mirror of
https://github.com/RPCS3/llvm-mirror.git
synced 2024-11-22 02:33:06 +01:00
744 lines
26 KiB
C++
744 lines
26 KiB
C++
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file contains a pass that performs optimization on SIMD instructions
|
|
// with high latency by splitting them into more efficient series of
|
|
// instructions.
|
|
//
|
|
// 1. Rewrite certain SIMD instructions with vector element due to their
|
|
// inefficiency on some targets.
|
|
//
|
|
// For example:
|
|
// fmla v0.4s, v1.4s, v2.s[1]
|
|
//
|
|
// Is rewritten into:
|
|
// dup v3.4s, v2.s[1]
|
|
// fmla v0.4s, v1.4s, v3.4s
|
|
//
|
|
// 2. Rewrite interleaved memory access instructions due to their
|
|
// inefficiency on some targets.
|
|
//
|
|
// For example:
|
|
// st2 {v0.4s, v1.4s}, addr
|
|
//
|
|
// Is rewritten into:
|
|
// zip1 v2.4s, v0.4s, v1.4s
|
|
// zip2 v3.4s, v0.4s, v1.4s
|
|
// stp q2, q3, addr
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "AArch64InstrInfo.h"
|
|
#include "llvm/ADT/SmallVector.h"
|
|
#include "llvm/ADT/Statistic.h"
|
|
#include "llvm/ADT/StringRef.h"
|
|
#include "llvm/CodeGen/MachineBasicBlock.h"
|
|
#include "llvm/CodeGen/MachineFunction.h"
|
|
#include "llvm/CodeGen/MachineFunctionPass.h"
|
|
#include "llvm/CodeGen/MachineInstr.h"
|
|
#include "llvm/CodeGen/MachineInstrBuilder.h"
|
|
#include "llvm/CodeGen/MachineOperand.h"
|
|
#include "llvm/CodeGen/MachineRegisterInfo.h"
|
|
#include "llvm/CodeGen/TargetInstrInfo.h"
|
|
#include "llvm/CodeGen/TargetSchedule.h"
|
|
#include "llvm/CodeGen/TargetSubtargetInfo.h"
|
|
#include "llvm/MC/MCInstrDesc.h"
|
|
#include "llvm/MC/MCSchedule.h"
|
|
#include "llvm/Pass.h"
|
|
#include <unordered_map>
|
|
|
|
using namespace llvm;
|
|
|
|
#define DEBUG_TYPE "aarch64-simdinstr-opt"
|
|
|
|
STATISTIC(NumModifiedInstr,
|
|
"Number of SIMD instructions modified");
|
|
|
|
#define AARCH64_VECTOR_BY_ELEMENT_OPT_NAME \
|
|
"AArch64 SIMD instructions optimization pass"
|
|
|
|
namespace {
|
|
|
|
struct AArch64SIMDInstrOpt : public MachineFunctionPass {
|
|
static char ID;
|
|
|
|
const TargetInstrInfo *TII;
|
|
MachineRegisterInfo *MRI;
|
|
TargetSchedModel SchedModel;
|
|
|
|
// The two maps below are used to cache decisions instead of recomputing:
|
|
// This is used to cache instruction replacement decisions within function
|
|
// units and across function units.
|
|
std::map<std::pair<unsigned, std::string>, bool> SIMDInstrTable;
|
|
// This is used to cache the decision of whether to leave the interleaved
|
|
// store instructions replacement pass early or not for a particular target.
|
|
std::unordered_map<std::string, bool> InterlEarlyExit;
|
|
|
|
typedef enum {
|
|
VectorElem,
|
|
Interleave
|
|
} Subpass;
|
|
|
|
// Instruction represented by OrigOpc is replaced by instructions in ReplOpc.
|
|
struct InstReplInfo {
|
|
unsigned OrigOpc;
|
|
std::vector<unsigned> ReplOpc;
|
|
const TargetRegisterClass RC;
|
|
};
|
|
|
|
#define RuleST2(OpcOrg, OpcR0, OpcR1, OpcR2, RC) \
|
|
{OpcOrg, {OpcR0, OpcR1, OpcR2}, RC}
|
|
#define RuleST4(OpcOrg, OpcR0, OpcR1, OpcR2, OpcR3, OpcR4, OpcR5, OpcR6, \
|
|
OpcR7, OpcR8, OpcR9, RC) \
|
|
{OpcOrg, \
|
|
{OpcR0, OpcR1, OpcR2, OpcR3, OpcR4, OpcR5, OpcR6, OpcR7, OpcR8, OpcR9}, RC}
|
|
|
|
// The Instruction Replacement Table:
|
|
std::vector<InstReplInfo> IRT = {
|
|
// ST2 instructions
|
|
RuleST2(AArch64::ST2Twov2d, AArch64::ZIP1v2i64, AArch64::ZIP2v2i64,
|
|
AArch64::STPQi, AArch64::FPR128RegClass),
|
|
RuleST2(AArch64::ST2Twov4s, AArch64::ZIP1v4i32, AArch64::ZIP2v4i32,
|
|
AArch64::STPQi, AArch64::FPR128RegClass),
|
|
RuleST2(AArch64::ST2Twov2s, AArch64::ZIP1v2i32, AArch64::ZIP2v2i32,
|
|
AArch64::STPDi, AArch64::FPR64RegClass),
|
|
RuleST2(AArch64::ST2Twov8h, AArch64::ZIP1v8i16, AArch64::ZIP2v8i16,
|
|
AArch64::STPQi, AArch64::FPR128RegClass),
|
|
RuleST2(AArch64::ST2Twov4h, AArch64::ZIP1v4i16, AArch64::ZIP2v4i16,
|
|
AArch64::STPDi, AArch64::FPR64RegClass),
|
|
RuleST2(AArch64::ST2Twov16b, AArch64::ZIP1v16i8, AArch64::ZIP2v16i8,
|
|
AArch64::STPQi, AArch64::FPR128RegClass),
|
|
RuleST2(AArch64::ST2Twov8b, AArch64::ZIP1v8i8, AArch64::ZIP2v8i8,
|
|
AArch64::STPDi, AArch64::FPR64RegClass),
|
|
// ST4 instructions
|
|
RuleST4(AArch64::ST4Fourv2d, AArch64::ZIP1v2i64, AArch64::ZIP2v2i64,
|
|
AArch64::ZIP1v2i64, AArch64::ZIP2v2i64, AArch64::ZIP1v2i64,
|
|
AArch64::ZIP2v2i64, AArch64::ZIP1v2i64, AArch64::ZIP2v2i64,
|
|
AArch64::STPQi, AArch64::STPQi, AArch64::FPR128RegClass),
|
|
RuleST4(AArch64::ST4Fourv4s, AArch64::ZIP1v4i32, AArch64::ZIP2v4i32,
|
|
AArch64::ZIP1v4i32, AArch64::ZIP2v4i32, AArch64::ZIP1v4i32,
|
|
AArch64::ZIP2v4i32, AArch64::ZIP1v4i32, AArch64::ZIP2v4i32,
|
|
AArch64::STPQi, AArch64::STPQi, AArch64::FPR128RegClass),
|
|
RuleST4(AArch64::ST4Fourv2s, AArch64::ZIP1v2i32, AArch64::ZIP2v2i32,
|
|
AArch64::ZIP1v2i32, AArch64::ZIP2v2i32, AArch64::ZIP1v2i32,
|
|
AArch64::ZIP2v2i32, AArch64::ZIP1v2i32, AArch64::ZIP2v2i32,
|
|
AArch64::STPDi, AArch64::STPDi, AArch64::FPR64RegClass),
|
|
RuleST4(AArch64::ST4Fourv8h, AArch64::ZIP1v8i16, AArch64::ZIP2v8i16,
|
|
AArch64::ZIP1v8i16, AArch64::ZIP2v8i16, AArch64::ZIP1v8i16,
|
|
AArch64::ZIP2v8i16, AArch64::ZIP1v8i16, AArch64::ZIP2v8i16,
|
|
AArch64::STPQi, AArch64::STPQi, AArch64::FPR128RegClass),
|
|
RuleST4(AArch64::ST4Fourv4h, AArch64::ZIP1v4i16, AArch64::ZIP2v4i16,
|
|
AArch64::ZIP1v4i16, AArch64::ZIP2v4i16, AArch64::ZIP1v4i16,
|
|
AArch64::ZIP2v4i16, AArch64::ZIP1v4i16, AArch64::ZIP2v4i16,
|
|
AArch64::STPDi, AArch64::STPDi, AArch64::FPR64RegClass),
|
|
RuleST4(AArch64::ST4Fourv16b, AArch64::ZIP1v16i8, AArch64::ZIP2v16i8,
|
|
AArch64::ZIP1v16i8, AArch64::ZIP2v16i8, AArch64::ZIP1v16i8,
|
|
AArch64::ZIP2v16i8, AArch64::ZIP1v16i8, AArch64::ZIP2v16i8,
|
|
AArch64::STPQi, AArch64::STPQi, AArch64::FPR128RegClass),
|
|
RuleST4(AArch64::ST4Fourv8b, AArch64::ZIP1v8i8, AArch64::ZIP2v8i8,
|
|
AArch64::ZIP1v8i8, AArch64::ZIP2v8i8, AArch64::ZIP1v8i8,
|
|
AArch64::ZIP2v8i8, AArch64::ZIP1v8i8, AArch64::ZIP2v8i8,
|
|
AArch64::STPDi, AArch64::STPDi, AArch64::FPR64RegClass)
|
|
};
|
|
|
|
// A costly instruction is replaced in this work by N efficient instructions
|
|
// The maximum of N is curently 10 and it is for ST4 case.
|
|
static const unsigned MaxNumRepl = 10;
|
|
|
|
AArch64SIMDInstrOpt() : MachineFunctionPass(ID) {
|
|
initializeAArch64SIMDInstrOptPass(*PassRegistry::getPassRegistry());
|
|
}
|
|
|
|
/// Based only on latency of instructions, determine if it is cost efficient
|
|
/// to replace the instruction InstDesc by the instructions stored in the
|
|
/// array InstDescRepl.
|
|
/// Return true if replacement is expected to be faster.
|
|
bool shouldReplaceInst(MachineFunction *MF, const MCInstrDesc *InstDesc,
|
|
SmallVectorImpl<const MCInstrDesc*> &ReplInstrMCID);
|
|
|
|
/// Determine if we need to exit the instruction replacement optimization
|
|
/// passes early. This makes sure that no compile time is spent in this pass
|
|
/// for targets with no need for any of these optimizations.
|
|
/// Return true if early exit of the pass is recommended.
|
|
bool shouldExitEarly(MachineFunction *MF, Subpass SP);
|
|
|
|
/// Check whether an equivalent DUP instruction has already been
|
|
/// created or not.
|
|
/// Return true when the DUP instruction already exists. In this case,
|
|
/// DestReg will point to the destination of the already created DUP.
|
|
bool reuseDUP(MachineInstr &MI, unsigned DupOpcode, unsigned SrcReg,
|
|
unsigned LaneNumber, unsigned *DestReg) const;
|
|
|
|
/// Certain SIMD instructions with vector element operand are not efficient.
|
|
/// Rewrite them into SIMD instructions with vector operands. This rewrite
|
|
/// is driven by the latency of the instructions.
|
|
/// Return true if the SIMD instruction is modified.
|
|
bool optimizeVectElement(MachineInstr &MI);
|
|
|
|
/// Process The REG_SEQUENCE instruction, and extract the source
|
|
/// operands of the ST2/4 instruction from it.
|
|
/// Example of such instructions.
|
|
/// %dest = REG_SEQUENCE %st2_src1, dsub0, %st2_src2, dsub1;
|
|
/// Return true when the instruction is processed successfully.
|
|
bool processSeqRegInst(MachineInstr *DefiningMI, unsigned* StReg,
|
|
unsigned* StRegKill, unsigned NumArg) const;
|
|
|
|
/// Load/Store Interleaving instructions are not always beneficial.
|
|
/// Replace them by ZIP instructionand classical load/store.
|
|
/// Return true if the SIMD instruction is modified.
|
|
bool optimizeLdStInterleave(MachineInstr &MI);
|
|
|
|
/// Return the number of useful source registers for this
|
|
/// instruction (2 for ST2 and 4 for ST4).
|
|
unsigned determineSrcReg(MachineInstr &MI) const;
|
|
|
|
bool runOnMachineFunction(MachineFunction &Fn) override;
|
|
|
|
StringRef getPassName() const override {
|
|
return AARCH64_VECTOR_BY_ELEMENT_OPT_NAME;
|
|
}
|
|
};
|
|
|
|
char AArch64SIMDInstrOpt::ID = 0;
|
|
|
|
} // end anonymous namespace
|
|
|
|
INITIALIZE_PASS(AArch64SIMDInstrOpt, "aarch64-simdinstr-opt",
|
|
AARCH64_VECTOR_BY_ELEMENT_OPT_NAME, false, false)
|
|
|
|
/// Based only on latency of instructions, determine if it is cost efficient
|
|
/// to replace the instruction InstDesc by the instructions stored in the
|
|
/// array InstDescRepl.
|
|
/// Return true if replacement is expected to be faster.
|
|
bool AArch64SIMDInstrOpt::
|
|
shouldReplaceInst(MachineFunction *MF, const MCInstrDesc *InstDesc,
|
|
SmallVectorImpl<const MCInstrDesc*> &InstDescRepl) {
|
|
// Check if replacement decision is already available in the cached table.
|
|
// if so, return it.
|
|
std::string Subtarget = std::string(SchedModel.getSubtargetInfo()->getCPU());
|
|
auto InstID = std::make_pair(InstDesc->getOpcode(), Subtarget);
|
|
auto It = SIMDInstrTable.find(InstID);
|
|
if (It != SIMDInstrTable.end())
|
|
return It->second;
|
|
|
|
unsigned SCIdx = InstDesc->getSchedClass();
|
|
const MCSchedClassDesc *SCDesc =
|
|
SchedModel.getMCSchedModel()->getSchedClassDesc(SCIdx);
|
|
|
|
// If a target does not define resources for the instructions
|
|
// of interest, then return false for no replacement.
|
|
const MCSchedClassDesc *SCDescRepl;
|
|
if (!SCDesc->isValid() || SCDesc->isVariant())
|
|
{
|
|
SIMDInstrTable[InstID] = false;
|
|
return false;
|
|
}
|
|
for (auto IDesc : InstDescRepl)
|
|
{
|
|
SCDescRepl = SchedModel.getMCSchedModel()->getSchedClassDesc(
|
|
IDesc->getSchedClass());
|
|
if (!SCDescRepl->isValid() || SCDescRepl->isVariant())
|
|
{
|
|
SIMDInstrTable[InstID] = false;
|
|
return false;
|
|
}
|
|
}
|
|
|
|
// Replacement cost.
|
|
unsigned ReplCost = 0;
|
|
for (auto IDesc :InstDescRepl)
|
|
ReplCost += SchedModel.computeInstrLatency(IDesc->getOpcode());
|
|
|
|
if (SchedModel.computeInstrLatency(InstDesc->getOpcode()) > ReplCost)
|
|
{
|
|
SIMDInstrTable[InstID] = true;
|
|
return true;
|
|
}
|
|
else
|
|
{
|
|
SIMDInstrTable[InstID] = false;
|
|
return false;
|
|
}
|
|
}
|
|
|
|
/// Determine if we need to exit this pass for a kind of instruction replacement
|
|
/// early. This makes sure that no compile time is spent in this pass for
|
|
/// targets with no need for any of these optimizations beyond performing this
|
|
/// check.
|
|
/// Return true if early exit of this pass for a kind of instruction
|
|
/// replacement is recommended for a target.
|
|
bool AArch64SIMDInstrOpt::shouldExitEarly(MachineFunction *MF, Subpass SP) {
|
|
const MCInstrDesc* OriginalMCID;
|
|
SmallVector<const MCInstrDesc*, MaxNumRepl> ReplInstrMCID;
|
|
|
|
switch (SP) {
|
|
// For this optimization, check by comparing the latency of a representative
|
|
// instruction to that of the replacement instructions.
|
|
// TODO: check for all concerned instructions.
|
|
case VectorElem:
|
|
OriginalMCID = &TII->get(AArch64::FMLAv4i32_indexed);
|
|
ReplInstrMCID.push_back(&TII->get(AArch64::DUPv4i32lane));
|
|
ReplInstrMCID.push_back(&TII->get(AArch64::FMLAv4f32));
|
|
if (shouldReplaceInst(MF, OriginalMCID, ReplInstrMCID))
|
|
return false;
|
|
break;
|
|
|
|
// For this optimization, check for all concerned instructions.
|
|
case Interleave:
|
|
std::string Subtarget =
|
|
std::string(SchedModel.getSubtargetInfo()->getCPU());
|
|
auto It = InterlEarlyExit.find(Subtarget);
|
|
if (It != InterlEarlyExit.end())
|
|
return It->second;
|
|
|
|
for (auto &I : IRT) {
|
|
OriginalMCID = &TII->get(I.OrigOpc);
|
|
for (auto &Repl : I.ReplOpc)
|
|
ReplInstrMCID.push_back(&TII->get(Repl));
|
|
if (shouldReplaceInst(MF, OriginalMCID, ReplInstrMCID)) {
|
|
InterlEarlyExit[Subtarget] = false;
|
|
return false;
|
|
}
|
|
ReplInstrMCID.clear();
|
|
}
|
|
InterlEarlyExit[Subtarget] = true;
|
|
break;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
/// Check whether an equivalent DUP instruction has already been
|
|
/// created or not.
|
|
/// Return true when the DUP instruction already exists. In this case,
|
|
/// DestReg will point to the destination of the already created DUP.
|
|
bool AArch64SIMDInstrOpt::reuseDUP(MachineInstr &MI, unsigned DupOpcode,
|
|
unsigned SrcReg, unsigned LaneNumber,
|
|
unsigned *DestReg) const {
|
|
for (MachineBasicBlock::iterator MII = MI, MIE = MI.getParent()->begin();
|
|
MII != MIE;) {
|
|
MII--;
|
|
MachineInstr *CurrentMI = &*MII;
|
|
|
|
if (CurrentMI->getOpcode() == DupOpcode &&
|
|
CurrentMI->getNumOperands() == 3 &&
|
|
CurrentMI->getOperand(1).getReg() == SrcReg &&
|
|
CurrentMI->getOperand(2).getImm() == LaneNumber) {
|
|
*DestReg = CurrentMI->getOperand(0).getReg();
|
|
return true;
|
|
}
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
/// Certain SIMD instructions with vector element operand are not efficient.
|
|
/// Rewrite them into SIMD instructions with vector operands. This rewrite
|
|
/// is driven by the latency of the instructions.
|
|
/// The instruction of concerns are for the time being FMLA, FMLS, FMUL,
|
|
/// and FMULX and hence they are hardcoded.
|
|
///
|
|
/// For example:
|
|
/// fmla v0.4s, v1.4s, v2.s[1]
|
|
///
|
|
/// Is rewritten into
|
|
/// dup v3.4s, v2.s[1] // DUP not necessary if redundant
|
|
/// fmla v0.4s, v1.4s, v3.4s
|
|
///
|
|
/// Return true if the SIMD instruction is modified.
|
|
bool AArch64SIMDInstrOpt::optimizeVectElement(MachineInstr &MI) {
|
|
const MCInstrDesc *MulMCID, *DupMCID;
|
|
const TargetRegisterClass *RC = &AArch64::FPR128RegClass;
|
|
|
|
switch (MI.getOpcode()) {
|
|
default:
|
|
return false;
|
|
|
|
// 4X32 instructions
|
|
case AArch64::FMLAv4i32_indexed:
|
|
DupMCID = &TII->get(AArch64::DUPv4i32lane);
|
|
MulMCID = &TII->get(AArch64::FMLAv4f32);
|
|
break;
|
|
case AArch64::FMLSv4i32_indexed:
|
|
DupMCID = &TII->get(AArch64::DUPv4i32lane);
|
|
MulMCID = &TII->get(AArch64::FMLSv4f32);
|
|
break;
|
|
case AArch64::FMULXv4i32_indexed:
|
|
DupMCID = &TII->get(AArch64::DUPv4i32lane);
|
|
MulMCID = &TII->get(AArch64::FMULXv4f32);
|
|
break;
|
|
case AArch64::FMULv4i32_indexed:
|
|
DupMCID = &TII->get(AArch64::DUPv4i32lane);
|
|
MulMCID = &TII->get(AArch64::FMULv4f32);
|
|
break;
|
|
|
|
// 2X64 instructions
|
|
case AArch64::FMLAv2i64_indexed:
|
|
DupMCID = &TII->get(AArch64::DUPv2i64lane);
|
|
MulMCID = &TII->get(AArch64::FMLAv2f64);
|
|
break;
|
|
case AArch64::FMLSv2i64_indexed:
|
|
DupMCID = &TII->get(AArch64::DUPv2i64lane);
|
|
MulMCID = &TII->get(AArch64::FMLSv2f64);
|
|
break;
|
|
case AArch64::FMULXv2i64_indexed:
|
|
DupMCID = &TII->get(AArch64::DUPv2i64lane);
|
|
MulMCID = &TII->get(AArch64::FMULXv2f64);
|
|
break;
|
|
case AArch64::FMULv2i64_indexed:
|
|
DupMCID = &TII->get(AArch64::DUPv2i64lane);
|
|
MulMCID = &TII->get(AArch64::FMULv2f64);
|
|
break;
|
|
|
|
// 2X32 instructions
|
|
case AArch64::FMLAv2i32_indexed:
|
|
RC = &AArch64::FPR64RegClass;
|
|
DupMCID = &TII->get(AArch64::DUPv2i32lane);
|
|
MulMCID = &TII->get(AArch64::FMLAv2f32);
|
|
break;
|
|
case AArch64::FMLSv2i32_indexed:
|
|
RC = &AArch64::FPR64RegClass;
|
|
DupMCID = &TII->get(AArch64::DUPv2i32lane);
|
|
MulMCID = &TII->get(AArch64::FMLSv2f32);
|
|
break;
|
|
case AArch64::FMULXv2i32_indexed:
|
|
RC = &AArch64::FPR64RegClass;
|
|
DupMCID = &TII->get(AArch64::DUPv2i32lane);
|
|
MulMCID = &TII->get(AArch64::FMULXv2f32);
|
|
break;
|
|
case AArch64::FMULv2i32_indexed:
|
|
RC = &AArch64::FPR64RegClass;
|
|
DupMCID = &TII->get(AArch64::DUPv2i32lane);
|
|
MulMCID = &TII->get(AArch64::FMULv2f32);
|
|
break;
|
|
}
|
|
|
|
SmallVector<const MCInstrDesc*, 2> ReplInstrMCID;
|
|
ReplInstrMCID.push_back(DupMCID);
|
|
ReplInstrMCID.push_back(MulMCID);
|
|
if (!shouldReplaceInst(MI.getParent()->getParent(), &TII->get(MI.getOpcode()),
|
|
ReplInstrMCID))
|
|
return false;
|
|
|
|
const DebugLoc &DL = MI.getDebugLoc();
|
|
MachineBasicBlock &MBB = *MI.getParent();
|
|
MachineRegisterInfo &MRI = MBB.getParent()->getRegInfo();
|
|
|
|
// Get the operands of the current SIMD arithmetic instruction.
|
|
Register MulDest = MI.getOperand(0).getReg();
|
|
Register SrcReg0 = MI.getOperand(1).getReg();
|
|
unsigned Src0IsKill = getKillRegState(MI.getOperand(1).isKill());
|
|
Register SrcReg1 = MI.getOperand(2).getReg();
|
|
unsigned Src1IsKill = getKillRegState(MI.getOperand(2).isKill());
|
|
unsigned DupDest;
|
|
|
|
// Instructions of interest have either 4 or 5 operands.
|
|
if (MI.getNumOperands() == 5) {
|
|
Register SrcReg2 = MI.getOperand(3).getReg();
|
|
unsigned Src2IsKill = getKillRegState(MI.getOperand(3).isKill());
|
|
unsigned LaneNumber = MI.getOperand(4).getImm();
|
|
// Create a new DUP instruction. Note that if an equivalent DUP instruction
|
|
// has already been created before, then use that one instead of creating
|
|
// a new one.
|
|
if (!reuseDUP(MI, DupMCID->getOpcode(), SrcReg2, LaneNumber, &DupDest)) {
|
|
DupDest = MRI.createVirtualRegister(RC);
|
|
BuildMI(MBB, MI, DL, *DupMCID, DupDest)
|
|
.addReg(SrcReg2, Src2IsKill)
|
|
.addImm(LaneNumber);
|
|
}
|
|
BuildMI(MBB, MI, DL, *MulMCID, MulDest)
|
|
.addReg(SrcReg0, Src0IsKill)
|
|
.addReg(SrcReg1, Src1IsKill)
|
|
.addReg(DupDest, Src2IsKill);
|
|
} else if (MI.getNumOperands() == 4) {
|
|
unsigned LaneNumber = MI.getOperand(3).getImm();
|
|
if (!reuseDUP(MI, DupMCID->getOpcode(), SrcReg1, LaneNumber, &DupDest)) {
|
|
DupDest = MRI.createVirtualRegister(RC);
|
|
BuildMI(MBB, MI, DL, *DupMCID, DupDest)
|
|
.addReg(SrcReg1, Src1IsKill)
|
|
.addImm(LaneNumber);
|
|
}
|
|
BuildMI(MBB, MI, DL, *MulMCID, MulDest)
|
|
.addReg(SrcReg0, Src0IsKill)
|
|
.addReg(DupDest, Src1IsKill);
|
|
} else {
|
|
return false;
|
|
}
|
|
|
|
++NumModifiedInstr;
|
|
return true;
|
|
}
|
|
|
|
/// Load/Store Interleaving instructions are not always beneficial.
|
|
/// Replace them by ZIP instructions and classical load/store.
|
|
///
|
|
/// For example:
|
|
/// st2 {v0.4s, v1.4s}, addr
|
|
///
|
|
/// Is rewritten into:
|
|
/// zip1 v2.4s, v0.4s, v1.4s
|
|
/// zip2 v3.4s, v0.4s, v1.4s
|
|
/// stp q2, q3, addr
|
|
//
|
|
/// For example:
|
|
/// st4 {v0.4s, v1.4s, v2.4s, v3.4s}, addr
|
|
///
|
|
/// Is rewritten into:
|
|
/// zip1 v4.4s, v0.4s, v2.4s
|
|
/// zip2 v5.4s, v0.4s, v2.4s
|
|
/// zip1 v6.4s, v1.4s, v3.4s
|
|
/// zip2 v7.4s, v1.4s, v3.4s
|
|
/// zip1 v8.4s, v4.4s, v6.4s
|
|
/// zip2 v9.4s, v4.4s, v6.4s
|
|
/// zip1 v10.4s, v5.4s, v7.4s
|
|
/// zip2 v11.4s, v5.4s, v7.4s
|
|
/// stp q8, q9, addr
|
|
/// stp q10, q11, addr+32
|
|
///
|
|
/// Currently only instructions related to ST2 and ST4 are considered.
|
|
/// Other may be added later.
|
|
/// Return true if the SIMD instruction is modified.
|
|
bool AArch64SIMDInstrOpt::optimizeLdStInterleave(MachineInstr &MI) {
|
|
|
|
unsigned SeqReg, AddrReg;
|
|
unsigned StReg[4], StRegKill[4];
|
|
MachineInstr *DefiningMI;
|
|
const DebugLoc &DL = MI.getDebugLoc();
|
|
MachineBasicBlock &MBB = *MI.getParent();
|
|
SmallVector<unsigned, MaxNumRepl> ZipDest;
|
|
SmallVector<const MCInstrDesc*, MaxNumRepl> ReplInstrMCID;
|
|
|
|
// If current instruction matches any of the rewriting rules, then
|
|
// gather information about parameters of the new instructions.
|
|
bool Match = false;
|
|
for (auto &I : IRT) {
|
|
if (MI.getOpcode() == I.OrigOpc) {
|
|
SeqReg = MI.getOperand(0).getReg();
|
|
AddrReg = MI.getOperand(1).getReg();
|
|
DefiningMI = MRI->getUniqueVRegDef(SeqReg);
|
|
unsigned NumReg = determineSrcReg(MI);
|
|
if (!processSeqRegInst(DefiningMI, StReg, StRegKill, NumReg))
|
|
return false;
|
|
|
|
for (auto &Repl : I.ReplOpc) {
|
|
ReplInstrMCID.push_back(&TII->get(Repl));
|
|
// Generate destination registers but only for non-store instruction.
|
|
if (Repl != AArch64::STPQi && Repl != AArch64::STPDi)
|
|
ZipDest.push_back(MRI->createVirtualRegister(&I.RC));
|
|
}
|
|
Match = true;
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (!Match)
|
|
return false;
|
|
|
|
// Determine if it is profitable to replace MI by the series of instructions
|
|
// represented in ReplInstrMCID.
|
|
if (!shouldReplaceInst(MI.getParent()->getParent(), &TII->get(MI.getOpcode()),
|
|
ReplInstrMCID))
|
|
return false;
|
|
|
|
// Generate the replacement instructions composed of ZIP1, ZIP2, and STP (at
|
|
// this point, the code generation is hardcoded and does not rely on the IRT
|
|
// table used above given that code generation for ST2 replacement is somewhat
|
|
// different than for ST4 replacement. We could have added more info into the
|
|
// table related to how we build new instructions but we may be adding more
|
|
// complexity with that).
|
|
switch (MI.getOpcode()) {
|
|
default:
|
|
return false;
|
|
|
|
case AArch64::ST2Twov16b:
|
|
case AArch64::ST2Twov8b:
|
|
case AArch64::ST2Twov8h:
|
|
case AArch64::ST2Twov4h:
|
|
case AArch64::ST2Twov4s:
|
|
case AArch64::ST2Twov2s:
|
|
case AArch64::ST2Twov2d:
|
|
// ZIP instructions
|
|
BuildMI(MBB, MI, DL, *ReplInstrMCID[0], ZipDest[0])
|
|
.addReg(StReg[0])
|
|
.addReg(StReg[1]);
|
|
BuildMI(MBB, MI, DL, *ReplInstrMCID[1], ZipDest[1])
|
|
.addReg(StReg[0], StRegKill[0])
|
|
.addReg(StReg[1], StRegKill[1]);
|
|
// STP instructions
|
|
BuildMI(MBB, MI, DL, *ReplInstrMCID[2])
|
|
.addReg(ZipDest[0])
|
|
.addReg(ZipDest[1])
|
|
.addReg(AddrReg)
|
|
.addImm(0);
|
|
break;
|
|
|
|
case AArch64::ST4Fourv16b:
|
|
case AArch64::ST4Fourv8b:
|
|
case AArch64::ST4Fourv8h:
|
|
case AArch64::ST4Fourv4h:
|
|
case AArch64::ST4Fourv4s:
|
|
case AArch64::ST4Fourv2s:
|
|
case AArch64::ST4Fourv2d:
|
|
// ZIP instructions
|
|
BuildMI(MBB, MI, DL, *ReplInstrMCID[0], ZipDest[0])
|
|
.addReg(StReg[0])
|
|
.addReg(StReg[2]);
|
|
BuildMI(MBB, MI, DL, *ReplInstrMCID[1], ZipDest[1])
|
|
.addReg(StReg[0], StRegKill[0])
|
|
.addReg(StReg[2], StRegKill[2]);
|
|
BuildMI(MBB, MI, DL, *ReplInstrMCID[2], ZipDest[2])
|
|
.addReg(StReg[1])
|
|
.addReg(StReg[3]);
|
|
BuildMI(MBB, MI, DL, *ReplInstrMCID[3], ZipDest[3])
|
|
.addReg(StReg[1], StRegKill[1])
|
|
.addReg(StReg[3], StRegKill[3]);
|
|
BuildMI(MBB, MI, DL, *ReplInstrMCID[4], ZipDest[4])
|
|
.addReg(ZipDest[0])
|
|
.addReg(ZipDest[2]);
|
|
BuildMI(MBB, MI, DL, *ReplInstrMCID[5], ZipDest[5])
|
|
.addReg(ZipDest[0])
|
|
.addReg(ZipDest[2]);
|
|
BuildMI(MBB, MI, DL, *ReplInstrMCID[6], ZipDest[6])
|
|
.addReg(ZipDest[1])
|
|
.addReg(ZipDest[3]);
|
|
BuildMI(MBB, MI, DL, *ReplInstrMCID[7], ZipDest[7])
|
|
.addReg(ZipDest[1])
|
|
.addReg(ZipDest[3]);
|
|
// stp instructions
|
|
BuildMI(MBB, MI, DL, *ReplInstrMCID[8])
|
|
.addReg(ZipDest[4])
|
|
.addReg(ZipDest[5])
|
|
.addReg(AddrReg)
|
|
.addImm(0);
|
|
BuildMI(MBB, MI, DL, *ReplInstrMCID[9])
|
|
.addReg(ZipDest[6])
|
|
.addReg(ZipDest[7])
|
|
.addReg(AddrReg)
|
|
.addImm(2);
|
|
break;
|
|
}
|
|
|
|
++NumModifiedInstr;
|
|
return true;
|
|
}
|
|
|
|
/// Process The REG_SEQUENCE instruction, and extract the source
|
|
/// operands of the ST2/4 instruction from it.
|
|
/// Example of such instruction.
|
|
/// %dest = REG_SEQUENCE %st2_src1, dsub0, %st2_src2, dsub1;
|
|
/// Return true when the instruction is processed successfully.
|
|
bool AArch64SIMDInstrOpt::processSeqRegInst(MachineInstr *DefiningMI,
|
|
unsigned* StReg, unsigned* StRegKill, unsigned NumArg) const {
|
|
assert (DefiningMI != NULL);
|
|
if (DefiningMI->getOpcode() != AArch64::REG_SEQUENCE)
|
|
return false;
|
|
|
|
for (unsigned i=0; i<NumArg; i++) {
|
|
StReg[i] = DefiningMI->getOperand(2*i+1).getReg();
|
|
StRegKill[i] = getKillRegState(DefiningMI->getOperand(2*i+1).isKill());
|
|
|
|
// Sanity check for the other arguments.
|
|
if (DefiningMI->getOperand(2*i+2).isImm()) {
|
|
switch (DefiningMI->getOperand(2*i+2).getImm()) {
|
|
default:
|
|
return false;
|
|
|
|
case AArch64::dsub0:
|
|
case AArch64::dsub1:
|
|
case AArch64::dsub2:
|
|
case AArch64::dsub3:
|
|
case AArch64::qsub0:
|
|
case AArch64::qsub1:
|
|
case AArch64::qsub2:
|
|
case AArch64::qsub3:
|
|
break;
|
|
}
|
|
}
|
|
else
|
|
return false;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
/// Return the number of useful source registers for this instruction
|
|
/// (2 for ST2 and 4 for ST4).
|
|
unsigned AArch64SIMDInstrOpt::determineSrcReg(MachineInstr &MI) const {
|
|
switch (MI.getOpcode()) {
|
|
default:
|
|
llvm_unreachable("Unsupported instruction for this pass");
|
|
|
|
case AArch64::ST2Twov16b:
|
|
case AArch64::ST2Twov8b:
|
|
case AArch64::ST2Twov8h:
|
|
case AArch64::ST2Twov4h:
|
|
case AArch64::ST2Twov4s:
|
|
case AArch64::ST2Twov2s:
|
|
case AArch64::ST2Twov2d:
|
|
return 2;
|
|
|
|
case AArch64::ST4Fourv16b:
|
|
case AArch64::ST4Fourv8b:
|
|
case AArch64::ST4Fourv8h:
|
|
case AArch64::ST4Fourv4h:
|
|
case AArch64::ST4Fourv4s:
|
|
case AArch64::ST4Fourv2s:
|
|
case AArch64::ST4Fourv2d:
|
|
return 4;
|
|
}
|
|
}
|
|
|
|
bool AArch64SIMDInstrOpt::runOnMachineFunction(MachineFunction &MF) {
|
|
if (skipFunction(MF.getFunction()))
|
|
return false;
|
|
|
|
TII = MF.getSubtarget().getInstrInfo();
|
|
MRI = &MF.getRegInfo();
|
|
const TargetSubtargetInfo &ST = MF.getSubtarget();
|
|
const AArch64InstrInfo *AAII =
|
|
static_cast<const AArch64InstrInfo *>(ST.getInstrInfo());
|
|
if (!AAII)
|
|
return false;
|
|
SchedModel.init(&ST);
|
|
if (!SchedModel.hasInstrSchedModel())
|
|
return false;
|
|
|
|
bool Changed = false;
|
|
for (auto OptimizationKind : {VectorElem, Interleave}) {
|
|
if (!shouldExitEarly(&MF, OptimizationKind)) {
|
|
SmallVector<MachineInstr *, 8> RemoveMIs;
|
|
for (MachineBasicBlock &MBB : MF) {
|
|
for (MachineBasicBlock::iterator MII = MBB.begin(), MIE = MBB.end();
|
|
MII != MIE;) {
|
|
MachineInstr &MI = *MII;
|
|
bool InstRewrite;
|
|
if (OptimizationKind == VectorElem)
|
|
InstRewrite = optimizeVectElement(MI) ;
|
|
else
|
|
InstRewrite = optimizeLdStInterleave(MI);
|
|
if (InstRewrite) {
|
|
// Add MI to the list of instructions to be removed given that it
|
|
// has been replaced.
|
|
RemoveMIs.push_back(&MI);
|
|
Changed = true;
|
|
}
|
|
++MII;
|
|
}
|
|
}
|
|
for (MachineInstr *MI : RemoveMIs)
|
|
MI->eraseFromParent();
|
|
}
|
|
}
|
|
|
|
return Changed;
|
|
}
|
|
|
|
/// Returns an instance of the high cost ASIMD instruction replacement
|
|
/// optimization pass.
|
|
FunctionPass *llvm::createAArch64SIMDInstrOptPass() {
|
|
return new AArch64SIMDInstrOpt();
|
|
}
|