mirror of
https://github.com/RPCS3/llvm-mirror.git
synced 2024-11-25 04:02:41 +01:00
3e889f931b
NFC.
425 lines
14 KiB
C++
425 lines
14 KiB
C++
//===-- SIFormMemoryClauses.cpp -------------------------------------------===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
/// \file This pass extends the live ranges of registers used as pointers in
|
|
/// sequences of adjacent SMEM and VMEM instructions if XNACK is enabled. A
|
|
/// load that would overwrite a pointer would require breaking the soft clause.
|
|
/// Artificially extend the live ranges of the pointer operands by adding
|
|
/// implicit-def early-clobber operands throughout the soft clause.
|
|
///
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "AMDGPU.h"
|
|
#include "GCNRegPressure.h"
|
|
#include "SIMachineFunctionInfo.h"
|
|
#include "llvm/InitializePasses.h"
|
|
|
|
using namespace llvm;
|
|
|
|
#define DEBUG_TYPE "si-form-memory-clauses"
|
|
|
|
// Clauses longer then 15 instructions would overflow one of the counters
|
|
// and stall. They can stall even earlier if there are outstanding counters.
|
|
static cl::opt<unsigned>
|
|
MaxClause("amdgpu-max-memory-clause", cl::Hidden, cl::init(15),
|
|
cl::desc("Maximum length of a memory clause, instructions"));
|
|
|
|
namespace {
|
|
|
|
class SIFormMemoryClauses : public MachineFunctionPass {
|
|
typedef DenseMap<unsigned, std::pair<unsigned, LaneBitmask>> RegUse;
|
|
|
|
public:
|
|
static char ID;
|
|
|
|
public:
|
|
SIFormMemoryClauses() : MachineFunctionPass(ID) {
|
|
initializeSIFormMemoryClausesPass(*PassRegistry::getPassRegistry());
|
|
}
|
|
|
|
bool runOnMachineFunction(MachineFunction &MF) override;
|
|
|
|
StringRef getPassName() const override {
|
|
return "SI Form memory clauses";
|
|
}
|
|
|
|
void getAnalysisUsage(AnalysisUsage &AU) const override {
|
|
AU.addRequired<LiveIntervals>();
|
|
AU.setPreservesAll();
|
|
MachineFunctionPass::getAnalysisUsage(AU);
|
|
}
|
|
|
|
MachineFunctionProperties getClearedProperties() const override {
|
|
return MachineFunctionProperties().set(
|
|
MachineFunctionProperties::Property::IsSSA);
|
|
}
|
|
|
|
private:
|
|
bool canBundle(const MachineInstr &MI, const RegUse &Defs,
|
|
const RegUse &Uses) const;
|
|
bool checkPressure(const MachineInstr &MI, GCNDownwardRPTracker &RPT);
|
|
void collectRegUses(const MachineInstr &MI, RegUse &Defs, RegUse &Uses) const;
|
|
bool processRegUses(const MachineInstr &MI, RegUse &Defs, RegUse &Uses,
|
|
GCNDownwardRPTracker &RPT);
|
|
|
|
const GCNSubtarget *ST;
|
|
const SIRegisterInfo *TRI;
|
|
const MachineRegisterInfo *MRI;
|
|
SIMachineFunctionInfo *MFI;
|
|
|
|
unsigned LastRecordedOccupancy;
|
|
unsigned MaxVGPRs;
|
|
unsigned MaxSGPRs;
|
|
};
|
|
|
|
} // End anonymous namespace.
|
|
|
|
INITIALIZE_PASS_BEGIN(SIFormMemoryClauses, DEBUG_TYPE,
|
|
"SI Form memory clauses", false, false)
|
|
INITIALIZE_PASS_DEPENDENCY(LiveIntervals)
|
|
INITIALIZE_PASS_END(SIFormMemoryClauses, DEBUG_TYPE,
|
|
"SI Form memory clauses", false, false)
|
|
|
|
|
|
char SIFormMemoryClauses::ID = 0;
|
|
|
|
char &llvm::SIFormMemoryClausesID = SIFormMemoryClauses::ID;
|
|
|
|
FunctionPass *llvm::createSIFormMemoryClausesPass() {
|
|
return new SIFormMemoryClauses();
|
|
}
|
|
|
|
static bool isVMEMClauseInst(const MachineInstr &MI) {
|
|
return SIInstrInfo::isFLAT(MI) || SIInstrInfo::isVMEM(MI);
|
|
}
|
|
|
|
static bool isSMEMClauseInst(const MachineInstr &MI) {
|
|
return SIInstrInfo::isSMRD(MI);
|
|
}
|
|
|
|
// There no sense to create store clauses, they do not define anything,
|
|
// thus there is nothing to set early-clobber.
|
|
static bool isValidClauseInst(const MachineInstr &MI, bool IsVMEMClause) {
|
|
assert(!MI.isDebugInstr() && "debug instructions should not reach here");
|
|
if (MI.isBundled())
|
|
return false;
|
|
if (!MI.mayLoad() || MI.mayStore())
|
|
return false;
|
|
if (SIInstrInfo::isAtomic(MI))
|
|
return false;
|
|
if (IsVMEMClause && !isVMEMClauseInst(MI))
|
|
return false;
|
|
if (!IsVMEMClause && !isSMEMClauseInst(MI))
|
|
return false;
|
|
// If this is a load instruction where the result has been coalesced with an operand, then we cannot clause it.
|
|
for (const MachineOperand &ResMO : MI.defs()) {
|
|
Register ResReg = ResMO.getReg();
|
|
for (const MachineOperand &MO : MI.uses()) {
|
|
if (!MO.isReg() || MO.isDef())
|
|
continue;
|
|
if (MO.getReg() == ResReg)
|
|
return false;
|
|
}
|
|
break; // Only check the first def.
|
|
}
|
|
return true;
|
|
}
|
|
|
|
static unsigned getMopState(const MachineOperand &MO) {
|
|
unsigned S = 0;
|
|
if (MO.isImplicit())
|
|
S |= RegState::Implicit;
|
|
if (MO.isDead())
|
|
S |= RegState::Dead;
|
|
if (MO.isUndef())
|
|
S |= RegState::Undef;
|
|
if (MO.isKill())
|
|
S |= RegState::Kill;
|
|
if (MO.isEarlyClobber())
|
|
S |= RegState::EarlyClobber;
|
|
if (MO.getReg().isPhysical() && MO.isRenamable())
|
|
S |= RegState::Renamable;
|
|
return S;
|
|
}
|
|
|
|
// Returns false if there is a use of a def already in the map.
|
|
// In this case we must break the clause.
|
|
bool SIFormMemoryClauses::canBundle(const MachineInstr &MI, const RegUse &Defs,
|
|
const RegUse &Uses) const {
|
|
// Check interference with defs.
|
|
for (const MachineOperand &MO : MI.operands()) {
|
|
// TODO: Prologue/Epilogue Insertion pass does not process bundled
|
|
// instructions.
|
|
if (MO.isFI())
|
|
return false;
|
|
|
|
if (!MO.isReg())
|
|
continue;
|
|
|
|
Register Reg = MO.getReg();
|
|
|
|
// If it is tied we will need to write same register as we read.
|
|
if (MO.isTied())
|
|
return false;
|
|
|
|
const RegUse &Map = MO.isDef() ? Uses : Defs;
|
|
auto Conflict = Map.find(Reg);
|
|
if (Conflict == Map.end())
|
|
continue;
|
|
|
|
if (Reg.isPhysical())
|
|
return false;
|
|
|
|
LaneBitmask Mask = TRI->getSubRegIndexLaneMask(MO.getSubReg());
|
|
if ((Conflict->second.second & Mask).any())
|
|
return false;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
// Since all defs in the clause are early clobber we can run out of registers.
|
|
// Function returns false if pressure would hit the limit if instruction is
|
|
// bundled into a memory clause.
|
|
bool SIFormMemoryClauses::checkPressure(const MachineInstr &MI,
|
|
GCNDownwardRPTracker &RPT) {
|
|
// NB: skip advanceBeforeNext() call. Since all defs will be marked
|
|
// early-clobber they will all stay alive at least to the end of the
|
|
// clause. Therefor we should not decrease pressure even if load
|
|
// pointer becomes dead and could otherwise be reused for destination.
|
|
RPT.advanceToNext();
|
|
GCNRegPressure MaxPressure = RPT.moveMaxPressure();
|
|
unsigned Occupancy = MaxPressure.getOccupancy(*ST);
|
|
|
|
// Don't push over half the register budget. We don't want to introduce
|
|
// spilling just to form a soft clause.
|
|
//
|
|
// FIXME: This pressure check is fundamentally broken. First, this is checking
|
|
// the global pressure, not the pressure at this specific point in the
|
|
// program. Second, it's not accounting for the increased liveness of the use
|
|
// operands due to the early clobber we will introduce. Third, the pressure
|
|
// tracking does not account for the alignment requirements for SGPRs, or the
|
|
// fragmentation of registers the allocator will need to satisfy.
|
|
if (Occupancy >= MFI->getMinAllowedOccupancy() &&
|
|
MaxPressure.getVGPRNum(ST->hasGFX90AInsts()) <= MaxVGPRs / 2 &&
|
|
MaxPressure.getSGPRNum() <= MaxSGPRs / 2) {
|
|
LastRecordedOccupancy = Occupancy;
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
// Collect register defs and uses along with their lane masks and states.
|
|
void SIFormMemoryClauses::collectRegUses(const MachineInstr &MI,
|
|
RegUse &Defs, RegUse &Uses) const {
|
|
for (const MachineOperand &MO : MI.operands()) {
|
|
if (!MO.isReg())
|
|
continue;
|
|
Register Reg = MO.getReg();
|
|
if (!Reg)
|
|
continue;
|
|
|
|
LaneBitmask Mask = Reg.isVirtual()
|
|
? TRI->getSubRegIndexLaneMask(MO.getSubReg())
|
|
: LaneBitmask::getAll();
|
|
RegUse &Map = MO.isDef() ? Defs : Uses;
|
|
|
|
auto Loc = Map.find(Reg);
|
|
unsigned State = getMopState(MO);
|
|
if (Loc == Map.end()) {
|
|
Map[Reg] = std::make_pair(State, Mask);
|
|
} else {
|
|
Loc->second.first |= State;
|
|
Loc->second.second |= Mask;
|
|
}
|
|
}
|
|
}
|
|
|
|
// Check register def/use conflicts, occupancy limits and collect def/use maps.
|
|
// Return true if instruction can be bundled with previous. It it cannot
|
|
// def/use maps are not updated.
|
|
bool SIFormMemoryClauses::processRegUses(const MachineInstr &MI,
|
|
RegUse &Defs, RegUse &Uses,
|
|
GCNDownwardRPTracker &RPT) {
|
|
if (!canBundle(MI, Defs, Uses))
|
|
return false;
|
|
|
|
if (!checkPressure(MI, RPT))
|
|
return false;
|
|
|
|
collectRegUses(MI, Defs, Uses);
|
|
return true;
|
|
}
|
|
|
|
bool SIFormMemoryClauses::runOnMachineFunction(MachineFunction &MF) {
|
|
if (skipFunction(MF.getFunction()))
|
|
return false;
|
|
|
|
ST = &MF.getSubtarget<GCNSubtarget>();
|
|
if (!ST->isXNACKEnabled())
|
|
return false;
|
|
|
|
const SIInstrInfo *TII = ST->getInstrInfo();
|
|
TRI = ST->getRegisterInfo();
|
|
MRI = &MF.getRegInfo();
|
|
MFI = MF.getInfo<SIMachineFunctionInfo>();
|
|
LiveIntervals *LIS = &getAnalysis<LiveIntervals>();
|
|
SlotIndexes *Ind = LIS->getSlotIndexes();
|
|
bool Changed = false;
|
|
|
|
MaxVGPRs = TRI->getAllocatableSet(MF, &AMDGPU::VGPR_32RegClass).count();
|
|
MaxSGPRs = TRI->getAllocatableSet(MF, &AMDGPU::SGPR_32RegClass).count();
|
|
unsigned FuncMaxClause = AMDGPU::getIntegerAttribute(
|
|
MF.getFunction(), "amdgpu-max-memory-clause", MaxClause);
|
|
|
|
for (MachineBasicBlock &MBB : MF) {
|
|
GCNDownwardRPTracker RPT(*LIS);
|
|
MachineBasicBlock::instr_iterator Next;
|
|
for (auto I = MBB.instr_begin(), E = MBB.instr_end(); I != E; I = Next) {
|
|
MachineInstr &MI = *I;
|
|
Next = std::next(I);
|
|
|
|
if (MI.isMetaInstruction())
|
|
continue;
|
|
|
|
bool IsVMEM = isVMEMClauseInst(MI);
|
|
|
|
if (!isValidClauseInst(MI, IsVMEM))
|
|
continue;
|
|
|
|
if (!RPT.getNext().isValid())
|
|
RPT.reset(MI);
|
|
else { // Advance the state to the current MI.
|
|
RPT.advance(MachineBasicBlock::const_iterator(MI));
|
|
RPT.advanceBeforeNext();
|
|
}
|
|
|
|
const GCNRPTracker::LiveRegSet LiveRegsCopy(RPT.getLiveRegs());
|
|
RegUse Defs, Uses;
|
|
if (!processRegUses(MI, Defs, Uses, RPT)) {
|
|
RPT.reset(MI, &LiveRegsCopy);
|
|
continue;
|
|
}
|
|
|
|
MachineBasicBlock::iterator LastClauseInst = Next;
|
|
unsigned Length = 1;
|
|
for ( ; Next != E && Length < FuncMaxClause; ++Next) {
|
|
// Debug instructions should not change the kill insertion.
|
|
if (Next->isMetaInstruction())
|
|
continue;
|
|
|
|
if (!isValidClauseInst(*Next, IsVMEM))
|
|
break;
|
|
|
|
// A load from pointer which was loaded inside the same bundle is an
|
|
// impossible clause because we will need to write and read the same
|
|
// register inside. In this case processRegUses will return false.
|
|
if (!processRegUses(*Next, Defs, Uses, RPT))
|
|
break;
|
|
|
|
LastClauseInst = Next;
|
|
++Length;
|
|
}
|
|
if (Length < 2) {
|
|
RPT.reset(MI, &LiveRegsCopy);
|
|
continue;
|
|
}
|
|
|
|
Changed = true;
|
|
MFI->limitOccupancy(LastRecordedOccupancy);
|
|
|
|
assert(!LastClauseInst->isMetaInstruction());
|
|
|
|
SlotIndex ClauseLiveInIdx = LIS->getInstructionIndex(MI);
|
|
SlotIndex ClauseLiveOutIdx =
|
|
LIS->getInstructionIndex(*LastClauseInst).getNextIndex();
|
|
|
|
// Track the last inserted kill.
|
|
MachineInstrBuilder Kill;
|
|
|
|
// Insert one kill per register, with operands covering all necessary
|
|
// subregisters.
|
|
for (auto &&R : Uses) {
|
|
Register Reg = R.first;
|
|
if (Reg.isPhysical())
|
|
continue;
|
|
|
|
// Collect the register operands we should extend the live ranges of.
|
|
SmallVector<std::tuple<unsigned, unsigned>> KillOps;
|
|
const LiveInterval &LI = LIS->getInterval(R.first);
|
|
|
|
if (!LI.hasSubRanges()) {
|
|
if (!LI.liveAt(ClauseLiveOutIdx)) {
|
|
KillOps.emplace_back(R.second.first | RegState::Kill,
|
|
AMDGPU::NoSubRegister);
|
|
}
|
|
} else {
|
|
LaneBitmask KilledMask;
|
|
for (const LiveInterval::SubRange &SR : LI.subranges()) {
|
|
if (SR.liveAt(ClauseLiveInIdx) && !SR.liveAt(ClauseLiveOutIdx))
|
|
KilledMask |= SR.LaneMask;
|
|
}
|
|
|
|
if (KilledMask.none())
|
|
continue;
|
|
|
|
SmallVector<unsigned> KilledIndexes;
|
|
bool Success = TRI->getCoveringSubRegIndexes(
|
|
*MRI, MRI->getRegClass(Reg), KilledMask, KilledIndexes);
|
|
(void)Success;
|
|
assert(Success && "Failed to find subregister mask to cover lanes");
|
|
for (unsigned SubReg : KilledIndexes) {
|
|
KillOps.emplace_back(R.second.first | RegState::Kill, SubReg);
|
|
}
|
|
}
|
|
|
|
if (KillOps.empty())
|
|
continue;
|
|
|
|
// We only want to extend the live ranges of used registers. If they
|
|
// already have existing uses beyond the bundle, we don't need the kill.
|
|
//
|
|
// It's possible all of the use registers were already live past the
|
|
// bundle.
|
|
Kill = BuildMI(*MI.getParent(), std::next(LastClauseInst),
|
|
DebugLoc(), TII->get(AMDGPU::KILL));
|
|
for (auto &Op : KillOps)
|
|
Kill.addUse(Reg, std::get<0>(Op), std::get<1>(Op));
|
|
Ind->insertMachineInstrInMaps(*Kill);
|
|
}
|
|
|
|
if (!Kill) {
|
|
RPT.reset(MI, &LiveRegsCopy);
|
|
continue;
|
|
}
|
|
|
|
// Restore the state after processing the end of the bundle.
|
|
RPT.reset(*Kill, &LiveRegsCopy);
|
|
|
|
for (auto &&R : Defs) {
|
|
Register Reg = R.first;
|
|
Uses.erase(Reg);
|
|
if (Reg.isPhysical())
|
|
continue;
|
|
LIS->removeInterval(Reg);
|
|
LIS->createAndComputeVirtRegInterval(Reg);
|
|
}
|
|
|
|
for (auto &&R : Uses) {
|
|
Register Reg = R.first;
|
|
if (Reg.isPhysical())
|
|
continue;
|
|
LIS->removeInterval(Reg);
|
|
LIS->createAndComputeVirtRegInterval(Reg);
|
|
}
|
|
}
|
|
}
|
|
|
|
return Changed;
|
|
}
|