev1d_POST);
return;
}
break;
}
case AArch64ISD::ST4post: {
VT = Node->getOperand(1).getValueType();
if (VT == MVT::v8i8) {
SelectPostStore(Node, 4, AArch64::ST4Fourv8b_POST);
return;
} else if (VT == MVT::v16i8) {
SelectPostStore(Node, 4, AArch64::ST4Fourv16b_POST);
return;
} else if (VT == MVT::v4i16 || VT == MVT::v4f16 || VT == MVT::v4bf16) {
SelectPostStore(Node, 4, AArch64::ST4Fourv4h_POST);
return;
} else if (VT == MVT::v8i16 || VT == MVT::v8f16 || VT == MVT::v8bf16) {
SelectPostStore(Node, 4, AArch64::ST4Fourv8h_POST);
return;
} else if (VT == MVT::v2i32 || VT == MVT::v2f32) {
SelectPostStore(Node, 4, AArch64::ST4Fourv2s_POST);
return;
} else if (VT == MVT::v4i32 || VT == MVT::v4f32) {
SelectPostStore(Node, 4, AArch64::ST4Fourv4s_POST);
return;
} else if (VT == MVT::v2i64 || VT == MVT::v2f64) {
SelectPostStore(Node, 4, AArch64::ST4Fourv2d_POST);
return;
} else if (VT == MVT::v1i64 || VT == MVT::v1f64) {
SelectPostStore(Node, 4, AArch64::ST1Fourv1d_POST);
return;
}
break;
}
case AArch64ISD::ST1x2post: {
VT = Node->getOperand(1).getValueType();
if (VT == MVT::v8i8) {
SelectPostStore(Node, 2, AArch64::ST1Twov8b_POST);
return;
} else if (VT == MVT::v16i8) {
SelectPostStore(Node, 2, AArch64::ST1Twov16b_POST);
return;
} else if (VT == MVT::v4i16 || VT == MVT::v4f16 || VT == MVT::v4bf16) {
SelectPostStore(Node, 2, AArch64::ST1Twov4h_POST);
return;
} else if (VT == MVT::v8i16 || VT == MVT::v8f16 || VT == MVT::v8bf16) {
SelectPostStore(Node, 2, AArch64::ST1Twov8h_POST);
return;
} else if (VT == MVT::v2i32 || VT == MVT::v2f32) {
SelectPostStore(Node, 2, AArch64::ST1Twov2s_POST);
return;
} else if (VT == MVT::v4i32 || VT == MVT::v4f32) {
SelectPostStore(Node, 2, AArch64::ST1Twov4s_POST);
return;
} else if (VT == MVT::v1i64 || VT == MVT::v1f64) {
SelectPostStore(Node, 2, AArch64::ST1Twov1d_POST);
return;
} else if (VT == MVT::v2i64 || VT == MVT::v2f64) {
SelectPostStore(Node, 2, AArch64::ST1Twov2d_POST);
return;
}
break;
}
case AArch64ISD::ST1x3post: {
VT = Node->getOperand(1).getValueType();
if (VT == MVT::v8i8) {
SelectPostStore(Node, 3, AArch64::ST1Threev8b_POST);
return;
} else if (VT == MVT::v16i8) {
SelectPostStore(Node, 3, AArch64::ST1Threev16b_POST);
return;
} else if (VT == MVT::v4i16 || VT == MVT::v4f16 || VT == MVT::v4bf16) {
SelectPostStore(Node, 3, AArch64::ST1Threev4h_POST);
return;
} else if (VT == MVT::v8i16 || VT == MVT::v8f16 || VT == MVT::v8bf16 ) {
SelectPostStore(Node, 3, AArch64::ST1Threev8h_POST);
return;
} else if (VT == MVT::v2i32 || VT == MVT::v2f32) {
SelectPostStore(Node, 3, AArch64::ST1Threev2s_POST);
return;
} else if (VT == MVT::v4i32 || VT == MVT::v4f32) {
SelectPostStore(Node, 3, AArch64::ST1Threev4s_POST);
return;
} else if (VT == MVT::v1i64 || VT == MVT::v1f64) {
SelectPostStore(Node, 3, AArch64::ST1Threev1d_POST);
return;
} else if (VT == MVT::v2i64 || VT == MVT::v2f64) {
SelectPostStore(Node, 3, AArch64::ST1Threev2d_POST);
return;
}
break;
}
case AArch64ISD::ST1x4post: {
VT = Node->getOperand(1).getValueType();
if (VT == MVT::v8i8) {
SelectPostStore(Node, 4, AArch64::ST1Fourv8b_POST);
return;
} else if (VT == MVT::v16i8) {
SelectPostStore(Node, 4, AArch64::ST1Fourv16b_POST);
return;
} else if (VT == MVT::v4i16 || VT == MVT::v4f16 || VT == MVT::v4bf16) {
SelectPostStore(Node, 4, AArch64::ST1Fourv4h_POST);
return;
} else if (VT == MVT::v8i16 || VT == MVT::v8f16 || VT == MVT::v8bf16) {
SelectPostStore(Node, 4, AArch64::ST1Fourv8h_POST);
return;
} else if (VT == MVT::v2i32 || VT == MVT::v2f32) {
SelectPostStore(Node, 4, AArch64::ST1Fourv2s_POST);
return;
} else if (VT == MVT::v4i32 || VT == MVT::v4f32) {
SelectPostStore(Node, 4, AArch64::ST1Fourv4s_POST);
return;
} else if (VT == MVT::v1i64 || VT == MVT::v1f64) {
SelectPostStore(Node, 4, AArch64::ST1Fourv1d_POST);
return;
} else if (VT == MVT::v2i64 || VT == MVT::v2f64) {
SelectPostStore(Node, 4, AArch64::ST1Fourv2d_POST);
return;
}
break;
}
case AArch64ISD::ST2LANEpost: {
VT = Node->getOperand(1).getValueType();
if (VT == MVT::v16i8 || VT == MVT::v8i8) {
SelectPostStoreLane(Node, 2, AArch64::ST2i8_POST);
return;
} else if (VT == MVT::v8i16 || VT == MVT::v4i16 || VT == MVT::v4f16 ||
VT == MVT::v8f16 || VT == MVT::v4bf16 || VT == MVT::v8bf16) {
SelectPostStoreLane(Node, 2, AArch64::ST2i16_POST);
return;
} else if (VT == MVT::v4i32 || VT == MVT::v2i32 || VT == MVT::v4f32 ||
VT == MVT::v2f32) {
SelectPostStoreLane(Node, 2, AArch64::ST2i32_POST);
return;
} else if (VT == MVT::v2i64 || VT == MVT::v1i64 || VT == MVT::v2f64 ||
VT == MVT::v1f64) {
SelectPostStoreLane(Node, 2, AArch64::ST2i64_POST);
return;
}
break;
}
case AArch64ISD::ST3LANEpost: {
VT = Node->getOperand(1).getValueType();
if (VT == MVT::v16i8 || VT == MVT::v8i8) {
SelectPostStoreLane(Node, 3, AArch64::ST3i8_POST);
return;
} else if (VT == MVT::v8i16 || VT == MVT::v4i16 || VT == MVT::v4f16 ||
VT == MVT::v8f16 || VT == MVT::v4bf16 || VT == MVT::v8bf16) {
SelectPostStoreLane(Node, 3, AArch64::ST3i16_POST);
return;
} else if (VT == MVT::v4i32 || VT == MVT::v2i32 || VT == MVT::v4f32 ||
VT == MVT::v2f32) {
SelectPostStoreLane(Node, 3, AArch64::ST3i32_POST);
return;
} else if (VT == MVT::v2i64 || VT == MVT::v1i64 || VT == MVT::v2f64 ||
VT == MVT::v1f64) {
SelectPostStoreLane(Node, 3, AArch64::ST3i64_POST);
return;
}
break;
}
case AArch64ISD::ST4LANEpost: {
VT = Node->getOperand(1).getValueType();
if (VT == MVT::v16i8 || VT == MVT::v8i8) {
SelectPostStoreLane(Node, 4, AArch64::ST4i8_POST);
return;
} else if (VT == MVT::v8i16 || VT == MVT::v4i16 || VT == MVT::v4f16 ||
VT == MVT::v8f16 || VT == MVT::v4bf16 || VT == MVT::v8bf16) {
SelectPostStoreLane(Node, 4, AArch64::ST4i16_POST);
return;
} else if (VT == MVT::v4i32 || VT == MVT::v2i32 || VT == MVT::v4f32 ||
VT == MVT::v2f32) {
SelectPostStoreLane(Node, 4, AArch64::ST4i32_POST);
return;
} else if (VT == MVT::v2i64 || VT == MVT::v1i64 || VT == MVT::v2f64 ||
VT == MVT::v1f64) {
SelectPostStoreLane(Node, 4, AArch64::ST4i64_POST);
return;
}
break;
}
case AArch64ISD::SVE_LD2_MERGE_ZERO: {
if (VT == MVT::nxv16i8) {
SelectPredicatedLoad(Node, 2, 0, AArch64::LD2B_IMM, AArch64::LD2B);
return;
} else if (VT == MVT::nxv8i16 || VT == MVT::nxv8f16 ||
(VT == MVT::nxv8bf16 && Subtarget->hasBF16())) {
SelectPredicatedLoad(Node, 2, 1, AArch64::LD2H_IMM, AArch64::LD2H);
return;
} else if (VT == MVT::nxv4i32 || VT == MVT::nxv4f32) {
SelectPredicatedLoad(Node, 2, 2, AArch64::LD2W_IMM, AArch64::LD2W);
return;
} else if (VT == MVT::nxv2i64 || VT == MVT::nxv2f64) {
SelectPredicatedLoad(Node, 2, 3, AArch64::LD2D_IMM, AArch64::LD2D);
return;
}
break;
}
case AArch64ISD::SVE_LD3_MERGE_ZERO: {
if (VT == MVT::nxv16i8) {
SelectPredicatedLoad(Node, 3, 0, AArch64::LD3B_IMM, AArch64::LD3B);
return;
} else if (VT == MVT::nxv8i16 || VT == MVT::nxv8f16 ||
(VT == MVT::nxv8bf16 && Subtarget->hasBF16())) {
SelectPredicatedLoad(Node, 3, 1, AArch64::LD3H_IMM, AArch64::LD3H);
return;
} else if (VT == MVT::nxv4i32 || VT == MVT::nxv4f32) {
SelectPredicatedLoad(Node, 3, 2, AArch64::LD3W_IMM, AArch64::LD3W);
return;
} else if (VT == MVT::nxv2i64 || VT == MVT::nxv2f64) {
SelectPredicatedLoad(Node, 3, 3, AArch64::LD3D_IMM, AArch64::LD3D);
return;
}
break;
}
case AArch64ISD::SVE_LD4_MERGE_ZERO: {
if (VT == MVT::nxv16i8) {
SelectPredicatedLoad(Node, 4, 0, AArch64::LD4B_IMM, AArch64::LD4B);
return;
} else if (VT == MVT::nxv8i16 || VT == MVT::nxv8f16 ||
(VT == MVT::nxv8bf16 && Subtarget->hasBF16())) {
SelectPredicatedLoad(Node, 4, 1, AArch64::LD4H_IMM, AArch64::LD4H);
return;
} else if (VT == MVT::nxv4i32 || VT == MVT::nxv4f32) {
SelectPredicatedLoad(Node, 4, 2, AArch64::LD4W_IMM, AArch64::LD4W);
return;
} else if (VT == MVT::nxv2i64 || VT == MVT::nxv2f64) {
SelectPredicatedLoad(Node, 4, 3, AArch64::LD4D_IMM, AArch64::LD4D);
return;
}
break;
}
}
// Select the default instruction
SelectCode(Node);
}
/// createAArch64ISelDag - This pass converts a legalized DAG into a
/// AArch64-specific DAG, ready for instruction scheduling.
FunctionPass *llvm::createAArch64ISelDag(AArch64TargetMachine &TM,
CodeGenOpt::Level OptLevel) {
return new AArch64DAGToDAGISel(TM, OptLevel);
}
/// When \p PredVT is a scalable vector predicate in the form
/// MVT::nx<M>xi1, it builds the correspondent scalable vector of
/// integers MVT::nx<M>xi<bits> s.t. M x bits = 128. When targeting
/// structured vectors (NumVec >1), the output data type is
/// MVT::nx<M*NumVec>xi<bits> s.t. M x bits = 128. If the input
/// PredVT is not in the form MVT::nx<M>xi1, it returns an invalid
/// EVT.
static EVT getPackedVectorTypeFromPredicateType(LLVMContext &Ctx, EVT PredVT,
unsigned NumVec) {
assert(NumVec > 0 && NumVec < 5 && "Invalid number of vectors.");
if (!PredVT.isScalableVector() || PredVT.getVectorElementType() != MVT::i1)
return EVT();
if (PredVT != MVT::nxv16i1 && PredVT != MVT::nxv8i1 &&
PredVT != MVT::nxv4i1 && PredVT != MVT::nxv2i1)
return EVT();
ElementCount EC = PredVT.getVectorElementCount();
EVT ScalarVT =
EVT::getIntegerVT(Ctx, AArch64::SVEBitsPerBlock / EC.getKnownMinValue());
EVT MemVT = EVT::getVectorVT(Ctx, ScalarVT, EC * NumVec);
return MemVT;
}
/// Return the EVT of the data associated to a memory operation in \p
/// Root. If such EVT cannot be retrived, it returns an invalid EVT.
static EVT getMemVTFromNode(LLVMContext &Ctx, SDNode *Root) {
if (isa<MemSDNode>(Root))
return cast<MemSDNode>(Root)->getMemoryVT();
if (isa<MemIntrinsicSDNode>(Root))
return cast<MemIntrinsicSDNode>(Root)->getMemoryVT();
const unsigned Opcode = Root->getOpcode();
// For custom ISD nodes, we have to look at them individually to extract the
// type of the data moved to/from memory.
switch (Opcode) {
case AArch64ISD::LD1_MERGE_ZERO:
case AArch64ISD::LD1S_MERGE_ZERO:
case AArch64ISD::LDNF1_MERGE_ZERO:
case AArch64ISD::LDNF1S_MERGE_ZERO:
return cast<VTSDNode>(Root->getOperand(3))->getVT();
case AArch64ISD::ST1_PRED:
return cast<VTSDNode>(Root->getOperand(4))->getVT();
case AArch64ISD::SVE_LD2_MERGE_ZERO:
return getPackedVectorTypeFromPredicateType(
Ctx, Root->getOperand(1)->getValueType(0), /*NumVec=*/2);
case AArch64ISD::SVE_LD3_MERGE_ZERO:
return getPackedVectorTypeFromPredicateType(
Ctx, Root->getOperand(1)->getValueType(0), /*NumVec=*/3);
case AArch64ISD::SVE_LD4_MERGE_ZERO:
return getPackedVectorTypeFromPredicateType(
Ctx, Root->getOperand(1)->getValueType(0), /*NumVec=*/4);
default:
break;
}
if (Opcode != ISD::INTRINSIC_VOID)
return EVT();
const unsigned IntNo =
cast<ConstantSDNode>(Root->getOperand(1))->getZExtValue();
if (IntNo != Intrinsic::aarch64_sve_prf)
return EVT();
// We are using an SVE prefetch intrinsic. Type must be inferred
// from the width of the predicate.
return getPackedVectorTypeFromPredicateType(
Ctx, Root->getOperand(2)->getValueType(0), /*NumVec=*/1);
}
/// SelectAddrModeIndexedSVE - Attempt selection of the addressing mode:
/// Base + OffImm * sizeof(MemVT) for Min >= OffImm <= Max
/// where Root is the memory access using N for its address.
template <int64_t Min, int64_t Max>
bool AArch64DAGToDAGISel::SelectAddrModeIndexedSVE(SDNode *Root, SDValue N,
SDValue &Base,
SDValue &OffImm) {
const EVT MemVT = getMemVTFromNode(*(CurDAG->getContext()), Root);
if (MemVT == EVT())
return false;
if (N.getOpcode() != ISD::ADD)
return false;
SDValue VScale = N.getOperand(1);
if (VScale.getOpcode() != ISD::VSCALE)
return false;
TypeSize TS = MemVT.getSizeInBits();
int64_t MemWidthBytes = static_cast<int64_t>(TS.getKnownMinSize()) / 8;
int64_t MulImm = cast<ConstantSDNode>(VScale.getOperand(0))->getSExtValue();
if ((MulImm % MemWidthBytes) != 0)
return false;
int64_t Offset = MulImm / MemWidthBytes;
if (Offset < Min || Offset > Max)
return false;
Base = N.getOperand(0);
OffImm = CurDAG->getTargetConstant(Offset, SDLoc(N), MVT::i64);
return true;
}
/// Select register plus register addressing mode for SVE, with scaled
/// offset.
bool AArch64DAGToDAGISel::SelectSVERegRegAddrMode(SDValue N, unsigned Scale,
SDValue &Base,
SDValue &Offset) {
if (N.getOpcode() != ISD::ADD)
return false;
// Process an ADD node.
const SDValue LHS = N.getOperand(0);
const SDValue RHS = N.getOperand(1);
// 8 bit data does not come with the SHL node, so it is treated
// separately.
if (Scale == 0) {
Base = LHS;
Offset = RHS;
return true;
}
if (auto C = dyn_cast<ConstantSDNode>(RHS)) {
int64_t ImmOff = C->getSExtValue();
unsigned Size = 1 << Scale;
// To use the reg+reg addressing mode, the immediate must be a multiple of
// the vector element's byte size.
if (ImmOff % Size)
return false;
SDLoc DL(N);
Base = LHS;
Offset = CurDAG->getTargetConstant(ImmOff >> Scale, DL, MVT::i64);
SDValue Ops[] = {Offset};
SDNode *MI = CurDAG->getMachineNode(AArch64::MOVi64imm, DL, MVT::i64, Ops);
Offset = SDValue(MI, 0);
return true;
}
// Check if the RHS is a shift node with a constant.
if (RHS.getOpcode() != ISD::SHL)
return false;
const SDValue ShiftRHS = RHS.getOperand(1);
if (auto *C = dyn_cast<ConstantSDNode>(ShiftRHS))
if (C->getZExtValue() == Scale) {
Base = LHS;
Offset = RHS.getOperand(0);
return true;
}
return false;
}
bool AArch64DAGToDAGISel::SelectAllActivePredicate(SDValue N) {
const AArch64TargetLowering *TLI =
static_cast<const AArch64TargetLowering *>(getTargetLowering());
return TLI->isAllActivePredicate(N);
}