1
0
mirror of https://github.com/RPCS3/llvm-mirror.git synced 2024-11-22 02:33:06 +01:00
llvm-mirror/lib/Target/AArch64/AArch64ISelLowering.h
Alexandros Lamprineas 276fcebbe0 [AArch64] Legalize MVT::i64x8 in DAG isel lowering
This patch legalizes the Machine Value Type introduced in D94096 for loads
and stores. A new target hook named getAsmOperandValueType() is added which
maps i512 to MVT::i64x8. GlobalISel falls back to DAG for legalization.

Differential Revision: https://reviews.llvm.org/D94097
2021-08-02 15:45:58 +01:00

1130 lines
40 KiB
C++

//==-- AArch64ISelLowering.h - AArch64 DAG Lowering Interface ----*- C++ -*-==//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file defines the interfaces that AArch64 uses to lower LLVM code into a
// selection DAG.
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_LIB_TARGET_AARCH64_AARCH64ISELLOWERING_H
#define LLVM_LIB_TARGET_AARCH64_AARCH64ISELLOWERING_H
#include "AArch64.h"
#include "llvm/CodeGen/CallingConvLower.h"
#include "llvm/CodeGen/MachineFunction.h"
#include "llvm/CodeGen/SelectionDAG.h"
#include "llvm/CodeGen/TargetLowering.h"
#include "llvm/IR/CallingConv.h"
#include "llvm/IR/Instruction.h"
namespace llvm {
namespace AArch64ISD {
// For predicated nodes where the result is a vector, the operation is
// controlled by a governing predicate and the inactive lanes are explicitly
// defined with a value, please stick the following naming convention:
//
// _MERGE_OP<n> The result value is a vector with inactive lanes equal
// to source operand OP<n>.
//
// _MERGE_ZERO The result value is a vector with inactive lanes
// actively zeroed.
//
// _MERGE_PASSTHRU The result value is a vector with inactive lanes equal
// to the last source operand which only purpose is being
// a passthru value.
//
// For other cases where no explicit action is needed to set the inactive lanes,
// or when the result is not a vector and it is needed or helpful to
// distinguish a node from similar unpredicated nodes, use:
//
// _PRED
//
enum NodeType : unsigned {
FIRST_NUMBER = ISD::BUILTIN_OP_END,
WrapperLarge, // 4-instruction MOVZ/MOVK sequence for 64-bit addresses.
CALL, // Function call.
// Pseudo for a OBJC call that gets emitted together with a special `mov
// x29, x29` marker instruction.
CALL_RVMARKER,
// Produces the full sequence of instructions for getting the thread pointer
// offset of a variable into X0, using the TLSDesc model.
TLSDESC_CALLSEQ,
ADRP, // Page address of a TargetGlobalAddress operand.
ADR, // ADR
ADDlow, // Add the low 12 bits of a TargetGlobalAddress operand.
LOADgot, // Load from automatically generated descriptor (e.g. Global
// Offset Table, TLS record).
RET_FLAG, // Return with a flag operand. Operand 0 is the chain operand.
BRCOND, // Conditional branch instruction; "b.cond".
CSEL,
CSINV, // Conditional select invert.
CSNEG, // Conditional select negate.
CSINC, // Conditional select increment.
// Pointer to the thread's local storage area. Materialised from TPIDR_EL0 on
// ELF.
THREAD_POINTER,
ADC,
SBC, // adc, sbc instructions
// Predicated instructions where inactive lanes produce undefined results.
ADD_PRED,
FADD_PRED,
FDIV_PRED,
FMA_PRED,
FMAXNM_PRED,
FMINNM_PRED,
FMAX_PRED,
FMIN_PRED,
FMUL_PRED,
FSUB_PRED,
MUL_PRED,
MULHS_PRED,
MULHU_PRED,
SDIV_PRED,
SHL_PRED,
SMAX_PRED,
SMIN_PRED,
SRA_PRED,
SRL_PRED,
SUB_PRED,
UDIV_PRED,
UMAX_PRED,
UMIN_PRED,
// Unpredicated vector instructions
BIC,
// Predicated instructions with the result of inactive lanes provided by the
// last operand.
FABS_MERGE_PASSTHRU,
FCEIL_MERGE_PASSTHRU,
FFLOOR_MERGE_PASSTHRU,
FNEARBYINT_MERGE_PASSTHRU,
FNEG_MERGE_PASSTHRU,
FRECPX_MERGE_PASSTHRU,
FRINT_MERGE_PASSTHRU,
FROUND_MERGE_PASSTHRU,
FROUNDEVEN_MERGE_PASSTHRU,
FSQRT_MERGE_PASSTHRU,
FTRUNC_MERGE_PASSTHRU,
FP_ROUND_MERGE_PASSTHRU,
FP_EXTEND_MERGE_PASSTHRU,
UINT_TO_FP_MERGE_PASSTHRU,
SINT_TO_FP_MERGE_PASSTHRU,
FCVTZU_MERGE_PASSTHRU,
FCVTZS_MERGE_PASSTHRU,
SIGN_EXTEND_INREG_MERGE_PASSTHRU,
ZERO_EXTEND_INREG_MERGE_PASSTHRU,
ABS_MERGE_PASSTHRU,
NEG_MERGE_PASSTHRU,
SETCC_MERGE_ZERO,
// Arithmetic instructions which write flags.
ADDS,
SUBS,
ADCS,
SBCS,
ANDS,
// Conditional compares. Operands: left,right,falsecc,cc,flags
CCMP,
CCMN,
FCCMP,
// Floating point comparison
FCMP,
// Scalar extract
EXTR,
// Scalar-to-vector duplication
DUP,
DUPLANE8,
DUPLANE16,
DUPLANE32,
DUPLANE64,
// Vector immedate moves
MOVI,
MOVIshift,
MOVIedit,
MOVImsl,
FMOV,
MVNIshift,
MVNImsl,
// Vector immediate ops
BICi,
ORRi,
// Vector bitwise select: similar to ISD::VSELECT but not all bits within an
// element must be identical.
BSP,
// Vector shuffles
ZIP1,
ZIP2,
UZP1,
UZP2,
TRN1,
TRN2,
REV16,
REV32,
REV64,
EXT,
SPLICE,
// Vector shift by scalar
VSHL,
VLSHR,
VASHR,
// Vector shift by scalar (again)
SQSHL_I,
UQSHL_I,
SQSHLU_I,
SRSHR_I,
URSHR_I,
// Vector shift by constant and insert
VSLI,
VSRI,
// Vector comparisons
CMEQ,
CMGE,
CMGT,
CMHI,
CMHS,
FCMEQ,
FCMGE,
FCMGT,
// Vector zero comparisons
CMEQz,
CMGEz,
CMGTz,
CMLEz,
CMLTz,
FCMEQz,
FCMGEz,
FCMGTz,
FCMLEz,
FCMLTz,
// Vector across-lanes addition
// Only the lower result lane is defined.
SADDV,
UADDV,
// Vector halving addition
SHADD,
UHADD,
// Vector rounding halving addition
SRHADD,
URHADD,
// Unsigned Add Long Pairwise
UADDLP,
// udot/sdot instructions
UDOT,
SDOT,
// Vector across-lanes min/max
// Only the lower result lane is defined.
SMINV,
UMINV,
SMAXV,
UMAXV,
SADDV_PRED,
UADDV_PRED,
SMAXV_PRED,
UMAXV_PRED,
SMINV_PRED,
UMINV_PRED,
ORV_PRED,
EORV_PRED,
ANDV_PRED,
// Vector bitwise insertion
BIT,
// Compare-and-branch
CBZ,
CBNZ,
TBZ,
TBNZ,
// Tail calls
TC_RETURN,
// Custom prefetch handling
PREFETCH,
// {s|u}int to FP within a FP register.
SITOF,
UITOF,
/// Natural vector cast. ISD::BITCAST is not natural in the big-endian
/// world w.r.t vectors; which causes additional REV instructions to be
/// generated to compensate for the byte-swapping. But sometimes we do
/// need to re-interpret the data in SIMD vector registers in big-endian
/// mode without emitting such REV instructions.
NVCAST,
MRS, // MRS, also sets the flags via a glue.
SMULL,
UMULL,
// Reciprocal estimates and steps.
FRECPE,
FRECPS,
FRSQRTE,
FRSQRTS,
SUNPKHI,
SUNPKLO,
UUNPKHI,
UUNPKLO,
CLASTA_N,
CLASTB_N,
LASTA,
LASTB,
TBL,
// Floating-point reductions.
FADDA_PRED,
FADDV_PRED,
FMAXV_PRED,
FMAXNMV_PRED,
FMINV_PRED,
FMINNMV_PRED,
INSR,
PTEST,
PTRUE,
BITREVERSE_MERGE_PASSTHRU,
BSWAP_MERGE_PASSTHRU,
CTLZ_MERGE_PASSTHRU,
CTPOP_MERGE_PASSTHRU,
DUP_MERGE_PASSTHRU,
INDEX_VECTOR,
// Cast between vectors of the same element type but differ in length.
REINTERPRET_CAST,
// Nodes to build an LD64B / ST64B 64-bit quantity out of i64, and vice versa
LS64_BUILD,
LS64_EXTRACT,
LD1_MERGE_ZERO,
LD1S_MERGE_ZERO,
LDNF1_MERGE_ZERO,
LDNF1S_MERGE_ZERO,
LDFF1_MERGE_ZERO,
LDFF1S_MERGE_ZERO,
LD1RQ_MERGE_ZERO,
LD1RO_MERGE_ZERO,
// Structured loads.
SVE_LD2_MERGE_ZERO,
SVE_LD3_MERGE_ZERO,
SVE_LD4_MERGE_ZERO,
// Unsigned gather loads.
GLD1_MERGE_ZERO,
GLD1_SCALED_MERGE_ZERO,
GLD1_UXTW_MERGE_ZERO,
GLD1_SXTW_MERGE_ZERO,
GLD1_UXTW_SCALED_MERGE_ZERO,
GLD1_SXTW_SCALED_MERGE_ZERO,
GLD1_IMM_MERGE_ZERO,
// Signed gather loads
GLD1S_MERGE_ZERO,
GLD1S_SCALED_MERGE_ZERO,
GLD1S_UXTW_MERGE_ZERO,
GLD1S_SXTW_MERGE_ZERO,
GLD1S_UXTW_SCALED_MERGE_ZERO,
GLD1S_SXTW_SCALED_MERGE_ZERO,
GLD1S_IMM_MERGE_ZERO,
// Unsigned gather loads.
GLDFF1_MERGE_ZERO,
GLDFF1_SCALED_MERGE_ZERO,
GLDFF1_UXTW_MERGE_ZERO,
GLDFF1_SXTW_MERGE_ZERO,
GLDFF1_UXTW_SCALED_MERGE_ZERO,
GLDFF1_SXTW_SCALED_MERGE_ZERO,
GLDFF1_IMM_MERGE_ZERO,
// Signed gather loads.
GLDFF1S_MERGE_ZERO,
GLDFF1S_SCALED_MERGE_ZERO,
GLDFF1S_UXTW_MERGE_ZERO,
GLDFF1S_SXTW_MERGE_ZERO,
GLDFF1S_UXTW_SCALED_MERGE_ZERO,
GLDFF1S_SXTW_SCALED_MERGE_ZERO,
GLDFF1S_IMM_MERGE_ZERO,
// Non-temporal gather loads
GLDNT1_MERGE_ZERO,
GLDNT1_INDEX_MERGE_ZERO,
GLDNT1S_MERGE_ZERO,
// Contiguous masked store.
ST1_PRED,
// Scatter store
SST1_PRED,
SST1_SCALED_PRED,
SST1_UXTW_PRED,
SST1_SXTW_PRED,
SST1_UXTW_SCALED_PRED,
SST1_SXTW_SCALED_PRED,
SST1_IMM_PRED,
// Non-temporal scatter store
SSTNT1_PRED,
SSTNT1_INDEX_PRED,
// Strict (exception-raising) floating point comparison
STRICT_FCMP = ISD::FIRST_TARGET_STRICTFP_OPCODE,
STRICT_FCMPE,
// NEON Load/Store with post-increment base updates
LD2post = ISD::FIRST_TARGET_MEMORY_OPCODE,
LD3post,
LD4post,
ST2post,
ST3post,
ST4post,
LD1x2post,
LD1x3post,
LD1x4post,
ST1x2post,
ST1x3post,
ST1x4post,
LD1DUPpost,
LD2DUPpost,
LD3DUPpost,
LD4DUPpost,
LD1LANEpost,
LD2LANEpost,
LD3LANEpost,
LD4LANEpost,
ST2LANEpost,
ST3LANEpost,
ST4LANEpost,
STG,
STZG,
ST2G,
STZ2G,
LDP,
STP,
STNP,
};
} // end namespace AArch64ISD
namespace {
// Any instruction that defines a 32-bit result zeros out the high half of the
// register. Truncate can be lowered to EXTRACT_SUBREG. CopyFromReg may
// be copying from a truncate. But any other 32-bit operation will zero-extend
// up to 64 bits. AssertSext/AssertZext aren't saying anything about the upper
// 32 bits, they're probably just qualifying a CopyFromReg.
static inline bool isDef32(const SDNode &N) {
unsigned Opc = N.getOpcode();
return Opc != ISD::TRUNCATE && Opc != TargetOpcode::EXTRACT_SUBREG &&
Opc != ISD::CopyFromReg && Opc != ISD::AssertSext &&
Opc != ISD::AssertZext && Opc != ISD::AssertAlign &&
Opc != ISD::FREEZE;
}
} // end anonymous namespace
namespace AArch64 {
/// Possible values of current rounding mode, which is specified in bits
/// 23:22 of FPCR.
enum Rounding {
RN = 0, // Round to Nearest
RP = 1, // Round towards Plus infinity
RM = 2, // Round towards Minus infinity
RZ = 3, // Round towards Zero
rmMask = 3 // Bit mask selecting rounding mode
};
// Bit position of rounding mode bits in FPCR.
const unsigned RoundingBitsPos = 22;
} // namespace AArch64
class AArch64Subtarget;
class AArch64TargetMachine;
class AArch64TargetLowering : public TargetLowering {
public:
explicit AArch64TargetLowering(const TargetMachine &TM,
const AArch64Subtarget &STI);
/// Selects the correct CCAssignFn for a given CallingConvention value.
CCAssignFn *CCAssignFnForCall(CallingConv::ID CC, bool IsVarArg) const;
/// Selects the correct CCAssignFn for a given CallingConvention value.
CCAssignFn *CCAssignFnForReturn(CallingConv::ID CC) const;
/// Determine which of the bits specified in Mask are known to be either zero
/// or one and return them in the KnownZero/KnownOne bitsets.
void computeKnownBitsForTargetNode(const SDValue Op, KnownBits &Known,
const APInt &DemandedElts,
const SelectionDAG &DAG,
unsigned Depth = 0) const override;
MVT getPointerTy(const DataLayout &DL, uint32_t AS = 0) const override {
// Returning i64 unconditionally here (i.e. even for ILP32) means that the
// *DAG* representation of pointers will always be 64-bits. They will be
// truncated and extended when transferred to memory, but the 64-bit DAG
// allows us to use AArch64's addressing modes much more easily.
return MVT::getIntegerVT(64);
}
bool targetShrinkDemandedConstant(SDValue Op, const APInt &DemandedBits,
const APInt &DemandedElts,
TargetLoweringOpt &TLO) const override;
MVT getScalarShiftAmountTy(const DataLayout &DL, EVT) const override;
/// Returns true if the target allows unaligned memory accesses of the
/// specified type.
bool allowsMisalignedMemoryAccesses(
EVT VT, unsigned AddrSpace = 0, Align Alignment = Align(1),
MachineMemOperand::Flags Flags = MachineMemOperand::MONone,
bool *Fast = nullptr) const override;
/// LLT variant.
bool allowsMisalignedMemoryAccesses(LLT Ty, unsigned AddrSpace,
Align Alignment,
MachineMemOperand::Flags Flags,
bool *Fast = nullptr) const override;
/// Provide custom lowering hooks for some operations.
SDValue LowerOperation(SDValue Op, SelectionDAG &DAG) const override;
const char *getTargetNodeName(unsigned Opcode) const override;
SDValue PerformDAGCombine(SDNode *N, DAGCombinerInfo &DCI) const override;
/// This method returns a target specific FastISel object, or null if the
/// target does not support "fast" ISel.
FastISel *createFastISel(FunctionLoweringInfo &funcInfo,
const TargetLibraryInfo *libInfo) const override;
bool isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const override;
bool isFPImmLegal(const APFloat &Imm, EVT VT,
bool ForCodeSize) const override;
/// Return true if the given shuffle mask can be codegen'd directly, or if it
/// should be stack expanded.
bool isShuffleMaskLegal(ArrayRef<int> M, EVT VT) const override;
/// Return the ISD::SETCC ValueType.
EVT getSetCCResultType(const DataLayout &DL, LLVMContext &Context,
EVT VT) const override;
SDValue ReconstructShuffle(SDValue Op, SelectionDAG &DAG) const;
MachineBasicBlock *EmitF128CSEL(MachineInstr &MI,
MachineBasicBlock *BB) const;
MachineBasicBlock *EmitLoweredCatchRet(MachineInstr &MI,
MachineBasicBlock *BB) const;
MachineBasicBlock *
EmitInstrWithCustomInserter(MachineInstr &MI,
MachineBasicBlock *MBB) const override;
bool getTgtMemIntrinsic(IntrinsicInfo &Info, const CallInst &I,
MachineFunction &MF,
unsigned Intrinsic) const override;
bool shouldReduceLoadWidth(SDNode *Load, ISD::LoadExtType ExtTy,
EVT NewVT) const override;
bool isTruncateFree(Type *Ty1, Type *Ty2) const override;
bool isTruncateFree(EVT VT1, EVT VT2) const override;
bool isProfitableToHoist(Instruction *I) const override;
bool isZExtFree(Type *Ty1, Type *Ty2) const override;
bool isZExtFree(EVT VT1, EVT VT2) const override;
bool isZExtFree(SDValue Val, EVT VT2) const override;
bool shouldSinkOperands(Instruction *I,
SmallVectorImpl<Use *> &Ops) const override;
bool hasPairedLoad(EVT LoadedType, Align &RequiredAligment) const override;
unsigned getMaxSupportedInterleaveFactor() const override { return 4; }
bool lowerInterleavedLoad(LoadInst *LI,
ArrayRef<ShuffleVectorInst *> Shuffles,
ArrayRef<unsigned> Indices,
unsigned Factor) const override;
bool lowerInterleavedStore(StoreInst *SI, ShuffleVectorInst *SVI,
unsigned Factor) const override;
bool isLegalAddImmediate(int64_t) const override;
bool isLegalICmpImmediate(int64_t) const override;
bool shouldConsiderGEPOffsetSplit() const override;
EVT getOptimalMemOpType(const MemOp &Op,
const AttributeList &FuncAttributes) const override;
LLT getOptimalMemOpLLT(const MemOp &Op,
const AttributeList &FuncAttributes) const override;
/// Return true if the addressing mode represented by AM is legal for this
/// target, for a load/store of the specified type.
bool isLegalAddressingMode(const DataLayout &DL, const AddrMode &AM, Type *Ty,
unsigned AS,
Instruction *I = nullptr) const override;
/// Return the cost of the scaling factor used in the addressing
/// mode represented by AM for this target, for a load/store
/// of the specified type.
/// If the AM is supported, the return value must be >= 0.
/// If the AM is not supported, it returns a negative value.
InstructionCost getScalingFactorCost(const DataLayout &DL, const AddrMode &AM,
Type *Ty, unsigned AS) const override;
/// Return true if an FMA operation is faster than a pair of fmul and fadd
/// instructions. fmuladd intrinsics will be expanded to FMAs when this method
/// returns true, otherwise fmuladd is expanded to fmul + fadd.
bool isFMAFasterThanFMulAndFAdd(const MachineFunction &MF,
EVT VT) const override;
bool isFMAFasterThanFMulAndFAdd(const Function &F, Type *Ty) const override;
bool generateFMAsInMachineCombiner(EVT VT,
CodeGenOpt::Level OptLevel) const override;
const MCPhysReg *getScratchRegisters(CallingConv::ID CC) const override;
/// Returns false if N is a bit extraction pattern of (X >> C) & Mask.
bool isDesirableToCommuteWithShift(const SDNode *N,
CombineLevel Level) const override;
/// Returns true if it is beneficial to convert a load of a constant
/// to just the constant itself.
bool shouldConvertConstantLoadToIntImm(const APInt &Imm,
Type *Ty) const override;
/// Return true if EXTRACT_SUBVECTOR is cheap for this result type
/// with this index.
bool isExtractSubvectorCheap(EVT ResVT, EVT SrcVT,
unsigned Index) const override;
bool shouldFormOverflowOp(unsigned Opcode, EVT VT,
bool MathUsed) const override {
// Using overflow ops for overflow checks only should beneficial on
// AArch64.
return TargetLowering::shouldFormOverflowOp(Opcode, VT, true);
}
Value *emitLoadLinked(IRBuilderBase &Builder, Type *ValueTy, Value *Addr,
AtomicOrdering Ord) const override;
Value *emitStoreConditional(IRBuilderBase &Builder, Value *Val, Value *Addr,
AtomicOrdering Ord) const override;
void emitAtomicCmpXchgNoStoreLLBalance(IRBuilderBase &Builder) const override;
TargetLoweringBase::AtomicExpansionKind
shouldExpandAtomicLoadInIR(LoadInst *LI) const override;
bool shouldExpandAtomicStoreInIR(StoreInst *SI) const override;
TargetLoweringBase::AtomicExpansionKind
shouldExpandAtomicRMWInIR(AtomicRMWInst *AI) const override;
TargetLoweringBase::AtomicExpansionKind
shouldExpandAtomicCmpXchgInIR(AtomicCmpXchgInst *AI) const override;
bool useLoadStackGuardNode() const override;
TargetLoweringBase::LegalizeTypeAction
getPreferredVectorAction(MVT VT) const override;
/// If the target has a standard location for the stack protector cookie,
/// returns the address of that location. Otherwise, returns nullptr.
Value *getIRStackGuard(IRBuilderBase &IRB) const override;
void insertSSPDeclarations(Module &M) const override;
Value *getSDagStackGuard(const Module &M) const override;
Function *getSSPStackGuardCheck(const Module &M) const override;
/// If the target has a standard location for the unsafe stack pointer,
/// returns the address of that location. Otherwise, returns nullptr.
Value *getSafeStackPointerLocation(IRBuilderBase &IRB) const override;
/// If a physical register, this returns the register that receives the
/// exception address on entry to an EH pad.
Register
getExceptionPointerRegister(const Constant *PersonalityFn) const override {
// FIXME: This is a guess. Has this been defined yet?
return AArch64::X0;
}
/// If a physical register, this returns the register that receives the
/// exception typeid on entry to a landing pad.
Register
getExceptionSelectorRegister(const Constant *PersonalityFn) const override {
// FIXME: This is a guess. Has this been defined yet?
return AArch64::X1;
}
bool isIntDivCheap(EVT VT, AttributeList Attr) const override;
bool canMergeStoresTo(unsigned AddressSpace, EVT MemVT,
const SelectionDAG &DAG) const override {
// Do not merge to float value size (128 bytes) if no implicit
// float attribute is set.
bool NoFloat = DAG.getMachineFunction().getFunction().hasFnAttribute(
Attribute::NoImplicitFloat);
if (NoFloat)
return (MemVT.getSizeInBits() <= 64);
return true;
}
bool isCheapToSpeculateCttz() const override {
return true;
}
bool isCheapToSpeculateCtlz() const override {
return true;
}
bool isMaskAndCmp0FoldingBeneficial(const Instruction &AndI) const override;
bool hasAndNotCompare(SDValue V) const override {
// We can use bics for any scalar.
return V.getValueType().isScalarInteger();
}
bool hasAndNot(SDValue Y) const override {
EVT VT = Y.getValueType();
if (!VT.isVector())
return hasAndNotCompare(Y);
return VT.getSizeInBits() >= 64; // vector 'bic'
}
bool shouldProduceAndByConstByHoistingConstFromShiftsLHSOfAnd(
SDValue X, ConstantSDNode *XC, ConstantSDNode *CC, SDValue Y,
unsigned OldShiftOpcode, unsigned NewShiftOpcode,
SelectionDAG &DAG) const override;
bool shouldExpandShift(SelectionDAG &DAG, SDNode *N) const override;
bool shouldTransformSignedTruncationCheck(EVT XVT,
unsigned KeptBits) const override {
// For vectors, we don't have a preference..
if (XVT.isVector())
return false;
auto VTIsOk = [](EVT VT) -> bool {
return VT == MVT::i8 || VT == MVT::i16 || VT == MVT::i32 ||
VT == MVT::i64;
};
// We are ok with KeptBitsVT being byte/word/dword, what SXT supports.
// XVT will be larger than KeptBitsVT.
MVT KeptBitsVT = MVT::getIntegerVT(KeptBits);
return VTIsOk(XVT) && VTIsOk(KeptBitsVT);
}
bool preferIncOfAddToSubOfNot(EVT VT) const override;
bool hasBitPreservingFPLogic(EVT VT) const override {
// FIXME: Is this always true? It should be true for vectors at least.
return VT == MVT::f32 || VT == MVT::f64;
}
bool supportSplitCSR(MachineFunction *MF) const override {
return MF->getFunction().getCallingConv() == CallingConv::CXX_FAST_TLS &&
MF->getFunction().hasFnAttribute(Attribute::NoUnwind);
}
void initializeSplitCSR(MachineBasicBlock *Entry) const override;
void insertCopiesSplitCSR(
MachineBasicBlock *Entry,
const SmallVectorImpl<MachineBasicBlock *> &Exits) const override;
bool supportSwiftError() const override {
return true;
}
/// Enable aggressive FMA fusion on targets that want it.
bool enableAggressiveFMAFusion(EVT VT) const override;
/// Returns the size of the platform's va_list object.
unsigned getVaListSizeInBits(const DataLayout &DL) const override;
/// Returns true if \p VecTy is a legal interleaved access type. This
/// function checks the vector element type and the overall width of the
/// vector.
bool isLegalInterleavedAccessType(VectorType *VecTy,
const DataLayout &DL) const;
/// Returns the number of interleaved accesses that will be generated when
/// lowering accesses of the given type.
unsigned getNumInterleavedAccesses(VectorType *VecTy,
const DataLayout &DL) const;
MachineMemOperand::Flags getTargetMMOFlags(
const Instruction &I) const override;
bool functionArgumentNeedsConsecutiveRegisters(
Type *Ty, CallingConv::ID CallConv, bool isVarArg,
const DataLayout &DL) const override;
/// Used for exception handling on Win64.
bool needsFixedCatchObjects() const override;
bool fallBackToDAGISel(const Instruction &Inst) const override;
/// SVE code generation for fixed length vectors does not custom lower
/// BUILD_VECTOR. This makes BUILD_VECTOR legalisation a source of stores to
/// merge. However, merging them creates a BUILD_VECTOR that is just as
/// illegal as the original, thus leading to an infinite legalisation loop.
/// NOTE: Once BUILD_VECTOR is legal or can be custom lowered for all legal
/// vector types this override can be removed.
bool mergeStoresAfterLegalization(EVT VT) const override;
// If the platform/function should have a redzone, return the size in bytes.
unsigned getRedZoneSize(const Function &F) const {
if (F.hasFnAttribute(Attribute::NoRedZone))
return 0;
return 128;
}
bool isAllActivePredicate(SDValue N) const;
EVT getPromotedVTForPredicate(EVT VT) const;
EVT getAsmOperandValueType(const DataLayout &DL, Type *Ty,
bool AllowUnknown = false) const override;
private:
/// Keep a pointer to the AArch64Subtarget around so that we can
/// make the right decision when generating code for different targets.
const AArch64Subtarget *Subtarget;
bool isExtFreeImpl(const Instruction *Ext) const override;
void addTypeForNEON(MVT VT);
void addTypeForFixedLengthSVE(MVT VT);
void addDRTypeForNEON(MVT VT);
void addQRTypeForNEON(MVT VT);
SDValue LowerFormalArguments(SDValue Chain, CallingConv::ID CallConv,
bool isVarArg,
const SmallVectorImpl<ISD::InputArg> &Ins,
const SDLoc &DL, SelectionDAG &DAG,
SmallVectorImpl<SDValue> &InVals) const override;
SDValue LowerCall(CallLoweringInfo & /*CLI*/,
SmallVectorImpl<SDValue> &InVals) const override;
SDValue LowerCallResult(SDValue Chain, SDValue InFlag,
CallingConv::ID CallConv, bool isVarArg,
const SmallVectorImpl<ISD::InputArg> &Ins,
const SDLoc &DL, SelectionDAG &DAG,
SmallVectorImpl<SDValue> &InVals, bool isThisReturn,
SDValue ThisVal) const;
SDValue LowerLOAD(SDValue Op, SelectionDAG &DAG) const;
SDValue LowerSTORE(SDValue Op, SelectionDAG &DAG) const;
SDValue LowerABS(SDValue Op, SelectionDAG &DAG) const;
SDValue LowerMGATHER(SDValue Op, SelectionDAG &DAG) const;
SDValue LowerMSCATTER(SDValue Op, SelectionDAG &DAG) const;
SDValue LowerMLOAD(SDValue Op, SelectionDAG &DAG) const;
SDValue LowerINTRINSIC_WO_CHAIN(SDValue Op, SelectionDAG &DAG) const;
bool isEligibleForTailCallOptimization(
SDValue Callee, CallingConv::ID CalleeCC, bool isVarArg,
const SmallVectorImpl<ISD::OutputArg> &Outs,
const SmallVectorImpl<SDValue> &OutVals,
const SmallVectorImpl<ISD::InputArg> &Ins, SelectionDAG &DAG) const;
/// Finds the incoming stack arguments which overlap the given fixed stack
/// object and incorporates their load into the current chain. This prevents
/// an upcoming store from clobbering the stack argument before it's used.
SDValue addTokenForArgument(SDValue Chain, SelectionDAG &DAG,
MachineFrameInfo &MFI, int ClobberedFI) const;
bool DoesCalleeRestoreStack(CallingConv::ID CallCC, bool TailCallOpt) const;
void saveVarArgRegisters(CCState &CCInfo, SelectionDAG &DAG, const SDLoc &DL,
SDValue &Chain) const;
bool CanLowerReturn(CallingConv::ID CallConv, MachineFunction &MF,
bool isVarArg,
const SmallVectorImpl<ISD::OutputArg> &Outs,
LLVMContext &Context) const override;
SDValue LowerReturn(SDValue Chain, CallingConv::ID CallConv, bool isVarArg,
const SmallVectorImpl<ISD::OutputArg> &Outs,
const SmallVectorImpl<SDValue> &OutVals, const SDLoc &DL,
SelectionDAG &DAG) const override;
SDValue getTargetNode(GlobalAddressSDNode *N, EVT Ty, SelectionDAG &DAG,
unsigned Flag) const;
SDValue getTargetNode(JumpTableSDNode *N, EVT Ty, SelectionDAG &DAG,
unsigned Flag) const;
SDValue getTargetNode(ConstantPoolSDNode *N, EVT Ty, SelectionDAG &DAG,
unsigned Flag) const;
SDValue getTargetNode(BlockAddressSDNode *N, EVT Ty, SelectionDAG &DAG,
unsigned Flag) const;
template <class NodeTy>
SDValue getGOT(NodeTy *N, SelectionDAG &DAG, unsigned Flags = 0) const;
template <class NodeTy>
SDValue getAddrLarge(NodeTy *N, SelectionDAG &DAG, unsigned Flags = 0) const;
template <class NodeTy>
SDValue getAddr(NodeTy *N, SelectionDAG &DAG, unsigned Flags = 0) const;
template <class NodeTy>
SDValue getAddrTiny(NodeTy *N, SelectionDAG &DAG, unsigned Flags = 0) const;
SDValue LowerADDROFRETURNADDR(SDValue Op, SelectionDAG &DAG) const;
SDValue LowerGlobalAddress(SDValue Op, SelectionDAG &DAG) const;
SDValue LowerGlobalTLSAddress(SDValue Op, SelectionDAG &DAG) const;
SDValue LowerDarwinGlobalTLSAddress(SDValue Op, SelectionDAG &DAG) const;
SDValue LowerELFGlobalTLSAddress(SDValue Op, SelectionDAG &DAG) const;
SDValue LowerELFTLSLocalExec(const GlobalValue *GV, SDValue ThreadBase,
const SDLoc &DL, SelectionDAG &DAG) const;
SDValue LowerELFTLSDescCallSeq(SDValue SymAddr, const SDLoc &DL,
SelectionDAG &DAG) const;
SDValue LowerWindowsGlobalTLSAddress(SDValue Op, SelectionDAG &DAG) const;
SDValue LowerSETCC(SDValue Op, SelectionDAG &DAG) const;
SDValue LowerBR_CC(SDValue Op, SelectionDAG &DAG) const;
SDValue LowerSELECT(SDValue Op, SelectionDAG &DAG) const;
SDValue LowerSELECT_CC(SDValue Op, SelectionDAG &DAG) const;
SDValue LowerSELECT_CC(ISD::CondCode CC, SDValue LHS, SDValue RHS,
SDValue TVal, SDValue FVal, const SDLoc &dl,
SelectionDAG &DAG) const;
SDValue LowerJumpTable(SDValue Op, SelectionDAG &DAG) const;
SDValue LowerBR_JT(SDValue Op, SelectionDAG &DAG) const;
SDValue LowerConstantPool(SDValue Op, SelectionDAG &DAG) const;
SDValue LowerBlockAddress(SDValue Op, SelectionDAG &DAG) const;
SDValue LowerAAPCS_VASTART(SDValue Op, SelectionDAG &DAG) const;
SDValue LowerDarwin_VASTART(SDValue Op, SelectionDAG &DAG) const;
SDValue LowerWin64_VASTART(SDValue Op, SelectionDAG &DAG) const;
SDValue LowerVASTART(SDValue Op, SelectionDAG &DAG) const;
SDValue LowerVACOPY(SDValue Op, SelectionDAG &DAG) const;
SDValue LowerVAARG(SDValue Op, SelectionDAG &DAG) const;
SDValue LowerFRAMEADDR(SDValue Op, SelectionDAG &DAG) const;
SDValue LowerSPONENTRY(SDValue Op, SelectionDAG &DAG) const;
SDValue LowerRETURNADDR(SDValue Op, SelectionDAG &DAG) const;
SDValue LowerFLT_ROUNDS_(SDValue Op, SelectionDAG &DAG) const;
SDValue LowerSET_ROUNDING(SDValue Op, SelectionDAG &DAG) const;
SDValue LowerINSERT_VECTOR_ELT(SDValue Op, SelectionDAG &DAG) const;
SDValue LowerEXTRACT_VECTOR_ELT(SDValue Op, SelectionDAG &DAG) const;
SDValue LowerSCALAR_TO_VECTOR(SDValue Op, SelectionDAG &DAG) const;
SDValue LowerBUILD_VECTOR(SDValue Op, SelectionDAG &DAG) const;
SDValue LowerVECTOR_SHUFFLE(SDValue Op, SelectionDAG &DAG) const;
SDValue LowerSPLAT_VECTOR(SDValue Op, SelectionDAG &DAG) const;
SDValue LowerDUPQLane(SDValue Op, SelectionDAG &DAG) const;
SDValue LowerToPredicatedOp(SDValue Op, SelectionDAG &DAG, unsigned NewOp,
bool OverrideNEON = false) const;
SDValue LowerToScalableOp(SDValue Op, SelectionDAG &DAG) const;
SDValue LowerVECTOR_SPLICE(SDValue Op, SelectionDAG &DAG) const;
SDValue LowerEXTRACT_SUBVECTOR(SDValue Op, SelectionDAG &DAG) const;
SDValue LowerINSERT_SUBVECTOR(SDValue Op, SelectionDAG &DAG) const;
SDValue LowerDIV(SDValue Op, SelectionDAG &DAG) const;
SDValue LowerMUL(SDValue Op, SelectionDAG &DAG) const;
SDValue LowerVectorSRA_SRL_SHL(SDValue Op, SelectionDAG &DAG) const;
SDValue LowerShiftParts(SDValue Op, SelectionDAG &DAG) const;
SDValue LowerVSETCC(SDValue Op, SelectionDAG &DAG) const;
SDValue LowerCTPOP(SDValue Op, SelectionDAG &DAG) const;
SDValue LowerCTTZ(SDValue Op, SelectionDAG &DAG) const;
SDValue LowerBitreverse(SDValue Op, SelectionDAG &DAG) const;
SDValue LowerFCOPYSIGN(SDValue Op, SelectionDAG &DAG) const;
SDValue LowerFP_EXTEND(SDValue Op, SelectionDAG &DAG) const;
SDValue LowerFP_ROUND(SDValue Op, SelectionDAG &DAG) const;
SDValue LowerVectorFP_TO_INT(SDValue Op, SelectionDAG &DAG) const;
SDValue LowerFP_TO_INT(SDValue Op, SelectionDAG &DAG) const;
SDValue LowerFP_TO_INT_SAT(SDValue Op, SelectionDAG &DAG) const;
SDValue LowerINT_TO_FP(SDValue Op, SelectionDAG &DAG) const;
SDValue LowerVectorINT_TO_FP(SDValue Op, SelectionDAG &DAG) const;
SDValue LowerVectorOR(SDValue Op, SelectionDAG &DAG) const;
SDValue LowerXOR(SDValue Op, SelectionDAG &DAG) const;
SDValue LowerCONCAT_VECTORS(SDValue Op, SelectionDAG &DAG) const;
SDValue LowerFSINCOS(SDValue Op, SelectionDAG &DAG) const;
SDValue LowerBITCAST(SDValue Op, SelectionDAG &DAG) const;
SDValue LowerVSCALE(SDValue Op, SelectionDAG &DAG) const;
SDValue LowerTRUNCATE(SDValue Op, SelectionDAG &DAG) const;
SDValue LowerVECREDUCE(SDValue Op, SelectionDAG &DAG) const;
SDValue LowerATOMIC_LOAD_SUB(SDValue Op, SelectionDAG &DAG) const;
SDValue LowerATOMIC_LOAD_AND(SDValue Op, SelectionDAG &DAG) const;
SDValue LowerDYNAMIC_STACKALLOC(SDValue Op, SelectionDAG &DAG) const;
SDValue LowerWindowsDYNAMIC_STACKALLOC(SDValue Op, SDValue Chain,
SDValue &Size,
SelectionDAG &DAG) const;
SDValue LowerSVEStructLoad(unsigned Intrinsic, ArrayRef<SDValue> LoadOps,
EVT VT, SelectionDAG &DAG, const SDLoc &DL) const;
SDValue LowerFixedLengthVectorIntDivideToSVE(SDValue Op,
SelectionDAG &DAG) const;
SDValue LowerFixedLengthVectorIntExtendToSVE(SDValue Op,
SelectionDAG &DAG) const;
SDValue LowerFixedLengthVectorLoadToSVE(SDValue Op, SelectionDAG &DAG) const;
SDValue LowerFixedLengthVectorMLoadToSVE(SDValue Op, SelectionDAG &DAG) const;
SDValue LowerVECREDUCE_SEQ_FADD(SDValue ScalarOp, SelectionDAG &DAG) const;
SDValue LowerPredReductionToSVE(SDValue ScalarOp, SelectionDAG &DAG) const;
SDValue LowerReductionToSVE(unsigned Opcode, SDValue ScalarOp,
SelectionDAG &DAG) const;
SDValue LowerFixedLengthVectorSelectToSVE(SDValue Op, SelectionDAG &DAG) const;
SDValue LowerFixedLengthVectorSetccToSVE(SDValue Op, SelectionDAG &DAG) const;
SDValue LowerFixedLengthVectorStoreToSVE(SDValue Op, SelectionDAG &DAG) const;
SDValue LowerFixedLengthVectorMStoreToSVE(SDValue Op,
SelectionDAG &DAG) const;
SDValue LowerFixedLengthVectorTruncateToSVE(SDValue Op,
SelectionDAG &DAG) const;
SDValue LowerFixedLengthExtractVectorElt(SDValue Op, SelectionDAG &DAG) const;
SDValue LowerFixedLengthInsertVectorElt(SDValue Op, SelectionDAG &DAG) const;
SDValue LowerFixedLengthBitcastToSVE(SDValue Op, SelectionDAG &DAG) const;
SDValue LowerFixedLengthConcatVectorsToSVE(SDValue Op,
SelectionDAG &DAG) const;
SDValue LowerFixedLengthFPExtendToSVE(SDValue Op, SelectionDAG &DAG) const;
SDValue LowerFixedLengthFPRoundToSVE(SDValue Op, SelectionDAG &DAG) const;
SDValue LowerFixedLengthIntToFPToSVE(SDValue Op, SelectionDAG &DAG) const;
SDValue LowerFixedLengthFPToIntToSVE(SDValue Op, SelectionDAG &DAG) const;
SDValue LowerFixedLengthVECTOR_SHUFFLEToSVE(SDValue Op,
SelectionDAG &DAG) const;
SDValue BuildSDIVPow2(SDNode *N, const APInt &Divisor, SelectionDAG &DAG,
SmallVectorImpl<SDNode *> &Created) const override;
SDValue getSqrtEstimate(SDValue Operand, SelectionDAG &DAG, int Enabled,
int &ExtraSteps, bool &UseOneConst,
bool Reciprocal) const override;
SDValue getRecipEstimate(SDValue Operand, SelectionDAG &DAG, int Enabled,
int &ExtraSteps) const override;
SDValue getSqrtInputTest(SDValue Operand, SelectionDAG &DAG,
const DenormalMode &Mode) const override;
SDValue getSqrtResultForDenormInput(SDValue Operand,
SelectionDAG &DAG) const override;
unsigned combineRepeatedFPDivisors() const override;
ConstraintType getConstraintType(StringRef Constraint) const override;
Register getRegisterByName(const char* RegName, LLT VT,
const MachineFunction &MF) const override;
/// Examine constraint string and operand type and determine a weight value.
/// The operand object must already have been set up with the operand type.
ConstraintWeight
getSingleConstraintMatchWeight(AsmOperandInfo &info,
const char *constraint) const override;
std::pair<unsigned, const TargetRegisterClass *>
getRegForInlineAsmConstraint(const TargetRegisterInfo *TRI,
StringRef Constraint, MVT VT) const override;
const char *LowerXConstraint(EVT ConstraintVT) const override;
void LowerAsmOperandForConstraint(SDValue Op, std::string &Constraint,
std::vector<SDValue> &Ops,
SelectionDAG &DAG) const override;
unsigned getInlineAsmMemConstraint(StringRef ConstraintCode) const override {
if (ConstraintCode == "Q")
return InlineAsm::Constraint_Q;
// FIXME: clang has code for 'Ump', 'Utf', 'Usa', and 'Ush' but these are
// followed by llvm_unreachable so we'll leave them unimplemented in
// the backend for now.
return TargetLowering::getInlineAsmMemConstraint(ConstraintCode);
}
bool shouldExtendGSIndex(EVT VT, EVT &EltTy) const override;
bool shouldRemoveExtendFromGSIndex(EVT VT) const override;
bool isVectorLoadExtDesirable(SDValue ExtVal) const override;
bool isUsedByReturnOnly(SDNode *N, SDValue &Chain) const override;
bool mayBeEmittedAsTailCall(const CallInst *CI) const override;
bool getIndexedAddressParts(SDNode *Op, SDValue &Base, SDValue &Offset,
ISD::MemIndexedMode &AM, bool &IsInc,
SelectionDAG &DAG) const;
bool getPreIndexedAddressParts(SDNode *N, SDValue &Base, SDValue &Offset,
ISD::MemIndexedMode &AM,
SelectionDAG &DAG) const override;
bool getPostIndexedAddressParts(SDNode *N, SDNode *Op, SDValue &Base,
SDValue &Offset, ISD::MemIndexedMode &AM,
SelectionDAG &DAG) const override;
void ReplaceNodeResults(SDNode *N, SmallVectorImpl<SDValue> &Results,
SelectionDAG &DAG) const override;
void ReplaceBITCASTResults(SDNode *N, SmallVectorImpl<SDValue> &Results,
SelectionDAG &DAG) const;
void ReplaceExtractSubVectorResults(SDNode *N,
SmallVectorImpl<SDValue> &Results,
SelectionDAG &DAG) const;
bool shouldNormalizeToSelectSequence(LLVMContext &, EVT) const override;
void finalizeLowering(MachineFunction &MF) const override;
bool shouldLocalize(const MachineInstr &MI,
const TargetTransformInfo *TTI) const override;
bool SimplifyDemandedBitsForTargetNode(SDValue Op,
const APInt &OriginalDemandedBits,
const APInt &OriginalDemandedElts,
KnownBits &Known,
TargetLoweringOpt &TLO,
unsigned Depth) const override;
// Normally SVE is only used for byte size vectors that do not fit within a
// NEON vector. This changes when OverrideNEON is true, allowing SVE to be
// used for 64bit and 128bit vectors as well.
bool useSVEForFixedLengthVectorVT(EVT VT, bool OverrideNEON = false) const;
// With the exception of data-predicate transitions, no instructions are
// required to cast between legal scalable vector types. However:
// 1. Packed and unpacked types have different bit lengths, meaning BITCAST
// is not universally useable.
// 2. Most unpacked integer types are not legal and thus integer extends
// cannot be used to convert between unpacked and packed types.
// These can make "bitcasting" a multiphase process. REINTERPRET_CAST is used
// to transition between unpacked and packed types of the same element type,
// with BITCAST used otherwise.
SDValue getSVESafeBitCast(EVT VT, SDValue Op, SelectionDAG &DAG) const;
bool isConstantUnsignedBitfieldExtactLegal(unsigned Opc, LLT Ty1,
LLT Ty2) const override;
};
namespace AArch64 {
FastISel *createFastISel(FunctionLoweringInfo &funcInfo,
const TargetLibraryInfo *libInfo);
} // end namespace AArch64
} // end namespace llvm
#endif