1
0
mirror of https://github.com/RPCS3/llvm-mirror.git synced 2024-11-22 02:33:06 +01:00
llvm-mirror/lib/Target/AMDGPU/SIInstrInfo.cpp
2021-07-26 14:50:30 -04:00

7922 lines
277 KiB
C++

//===- SIInstrInfo.cpp - SI Instruction Information ----------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
/// \file
/// SI Implementation of TargetInstrInfo.
//
//===----------------------------------------------------------------------===//
#include "SIInstrInfo.h"
#include "AMDGPU.h"
#include "AMDGPUInstrInfo.h"
#include "GCNHazardRecognizer.h"
#include "GCNSubtarget.h"
#include "MCTargetDesc/AMDGPUMCTargetDesc.h"
#include "SIMachineFunctionInfo.h"
#include "llvm/Analysis/ValueTracking.h"
#include "llvm/CodeGen/LiveVariables.h"
#include "llvm/CodeGen/MachineDominators.h"
#include "llvm/CodeGen/RegisterScavenging.h"
#include "llvm/CodeGen/ScheduleDAG.h"
#include "llvm/IR/DiagnosticInfo.h"
#include "llvm/IR/IntrinsicsAMDGPU.h"
#include "llvm/MC/MCContext.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Target/TargetMachine.h"
using namespace llvm;
#define DEBUG_TYPE "si-instr-info"
#define GET_INSTRINFO_CTOR_DTOR
#include "AMDGPUGenInstrInfo.inc"
namespace llvm {
class AAResults;
namespace AMDGPU {
#define GET_D16ImageDimIntrinsics_IMPL
#define GET_ImageDimIntrinsicTable_IMPL
#define GET_RsrcIntrinsics_IMPL
#include "AMDGPUGenSearchableTables.inc"
}
}
// Must be at least 4 to be able to branch over minimum unconditional branch
// code. This is only for making it possible to write reasonably small tests for
// long branches.
static cl::opt<unsigned>
BranchOffsetBits("amdgpu-s-branch-bits", cl::ReallyHidden, cl::init(16),
cl::desc("Restrict range of branch instructions (DEBUG)"));
static cl::opt<bool> Fix16BitCopies(
"amdgpu-fix-16-bit-physreg-copies",
cl::desc("Fix copies between 32 and 16 bit registers by extending to 32 bit"),
cl::init(true),
cl::ReallyHidden);
SIInstrInfo::SIInstrInfo(const GCNSubtarget &ST)
: AMDGPUGenInstrInfo(AMDGPU::ADJCALLSTACKUP, AMDGPU::ADJCALLSTACKDOWN),
RI(ST), ST(ST) {
SchedModel.init(&ST);
}
//===----------------------------------------------------------------------===//
// TargetInstrInfo callbacks
//===----------------------------------------------------------------------===//
static unsigned getNumOperandsNoGlue(SDNode *Node) {
unsigned N = Node->getNumOperands();
while (N && Node->getOperand(N - 1).getValueType() == MVT::Glue)
--N;
return N;
}
/// Returns true if both nodes have the same value for the given
/// operand \p Op, or if both nodes do not have this operand.
static bool nodesHaveSameOperandValue(SDNode *N0, SDNode* N1, unsigned OpName) {
unsigned Opc0 = N0->getMachineOpcode();
unsigned Opc1 = N1->getMachineOpcode();
int Op0Idx = AMDGPU::getNamedOperandIdx(Opc0, OpName);
int Op1Idx = AMDGPU::getNamedOperandIdx(Opc1, OpName);
if (Op0Idx == -1 && Op1Idx == -1)
return true;
if ((Op0Idx == -1 && Op1Idx != -1) ||
(Op1Idx == -1 && Op0Idx != -1))
return false;
// getNamedOperandIdx returns the index for the MachineInstr's operands,
// which includes the result as the first operand. We are indexing into the
// MachineSDNode's operands, so we need to skip the result operand to get
// the real index.
--Op0Idx;
--Op1Idx;
return N0->getOperand(Op0Idx) == N1->getOperand(Op1Idx);
}
bool SIInstrInfo::isReallyTriviallyReMaterializable(const MachineInstr &MI,
AAResults *AA) const {
if (isVOP1(MI) || isVOP2(MI) || isVOP3(MI) || isSDWA(MI)) {
// Normally VALU use of exec would block the rematerialization, but that
// is OK in this case to have an implicit exec read as all VALU do.
// We really want all of the generic logic for this except for this.
// Another potential implicit use is mode register. The core logic of
// the RA will not attempt rematerialization if mode is set anywhere
// in the function, otherwise it is safe since mode is not changed.
return !MI.hasImplicitDef() &&
MI.getNumImplicitOperands() == MI.getDesc().getNumImplicitUses() &&
!MI.mayRaiseFPException();
}
return false;
}
bool SIInstrInfo::isIgnorableUse(const MachineOperand &MO) const {
// Any implicit use of exec by VALU is not a real register read.
return MO.getReg() == AMDGPU::EXEC && MO.isImplicit() &&
isVALU(*MO.getParent());
}
bool SIInstrInfo::areLoadsFromSameBasePtr(SDNode *Load0, SDNode *Load1,
int64_t &Offset0,
int64_t &Offset1) const {
if (!Load0->isMachineOpcode() || !Load1->isMachineOpcode())
return false;
unsigned Opc0 = Load0->getMachineOpcode();
unsigned Opc1 = Load1->getMachineOpcode();
// Make sure both are actually loads.
if (!get(Opc0).mayLoad() || !get(Opc1).mayLoad())
return false;
if (isDS(Opc0) && isDS(Opc1)) {
// FIXME: Handle this case:
if (getNumOperandsNoGlue(Load0) != getNumOperandsNoGlue(Load1))
return false;
// Check base reg.
if (Load0->getOperand(0) != Load1->getOperand(0))
return false;
// Skip read2 / write2 variants for simplicity.
// TODO: We should report true if the used offsets are adjacent (excluded
// st64 versions).
int Offset0Idx = AMDGPU::getNamedOperandIdx(Opc0, AMDGPU::OpName::offset);
int Offset1Idx = AMDGPU::getNamedOperandIdx(Opc1, AMDGPU::OpName::offset);
if (Offset0Idx == -1 || Offset1Idx == -1)
return false;
// XXX - be careful of datalesss loads
// getNamedOperandIdx returns the index for MachineInstrs. Since they
// include the output in the operand list, but SDNodes don't, we need to
// subtract the index by one.
Offset0Idx -= get(Opc0).NumDefs;
Offset1Idx -= get(Opc1).NumDefs;
Offset0 = cast<ConstantSDNode>(Load0->getOperand(Offset0Idx))->getZExtValue();
Offset1 = cast<ConstantSDNode>(Load1->getOperand(Offset1Idx))->getZExtValue();
return true;
}
if (isSMRD(Opc0) && isSMRD(Opc1)) {
// Skip time and cache invalidation instructions.
if (AMDGPU::getNamedOperandIdx(Opc0, AMDGPU::OpName::sbase) == -1 ||
AMDGPU::getNamedOperandIdx(Opc1, AMDGPU::OpName::sbase) == -1)
return false;
assert(getNumOperandsNoGlue(Load0) == getNumOperandsNoGlue(Load1));
// Check base reg.
if (Load0->getOperand(0) != Load1->getOperand(0))
return false;
const ConstantSDNode *Load0Offset =
dyn_cast<ConstantSDNode>(Load0->getOperand(1));
const ConstantSDNode *Load1Offset =
dyn_cast<ConstantSDNode>(Load1->getOperand(1));
if (!Load0Offset || !Load1Offset)
return false;
Offset0 = Load0Offset->getZExtValue();
Offset1 = Load1Offset->getZExtValue();
return true;
}
// MUBUF and MTBUF can access the same addresses.
if ((isMUBUF(Opc0) || isMTBUF(Opc0)) && (isMUBUF(Opc1) || isMTBUF(Opc1))) {
// MUBUF and MTBUF have vaddr at different indices.
if (!nodesHaveSameOperandValue(Load0, Load1, AMDGPU::OpName::soffset) ||
!nodesHaveSameOperandValue(Load0, Load1, AMDGPU::OpName::vaddr) ||
!nodesHaveSameOperandValue(Load0, Load1, AMDGPU::OpName::srsrc))
return false;
int OffIdx0 = AMDGPU::getNamedOperandIdx(Opc0, AMDGPU::OpName::offset);
int OffIdx1 = AMDGPU::getNamedOperandIdx(Opc1, AMDGPU::OpName::offset);
if (OffIdx0 == -1 || OffIdx1 == -1)
return false;
// getNamedOperandIdx returns the index for MachineInstrs. Since they
// include the output in the operand list, but SDNodes don't, we need to
// subtract the index by one.
OffIdx0 -= get(Opc0).NumDefs;
OffIdx1 -= get(Opc1).NumDefs;
SDValue Off0 = Load0->getOperand(OffIdx0);
SDValue Off1 = Load1->getOperand(OffIdx1);
// The offset might be a FrameIndexSDNode.
if (!isa<ConstantSDNode>(Off0) || !isa<ConstantSDNode>(Off1))
return false;
Offset0 = cast<ConstantSDNode>(Off0)->getZExtValue();
Offset1 = cast<ConstantSDNode>(Off1)->getZExtValue();
return true;
}
return false;
}
static bool isStride64(unsigned Opc) {
switch (Opc) {
case AMDGPU::DS_READ2ST64_B32:
case AMDGPU::DS_READ2ST64_B64:
case AMDGPU::DS_WRITE2ST64_B32:
case AMDGPU::DS_WRITE2ST64_B64:
return true;
default:
return false;
}
}
bool SIInstrInfo::getMemOperandsWithOffsetWidth(
const MachineInstr &LdSt, SmallVectorImpl<const MachineOperand *> &BaseOps,
int64_t &Offset, bool &OffsetIsScalable, unsigned &Width,
const TargetRegisterInfo *TRI) const {
if (!LdSt.mayLoadOrStore())
return false;
unsigned Opc = LdSt.getOpcode();
OffsetIsScalable = false;
const MachineOperand *BaseOp, *OffsetOp;
int DataOpIdx;
if (isDS(LdSt)) {
BaseOp = getNamedOperand(LdSt, AMDGPU::OpName::addr);
OffsetOp = getNamedOperand(LdSt, AMDGPU::OpName::offset);
if (OffsetOp) {
// Normal, single offset LDS instruction.
if (!BaseOp) {
// DS_CONSUME/DS_APPEND use M0 for the base address.
// TODO: find the implicit use operand for M0 and use that as BaseOp?
return false;
}
BaseOps.push_back(BaseOp);
Offset = OffsetOp->getImm();
// Get appropriate operand, and compute width accordingly.
DataOpIdx = AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::vdst);
if (DataOpIdx == -1)
DataOpIdx = AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::data0);
Width = getOpSize(LdSt, DataOpIdx);
} else {
// The 2 offset instructions use offset0 and offset1 instead. We can treat
// these as a load with a single offset if the 2 offsets are consecutive.
// We will use this for some partially aligned loads.
const MachineOperand *Offset0Op =
getNamedOperand(LdSt, AMDGPU::OpName::offset0);
const MachineOperand *Offset1Op =
getNamedOperand(LdSt, AMDGPU::OpName::offset1);
unsigned Offset0 = Offset0Op->getImm();
unsigned Offset1 = Offset1Op->getImm();
if (Offset0 + 1 != Offset1)
return false;
// Each of these offsets is in element sized units, so we need to convert
// to bytes of the individual reads.
unsigned EltSize;
if (LdSt.mayLoad())
EltSize = TRI->getRegSizeInBits(*getOpRegClass(LdSt, 0)) / 16;
else {
assert(LdSt.mayStore());
int Data0Idx = AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::data0);
EltSize = TRI->getRegSizeInBits(*getOpRegClass(LdSt, Data0Idx)) / 8;
}
if (isStride64(Opc))
EltSize *= 64;
BaseOps.push_back(BaseOp);
Offset = EltSize * Offset0;
// Get appropriate operand(s), and compute width accordingly.
DataOpIdx = AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::vdst);
if (DataOpIdx == -1) {
DataOpIdx = AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::data0);
Width = getOpSize(LdSt, DataOpIdx);
DataOpIdx = AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::data1);
Width += getOpSize(LdSt, DataOpIdx);
} else {
Width = getOpSize(LdSt, DataOpIdx);
}
}
return true;
}
if (isMUBUF(LdSt) || isMTBUF(LdSt)) {
const MachineOperand *RSrc = getNamedOperand(LdSt, AMDGPU::OpName::srsrc);
if (!RSrc) // e.g. BUFFER_WBINVL1_VOL
return false;
BaseOps.push_back(RSrc);
BaseOp = getNamedOperand(LdSt, AMDGPU::OpName::vaddr);
if (BaseOp && !BaseOp->isFI())
BaseOps.push_back(BaseOp);
const MachineOperand *OffsetImm =
getNamedOperand(LdSt, AMDGPU::OpName::offset);
Offset = OffsetImm->getImm();
const MachineOperand *SOffset =
getNamedOperand(LdSt, AMDGPU::OpName::soffset);
if (SOffset) {
if (SOffset->isReg())
BaseOps.push_back(SOffset);
else
Offset += SOffset->getImm();
}
// Get appropriate operand, and compute width accordingly.
DataOpIdx = AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::vdst);
if (DataOpIdx == -1)
DataOpIdx = AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::vdata);
Width = getOpSize(LdSt, DataOpIdx);
return true;
}
if (isMIMG(LdSt)) {
int SRsrcIdx = AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::srsrc);
BaseOps.push_back(&LdSt.getOperand(SRsrcIdx));
int VAddr0Idx = AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::vaddr0);
if (VAddr0Idx >= 0) {
// GFX10 possible NSA encoding.
for (int I = VAddr0Idx; I < SRsrcIdx; ++I)
BaseOps.push_back(&LdSt.getOperand(I));
} else {
BaseOps.push_back(getNamedOperand(LdSt, AMDGPU::OpName::vaddr));
}
Offset = 0;
// Get appropriate operand, and compute width accordingly.
DataOpIdx = AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::vdata);
Width = getOpSize(LdSt, DataOpIdx);
return true;
}
if (isSMRD(LdSt)) {
BaseOp = getNamedOperand(LdSt, AMDGPU::OpName::sbase);
if (!BaseOp) // e.g. S_MEMTIME
return false;
BaseOps.push_back(BaseOp);
OffsetOp = getNamedOperand(LdSt, AMDGPU::OpName::offset);
Offset = OffsetOp ? OffsetOp->getImm() : 0;
// Get appropriate operand, and compute width accordingly.
DataOpIdx = AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::sdst);
Width = getOpSize(LdSt, DataOpIdx);
return true;
}
if (isFLAT(LdSt)) {
// Instructions have either vaddr or saddr or both or none.
BaseOp = getNamedOperand(LdSt, AMDGPU::OpName::vaddr);
if (BaseOp)
BaseOps.push_back(BaseOp);
BaseOp = getNamedOperand(LdSt, AMDGPU::OpName::saddr);
if (BaseOp)
BaseOps.push_back(BaseOp);
Offset = getNamedOperand(LdSt, AMDGPU::OpName::offset)->getImm();
// Get appropriate operand, and compute width accordingly.
DataOpIdx = AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::vdst);
if (DataOpIdx == -1)
DataOpIdx = AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::vdata);
Width = getOpSize(LdSt, DataOpIdx);
return true;
}
return false;
}
static bool memOpsHaveSameBasePtr(const MachineInstr &MI1,
ArrayRef<const MachineOperand *> BaseOps1,
const MachineInstr &MI2,
ArrayRef<const MachineOperand *> BaseOps2) {
// Only examine the first "base" operand of each instruction, on the
// assumption that it represents the real base address of the memory access.
// Other operands are typically offsets or indices from this base address.
if (BaseOps1.front()->isIdenticalTo(*BaseOps2.front()))
return true;
if (!MI1.hasOneMemOperand() || !MI2.hasOneMemOperand())
return false;
auto MO1 = *MI1.memoperands_begin();
auto MO2 = *MI2.memoperands_begin();
if (MO1->getAddrSpace() != MO2->getAddrSpace())
return false;
auto Base1 = MO1->getValue();
auto Base2 = MO2->getValue();
if (!Base1 || !Base2)
return false;
Base1 = getUnderlyingObject(Base1);
Base2 = getUnderlyingObject(Base2);
if (isa<UndefValue>(Base1) || isa<UndefValue>(Base2))
return false;
return Base1 == Base2;
}
bool SIInstrInfo::shouldClusterMemOps(ArrayRef<const MachineOperand *> BaseOps1,
ArrayRef<const MachineOperand *> BaseOps2,
unsigned NumLoads,
unsigned NumBytes) const {
// If the mem ops (to be clustered) do not have the same base ptr, then they
// should not be clustered
if (!BaseOps1.empty() && !BaseOps2.empty()) {
const MachineInstr &FirstLdSt = *BaseOps1.front()->getParent();
const MachineInstr &SecondLdSt = *BaseOps2.front()->getParent();
if (!memOpsHaveSameBasePtr(FirstLdSt, BaseOps1, SecondLdSt, BaseOps2))
return false;
} else if (!BaseOps1.empty() || !BaseOps2.empty()) {
// If only one base op is empty, they do not have the same base ptr
return false;
}
// In order to avoid regester pressure, on an average, the number of DWORDS
// loaded together by all clustered mem ops should not exceed 8. This is an
// empirical value based on certain observations and performance related
// experiments.
// The good thing about this heuristic is - it avoids clustering of too many
// sub-word loads, and also avoids clustering of wide loads. Below is the
// brief summary of how the heuristic behaves for various `LoadSize`.
// (1) 1 <= LoadSize <= 4: cluster at max 8 mem ops
// (2) 5 <= LoadSize <= 8: cluster at max 4 mem ops
// (3) 9 <= LoadSize <= 12: cluster at max 2 mem ops
// (4) 13 <= LoadSize <= 16: cluster at max 2 mem ops
// (5) LoadSize >= 17: do not cluster
const unsigned LoadSize = NumBytes / NumLoads;
const unsigned NumDWORDs = ((LoadSize + 3) / 4) * NumLoads;
return NumDWORDs <= 8;
}
// FIXME: This behaves strangely. If, for example, you have 32 load + stores,
// the first 16 loads will be interleaved with the stores, and the next 16 will
// be clustered as expected. It should really split into 2 16 store batches.
//
// Loads are clustered until this returns false, rather than trying to schedule
// groups of stores. This also means we have to deal with saying different
// address space loads should be clustered, and ones which might cause bank
// conflicts.
//
// This might be deprecated so it might not be worth that much effort to fix.
bool SIInstrInfo::shouldScheduleLoadsNear(SDNode *Load0, SDNode *Load1,
int64_t Offset0, int64_t Offset1,
unsigned NumLoads) const {
assert(Offset1 > Offset0 &&
"Second offset should be larger than first offset!");
// If we have less than 16 loads in a row, and the offsets are within 64
// bytes, then schedule together.
// A cacheline is 64 bytes (for global memory).
return (NumLoads <= 16 && (Offset1 - Offset0) < 64);
}
static void reportIllegalCopy(const SIInstrInfo *TII, MachineBasicBlock &MBB,
MachineBasicBlock::iterator MI,
const DebugLoc &DL, MCRegister DestReg,
MCRegister SrcReg, bool KillSrc,
const char *Msg = "illegal SGPR to VGPR copy") {
MachineFunction *MF = MBB.getParent();
DiagnosticInfoUnsupported IllegalCopy(MF->getFunction(), Msg, DL, DS_Error);
LLVMContext &C = MF->getFunction().getContext();
C.diagnose(IllegalCopy);
BuildMI(MBB, MI, DL, TII->get(AMDGPU::SI_ILLEGAL_COPY), DestReg)
.addReg(SrcReg, getKillRegState(KillSrc));
}
/// Handle copying from SGPR to AGPR, or from AGPR to AGPR. It is not possible
/// to directly copy, so an intermediate VGPR needs to be used.
static void indirectCopyToAGPR(const SIInstrInfo &TII,
MachineBasicBlock &MBB,
MachineBasicBlock::iterator MI,
const DebugLoc &DL, MCRegister DestReg,
MCRegister SrcReg, bool KillSrc,
RegScavenger &RS,
Register ImpDefSuperReg = Register(),
Register ImpUseSuperReg = Register()) {
const SIRegisterInfo &RI = TII.getRegisterInfo();
assert(AMDGPU::SReg_32RegClass.contains(SrcReg) ||
AMDGPU::AGPR_32RegClass.contains(SrcReg));
// First try to find defining accvgpr_write to avoid temporary registers.
for (auto Def = MI, E = MBB.begin(); Def != E; ) {
--Def;
if (!Def->definesRegister(SrcReg, &RI))
continue;
if (Def->getOpcode() != AMDGPU::V_ACCVGPR_WRITE_B32_e64)
break;
MachineOperand &DefOp = Def->getOperand(1);
assert(DefOp.isReg() || DefOp.isImm());
if (DefOp.isReg()) {
// Check that register source operand if not clobbered before MI.
// Immediate operands are always safe to propagate.
bool SafeToPropagate = true;
for (auto I = Def; I != MI && SafeToPropagate; ++I)
if (I->modifiesRegister(DefOp.getReg(), &RI))
SafeToPropagate = false;
if (!SafeToPropagate)
break;
DefOp.setIsKill(false);
}
MachineInstrBuilder Builder =
BuildMI(MBB, MI, DL, TII.get(AMDGPU::V_ACCVGPR_WRITE_B32_e64), DestReg)
.add(DefOp);
if (ImpDefSuperReg)
Builder.addReg(ImpDefSuperReg, RegState::Define | RegState::Implicit);
if (ImpUseSuperReg) {
Builder.addReg(ImpUseSuperReg,
getKillRegState(KillSrc) | RegState::Implicit);
}
return;
}
RS.enterBasicBlock(MBB);
RS.forward(MI);
// Ideally we want to have three registers for a long reg_sequence copy
// to hide 2 waitstates between v_mov_b32 and accvgpr_write.
unsigned MaxVGPRs = RI.getRegPressureLimit(&AMDGPU::VGPR_32RegClass,
*MBB.getParent());
// Registers in the sequence are allocated contiguously so we can just
// use register number to pick one of three round-robin temps.
unsigned RegNo = DestReg % 3;
Register Tmp = RS.scavengeRegister(&AMDGPU::VGPR_32RegClass, 0);
if (!Tmp)
report_fatal_error("Cannot scavenge VGPR to copy to AGPR");
RS.setRegUsed(Tmp);
if (!TII.getSubtarget().hasGFX90AInsts()) {
// Only loop through if there are any free registers left, otherwise
// scavenger may report a fatal error without emergency spill slot
// or spill with the slot.
while (RegNo-- && RS.FindUnusedReg(&AMDGPU::VGPR_32RegClass)) {
Register Tmp2 = RS.scavengeRegister(&AMDGPU::VGPR_32RegClass, 0);
if (!Tmp2 || RI.getHWRegIndex(Tmp2) >= MaxVGPRs)
break;
Tmp = Tmp2;
RS.setRegUsed(Tmp);
}
}
// Insert copy to temporary VGPR.
unsigned TmpCopyOp = AMDGPU::V_MOV_B32_e32;
if (AMDGPU::AGPR_32RegClass.contains(SrcReg)) {
TmpCopyOp = AMDGPU::V_ACCVGPR_READ_B32_e64;
} else {
assert(AMDGPU::SReg_32RegClass.contains(SrcReg));
}
MachineInstrBuilder UseBuilder = BuildMI(MBB, MI, DL, TII.get(TmpCopyOp), Tmp)
.addReg(SrcReg, getKillRegState(KillSrc));
if (ImpUseSuperReg) {
UseBuilder.addReg(ImpUseSuperReg,
getKillRegState(KillSrc) | RegState::Implicit);
}
MachineInstrBuilder DefBuilder
= BuildMI(MBB, MI, DL, TII.get(AMDGPU::V_ACCVGPR_WRITE_B32_e64), DestReg)
.addReg(Tmp, RegState::Kill);
if (ImpDefSuperReg)
DefBuilder.addReg(ImpDefSuperReg, RegState::Define | RegState::Implicit);
}
static void expandSGPRCopy(const SIInstrInfo &TII, MachineBasicBlock &MBB,
MachineBasicBlock::iterator MI, const DebugLoc &DL,
MCRegister DestReg, MCRegister SrcReg, bool KillSrc,
const TargetRegisterClass *RC, bool Forward) {
const SIRegisterInfo &RI = TII.getRegisterInfo();
ArrayRef<int16_t> BaseIndices = RI.getRegSplitParts(RC, 4);
MachineBasicBlock::iterator I = MI;
MachineInstr *FirstMI = nullptr, *LastMI = nullptr;
for (unsigned Idx = 0; Idx < BaseIndices.size(); ++Idx) {
int16_t SubIdx = BaseIndices[Idx];
Register Reg = RI.getSubReg(DestReg, SubIdx);
unsigned Opcode = AMDGPU::S_MOV_B32;
// Is SGPR aligned? If so try to combine with next.
Register Src = RI.getSubReg(SrcReg, SubIdx);
bool AlignedDest = ((Reg - AMDGPU::SGPR0) % 2) == 0;
bool AlignedSrc = ((Src - AMDGPU::SGPR0) % 2) == 0;
if (AlignedDest && AlignedSrc && (Idx + 1 < BaseIndices.size())) {
// Can use SGPR64 copy
unsigned Channel = RI.getChannelFromSubReg(SubIdx);
SubIdx = RI.getSubRegFromChannel(Channel, 2);
Opcode = AMDGPU::S_MOV_B64;
Idx++;
}
LastMI = BuildMI(MBB, I, DL, TII.get(Opcode), RI.getSubReg(DestReg, SubIdx))
.addReg(RI.getSubReg(SrcReg, SubIdx))
.addReg(SrcReg, RegState::Implicit);
if (!FirstMI)
FirstMI = LastMI;
if (!Forward)
I--;
}
assert(FirstMI && LastMI);
if (!Forward)
std::swap(FirstMI, LastMI);
FirstMI->addOperand(
MachineOperand::CreateReg(DestReg, true /*IsDef*/, true /*IsImp*/));
if (KillSrc)
LastMI->addRegisterKilled(SrcReg, &RI);
}
void SIInstrInfo::copyPhysReg(MachineBasicBlock &MBB,
MachineBasicBlock::iterator MI,
const DebugLoc &DL, MCRegister DestReg,
MCRegister SrcReg, bool KillSrc) const {
const TargetRegisterClass *RC = RI.getPhysRegClass(DestReg);
// FIXME: This is hack to resolve copies between 16 bit and 32 bit
// registers until all patterns are fixed.
if (Fix16BitCopies &&
((RI.getRegSizeInBits(*RC) == 16) ^
(RI.getRegSizeInBits(*RI.getPhysRegClass(SrcReg)) == 16))) {
MCRegister &RegToFix = (RI.getRegSizeInBits(*RC) == 16) ? DestReg : SrcReg;
MCRegister Super = RI.get32BitRegister(RegToFix);
assert(RI.getSubReg(Super, AMDGPU::lo16) == RegToFix);
RegToFix = Super;
if (DestReg == SrcReg) {
// Insert empty bundle since ExpandPostRA expects an instruction here.
BuildMI(MBB, MI, DL, get(AMDGPU::BUNDLE));
return;
}
RC = RI.getPhysRegClass(DestReg);
}
if (RC == &AMDGPU::VGPR_32RegClass) {
assert(AMDGPU::VGPR_32RegClass.contains(SrcReg) ||
AMDGPU::SReg_32RegClass.contains(SrcReg) ||
AMDGPU::AGPR_32RegClass.contains(SrcReg));
unsigned Opc = AMDGPU::AGPR_32RegClass.contains(SrcReg) ?
AMDGPU::V_ACCVGPR_READ_B32_e64 : AMDGPU::V_MOV_B32_e32;
BuildMI(MBB, MI, DL, get(Opc), DestReg)
.addReg(SrcReg, getKillRegState(KillSrc));
return;
}
if (RC == &AMDGPU::SReg_32_XM0RegClass ||
RC == &AMDGPU::SReg_32RegClass) {
if (SrcReg == AMDGPU::SCC) {
BuildMI(MBB, MI, DL, get(AMDGPU::S_CSELECT_B32), DestReg)
.addImm(1)
.addImm(0);
return;
}
if (DestReg == AMDGPU::VCC_LO) {
if (AMDGPU::SReg_32RegClass.contains(SrcReg)) {
BuildMI(MBB, MI, DL, get(AMDGPU::S_MOV_B32), AMDGPU::VCC_LO)
.addReg(SrcReg, getKillRegState(KillSrc));
} else {
// FIXME: Hack until VReg_1 removed.
assert(AMDGPU::VGPR_32RegClass.contains(SrcReg));
BuildMI(MBB, MI, DL, get(AMDGPU::V_CMP_NE_U32_e32))
.addImm(0)
.addReg(SrcReg, getKillRegState(KillSrc));
}
return;
}
if (!AMDGPU::SReg_32RegClass.contains(SrcReg)) {
reportIllegalCopy(this, MBB, MI, DL, DestReg, SrcReg, KillSrc);
return;
}
BuildMI(MBB, MI, DL, get(AMDGPU::S_MOV_B32), DestReg)
.addReg(SrcReg, getKillRegState(KillSrc));
return;
}
if (RC == &AMDGPU::SReg_64RegClass) {
if (SrcReg == AMDGPU::SCC) {
BuildMI(MBB, MI, DL, get(AMDGPU::S_CSELECT_B64), DestReg)
.addImm(1)
.addImm(0);
return;
}
if (DestReg == AMDGPU::VCC) {
if (AMDGPU::SReg_64RegClass.contains(SrcReg)) {
BuildMI(MBB, MI, DL, get(AMDGPU::S_MOV_B64), AMDGPU::VCC)
.addReg(SrcReg, getKillRegState(KillSrc));
} else {
// FIXME: Hack until VReg_1 removed.
assert(AMDGPU::VGPR_32RegClass.contains(SrcReg));
BuildMI(MBB, MI, DL, get(AMDGPU::V_CMP_NE_U32_e32))
.addImm(0)
.addReg(SrcReg, getKillRegState(KillSrc));
}
return;
}
if (!AMDGPU::SReg_64RegClass.contains(SrcReg)) {
reportIllegalCopy(this, MBB, MI, DL, DestReg, SrcReg, KillSrc);
return;
}
BuildMI(MBB, MI, DL, get(AMDGPU::S_MOV_B64), DestReg)
.addReg(SrcReg, getKillRegState(KillSrc));
return;
}
if (DestReg == AMDGPU::SCC) {
// Copying 64-bit or 32-bit sources to SCC barely makes sense,
// but SelectionDAG emits such copies for i1 sources.
if (AMDGPU::SReg_64RegClass.contains(SrcReg)) {
// This copy can only be produced by patterns
// with explicit SCC, which are known to be enabled
// only for subtargets with S_CMP_LG_U64 present.
assert(ST.hasScalarCompareEq64());
BuildMI(MBB, MI, DL, get(AMDGPU::S_CMP_LG_U64))
.addReg(SrcReg, getKillRegState(KillSrc))
.addImm(0);
} else {
assert(AMDGPU::SReg_32RegClass.contains(SrcReg));
BuildMI(MBB, MI, DL, get(AMDGPU::S_CMP_LG_U32))
.addReg(SrcReg, getKillRegState(KillSrc))
.addImm(0);
}
return;
}
if (RC == &AMDGPU::AGPR_32RegClass) {
if (AMDGPU::VGPR_32RegClass.contains(SrcReg)) {
BuildMI(MBB, MI, DL, get(AMDGPU::V_ACCVGPR_WRITE_B32_e64), DestReg)
.addReg(SrcReg, getKillRegState(KillSrc));
return;
}
if (AMDGPU::AGPR_32RegClass.contains(SrcReg) && ST.hasGFX90AInsts()) {
BuildMI(MBB, MI, DL, get(AMDGPU::V_ACCVGPR_MOV_B32), DestReg)
.addReg(SrcReg, getKillRegState(KillSrc));
return;
}
// FIXME: Pass should maintain scavenger to avoid scan through the block on
// every AGPR spill.
RegScavenger RS;
indirectCopyToAGPR(*this, MBB, MI, DL, DestReg, SrcReg, KillSrc, RS);
return;
}
const unsigned Size = RI.getRegSizeInBits(*RC);
if (Size == 16) {
assert(AMDGPU::VGPR_LO16RegClass.contains(SrcReg) ||
AMDGPU::VGPR_HI16RegClass.contains(SrcReg) ||
AMDGPU::SReg_LO16RegClass.contains(SrcReg) ||
AMDGPU::AGPR_LO16RegClass.contains(SrcReg));
bool IsSGPRDst = AMDGPU::SReg_LO16RegClass.contains(DestReg);
bool IsSGPRSrc = AMDGPU::SReg_LO16RegClass.contains(SrcReg);
bool IsAGPRDst = AMDGPU::AGPR_LO16RegClass.contains(DestReg);
bool IsAGPRSrc = AMDGPU::AGPR_LO16RegClass.contains(SrcReg);
bool DstLow = AMDGPU::VGPR_LO16RegClass.contains(DestReg) ||
AMDGPU::SReg_LO16RegClass.contains(DestReg) ||
AMDGPU::AGPR_LO16RegClass.contains(DestReg);
bool SrcLow = AMDGPU::VGPR_LO16RegClass.contains(SrcReg) ||
AMDGPU::SReg_LO16RegClass.contains(SrcReg) ||
AMDGPU::AGPR_LO16RegClass.contains(SrcReg);
MCRegister NewDestReg = RI.get32BitRegister(DestReg);
MCRegister NewSrcReg = RI.get32BitRegister(SrcReg);
if (IsSGPRDst) {
if (!IsSGPRSrc) {
reportIllegalCopy(this, MBB, MI, DL, DestReg, SrcReg, KillSrc);
return;
}
BuildMI(MBB, MI, DL, get(AMDGPU::S_MOV_B32), NewDestReg)
.addReg(NewSrcReg, getKillRegState(KillSrc));
return;
}
if (IsAGPRDst || IsAGPRSrc) {
if (!DstLow || !SrcLow) {
reportIllegalCopy(this, MBB, MI, DL, DestReg, SrcReg, KillSrc,
"Cannot use hi16 subreg with an AGPR!");
}
copyPhysReg(MBB, MI, DL, NewDestReg, NewSrcReg, KillSrc);
return;
}
if (IsSGPRSrc && !ST.hasSDWAScalar()) {
if (!DstLow || !SrcLow) {
reportIllegalCopy(this, MBB, MI, DL, DestReg, SrcReg, KillSrc,
"Cannot use hi16 subreg on VI!");
}
BuildMI(MBB, MI, DL, get(AMDGPU::V_MOV_B32_e32), NewDestReg)
.addReg(NewSrcReg, getKillRegState(KillSrc));
return;
}
auto MIB = BuildMI(MBB, MI, DL, get(AMDGPU::V_MOV_B32_sdwa), NewDestReg)
.addImm(0) // src0_modifiers
.addReg(NewSrcReg)
.addImm(0) // clamp
.addImm(DstLow ? AMDGPU::SDWA::SdwaSel::WORD_0
: AMDGPU::SDWA::SdwaSel::WORD_1)
.addImm(AMDGPU::SDWA::DstUnused::UNUSED_PRESERVE)
.addImm(SrcLow ? AMDGPU::SDWA::SdwaSel::WORD_0
: AMDGPU::SDWA::SdwaSel::WORD_1)
.addReg(NewDestReg, RegState::Implicit | RegState::Undef);
// First implicit operand is $exec.
MIB->tieOperands(0, MIB->getNumOperands() - 1);
return;
}
const TargetRegisterClass *SrcRC = RI.getPhysRegClass(SrcReg);
if (RC == RI.getVGPR64Class() && (SrcRC == RC || RI.isSGPRClass(SrcRC))) {
if (ST.hasPackedFP32Ops()) {
BuildMI(MBB, MI, DL, get(AMDGPU::V_PK_MOV_B32), DestReg)
.addImm(SISrcMods::OP_SEL_1)
.addReg(SrcReg)
.addImm(SISrcMods::OP_SEL_0 | SISrcMods::OP_SEL_1)
.addReg(SrcReg)
.addImm(0) // op_sel_lo
.addImm(0) // op_sel_hi
.addImm(0) // neg_lo
.addImm(0) // neg_hi
.addImm(0) // clamp
.addReg(SrcReg, getKillRegState(KillSrc) | RegState::Implicit);
return;
}
}
const bool Forward = RI.getHWRegIndex(DestReg) <= RI.getHWRegIndex(SrcReg);
if (RI.isSGPRClass(RC)) {
if (!RI.isSGPRClass(SrcRC)) {
reportIllegalCopy(this, MBB, MI, DL, DestReg, SrcReg, KillSrc);
return;
}
expandSGPRCopy(*this, MBB, MI, DL, DestReg, SrcReg, KillSrc, RC, Forward);
return;
}
unsigned EltSize = 4;
unsigned Opcode = AMDGPU::V_MOV_B32_e32;
if (RI.hasAGPRs(RC)) {
Opcode = (RI.hasVGPRs(SrcRC)) ?
AMDGPU::V_ACCVGPR_WRITE_B32_e64 : AMDGPU::INSTRUCTION_LIST_END;
} else if (RI.hasVGPRs(RC) && RI.hasAGPRs(SrcRC)) {
Opcode = AMDGPU::V_ACCVGPR_READ_B32_e64;
} else if ((Size % 64 == 0) && RI.hasVGPRs(RC) &&
(RI.isProperlyAlignedRC(*RC) &&
(SrcRC == RC || RI.isSGPRClass(SrcRC)))) {
// TODO: In 96-bit case, could do a 64-bit mov and then a 32-bit mov.
if (ST.hasPackedFP32Ops()) {
Opcode = AMDGPU::V_PK_MOV_B32;
EltSize = 8;
}
}
// For the cases where we need an intermediate instruction/temporary register
// (destination is an AGPR), we need a scavenger.
//
// FIXME: The pass should maintain this for us so we don't have to re-scan the
// whole block for every handled copy.
std::unique_ptr<RegScavenger> RS;
if (Opcode == AMDGPU::INSTRUCTION_LIST_END)
RS.reset(new RegScavenger());
ArrayRef<int16_t> SubIndices = RI.getRegSplitParts(RC, EltSize);
// If there is an overlap, we can't kill the super-register on the last
// instruction, since it will also kill the components made live by this def.
const bool CanKillSuperReg = KillSrc && !RI.regsOverlap(SrcReg, DestReg);
for (unsigned Idx = 0; Idx < SubIndices.size(); ++Idx) {
unsigned SubIdx;
if (Forward)
SubIdx = SubIndices[Idx];
else
SubIdx = SubIndices[SubIndices.size() - Idx - 1];
bool UseKill = CanKillSuperReg && Idx == SubIndices.size() - 1;
if (Opcode == AMDGPU::INSTRUCTION_LIST_END) {
Register ImpDefSuper = Idx == 0 ? Register(DestReg) : Register();
Register ImpUseSuper = SrcReg;
indirectCopyToAGPR(*this, MBB, MI, DL, RI.getSubReg(DestReg, SubIdx),
RI.getSubReg(SrcReg, SubIdx), UseKill, *RS,
ImpDefSuper, ImpUseSuper);
} else if (Opcode == AMDGPU::V_PK_MOV_B32) {
Register DstSubReg = RI.getSubReg(DestReg, SubIdx);
Register SrcSubReg = RI.getSubReg(SrcReg, SubIdx);
MachineInstrBuilder MIB =
BuildMI(MBB, MI, DL, get(AMDGPU::V_PK_MOV_B32), DstSubReg)
.addImm(SISrcMods::OP_SEL_1)
.addReg(SrcSubReg)
.addImm(SISrcMods::OP_SEL_0 | SISrcMods::OP_SEL_1)
.addReg(SrcSubReg)
.addImm(0) // op_sel_lo
.addImm(0) // op_sel_hi
.addImm(0) // neg_lo
.addImm(0) // neg_hi
.addImm(0) // clamp
.addReg(SrcReg, getKillRegState(UseKill) | RegState::Implicit);
if (Idx == 0)
MIB.addReg(DestReg, RegState::Define | RegState::Implicit);
} else {
MachineInstrBuilder Builder =
BuildMI(MBB, MI, DL, get(Opcode), RI.getSubReg(DestReg, SubIdx))
.addReg(RI.getSubReg(SrcReg, SubIdx));
if (Idx == 0)
Builder.addReg(DestReg, RegState::Define | RegState::Implicit);
Builder.addReg(SrcReg, getKillRegState(UseKill) | RegState::Implicit);
}
}
}
int SIInstrInfo::commuteOpcode(unsigned Opcode) const {
int NewOpc;
// Try to map original to commuted opcode
NewOpc = AMDGPU::getCommuteRev(Opcode);
if (NewOpc != -1)
// Check if the commuted (REV) opcode exists on the target.
return pseudoToMCOpcode(NewOpc) != -1 ? NewOpc : -1;
// Try to map commuted to original opcode
NewOpc = AMDGPU::getCommuteOrig(Opcode);
if (NewOpc != -1)
// Check if the original (non-REV) opcode exists on the target.
return pseudoToMCOpcode(NewOpc) != -1 ? NewOpc : -1;
return Opcode;
}
void SIInstrInfo::materializeImmediate(MachineBasicBlock &MBB,
MachineBasicBlock::iterator MI,
const DebugLoc &DL, unsigned DestReg,
int64_t Value) const {
MachineRegisterInfo &MRI = MBB.getParent()->getRegInfo();
const TargetRegisterClass *RegClass = MRI.getRegClass(DestReg);
if (RegClass == &AMDGPU::SReg_32RegClass ||
RegClass == &AMDGPU::SGPR_32RegClass ||
RegClass == &AMDGPU::SReg_32_XM0RegClass ||
RegClass == &AMDGPU::SReg_32_XM0_XEXECRegClass) {
BuildMI(MBB, MI, DL, get(AMDGPU::S_MOV_B32), DestReg)
.addImm(Value);
return;
}
if (RegClass == &AMDGPU::SReg_64RegClass ||
RegClass == &AMDGPU::SGPR_64RegClass ||
RegClass == &AMDGPU::SReg_64_XEXECRegClass) {
BuildMI(MBB, MI, DL, get(AMDGPU::S_MOV_B64), DestReg)
.addImm(Value);
return;
}
if (RegClass == &AMDGPU::VGPR_32RegClass) {
BuildMI(MBB, MI, DL, get(AMDGPU::V_MOV_B32_e32), DestReg)
.addImm(Value);
return;
}
if (RegClass->hasSuperClassEq(&AMDGPU::VReg_64RegClass)) {
BuildMI(MBB, MI, DL, get(AMDGPU::V_MOV_B64_PSEUDO), DestReg)
.addImm(Value);
return;
}
unsigned EltSize = 4;
unsigned Opcode = AMDGPU::V_MOV_B32_e32;
if (RI.isSGPRClass(RegClass)) {
if (RI.getRegSizeInBits(*RegClass) > 32) {
Opcode = AMDGPU::S_MOV_B64;
EltSize = 8;
} else {
Opcode = AMDGPU::S_MOV_B32;
EltSize = 4;
}
}
ArrayRef<int16_t> SubIndices = RI.getRegSplitParts(RegClass, EltSize);
for (unsigned Idx = 0; Idx < SubIndices.size(); ++Idx) {
int64_t IdxValue = Idx == 0 ? Value : 0;
MachineInstrBuilder Builder = BuildMI(MBB, MI, DL,
get(Opcode), RI.getSubReg(DestReg, SubIndices[Idx]));
Builder.addImm(IdxValue);
}
}
const TargetRegisterClass *
SIInstrInfo::getPreferredSelectRegClass(unsigned Size) const {
return &AMDGPU::VGPR_32RegClass;
}
void SIInstrInfo::insertVectorSelect(MachineBasicBlock &MBB,
MachineBasicBlock::iterator I,
const DebugLoc &DL, Register DstReg,
ArrayRef<MachineOperand> Cond,
Register TrueReg,
Register FalseReg) const {
MachineRegisterInfo &MRI = MBB.getParent()->getRegInfo();
const TargetRegisterClass *BoolXExecRC =
RI.getRegClass(AMDGPU::SReg_1_XEXECRegClassID);
assert(MRI.getRegClass(DstReg) == &AMDGPU::VGPR_32RegClass &&
"Not a VGPR32 reg");
if (Cond.size() == 1) {
Register SReg = MRI.createVirtualRegister(BoolXExecRC);
BuildMI(MBB, I, DL, get(AMDGPU::COPY), SReg)
.add(Cond[0]);
BuildMI(MBB, I, DL, get(AMDGPU::V_CNDMASK_B32_e64), DstReg)
.addImm(0)
.addReg(FalseReg)
.addImm(0)
.addReg(TrueReg)
.addReg(SReg);
} else if (Cond.size() == 2) {
assert(Cond[0].isImm() && "Cond[0] is not an immediate");
switch (Cond[0].getImm()) {
case SIInstrInfo::SCC_TRUE: {
Register SReg = MRI.createVirtualRegister(BoolXExecRC);
BuildMI(MBB, I, DL, get(ST.isWave32() ? AMDGPU::S_CSELECT_B32
: AMDGPU::S_CSELECT_B64), SReg)
.addImm(1)
.addImm(0);
BuildMI(MBB, I, DL, get(AMDGPU::V_CNDMASK_B32_e64), DstReg)
.addImm(0)
.addReg(FalseReg)
.addImm(0)
.addReg(TrueReg)
.addReg(SReg);
break;
}
case SIInstrInfo::SCC_FALSE: {
Register SReg = MRI.createVirtualRegister(BoolXExecRC);
BuildMI(MBB, I, DL, get(ST.isWave32() ? AMDGPU::S_CSELECT_B32
: AMDGPU::S_CSELECT_B64), SReg)
.addImm(0)
.addImm(1);
BuildMI(MBB, I, DL, get(AMDGPU::V_CNDMASK_B32_e64), DstReg)
.addImm(0)
.addReg(FalseReg)
.addImm(0)
.addReg(TrueReg)
.addReg(SReg);
break;
}
case SIInstrInfo::VCCNZ: {
MachineOperand RegOp = Cond[1];
RegOp.setImplicit(false);
Register SReg = MRI.createVirtualRegister(BoolXExecRC);
BuildMI(MBB, I, DL, get(AMDGPU::COPY), SReg)
.add(RegOp);
BuildMI(MBB, I, DL, get(AMDGPU::V_CNDMASK_B32_e64), DstReg)
.addImm(0)
.addReg(FalseReg)
.addImm(0)
.addReg(TrueReg)
.addReg(SReg);
break;
}
case SIInstrInfo::VCCZ: {
MachineOperand RegOp = Cond[1];
RegOp.setImplicit(false);
Register SReg = MRI.createVirtualRegister(BoolXExecRC);
BuildMI(MBB, I, DL, get(AMDGPU::COPY), SReg)
.add(RegOp);
BuildMI(MBB, I, DL, get(AMDGPU::V_CNDMASK_B32_e64), DstReg)
.addImm(0)
.addReg(TrueReg)
.addImm(0)
.addReg(FalseReg)
.addReg(SReg);
break;
}
case SIInstrInfo::EXECNZ: {
Register SReg = MRI.createVirtualRegister(BoolXExecRC);
Register SReg2 = MRI.createVirtualRegister(RI.getBoolRC());
BuildMI(MBB, I, DL, get(ST.isWave32() ? AMDGPU::S_OR_SAVEEXEC_B32
: AMDGPU::S_OR_SAVEEXEC_B64), SReg2)
.addImm(0);
BuildMI(MBB, I, DL, get(ST.isWave32() ? AMDGPU::S_CSELECT_B32
: AMDGPU::S_CSELECT_B64), SReg)
.addImm(1)
.addImm(0);
BuildMI(MBB, I, DL, get(AMDGPU::V_CNDMASK_B32_e64), DstReg)
.addImm(0)
.addReg(FalseReg)
.addImm(0)
.addReg(TrueReg)
.addReg(SReg);
break;
}
case SIInstrInfo::EXECZ: {
Register SReg = MRI.createVirtualRegister(BoolXExecRC);
Register SReg2 = MRI.createVirtualRegister(RI.getBoolRC());
BuildMI(MBB, I, DL, get(ST.isWave32() ? AMDGPU::S_OR_SAVEEXEC_B32
: AMDGPU::S_OR_SAVEEXEC_B64), SReg2)
.addImm(0);
BuildMI(MBB, I, DL, get(ST.isWave32() ? AMDGPU::S_CSELECT_B32
: AMDGPU::S_CSELECT_B64), SReg)
.addImm(0)
.addImm(1);
BuildMI(MBB, I, DL, get(AMDGPU::V_CNDMASK_B32_e64), DstReg)
.addImm(0)
.addReg(FalseReg)
.addImm(0)
.addReg(TrueReg)
.addReg(SReg);
llvm_unreachable("Unhandled branch predicate EXECZ");
break;
}
default:
llvm_unreachable("invalid branch predicate");
}
} else {
llvm_unreachable("Can only handle Cond size 1 or 2");
}
}
Register SIInstrInfo::insertEQ(MachineBasicBlock *MBB,
MachineBasicBlock::iterator I,
const DebugLoc &DL,
Register SrcReg, int Value) const {
MachineRegisterInfo &MRI = MBB->getParent()->getRegInfo();
Register Reg = MRI.createVirtualRegister(RI.getBoolRC());
BuildMI(*MBB, I, DL, get(AMDGPU::V_CMP_EQ_I32_e64), Reg)
.addImm(Value)
.addReg(SrcReg);
return Reg;
}
Register SIInstrInfo::insertNE(MachineBasicBlock *MBB,
MachineBasicBlock::iterator I,
const DebugLoc &DL,
Register SrcReg, int Value) const {
MachineRegisterInfo &MRI = MBB->getParent()->getRegInfo();
Register Reg = MRI.createVirtualRegister(RI.getBoolRC());
BuildMI(*MBB, I, DL, get(AMDGPU::V_CMP_NE_I32_e64), Reg)
.addImm(Value)
.addReg(SrcReg);
return Reg;
}
unsigned SIInstrInfo::getMovOpcode(const TargetRegisterClass *DstRC) const {
if (RI.hasAGPRs(DstRC))
return AMDGPU::COPY;
if (RI.getRegSizeInBits(*DstRC) == 32) {
return RI.isSGPRClass(DstRC) ? AMDGPU::S_MOV_B32 : AMDGPU::V_MOV_B32_e32;
} else if (RI.getRegSizeInBits(*DstRC) == 64 && RI.isSGPRClass(DstRC)) {
return AMDGPU::S_MOV_B64;
} else if (RI.getRegSizeInBits(*DstRC) == 64 && !RI.isSGPRClass(DstRC)) {
return AMDGPU::V_MOV_B64_PSEUDO;
}
return AMDGPU::COPY;
}
const MCInstrDesc &
SIInstrInfo::getIndirectGPRIDXPseudo(unsigned VecSize,
bool IsIndirectSrc) const {
if (IsIndirectSrc) {
if (VecSize <= 32) // 4 bytes
return get(AMDGPU::V_INDIRECT_REG_READ_GPR_IDX_B32_V1);
if (VecSize <= 64) // 8 bytes
return get(AMDGPU::V_INDIRECT_REG_READ_GPR_IDX_B32_V2);
if (VecSize <= 96) // 12 bytes
return get(AMDGPU::V_INDIRECT_REG_READ_GPR_IDX_B32_V3);
if (VecSize <= 128) // 16 bytes
return get(AMDGPU::V_INDIRECT_REG_READ_GPR_IDX_B32_V4);
if (VecSize <= 160) // 20 bytes
return get(AMDGPU::V_INDIRECT_REG_READ_GPR_IDX_B32_V5);
if (VecSize <= 256) // 32 bytes
return get(AMDGPU::V_INDIRECT_REG_READ_GPR_IDX_B32_V8);
if (VecSize <= 512) // 64 bytes
return get(AMDGPU::V_INDIRECT_REG_READ_GPR_IDX_B32_V16);
if (VecSize <= 1024) // 128 bytes
return get(AMDGPU::V_INDIRECT_REG_READ_GPR_IDX_B32_V32);
llvm_unreachable("unsupported size for IndirectRegReadGPRIDX pseudos");
}
if (VecSize <= 32) // 4 bytes
return get(AMDGPU::V_INDIRECT_REG_WRITE_GPR_IDX_B32_V1);
if (VecSize <= 64) // 8 bytes
return get(AMDGPU::V_INDIRECT_REG_WRITE_GPR_IDX_B32_V2);
if (VecSize <= 96) // 12 bytes
return get(AMDGPU::V_INDIRECT_REG_WRITE_GPR_IDX_B32_V3);
if (VecSize <= 128) // 16 bytes
return get(AMDGPU::V_INDIRECT_REG_WRITE_GPR_IDX_B32_V4);
if (VecSize <= 160) // 20 bytes
return get(AMDGPU::V_INDIRECT_REG_WRITE_GPR_IDX_B32_V5);
if (VecSize <= 256) // 32 bytes
return get(AMDGPU::V_INDIRECT_REG_WRITE_GPR_IDX_B32_V8);
if (VecSize <= 512) // 64 bytes
return get(AMDGPU::V_INDIRECT_REG_WRITE_GPR_IDX_B32_V16);
if (VecSize <= 1024) // 128 bytes
return get(AMDGPU::V_INDIRECT_REG_WRITE_GPR_IDX_B32_V32);
llvm_unreachable("unsupported size for IndirectRegWriteGPRIDX pseudos");
}
static unsigned getIndirectVGPRWriteMovRelPseudoOpc(unsigned VecSize) {
if (VecSize <= 32) // 4 bytes
return AMDGPU::V_INDIRECT_REG_WRITE_MOVREL_B32_V1;
if (VecSize <= 64) // 8 bytes
return AMDGPU::V_INDIRECT_REG_WRITE_MOVREL_B32_V2;
if (VecSize <= 96) // 12 bytes
return AMDGPU::V_INDIRECT_REG_WRITE_MOVREL_B32_V3;
if (VecSize <= 128) // 16 bytes
return AMDGPU::V_INDIRECT_REG_WRITE_MOVREL_B32_V4;
if (VecSize <= 160) // 20 bytes
return AMDGPU::V_INDIRECT_REG_WRITE_MOVREL_B32_V5;
if (VecSize <= 256) // 32 bytes
return AMDGPU::V_INDIRECT_REG_WRITE_MOVREL_B32_V8;
if (VecSize <= 512) // 64 bytes
return AMDGPU::V_INDIRECT_REG_WRITE_MOVREL_B32_V16;
if (VecSize <= 1024) // 128 bytes
return AMDGPU::V_INDIRECT_REG_WRITE_MOVREL_B32_V32;
llvm_unreachable("unsupported size for IndirectRegWrite pseudos");
}
static unsigned getIndirectSGPRWriteMovRelPseudo32(unsigned VecSize) {
if (VecSize <= 32) // 4 bytes
return AMDGPU::S_INDIRECT_REG_WRITE_MOVREL_B32_V1;
if (VecSize <= 64) // 8 bytes
return AMDGPU::S_INDIRECT_REG_WRITE_MOVREL_B32_V2;
if (VecSize <= 96) // 12 bytes
return AMDGPU::S_INDIRECT_REG_WRITE_MOVREL_B32_V3;
if (VecSize <= 128) // 16 bytes
return AMDGPU::S_INDIRECT_REG_WRITE_MOVREL_B32_V4;
if (VecSize <= 160) // 20 bytes
return AMDGPU::S_INDIRECT_REG_WRITE_MOVREL_B32_V5;
if (VecSize <= 256) // 32 bytes
return AMDGPU::S_INDIRECT_REG_WRITE_MOVREL_B32_V8;
if (VecSize <= 512) // 64 bytes
return AMDGPU::S_INDIRECT_REG_WRITE_MOVREL_B32_V16;
if (VecSize <= 1024) // 128 bytes
return AMDGPU::S_INDIRECT_REG_WRITE_MOVREL_B32_V32;
llvm_unreachable("unsupported size for IndirectRegWrite pseudos");
}
static unsigned getIndirectSGPRWriteMovRelPseudo64(unsigned VecSize) {
if (VecSize <= 64) // 8 bytes
return AMDGPU::S_INDIRECT_REG_WRITE_MOVREL_B64_V1;
if (VecSize <= 128) // 16 bytes
return AMDGPU::S_INDIRECT_REG_WRITE_MOVREL_B64_V2;
if (VecSize <= 256) // 32 bytes
return AMDGPU::S_INDIRECT_REG_WRITE_MOVREL_B64_V4;
if (VecSize <= 512) // 64 bytes
return AMDGPU::S_INDIRECT_REG_WRITE_MOVREL_B64_V8;
if (VecSize <= 1024) // 128 bytes
return AMDGPU::S_INDIRECT_REG_WRITE_MOVREL_B64_V16;
llvm_unreachable("unsupported size for IndirectRegWrite pseudos");
}
const MCInstrDesc &
SIInstrInfo::getIndirectRegWriteMovRelPseudo(unsigned VecSize, unsigned EltSize,
bool IsSGPR) const {
if (IsSGPR) {
switch (EltSize) {
case 32:
return get(getIndirectSGPRWriteMovRelPseudo32(VecSize));
case 64:
return get(getIndirectSGPRWriteMovRelPseudo64(VecSize));
default:
llvm_unreachable("invalid reg indexing elt size");
}
}
assert(EltSize == 32 && "invalid reg indexing elt size");
return get(getIndirectVGPRWriteMovRelPseudoOpc(VecSize));
}
static unsigned getSGPRSpillSaveOpcode(unsigned Size) {
switch (Size) {
case 4:
return AMDGPU::SI_SPILL_S32_SAVE;
case 8:
return AMDGPU::SI_SPILL_S64_SAVE;
case 12:
return AMDGPU::SI_SPILL_S96_SAVE;
case 16:
return AMDGPU::SI_SPILL_S128_SAVE;
case 20:
return AMDGPU::SI_SPILL_S160_SAVE;
case 24:
return AMDGPU::SI_SPILL_S192_SAVE;
case 28:
return AMDGPU::SI_SPILL_S224_SAVE;
case 32:
return AMDGPU::SI_SPILL_S256_SAVE;
case 64:
return AMDGPU::SI_SPILL_S512_SAVE;
case 128:
return AMDGPU::SI_SPILL_S1024_SAVE;
default:
llvm_unreachable("unknown register size");
}
}
static unsigned getVGPRSpillSaveOpcode(unsigned Size) {
switch (Size) {
case 4:
return AMDGPU::SI_SPILL_V32_SAVE;
case 8:
return AMDGPU::SI_SPILL_V64_SAVE;
case 12:
return AMDGPU::SI_SPILL_V96_SAVE;
case 16:
return AMDGPU::SI_SPILL_V128_SAVE;
case 20:
return AMDGPU::SI_SPILL_V160_SAVE;
case 24:
return AMDGPU::SI_SPILL_V192_SAVE;
case 28:
return AMDGPU::SI_SPILL_V224_SAVE;
case 32:
return AMDGPU::SI_SPILL_V256_SAVE;
case 64:
return AMDGPU::SI_SPILL_V512_SAVE;
case 128:
return AMDGPU::SI_SPILL_V1024_SAVE;
default:
llvm_unreachable("unknown register size");
}
}
static unsigned getAGPRSpillSaveOpcode(unsigned Size) {
switch (Size) {
case 4:
return AMDGPU::SI_SPILL_A32_SAVE;
case 8:
return AMDGPU::SI_SPILL_A64_SAVE;
case 12:
return AMDGPU::SI_SPILL_A96_SAVE;
case 16:
return AMDGPU::SI_SPILL_A128_SAVE;
case 20:
return AMDGPU::SI_SPILL_A160_SAVE;
case 24:
return AMDGPU::SI_SPILL_A192_SAVE;
case 28:
return AMDGPU::SI_SPILL_A224_SAVE;
case 32:
return AMDGPU::SI_SPILL_A256_SAVE;
case 64:
return AMDGPU::SI_SPILL_A512_SAVE;
case 128:
return AMDGPU::SI_SPILL_A1024_SAVE;
default:
llvm_unreachable("unknown register size");
}
}
void SIInstrInfo::storeRegToStackSlot(MachineBasicBlock &MBB,
MachineBasicBlock::iterator MI,
Register SrcReg, bool isKill,
int FrameIndex,
const TargetRegisterClass *RC,
const TargetRegisterInfo *TRI) const {
MachineFunction *MF = MBB.getParent();
SIMachineFunctionInfo *MFI = MF->getInfo<SIMachineFunctionInfo>();
MachineFrameInfo &FrameInfo = MF->getFrameInfo();
const DebugLoc &DL = MBB.findDebugLoc(MI);
MachinePointerInfo PtrInfo
= MachinePointerInfo::getFixedStack(*MF, FrameIndex);
MachineMemOperand *MMO = MF->getMachineMemOperand(
PtrInfo, MachineMemOperand::MOStore, FrameInfo.getObjectSize(FrameIndex),
FrameInfo.getObjectAlign(FrameIndex));
unsigned SpillSize = TRI->getSpillSize(*RC);
if (RI.isSGPRClass(RC)) {
MFI->setHasSpilledSGPRs();
assert(SrcReg != AMDGPU::M0 && "m0 should not be spilled");
assert(SrcReg != AMDGPU::EXEC_LO && SrcReg != AMDGPU::EXEC_HI &&
SrcReg != AMDGPU::EXEC && "exec should not be spilled");
// We are only allowed to create one new instruction when spilling
// registers, so we need to use pseudo instruction for spilling SGPRs.
const MCInstrDesc &OpDesc = get(getSGPRSpillSaveOpcode(SpillSize));
// The SGPR spill/restore instructions only work on number sgprs, so we need
// to make sure we are using the correct register class.
if (SrcReg.isVirtual() && SpillSize == 4) {
MachineRegisterInfo &MRI = MF->getRegInfo();
MRI.constrainRegClass(SrcReg, &AMDGPU::SReg_32_XM0_XEXECRegClass);
}
BuildMI(MBB, MI, DL, OpDesc)
.addReg(SrcReg, getKillRegState(isKill)) // data
.addFrameIndex(FrameIndex) // addr
.addMemOperand(MMO)
.addReg(MFI->getStackPtrOffsetReg(), RegState::Implicit);
if (RI.spillSGPRToVGPR())
FrameInfo.setStackID(FrameIndex, TargetStackID::SGPRSpill);
return;
}
unsigned Opcode = RI.hasAGPRs(RC) ? getAGPRSpillSaveOpcode(SpillSize)
: getVGPRSpillSaveOpcode(SpillSize);
MFI->setHasSpilledVGPRs();
BuildMI(MBB, MI, DL, get(Opcode))
.addReg(SrcReg, getKillRegState(isKill)) // data
.addFrameIndex(FrameIndex) // addr
.addReg(MFI->getStackPtrOffsetReg()) // scratch_offset
.addImm(0) // offset
.addMemOperand(MMO);
}
static unsigned getSGPRSpillRestoreOpcode(unsigned Size) {
switch (Size) {
case 4:
return AMDGPU::SI_SPILL_S32_RESTORE;
case 8:
return AMDGPU::SI_SPILL_S64_RESTORE;
case 12:
return AMDGPU::SI_SPILL_S96_RESTORE;
case 16:
return AMDGPU::SI_SPILL_S128_RESTORE;
case 20:
return AMDGPU::SI_SPILL_S160_RESTORE;
case 24:
return AMDGPU::SI_SPILL_S192_RESTORE;
case 28:
return AMDGPU::SI_SPILL_S224_RESTORE;
case 32:
return AMDGPU::SI_SPILL_S256_RESTORE;
case 64:
return AMDGPU::SI_SPILL_S512_RESTORE;
case 128:
return AMDGPU::SI_SPILL_S1024_RESTORE;
default:
llvm_unreachable("unknown register size");
}
}
static unsigned getVGPRSpillRestoreOpcode(unsigned Size) {
switch (Size) {
case 4:
return AMDGPU::SI_SPILL_V32_RESTORE;
case 8:
return AMDGPU::SI_SPILL_V64_RESTORE;
case 12:
return AMDGPU::SI_SPILL_V96_RESTORE;
case 16:
return AMDGPU::SI_SPILL_V128_RESTORE;
case 20:
return AMDGPU::SI_SPILL_V160_RESTORE;
case 24:
return AMDGPU::SI_SPILL_V192_RESTORE;
case 28:
return AMDGPU::SI_SPILL_V224_RESTORE;
case 32:
return AMDGPU::SI_SPILL_V256_RESTORE;
case 64:
return AMDGPU::SI_SPILL_V512_RESTORE;
case 128:
return AMDGPU::SI_SPILL_V1024_RESTORE;
default:
llvm_unreachable("unknown register size");
}
}
static unsigned getAGPRSpillRestoreOpcode(unsigned Size) {
switch (Size) {
case 4:
return AMDGPU::SI_SPILL_A32_RESTORE;
case 8:
return AMDGPU::SI_SPILL_A64_RESTORE;
case 12:
return AMDGPU::SI_SPILL_A96_RESTORE;
case 16:
return AMDGPU::SI_SPILL_A128_RESTORE;
case 20:
return AMDGPU::SI_SPILL_A160_RESTORE;
case 24:
return AMDGPU::SI_SPILL_A192_RESTORE;
case 28:
return AMDGPU::SI_SPILL_A224_RESTORE;
case 32:
return AMDGPU::SI_SPILL_A256_RESTORE;
case 64:
return AMDGPU::SI_SPILL_A512_RESTORE;
case 128:
return AMDGPU::SI_SPILL_A1024_RESTORE;
default:
llvm_unreachable("unknown register size");
}
}
void SIInstrInfo::loadRegFromStackSlot(MachineBasicBlock &MBB,
MachineBasicBlock::iterator MI,
Register DestReg, int FrameIndex,
const TargetRegisterClass *RC,
const TargetRegisterInfo *TRI) const {
MachineFunction *MF = MBB.getParent();
SIMachineFunctionInfo *MFI = MF->getInfo<SIMachineFunctionInfo>();
MachineFrameInfo &FrameInfo = MF->getFrameInfo();
const DebugLoc &DL = MBB.findDebugLoc(MI);
unsigned SpillSize = TRI->getSpillSize(*RC);
MachinePointerInfo PtrInfo
= MachinePointerInfo::getFixedStack(*MF, FrameIndex);
MachineMemOperand *MMO = MF->getMachineMemOperand(
PtrInfo, MachineMemOperand::MOLoad, FrameInfo.getObjectSize(FrameIndex),
FrameInfo.getObjectAlign(FrameIndex));
if (RI.isSGPRClass(RC)) {
MFI->setHasSpilledSGPRs();
assert(DestReg != AMDGPU::M0 && "m0 should not be reloaded into");
assert(DestReg != AMDGPU::EXEC_LO && DestReg != AMDGPU::EXEC_HI &&
DestReg != AMDGPU::EXEC && "exec should not be spilled");
// FIXME: Maybe this should not include a memoperand because it will be
// lowered to non-memory instructions.
const MCInstrDesc &OpDesc = get(getSGPRSpillRestoreOpcode(SpillSize));
if (DestReg.isVirtual() && SpillSize == 4) {
MachineRegisterInfo &MRI = MF->getRegInfo();
MRI.constrainRegClass(DestReg, &AMDGPU::SReg_32_XM0_XEXECRegClass);
}
if (RI.spillSGPRToVGPR())
FrameInfo.setStackID(FrameIndex, TargetStackID::SGPRSpill);
BuildMI(MBB, MI, DL, OpDesc, DestReg)
.addFrameIndex(FrameIndex) // addr
.addMemOperand(MMO)
.addReg(MFI->getStackPtrOffsetReg(), RegState::Implicit);
return;
}
unsigned Opcode = RI.hasAGPRs(RC) ? getAGPRSpillRestoreOpcode(SpillSize)
: getVGPRSpillRestoreOpcode(SpillSize);
BuildMI(MBB, MI, DL, get(Opcode), DestReg)
.addFrameIndex(FrameIndex) // vaddr
.addReg(MFI->getStackPtrOffsetReg()) // scratch_offset
.addImm(0) // offset
.addMemOperand(MMO);
}
void SIInstrInfo::insertNoop(MachineBasicBlock &MBB,
MachineBasicBlock::iterator MI) const {
insertNoops(MBB, MI, 1);
}
void SIInstrInfo::insertNoops(MachineBasicBlock &MBB,
MachineBasicBlock::iterator MI,
unsigned Quantity) const {
DebugLoc DL = MBB.findDebugLoc(MI);
while (Quantity > 0) {
unsigned Arg = std::min(Quantity, 8u);
Quantity -= Arg;
BuildMI(MBB, MI, DL, get(AMDGPU::S_NOP)).addImm(Arg - 1);
}
}
void SIInstrInfo::insertReturn(MachineBasicBlock &MBB) const {
auto MF = MBB.getParent();
SIMachineFunctionInfo *Info = MF->getInfo<SIMachineFunctionInfo>();
assert(Info->isEntryFunction());
if (MBB.succ_empty()) {
bool HasNoTerminator = MBB.getFirstTerminator() == MBB.end();
if (HasNoTerminator) {
if (Info->returnsVoid()) {
BuildMI(MBB, MBB.end(), DebugLoc(), get(AMDGPU::S_ENDPGM)).addImm(0);
} else {
BuildMI(MBB, MBB.end(), DebugLoc(), get(AMDGPU::SI_RETURN_TO_EPILOG));
}
}
}
}
unsigned SIInstrInfo::getNumWaitStates(const MachineInstr &MI) {
switch (MI.getOpcode()) {
default: return 1; // FIXME: Do wait states equal cycles?
case AMDGPU::S_NOP:
return MI.getOperand(0).getImm() + 1;
}
}
bool SIInstrInfo::expandPostRAPseudo(MachineInstr &MI) const {
const SIRegisterInfo *TRI = ST.getRegisterInfo();
MachineBasicBlock &MBB = *MI.getParent();
DebugLoc DL = MBB.findDebugLoc(MI);
switch (MI.getOpcode()) {
default: return TargetInstrInfo::expandPostRAPseudo(MI);
case AMDGPU::S_MOV_B64_term:
// This is only a terminator to get the correct spill code placement during
// register allocation.
MI.setDesc(get(AMDGPU::S_MOV_B64));
break;
case AMDGPU::S_MOV_B32_term:
// This is only a terminator to get the correct spill code placement during
// register allocation.
MI.setDesc(get(AMDGPU::S_MOV_B32));
break;
case AMDGPU::S_XOR_B64_term:
// This is only a terminator to get the correct spill code placement during
// register allocation.
MI.setDesc(get(AMDGPU::S_XOR_B64));
break;
case AMDGPU::S_XOR_B32_term:
// This is only a terminator to get the correct spill code placement during
// register allocation.
MI.setDesc(get(AMDGPU::S_XOR_B32));
break;
case AMDGPU::S_OR_B64_term:
// This is only a terminator to get the correct spill code placement during
// register allocation.
MI.setDesc(get(AMDGPU::S_OR_B64));
break;
case AMDGPU::S_OR_B32_term:
// This is only a terminator to get the correct spill code placement during
// register allocation.
MI.setDesc(get(AMDGPU::S_OR_B32));
break;
case AMDGPU::S_ANDN2_B64_term:
// This is only a terminator to get the correct spill code placement during
// register allocation.
MI.setDesc(get(AMDGPU::S_ANDN2_B64));
break;
case AMDGPU::S_ANDN2_B32_term:
// This is only a terminator to get the correct spill code placement during
// register allocation.
MI.setDesc(get(AMDGPU::S_ANDN2_B32));
break;
case AMDGPU::S_AND_B64_term:
// This is only a terminator to get the correct spill code placement during
// register allocation.
MI.setDesc(get(AMDGPU::S_AND_B64));
break;
case AMDGPU::S_AND_B32_term:
// This is only a terminator to get the correct spill code placement during
// register allocation.
MI.setDesc(get(AMDGPU::S_AND_B32));
break;
case AMDGPU::V_MOV_B64_PSEUDO: {
Register Dst = MI.getOperand(0).getReg();
Register DstLo = RI.getSubReg(Dst, AMDGPU::sub0);
Register DstHi = RI.getSubReg(Dst, AMDGPU::sub1);
const MachineOperand &SrcOp = MI.getOperand(1);
// FIXME: Will this work for 64-bit floating point immediates?
assert(!SrcOp.isFPImm());
if (SrcOp.isImm()) {
APInt Imm(64, SrcOp.getImm());
APInt Lo(32, Imm.getLoBits(32).getZExtValue());
APInt Hi(32, Imm.getHiBits(32).getZExtValue());
if (ST.hasPackedFP32Ops() && Lo == Hi && isInlineConstant(Lo)) {
BuildMI(MBB, MI, DL, get(AMDGPU::V_PK_MOV_B32), Dst)
.addImm(SISrcMods::OP_SEL_1)
.addImm(Lo.getSExtValue())
.addImm(SISrcMods::OP_SEL_1)
.addImm(Lo.getSExtValue())
.addImm(0) // op_sel_lo
.addImm(0) // op_sel_hi
.addImm(0) // neg_lo
.addImm(0) // neg_hi
.addImm(0); // clamp
} else {
BuildMI(MBB, MI, DL, get(AMDGPU::V_MOV_B32_e32), DstLo)
.addImm(Lo.getSExtValue())
.addReg(Dst, RegState::Implicit | RegState::Define);
BuildMI(MBB, MI, DL, get(AMDGPU::V_MOV_B32_e32), DstHi)
.addImm(Hi.getSExtValue())
.addReg(Dst, RegState::Implicit | RegState::Define);
}
} else {
assert(SrcOp.isReg());
if (ST.hasPackedFP32Ops() &&
!RI.isAGPR(MBB.getParent()->getRegInfo(), SrcOp.getReg())) {
BuildMI(MBB, MI, DL, get(AMDGPU::V_PK_MOV_B32), Dst)
.addImm(SISrcMods::OP_SEL_1) // src0_mod
.addReg(SrcOp.getReg())
.addImm(SISrcMods::OP_SEL_0 | SISrcMods::OP_SEL_1) // src1_mod
.addReg(SrcOp.getReg())
.addImm(0) // op_sel_lo
.addImm(0) // op_sel_hi
.addImm(0) // neg_lo
.addImm(0) // neg_hi
.addImm(0); // clamp
} else {
BuildMI(MBB, MI, DL, get(AMDGPU::V_MOV_B32_e32), DstLo)
.addReg(RI.getSubReg(SrcOp.getReg(), AMDGPU::sub0))
.addReg(Dst, RegState::Implicit | RegState::Define);
BuildMI(MBB, MI, DL, get(AMDGPU::V_MOV_B32_e32), DstHi)
.addReg(RI.getSubReg(SrcOp.getReg(), AMDGPU::sub1))
.addReg(Dst, RegState::Implicit | RegState::Define);
}
}
MI.eraseFromParent();
break;
}
case AMDGPU::V_MOV_B64_DPP_PSEUDO: {
expandMovDPP64(MI);
break;
}
case AMDGPU::S_MOV_B64_IMM_PSEUDO: {
const MachineOperand &SrcOp = MI.getOperand(1);
assert(!SrcOp.isFPImm());
APInt Imm(64, SrcOp.getImm());
if (Imm.isIntN(32) || isInlineConstant(Imm)) {
MI.setDesc(get(AMDGPU::S_MOV_B64));
break;
}
Register Dst = MI.getOperand(0).getReg();
Register DstLo = RI.getSubReg(Dst, AMDGPU::sub0);
Register DstHi = RI.getSubReg(Dst, AMDGPU::sub1);
APInt Lo(32, Imm.getLoBits(32).getZExtValue());
APInt Hi(32, Imm.getHiBits(32).getZExtValue());
BuildMI(MBB, MI, DL, get(AMDGPU::S_MOV_B32), DstLo)
.addImm(Lo.getSExtValue())
.addReg(Dst, RegState::Implicit | RegState::Define);
BuildMI(MBB, MI, DL, get(AMDGPU::S_MOV_B32), DstHi)
.addImm(Hi.getSExtValue())
.addReg(Dst, RegState::Implicit | RegState::Define);
MI.eraseFromParent();
break;
}
case AMDGPU::V_SET_INACTIVE_B32: {
unsigned NotOpc = ST.isWave32() ? AMDGPU::S_NOT_B32 : AMDGPU::S_NOT_B64;
unsigned Exec = ST.isWave32() ? AMDGPU::EXEC_LO : AMDGPU::EXEC;
auto FirstNot = BuildMI(MBB, MI, DL, get(NotOpc), Exec).addReg(Exec);
FirstNot->addRegisterDead(AMDGPU::SCC, TRI); // SCC is overwritten
BuildMI(MBB, MI, DL, get(AMDGPU::V_MOV_B32_e32), MI.getOperand(0).getReg())
.add(MI.getOperand(2));
BuildMI(MBB, MI, DL, get(NotOpc), Exec)
.addReg(Exec);
MI.eraseFromParent();
break;
}
case AMDGPU::V_SET_INACTIVE_B64: {
unsigned NotOpc = ST.isWave32() ? AMDGPU::S_NOT_B32 : AMDGPU::S_NOT_B64;
unsigned Exec = ST.isWave32() ? AMDGPU::EXEC_LO : AMDGPU::EXEC;
auto FirstNot = BuildMI(MBB, MI, DL, get(NotOpc), Exec).addReg(Exec);
FirstNot->addRegisterDead(AMDGPU::SCC, TRI); // SCC is overwritten
MachineInstr *Copy = BuildMI(MBB, MI, DL, get(AMDGPU::V_MOV_B64_PSEUDO),
MI.getOperand(0).getReg())
.add(MI.getOperand(2));
expandPostRAPseudo(*Copy);
BuildMI(MBB, MI, DL, get(NotOpc), Exec)
.addReg(Exec);
MI.eraseFromParent();
break;
}
case AMDGPU::V_INDIRECT_REG_WRITE_MOVREL_B32_V1:
case AMDGPU::V_INDIRECT_REG_WRITE_MOVREL_B32_V2:
case AMDGPU::V_INDIRECT_REG_WRITE_MOVREL_B32_V3:
case AMDGPU::V_INDIRECT_REG_WRITE_MOVREL_B32_V4:
case AMDGPU::V_INDIRECT_REG_WRITE_MOVREL_B32_V5:
case AMDGPU::V_INDIRECT_REG_WRITE_MOVREL_B32_V8:
case AMDGPU::V_INDIRECT_REG_WRITE_MOVREL_B32_V16:
case AMDGPU::V_INDIRECT_REG_WRITE_MOVREL_B32_V32:
case AMDGPU::S_INDIRECT_REG_WRITE_MOVREL_B32_V1:
case AMDGPU::S_INDIRECT_REG_WRITE_MOVREL_B32_V2:
case AMDGPU::S_INDIRECT_REG_WRITE_MOVREL_B32_V3:
case AMDGPU::S_INDIRECT_REG_WRITE_MOVREL_B32_V4:
case AMDGPU::S_INDIRECT_REG_WRITE_MOVREL_B32_V5:
case AMDGPU::S_INDIRECT_REG_WRITE_MOVREL_B32_V8:
case AMDGPU::S_INDIRECT_REG_WRITE_MOVREL_B32_V16:
case AMDGPU::S_INDIRECT_REG_WRITE_MOVREL_B32_V32:
case AMDGPU::S_INDIRECT_REG_WRITE_MOVREL_B64_V1:
case AMDGPU::S_INDIRECT_REG_WRITE_MOVREL_B64_V2:
case AMDGPU::S_INDIRECT_REG_WRITE_MOVREL_B64_V4:
case AMDGPU::S_INDIRECT_REG_WRITE_MOVREL_B64_V8:
case AMDGPU::S_INDIRECT_REG_WRITE_MOVREL_B64_V16: {
const TargetRegisterClass *EltRC = getOpRegClass(MI, 2);
unsigned Opc;
if (RI.hasVGPRs(EltRC)) {
Opc = AMDGPU::V_MOVRELD_B32_e32;
} else {
Opc = RI.getRegSizeInBits(*EltRC) == 64 ? AMDGPU::S_MOVRELD_B64
: AMDGPU::S_MOVRELD_B32;
}
const MCInstrDesc &OpDesc = get(Opc);
Register VecReg = MI.getOperand(0).getReg();
bool IsUndef = MI.getOperand(1).isUndef();
unsigned SubReg = MI.getOperand(3).getImm();
assert(VecReg == MI.getOperand(1).getReg());
MachineInstrBuilder MIB =
BuildMI(MBB, MI, DL, OpDesc)
.addReg(RI.getSubReg(VecReg, SubReg), RegState::Undef)
.add(MI.getOperand(2))
.addReg(VecReg, RegState::ImplicitDefine)
.addReg(VecReg, RegState::Implicit | (IsUndef ? RegState::Undef : 0));
const int ImpDefIdx =
OpDesc.getNumOperands() + OpDesc.getNumImplicitUses();
const int ImpUseIdx = ImpDefIdx + 1;
MIB->tieOperands(ImpDefIdx, ImpUseIdx);
MI.eraseFromParent();
break;
}
case AMDGPU::V_INDIRECT_REG_WRITE_GPR_IDX_B32_V1:
case AMDGPU::V_INDIRECT_REG_WRITE_GPR_IDX_B32_V2:
case AMDGPU::V_INDIRECT_REG_WRITE_GPR_IDX_B32_V3:
case AMDGPU::V_INDIRECT_REG_WRITE_GPR_IDX_B32_V4:
case AMDGPU::V_INDIRECT_REG_WRITE_GPR_IDX_B32_V5:
case AMDGPU::V_INDIRECT_REG_WRITE_GPR_IDX_B32_V8:
case AMDGPU::V_INDIRECT_REG_WRITE_GPR_IDX_B32_V16:
case AMDGPU::V_INDIRECT_REG_WRITE_GPR_IDX_B32_V32: {
assert(ST.useVGPRIndexMode());
Register VecReg = MI.getOperand(0).getReg();
bool IsUndef = MI.getOperand(1).isUndef();
Register Idx = MI.getOperand(3).getReg();
Register SubReg = MI.getOperand(4).getImm();
MachineInstr *SetOn = BuildMI(MBB, MI, DL, get(AMDGPU::S_SET_GPR_IDX_ON))
.addReg(Idx)
.addImm(AMDGPU::VGPRIndexMode::DST_ENABLE);
SetOn->getOperand(3).setIsUndef();
const MCInstrDesc &OpDesc = get(AMDGPU::V_MOV_B32_indirect);
MachineInstrBuilder MIB =
BuildMI(MBB, MI, DL, OpDesc)
.addReg(RI.getSubReg(VecReg, SubReg), RegState::Undef)
.add(MI.getOperand(2))
.addReg(VecReg, RegState::ImplicitDefine)
.addReg(VecReg,
RegState::Implicit | (IsUndef ? RegState::Undef : 0));
const int ImpDefIdx = OpDesc.getNumOperands() + OpDesc.getNumImplicitUses();
const int ImpUseIdx = ImpDefIdx + 1;
MIB->tieOperands(ImpDefIdx, ImpUseIdx);
MachineInstr *SetOff = BuildMI(MBB, MI, DL, get(AMDGPU::S_SET_GPR_IDX_OFF));
finalizeBundle(MBB, SetOn->getIterator(), std::next(SetOff->getIterator()));
MI.eraseFromParent();
break;
}
case AMDGPU::V_INDIRECT_REG_READ_GPR_IDX_B32_V1:
case AMDGPU::V_INDIRECT_REG_READ_GPR_IDX_B32_V2:
case AMDGPU::V_INDIRECT_REG_READ_GPR_IDX_B32_V3:
case AMDGPU::V_INDIRECT_REG_READ_GPR_IDX_B32_V4:
case AMDGPU::V_INDIRECT_REG_READ_GPR_IDX_B32_V5:
case AMDGPU::V_INDIRECT_REG_READ_GPR_IDX_B32_V8:
case AMDGPU::V_INDIRECT_REG_READ_GPR_IDX_B32_V16:
case AMDGPU::V_INDIRECT_REG_READ_GPR_IDX_B32_V32: {
assert(ST.useVGPRIndexMode());
Register Dst = MI.getOperand(0).getReg();
Register VecReg = MI.getOperand(1).getReg();
bool IsUndef = MI.getOperand(1).isUndef();
Register Idx = MI.getOperand(2).getReg();
Register SubReg = MI.getOperand(3).getImm();
MachineInstr *SetOn = BuildMI(MBB, MI, DL, get(AMDGPU::S_SET_GPR_IDX_ON))
.addReg(Idx)
.addImm(AMDGPU::VGPRIndexMode::SRC0_ENABLE);
SetOn->getOperand(3).setIsUndef();
BuildMI(MBB, MI, DL, get(AMDGPU::V_MOV_B32_e32))
.addDef(Dst)
.addReg(RI.getSubReg(VecReg, SubReg), RegState::Undef)
.addReg(VecReg, RegState::Implicit | (IsUndef ? RegState::Undef : 0))
.addReg(AMDGPU::M0, RegState::Implicit);
MachineInstr *SetOff = BuildMI(MBB, MI, DL, get(AMDGPU::S_SET_GPR_IDX_OFF));
finalizeBundle(MBB, SetOn->getIterator(), std::next(SetOff->getIterator()));
MI.eraseFromParent();
break;
}
case AMDGPU::SI_PC_ADD_REL_OFFSET: {
MachineFunction &MF = *MBB.getParent();
Register Reg = MI.getOperand(0).getReg();
Register RegLo = RI.getSubReg(Reg, AMDGPU::sub0);
Register RegHi = RI.getSubReg(Reg, AMDGPU::sub1);
// Create a bundle so these instructions won't be re-ordered by the
// post-RA scheduler.
MIBundleBuilder Bundler(MBB, MI);
Bundler.append(BuildMI(MF, DL, get(AMDGPU::S_GETPC_B64), Reg));
// Add 32-bit offset from this instruction to the start of the
// constant data.
Bundler.append(BuildMI(MF, DL, get(AMDGPU::S_ADD_U32), RegLo)
.addReg(RegLo)
.add(MI.getOperand(1)));
MachineInstrBuilder MIB = BuildMI(MF, DL, get(AMDGPU::S_ADDC_U32), RegHi)
.addReg(RegHi);
MIB.add(MI.getOperand(2));
Bundler.append(MIB);
finalizeBundle(MBB, Bundler.begin());
MI.eraseFromParent();
break;
}
case AMDGPU::ENTER_STRICT_WWM: {
// This only gets its own opcode so that SIPreAllocateWWMRegs can tell when
// Whole Wave Mode is entered.
MI.setDesc(get(ST.isWave32() ? AMDGPU::S_OR_SAVEEXEC_B32
: AMDGPU::S_OR_SAVEEXEC_B64));
break;
}
case AMDGPU::ENTER_STRICT_WQM: {
// This only gets its own opcode so that SIPreAllocateWWMRegs can tell when
// STRICT_WQM is entered.
const unsigned Exec = ST.isWave32() ? AMDGPU::EXEC_LO : AMDGPU::EXEC;
const unsigned WQMOp = ST.isWave32() ? AMDGPU::S_WQM_B32 : AMDGPU::S_WQM_B64;
const unsigned MovOp = ST.isWave32() ? AMDGPU::S_MOV_B32 : AMDGPU::S_MOV_B64;
BuildMI(MBB, MI, DL, get(MovOp), MI.getOperand(0).getReg()).addReg(Exec);
BuildMI(MBB, MI, DL, get(WQMOp), Exec).addReg(Exec);
MI.eraseFromParent();
break;
}
case AMDGPU::EXIT_STRICT_WWM:
case AMDGPU::EXIT_STRICT_WQM: {
// This only gets its own opcode so that SIPreAllocateWWMRegs can tell when
// WWM/STICT_WQM is exited.
MI.setDesc(get(ST.isWave32() ? AMDGPU::S_MOV_B32 : AMDGPU::S_MOV_B64));
break;
}
}
return true;
}
std::pair<MachineInstr*, MachineInstr*>
SIInstrInfo::expandMovDPP64(MachineInstr &MI) const {
assert (MI.getOpcode() == AMDGPU::V_MOV_B64_DPP_PSEUDO);
MachineBasicBlock &MBB = *MI.getParent();
DebugLoc DL = MBB.findDebugLoc(MI);
MachineFunction *MF = MBB.getParent();
MachineRegisterInfo &MRI = MF->getRegInfo();
Register Dst = MI.getOperand(0).getReg();
unsigned Part = 0;
MachineInstr *Split[2];
for (auto Sub : { AMDGPU::sub0, AMDGPU::sub1 }) {
auto MovDPP = BuildMI(MBB, MI, DL, get(AMDGPU::V_MOV_B32_dpp));
if (Dst.isPhysical()) {
MovDPP.addDef(RI.getSubReg(Dst, Sub));
} else {
assert(MRI.isSSA());
auto Tmp = MRI.createVirtualRegister(&AMDGPU::VGPR_32RegClass);
MovDPP.addDef(Tmp);
}
for (unsigned I = 1; I <= 2; ++I) { // old and src operands.
const MachineOperand &SrcOp = MI.getOperand(I);
assert(!SrcOp.isFPImm());
if (SrcOp.isImm()) {
APInt Imm(64, SrcOp.getImm());
Imm.ashrInPlace(Part * 32);
MovDPP.addImm(Imm.getLoBits(32).getZExtValue());
} else {
assert(SrcOp.isReg());
Register Src = SrcOp.getReg();
if (Src.isPhysical())
MovDPP.addReg(RI.getSubReg(Src, Sub));
else
MovDPP.addReg(Src, SrcOp.isUndef() ? RegState::Undef : 0, Sub);
}
}
for (unsigned I = 3; I < MI.getNumExplicitOperands(); ++I)
MovDPP.addImm(MI.getOperand(I).getImm());
Split[Part] = MovDPP;
++Part;
}
if (Dst.isVirtual())
BuildMI(MBB, MI, DL, get(AMDGPU::REG_SEQUENCE), Dst)
.addReg(Split[0]->getOperand(0).getReg())
.addImm(AMDGPU::sub0)
.addReg(Split[1]->getOperand(0).getReg())
.addImm(AMDGPU::sub1);
MI.eraseFromParent();
return std::make_pair(Split[0], Split[1]);
}
bool SIInstrInfo::swapSourceModifiers(MachineInstr &MI,
MachineOperand &Src0,
unsigned Src0OpName,
MachineOperand &Src1,
unsigned Src1OpName) const {
MachineOperand *Src0Mods = getNamedOperand(MI, Src0OpName);
if (!Src0Mods)
return false;
MachineOperand *Src1Mods = getNamedOperand(MI, Src1OpName);
assert(Src1Mods &&
"All commutable instructions have both src0 and src1 modifiers");
int Src0ModsVal = Src0Mods->getImm();
int Src1ModsVal = Src1Mods->getImm();
Src1Mods->setImm(Src0ModsVal);
Src0Mods->setImm(Src1ModsVal);
return true;
}
static MachineInstr *swapRegAndNonRegOperand(MachineInstr &MI,
MachineOperand &RegOp,
MachineOperand &NonRegOp) {
Register Reg = RegOp.getReg();
unsigned SubReg = RegOp.getSubReg();
bool IsKill = RegOp.isKill();
bool IsDead = RegOp.isDead();
bool IsUndef = RegOp.isUndef();
bool IsDebug = RegOp.isDebug();
if (NonRegOp.isImm())
RegOp.ChangeToImmediate(NonRegOp.getImm());
else if (NonRegOp.isFI())
RegOp.ChangeToFrameIndex(NonRegOp.getIndex());
else if (NonRegOp.isGlobal()) {
RegOp.ChangeToGA(NonRegOp.getGlobal(), NonRegOp.getOffset(),
NonRegOp.getTargetFlags());
} else
return nullptr;
// Make sure we don't reinterpret a subreg index in the target flags.
RegOp.setTargetFlags(NonRegOp.getTargetFlags());
NonRegOp.ChangeToRegister(Reg, false, false, IsKill, IsDead, IsUndef, IsDebug);
NonRegOp.setSubReg(SubReg);
return &MI;
}
MachineInstr *SIInstrInfo::commuteInstructionImpl(MachineInstr &MI, bool NewMI,
unsigned Src0Idx,
unsigned Src1Idx) const {
assert(!NewMI && "this should never be used");
unsigned Opc = MI.getOpcode();
int CommutedOpcode = commuteOpcode(Opc);
if (CommutedOpcode == -1)
return nullptr;
assert(AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::src0) ==
static_cast<int>(Src0Idx) &&
AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::src1) ==
static_cast<int>(Src1Idx) &&
"inconsistency with findCommutedOpIndices");
MachineOperand &Src0 = MI.getOperand(Src0Idx);
MachineOperand &Src1 = MI.getOperand(Src1Idx);
MachineInstr *CommutedMI = nullptr;
if (Src0.isReg() && Src1.isReg()) {
if (isOperandLegal(MI, Src1Idx, &Src0)) {
// Be sure to copy the source modifiers to the right place.
CommutedMI
= TargetInstrInfo::commuteInstructionImpl(MI, NewMI, Src0Idx, Src1Idx);
}
} else if (Src0.isReg() && !Src1.isReg()) {
// src0 should always be able to support any operand type, so no need to
// check operand legality.
CommutedMI = swapRegAndNonRegOperand(MI, Src0, Src1);
} else if (!Src0.isReg() && Src1.isReg()) {
if (isOperandLegal(MI, Src1Idx, &Src0))
CommutedMI = swapRegAndNonRegOperand(MI, Src1, Src0);
} else {
// FIXME: Found two non registers to commute. This does happen.
return nullptr;
}
if (CommutedMI) {
swapSourceModifiers(MI, Src0, AMDGPU::OpName::src0_modifiers,
Src1, AMDGPU::OpName::src1_modifiers);
CommutedMI->setDesc(get(CommutedOpcode));
}
return CommutedMI;
}
// This needs to be implemented because the source modifiers may be inserted
// between the true commutable operands, and the base
// TargetInstrInfo::commuteInstruction uses it.
bool SIInstrInfo::findCommutedOpIndices(const MachineInstr &MI,
unsigned &SrcOpIdx0,
unsigned &SrcOpIdx1) const {
return findCommutedOpIndices(MI.getDesc(), SrcOpIdx0, SrcOpIdx1);
}
bool SIInstrInfo::findCommutedOpIndices(MCInstrDesc Desc, unsigned &SrcOpIdx0,
unsigned &SrcOpIdx1) const {
if (!Desc.isCommutable())
return false;
unsigned Opc = Desc.getOpcode();
int Src0Idx = AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::src0);
if (Src0Idx == -1)
return false;
int Src1Idx = AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::src1);
if (Src1Idx == -1)
return false;
return fixCommutedOpIndices(SrcOpIdx0, SrcOpIdx1, Src0Idx, Src1Idx);
}
bool SIInstrInfo::isBranchOffsetInRange(unsigned BranchOp,
int64_t BrOffset) const {
// BranchRelaxation should never have to check s_setpc_b64 because its dest
// block is unanalyzable.
assert(BranchOp != AMDGPU::S_SETPC_B64);
// Convert to dwords.
BrOffset /= 4;
// The branch instructions do PC += signext(SIMM16 * 4) + 4, so the offset is
// from the next instruction.
BrOffset -= 1;
return isIntN(BranchOffsetBits, BrOffset);
}
MachineBasicBlock *SIInstrInfo::getBranchDestBlock(
const MachineInstr &MI) const {
if (MI.getOpcode() == AMDGPU::S_SETPC_B64) {
// This would be a difficult analysis to perform, but can always be legal so
// there's no need to analyze it.
return nullptr;
}
return MI.getOperand(0).getMBB();
}
unsigned SIInstrInfo::insertIndirectBranch(MachineBasicBlock &MBB,
MachineBasicBlock &DestBB,
const DebugLoc &DL,
int64_t BrOffset,
RegScavenger *RS) const {
assert(RS && "RegScavenger required for long branching");
assert(MBB.empty() &&
"new block should be inserted for expanding unconditional branch");
assert(MBB.pred_size() == 1);
MachineFunction *MF = MBB.getParent();
MachineRegisterInfo &MRI = MF->getRegInfo();
// FIXME: Virtual register workaround for RegScavenger not working with empty
// blocks.
Register PCReg = MRI.createVirtualRegister(&AMDGPU::SReg_64RegClass);
auto I = MBB.end();
// We need to compute the offset relative to the instruction immediately after
// s_getpc_b64. Insert pc arithmetic code before last terminator.
MachineInstr *GetPC = BuildMI(MBB, I, DL, get(AMDGPU::S_GETPC_B64), PCReg);
auto &MCCtx = MF->getContext();
MCSymbol *PostGetPCLabel =
MCCtx.createTempSymbol("post_getpc", /*AlwaysAddSuffix=*/true);
GetPC->setPostInstrSymbol(*MF, PostGetPCLabel);
MCSymbol *OffsetLo =
MCCtx.createTempSymbol("offset_lo", /*AlwaysAddSuffix=*/true);
MCSymbol *OffsetHi =
MCCtx.createTempSymbol("offset_hi", /*AlwaysAddSuffix=*/true);
BuildMI(MBB, I, DL, get(AMDGPU::S_ADD_U32))
.addReg(PCReg, RegState::Define, AMDGPU::sub0)
.addReg(PCReg, 0, AMDGPU::sub0)
.addSym(OffsetLo, MO_FAR_BRANCH_OFFSET);
BuildMI(MBB, I, DL, get(AMDGPU::S_ADDC_U32))
.addReg(PCReg, RegState::Define, AMDGPU::sub1)
.addReg(PCReg, 0, AMDGPU::sub1)
.addSym(OffsetHi, MO_FAR_BRANCH_OFFSET);
// Insert the indirect branch after the other terminator.
BuildMI(&MBB, DL, get(AMDGPU::S_SETPC_B64))
.addReg(PCReg);
auto ComputeBlockSize = [](const TargetInstrInfo *TII,
const MachineBasicBlock &MBB) {
unsigned Size = 0;
for (const MachineInstr &MI : MBB)
Size += TII->getInstSizeInBytes(MI);
return Size;
};
// FIXME: If spilling is necessary, this will fail because this scavenger has
// no emergency stack slots. It is non-trivial to spill in this situation,
// because the restore code needs to be specially placed after the
// jump. BranchRelaxation then needs to be made aware of the newly inserted
// block.
//
// If a spill is needed for the pc register pair, we need to insert a spill
// restore block right before the destination block, and insert a short branch
// into the old destination block's fallthrough predecessor.
// e.g.:
//
// s_cbranch_scc0 skip_long_branch:
//
// long_branch_bb:
// spill s[8:9]
// s_getpc_b64 s[8:9]
// s_add_u32 s8, s8, restore_bb
// s_addc_u32 s9, s9, 0
// s_setpc_b64 s[8:9]
//
// skip_long_branch:
// foo;
//
// .....
//
// dest_bb_fallthrough_predecessor:
// bar;
// s_branch dest_bb
//
// restore_bb:
// restore s[8:9]
// fallthrough dest_bb
///
// dest_bb:
// buzz;
RS->enterBasicBlockEnd(MBB);
Register Scav = RS->scavengeRegisterBackwards(
AMDGPU::SReg_64RegClass,
MachineBasicBlock::iterator(GetPC), false, 0);
MRI.replaceRegWith(PCReg, Scav);
MRI.clearVirtRegs();
RS->setRegUsed(Scav);
// Now, the distance could be defined.
auto *Offset = MCBinaryExpr::createSub(
MCSymbolRefExpr::create(DestBB.getSymbol(), MCCtx),
MCSymbolRefExpr::create(PostGetPCLabel, MCCtx), MCCtx);
// Add offset assignments.
auto *Mask = MCConstantExpr::create(0xFFFFFFFFULL, MCCtx);
OffsetLo->setVariableValue(MCBinaryExpr::createAnd(Offset, Mask, MCCtx));
auto *ShAmt = MCConstantExpr::create(32, MCCtx);
OffsetHi->setVariableValue(MCBinaryExpr::createAShr(Offset, ShAmt, MCCtx));
return ComputeBlockSize(this, MBB);
}
unsigned SIInstrInfo::getBranchOpcode(SIInstrInfo::BranchPredicate Cond) {
switch (Cond) {
case SIInstrInfo::SCC_TRUE:
return AMDGPU::S_CBRANCH_SCC1;
case SIInstrInfo::SCC_FALSE:
return AMDGPU::S_CBRANCH_SCC0;
case SIInstrInfo::VCCNZ:
return AMDGPU::S_CBRANCH_VCCNZ;
case SIInstrInfo::VCCZ:
return AMDGPU::S_CBRANCH_VCCZ;
case SIInstrInfo::EXECNZ:
return AMDGPU::S_CBRANCH_EXECNZ;
case SIInstrInfo::EXECZ:
return AMDGPU::S_CBRANCH_EXECZ;
default:
llvm_unreachable("invalid branch predicate");
}
}
SIInstrInfo::BranchPredicate SIInstrInfo::getBranchPredicate(unsigned Opcode) {
switch (Opcode) {
case AMDGPU::S_CBRANCH_SCC0:
return SCC_FALSE;
case AMDGPU::S_CBRANCH_SCC1:
return SCC_TRUE;
case AMDGPU::S_CBRANCH_VCCNZ:
return VCCNZ;
case AMDGPU::S_CBRANCH_VCCZ:
return VCCZ;
case AMDGPU::S_CBRANCH_EXECNZ:
return EXECNZ;
case AMDGPU::S_CBRANCH_EXECZ:
return EXECZ;
default:
return INVALID_BR;
}
}
bool SIInstrInfo::analyzeBranchImpl(MachineBasicBlock &MBB,
MachineBasicBlock::iterator I,
MachineBasicBlock *&TBB,
MachineBasicBlock *&FBB,
SmallVectorImpl<MachineOperand> &Cond,
bool AllowModify) const {
if (I->getOpcode() == AMDGPU::S_BRANCH) {
// Unconditional Branch
TBB = I->getOperand(0).getMBB();
return false;
}
MachineBasicBlock *CondBB = nullptr;
if (I->getOpcode() == AMDGPU::SI_NON_UNIFORM_BRCOND_PSEUDO) {
CondBB = I->getOperand(1).getMBB();
Cond.push_back(I->getOperand(0));
} else {
BranchPredicate Pred = getBranchPredicate(I->getOpcode());
if (Pred == INVALID_BR)
return true;
CondBB = I->getOperand(0).getMBB();
Cond.push_back(MachineOperand::CreateImm(Pred));
Cond.push_back(I->getOperand(1)); // Save the branch register.
}
++I;
if (I == MBB.end()) {
// Conditional branch followed by fall-through.
TBB = CondBB;
return false;
}
if (I->getOpcode() == AMDGPU::S_BRANCH) {
TBB = CondBB;
FBB = I->getOperand(0).getMBB();
return false;
}
return true;
}
bool SIInstrInfo::analyzeBranch(MachineBasicBlock &MBB, MachineBasicBlock *&TBB,
MachineBasicBlock *&FBB,
SmallVectorImpl<MachineOperand> &Cond,
bool AllowModify) const {
MachineBasicBlock::iterator I = MBB.getFirstTerminator();
auto E = MBB.end();
if (I == E)
return false;
// Skip over the instructions that are artificially terminators for special
// exec management.
while (I != E && !I->isBranch() && !I->isReturn()) {
switch (I->getOpcode()) {
case AMDGPU::S_MOV_B64_term:
case AMDGPU::S_XOR_B64_term:
case AMDGPU::S_OR_B64_term:
case AMDGPU::S_ANDN2_B64_term:
case AMDGPU::S_AND_B64_term:
case AMDGPU::S_MOV_B32_term:
case AMDGPU::S_XOR_B32_term:
case AMDGPU::S_OR_B32_term:
case AMDGPU::S_ANDN2_B32_term:
case AMDGPU::S_AND_B32_term:
break;
case AMDGPU::SI_IF:
case AMDGPU::SI_ELSE:
case AMDGPU::SI_KILL_I1_TERMINATOR:
case AMDGPU::SI_KILL_F32_COND_IMM_TERMINATOR:
// FIXME: It's messy that these need to be considered here at all.
return true;
default:
llvm_unreachable("unexpected non-branch terminator inst");
}
++I;
}
if (I == E)
return false;
return analyzeBranchImpl(MBB, I, TBB, FBB, Cond, AllowModify);
}
unsigned SIInstrInfo::removeBranch(MachineBasicBlock &MBB,
int *BytesRemoved) const {
MachineBasicBlock::iterator I = MBB.getFirstTerminator();
unsigned Count = 0;
unsigned RemovedSize = 0;
while (I != MBB.end()) {
MachineBasicBlock::iterator Next = std::next(I);
RemovedSize += getInstSizeInBytes(*I);
I->eraseFromParent();
++Count;
I = Next;
}
if (BytesRemoved)
*BytesRemoved = RemovedSize;
return Count;
}
// Copy the flags onto the implicit condition register operand.
static void preserveCondRegFlags(MachineOperand &CondReg,
const MachineOperand &OrigCond) {
CondReg.setIsUndef(OrigCond.isUndef());
CondReg.setIsKill(OrigCond.isKill());
}
unsigned SIInstrInfo::insertBranch(MachineBasicBlock &MBB,
MachineBasicBlock *TBB,
MachineBasicBlock *FBB,
ArrayRef<MachineOperand> Cond,
const DebugLoc &DL,
int *BytesAdded) const {
if (!FBB && Cond.empty()) {
BuildMI(&MBB, DL, get(AMDGPU::S_BRANCH))
.addMBB(TBB);
if (BytesAdded)
*BytesAdded = ST.hasOffset3fBug() ? 8 : 4;
return 1;
}
if(Cond.size() == 1 && Cond[0].isReg()) {
BuildMI(&MBB, DL, get(AMDGPU::SI_NON_UNIFORM_BRCOND_PSEUDO))
.add(Cond[0])
.addMBB(TBB);
return 1;
}
assert(TBB && Cond[0].isImm());
unsigned Opcode
= getBranchOpcode(static_cast<BranchPredicate>(Cond[0].getImm()));
if (!FBB) {
Cond[1].isUndef();
MachineInstr *CondBr =
BuildMI(&MBB, DL, get(Opcode))
.addMBB(TBB);
// Copy the flags onto the implicit condition register operand.
preserveCondRegFlags(CondBr->getOperand(1), Cond[1]);
fixImplicitOperands(*CondBr);
if (BytesAdded)
*BytesAdded = ST.hasOffset3fBug() ? 8 : 4;
return 1;
}
assert(TBB && FBB);
MachineInstr *CondBr =
BuildMI(&MBB, DL, get(Opcode))
.addMBB(TBB);
fixImplicitOperands(*CondBr);
BuildMI(&MBB, DL, get(AMDGPU::S_BRANCH))
.addMBB(FBB);
MachineOperand &CondReg = CondBr->getOperand(1);
CondReg.setIsUndef(Cond[1].isUndef());
CondReg.setIsKill(Cond[1].isKill());
if (BytesAdded)
*BytesAdded = ST.hasOffset3fBug() ? 16 : 8;
return 2;
}
bool SIInstrInfo::reverseBranchCondition(
SmallVectorImpl<MachineOperand> &Cond) const {
if (Cond.size() != 2) {
return true;
}
if (Cond[0].isImm()) {
Cond[0].setImm(-Cond[0].getImm());
return false;
}
return true;
}
bool SIInstrInfo::canInsertSelect(const MachineBasicBlock &MBB,
ArrayRef<MachineOperand> Cond,
Register DstReg, Register TrueReg,
Register FalseReg, int &CondCycles,
int &TrueCycles, int &FalseCycles) const {
switch (Cond[0].getImm()) {
case VCCNZ:
case VCCZ: {
const MachineRegisterInfo &MRI = MBB.getParent()->getRegInfo();
const TargetRegisterClass *RC = MRI.getRegClass(TrueReg);
if (MRI.getRegClass(FalseReg) != RC)
return false;
int NumInsts = AMDGPU::getRegBitWidth(RC->getID()) / 32;
CondCycles = TrueCycles = FalseCycles = NumInsts; // ???
// Limit to equal cost for branch vs. N v_cndmask_b32s.
return RI.hasVGPRs(RC) && NumInsts <= 6;
}
case SCC_TRUE:
case SCC_FALSE: {
// FIXME: We could insert for VGPRs if we could replace the original compare
// with a vector one.
const MachineRegisterInfo &MRI = MBB.getParent()->getRegInfo();
const TargetRegisterClass *RC = MRI.getRegClass(TrueReg);
if (MRI.getRegClass(FalseReg) != RC)
return false;
int NumInsts = AMDGPU::getRegBitWidth(RC->getID()) / 32;
// Multiples of 8 can do s_cselect_b64
if (NumInsts % 2 == 0)
NumInsts /= 2;
CondCycles = TrueCycles = FalseCycles = NumInsts; // ???
return RI.isSGPRClass(RC);
}
default:
return false;
}
}
void SIInstrInfo::insertSelect(MachineBasicBlock &MBB,
MachineBasicBlock::iterator I, const DebugLoc &DL,
Register DstReg, ArrayRef<MachineOperand> Cond,
Register TrueReg, Register FalseReg) const {
BranchPredicate Pred = static_cast<BranchPredicate>(Cond[0].getImm());
if (Pred == VCCZ || Pred == SCC_FALSE) {
Pred = static_cast<BranchPredicate>(-Pred);
std::swap(TrueReg, FalseReg);
}
MachineRegisterInfo &MRI = MBB.getParent()->getRegInfo();
const TargetRegisterClass *DstRC = MRI.getRegClass(DstReg);
unsigned DstSize = RI.getRegSizeInBits(*DstRC);
if (DstSize == 32) {
MachineInstr *Select;
if (Pred == SCC_TRUE) {
Select = BuildMI(MBB, I, DL, get(AMDGPU::S_CSELECT_B32), DstReg)
.addReg(TrueReg)
.addReg(FalseReg);
} else {
// Instruction's operands are backwards from what is expected.
Select = BuildMI(MBB, I, DL, get(AMDGPU::V_CNDMASK_B32_e32), DstReg)
.addReg(FalseReg)
.addReg(TrueReg);
}
preserveCondRegFlags(Select->getOperand(3), Cond[1]);
return;
}
if (DstSize == 64 && Pred == SCC_TRUE) {
MachineInstr *Select =
BuildMI(MBB, I, DL, get(AMDGPU::S_CSELECT_B64), DstReg)
.addReg(TrueReg)
.addReg(FalseReg);
preserveCondRegFlags(Select->getOperand(3), Cond[1]);
return;
}
static const int16_t Sub0_15[] = {
AMDGPU::sub0, AMDGPU::sub1, AMDGPU::sub2, AMDGPU::sub3,
AMDGPU::sub4, AMDGPU::sub5, AMDGPU::sub6, AMDGPU::sub7,
AMDGPU::sub8, AMDGPU::sub9, AMDGPU::sub10, AMDGPU::sub11,
AMDGPU::sub12, AMDGPU::sub13, AMDGPU::sub14, AMDGPU::sub15,
};
static const int16_t Sub0_15_64[] = {
AMDGPU::sub0_sub1, AMDGPU::sub2_sub3,
AMDGPU::sub4_sub5, AMDGPU::sub6_sub7,
AMDGPU::sub8_sub9, AMDGPU::sub10_sub11,
AMDGPU::sub12_sub13, AMDGPU::sub14_sub15,
};
unsigned SelOp = AMDGPU::V_CNDMASK_B32_e32;
const TargetRegisterClass *EltRC = &AMDGPU::VGPR_32RegClass;
const int16_t *SubIndices = Sub0_15;
int NElts = DstSize / 32;
// 64-bit select is only available for SALU.
// TODO: Split 96-bit into 64-bit and 32-bit, not 3x 32-bit.
if (Pred == SCC_TRUE) {
if (NElts % 2) {
SelOp = AMDGPU::S_CSELECT_B32;
EltRC = &AMDGPU::SGPR_32RegClass;
} else {
SelOp = AMDGPU::S_CSELECT_B64;
EltRC = &AMDGPU::SGPR_64RegClass;
SubIndices = Sub0_15_64;
NElts /= 2;
}
}
MachineInstrBuilder MIB = BuildMI(
MBB, I, DL, get(AMDGPU::REG_SEQUENCE), DstReg);
I = MIB->getIterator();
SmallVector<Register, 8> Regs;
for (int Idx = 0; Idx != NElts; ++Idx) {
Register DstElt = MRI.createVirtualRegister(EltRC);
Regs.push_back(DstElt);
unsigned SubIdx = SubIndices[Idx];
MachineInstr *Select;
if (SelOp == AMDGPU::V_CNDMASK_B32_e32) {
Select =
BuildMI(MBB, I, DL, get(SelOp), DstElt)
.addReg(FalseReg, 0, SubIdx)
.addReg(TrueReg, 0, SubIdx);
} else {
Select =
BuildMI(MBB, I, DL, get(SelOp), DstElt)
.addReg(TrueReg, 0, SubIdx)
.addReg(FalseReg, 0, SubIdx);
}
preserveCondRegFlags(Select->getOperand(3), Cond[1]);
fixImplicitOperands(*Select);
MIB.addReg(DstElt)
.addImm(SubIdx);
}
}
bool SIInstrInfo::isFoldableCopy(const MachineInstr &MI) const {
switch (MI.getOpcode()) {
case AMDGPU::V_MOV_B32_e32:
case AMDGPU::V_MOV_B32_e64:
case AMDGPU::V_MOV_B64_PSEUDO: {
// If there are additional implicit register operands, this may be used for
// register indexing so the source register operand isn't simply copied.
unsigned NumOps = MI.getDesc().getNumOperands() +
MI.getDesc().getNumImplicitUses();
return MI.getNumOperands() == NumOps;
}
case AMDGPU::S_MOV_B32:
case AMDGPU::S_MOV_B64:
case AMDGPU::COPY:
case AMDGPU::V_ACCVGPR_WRITE_B32_e64:
case AMDGPU::V_ACCVGPR_READ_B32_e64:
case AMDGPU::V_ACCVGPR_MOV_B32:
return true;
default:
return false;
}
}
unsigned SIInstrInfo::getAddressSpaceForPseudoSourceKind(
unsigned Kind) const {
switch(Kind) {
case PseudoSourceValue::Stack:
case PseudoSourceValue::FixedStack:
return AMDGPUAS::PRIVATE_ADDRESS;
case PseudoSourceValue::ConstantPool:
case PseudoSourceValue::GOT:
case PseudoSourceValue::JumpTable:
case PseudoSourceValue::GlobalValueCallEntry:
case PseudoSourceValue::ExternalSymbolCallEntry:
case PseudoSourceValue::TargetCustom:
return AMDGPUAS::CONSTANT_ADDRESS;
}
return AMDGPUAS::FLAT_ADDRESS;
}
static void removeModOperands(MachineInstr &MI) {
unsigned Opc = MI.getOpcode();
int Src0ModIdx = AMDGPU::getNamedOperandIdx(Opc,
AMDGPU::OpName::src0_modifiers);
int Src1ModIdx = AMDGPU::getNamedOperandIdx(Opc,
AMDGPU::OpName::src1_modifiers);
int Src2ModIdx = AMDGPU::getNamedOperandIdx(Opc,
AMDGPU::OpName::src2_modifiers);
MI.RemoveOperand(Src2ModIdx);
MI.RemoveOperand(Src1ModIdx);
MI.RemoveOperand(Src0ModIdx);
}
bool SIInstrInfo::FoldImmediate(MachineInstr &UseMI, MachineInstr &DefMI,
Register Reg, MachineRegisterInfo *MRI) const {
if (!MRI->hasOneNonDBGUse(Reg))
return false;
switch (DefMI.getOpcode()) {
default:
return false;
case AMDGPU::S_MOV_B64:
// TODO: We could fold 64-bit immediates, but this get compilicated
// when there are sub-registers.
return false;
case AMDGPU::V_MOV_B32_e32:
case AMDGPU::S_MOV_B32:
case AMDGPU::V_ACCVGPR_WRITE_B32_e64:
break;
}
const MachineOperand *ImmOp = getNamedOperand(DefMI, AMDGPU::OpName::src0);
assert(ImmOp);
// FIXME: We could handle FrameIndex values here.
if (!ImmOp->isImm())
return false;
unsigned Opc = UseMI.getOpcode();
if (Opc == AMDGPU::COPY) {
Register DstReg = UseMI.getOperand(0).getReg();
bool Is16Bit = getOpSize(UseMI, 0) == 2;
bool isVGPRCopy = RI.isVGPR(*MRI, DstReg);
unsigned NewOpc = isVGPRCopy ? AMDGPU::V_MOV_B32_e32 : AMDGPU::S_MOV_B32;
APInt Imm(32, ImmOp->getImm());
if (UseMI.getOperand(1).getSubReg() == AMDGPU::hi16)
Imm = Imm.ashr(16);
if (RI.isAGPR(*MRI, DstReg)) {
if (!isInlineConstant(Imm))
return false;
NewOpc = AMDGPU::V_ACCVGPR_WRITE_B32_e64;
}
if (Is16Bit) {
if (isVGPRCopy)
return false; // Do not clobber vgpr_hi16
if (DstReg.isVirtual() &&
UseMI.getOperand(0).getSubReg() != AMDGPU::lo16)
return false;
UseMI.getOperand(0).setSubReg(0);
if (DstReg.isPhysical()) {
DstReg = RI.get32BitRegister(DstReg);
UseMI.getOperand(0).setReg(DstReg);
}
assert(UseMI.getOperand(1).getReg().isVirtual());
}
UseMI.setDesc(get(NewOpc));
UseMI.getOperand(1).ChangeToImmediate(Imm.getSExtValue());
UseMI.addImplicitDefUseOperands(*UseMI.getParent()->getParent());
return true;
}
if (Opc == AMDGPU::V_MAD_F32_e64 || Opc == AMDGPU::V_MAC_F32_e64 ||
Opc == AMDGPU::V_MAD_F16_e64 || Opc == AMDGPU::V_MAC_F16_e64 ||
Opc == AMDGPU::V_FMA_F32_e64 || Opc == AMDGPU::V_FMAC_F32_e64 ||
Opc == AMDGPU::V_FMA_F16_e64 || Opc == AMDGPU::V_FMAC_F16_e64) {
// Don't fold if we are using source or output modifiers. The new VOP2
// instructions don't have them.
if (hasAnyModifiersSet(UseMI))
return false;
// If this is a free constant, there's no reason to do this.
// TODO: We could fold this here instead of letting SIFoldOperands do it
// later.
MachineOperand *Src0 = getNamedOperand(UseMI, AMDGPU::OpName::src0);
// Any src operand can be used for the legality check.
if (isInlineConstant(UseMI, *Src0, *ImmOp))
return false;
bool IsF32 = Opc == AMDGPU::V_MAD_F32_e64 || Opc == AMDGPU::V_MAC_F32_e64 ||
Opc == AMDGPU::V_FMA_F32_e64 || Opc == AMDGPU::V_FMAC_F32_e64;
bool IsFMA = Opc == AMDGPU::V_FMA_F32_e64 || Opc == AMDGPU::V_FMAC_F32_e64 ||
Opc == AMDGPU::V_FMA_F16_e64 || Opc == AMDGPU::V_FMAC_F16_e64;
MachineOperand *Src1 = getNamedOperand(UseMI, AMDGPU::OpName::src1);
MachineOperand *Src2 = getNamedOperand(UseMI, AMDGPU::OpName::src2);
// Multiplied part is the constant: Use v_madmk_{f16, f32}.
// We should only expect these to be on src0 due to canonicalizations.
if (Src0->isReg() && Src0->getReg() == Reg) {
if (!Src1->isReg() || RI.isSGPRClass(MRI->getRegClass(Src1->getReg())))
return false;
if (!Src2->isReg() || RI.isSGPRClass(MRI->getRegClass(Src2->getReg())))
return false;
unsigned NewOpc =
IsFMA ? (IsF32 ? AMDGPU::V_FMAMK_F32 : AMDGPU::V_FMAMK_F16)
: (IsF32 ? AMDGPU::V_MADMK_F32 : AMDGPU::V_MADMK_F16);
if (pseudoToMCOpcode(NewOpc) == -1)
return false;
// We need to swap operands 0 and 1 since madmk constant is at operand 1.
const int64_t Imm = ImmOp->getImm();
// FIXME: This would be a lot easier if we could return a new instruction
// instead of having to modify in place.
// Remove these first since they are at the end.
UseMI.RemoveOperand(
AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::omod));
UseMI.RemoveOperand(
AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::clamp));
Register Src1Reg = Src1->getReg();
unsigned Src1SubReg = Src1->getSubReg();
Src0->setReg(Src1Reg);
Src0->setSubReg(Src1SubReg);
Src0->setIsKill(Src1->isKill());
if (Opc == AMDGPU::V_MAC_F32_e64 ||
Opc == AMDGPU::V_MAC_F16_e64 ||
Opc == AMDGPU::V_FMAC_F32_e64 ||
Opc == AMDGPU::V_FMAC_F16_e64)
UseMI.untieRegOperand(
AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::src2));
Src1->ChangeToImmediate(Imm);
removeModOperands(UseMI);
UseMI.setDesc(get(NewOpc));
bool DeleteDef = MRI->hasOneNonDBGUse(Reg);
if (DeleteDef)
DefMI.eraseFromParent();
return true;
}
// Added part is the constant: Use v_madak_{f16, f32}.
if (Src2->isReg() && Src2->getReg() == Reg) {
// Not allowed to use constant bus for another operand.
// We can however allow an inline immediate as src0.
bool Src0Inlined = false;
if (Src0->isReg()) {
// Try to inline constant if possible.
// If the Def moves immediate and the use is single
// We are saving VGPR here.
MachineInstr *Def = MRI->getUniqueVRegDef(Src0->getReg());
if (Def && Def->isMoveImmediate() &&
isInlineConstant(Def->getOperand(1)) &&
MRI->hasOneUse(Src0->getReg())) {
Src0->ChangeToImmediate(Def->getOperand(1).getImm());
Src0Inlined = true;
} else if ((Src0->getReg().isPhysical() &&
(ST.getConstantBusLimit(Opc) <= 1 &&
RI.isSGPRClass(RI.getPhysRegClass(Src0->getReg())))) ||
(Src0->getReg().isVirtual() &&
(ST.getConstantBusLimit(Opc) <= 1 &&
RI.isSGPRClass(MRI->getRegClass(Src0->getReg())))))
return false;
// VGPR is okay as Src0 - fallthrough
}
if (Src1->isReg() && !Src0Inlined ) {
// We have one slot for inlinable constant so far - try to fill it
MachineInstr *Def = MRI->getUniqueVRegDef(Src1->getReg());
if (Def && Def->isMoveImmediate() &&
isInlineConstant(Def->getOperand(1)) &&
MRI->hasOneUse(Src1->getReg()) &&
commuteInstruction(UseMI)) {
Src0->ChangeToImmediate(Def->getOperand(1).getImm());
} else if ((Src1->getReg().isPhysical() &&
RI.isSGPRClass(RI.getPhysRegClass(Src1->getReg()))) ||
(Src1->getReg().isVirtual() &&
RI.isSGPRClass(MRI->getRegClass(Src1->getReg()))))
return false;
// VGPR is okay as Src1 - fallthrough
}
unsigned NewOpc =
IsFMA ? (IsF32 ? AMDGPU::V_FMAAK_F32 : AMDGPU::V_FMAAK_F16)
: (IsF32 ? AMDGPU::V_MADAK_F32 : AMDGPU::V_MADAK_F16);
if (pseudoToMCOpcode(NewOpc) == -1)
return false;
const int64_t Imm = ImmOp->getImm();
// FIXME: This would be a lot easier if we could return a new instruction
// instead of having to modify in place.
// Remove these first since they are at the end.
UseMI.RemoveOperand(
AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::omod));
UseMI.RemoveOperand(
AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::clamp));
if (Opc == AMDGPU::V_MAC_F32_e64 ||
Opc == AMDGPU::V_MAC_F16_e64 ||
Opc == AMDGPU::V_FMAC_F32_e64 ||
Opc == AMDGPU::V_FMAC_F16_e64)
UseMI.untieRegOperand(
AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::src2));
// ChangingToImmediate adds Src2 back to the instruction.
Src2->ChangeToImmediate(Imm);
// These come before src2.
removeModOperands(UseMI);
UseMI.setDesc(get(NewOpc));
// It might happen that UseMI was commuted
// and we now have SGPR as SRC1. If so 2 inlined
// constant and SGPR are illegal.
legalizeOperands(UseMI);
bool DeleteDef = MRI->hasOneNonDBGUse(Reg);
if (DeleteDef)
DefMI.eraseFromParent();
return true;
}
}
return false;
}
static bool
memOpsHaveSameBaseOperands(ArrayRef<const MachineOperand *> BaseOps1,
ArrayRef<const MachineOperand *> BaseOps2) {
if (BaseOps1.size() != BaseOps2.size())
return false;
for (size_t I = 0, E = BaseOps1.size(); I < E; ++I) {
if (!BaseOps1[I]->isIdenticalTo(*BaseOps2[I]))
return false;
}
return true;
}
static bool offsetsDoNotOverlap(int WidthA, int OffsetA,
int WidthB, int OffsetB) {
int LowOffset = OffsetA < OffsetB ? OffsetA : OffsetB;
int HighOffset = OffsetA < OffsetB ? OffsetB : OffsetA;
int LowWidth = (LowOffset == OffsetA) ? WidthA : WidthB;
return LowOffset + LowWidth <= HighOffset;
}
bool SIInstrInfo::checkInstOffsetsDoNotOverlap(const MachineInstr &MIa,
const MachineInstr &MIb) const {
SmallVector<const MachineOperand *, 4> BaseOps0, BaseOps1;
int64_t Offset0, Offset1;
unsigned Dummy0, Dummy1;
bool Offset0IsScalable, Offset1IsScalable;
if (!getMemOperandsWithOffsetWidth(MIa, BaseOps0, Offset0, Offset0IsScalable,
Dummy0, &RI) ||
!getMemOperandsWithOffsetWidth(MIb, BaseOps1, Offset1, Offset1IsScalable,
Dummy1, &RI))
return false;
if (!memOpsHaveSameBaseOperands(BaseOps0, BaseOps1))
return false;
if (!MIa.hasOneMemOperand() || !MIb.hasOneMemOperand()) {
// FIXME: Handle ds_read2 / ds_write2.
return false;
}
unsigned Width0 = MIa.memoperands().front()->getSize();
unsigned Width1 = MIb.memoperands().front()->getSize();
return offsetsDoNotOverlap(Width0, Offset0, Width1, Offset1);
}
bool SIInstrInfo::areMemAccessesTriviallyDisjoint(const MachineInstr &MIa,
const MachineInstr &MIb) const {
assert(MIa.mayLoadOrStore() &&
"MIa must load from or modify a memory location");
assert(MIb.mayLoadOrStore() &&
"MIb must load from or modify a memory location");
if (MIa.hasUnmodeledSideEffects() || MIb.hasUnmodeledSideEffects())
return false;
// XXX - Can we relax this between address spaces?
if (MIa.hasOrderedMemoryRef() || MIb.hasOrderedMemoryRef())
return false;
// TODO: Should we check the address space from the MachineMemOperand? That
// would allow us to distinguish objects we know don't alias based on the
// underlying address space, even if it was lowered to a different one,
// e.g. private accesses lowered to use MUBUF instructions on a scratch
// buffer.
if (isDS(MIa)) {
if (isDS(MIb))
return checkInstOffsetsDoNotOverlap(MIa, MIb);
return !isFLAT(MIb) || isSegmentSpecificFLAT(MIb);
}
if (isMUBUF(MIa) || isMTBUF(MIa)) {
if (isMUBUF(MIb) || isMTBUF(MIb))
return checkInstOffsetsDoNotOverlap(MIa, MIb);
return !isFLAT(MIb) && !isSMRD(MIb);
}
if (isSMRD(MIa)) {
if (isSMRD(MIb))
return checkInstOffsetsDoNotOverlap(MIa, MIb);
return !isFLAT(MIb) && !isMUBUF(MIb) && !isMTBUF(MIb);
}
if (isFLAT(MIa)) {
if (isFLAT(MIb))
return checkInstOffsetsDoNotOverlap(MIa, MIb);
return false;
}
return false;
}
static int64_t getFoldableImm(const MachineOperand* MO) {
if (!MO->isReg())
return false;
const MachineFunction *MF = MO->getParent()->getParent()->getParent();
const MachineRegisterInfo &MRI = MF->getRegInfo();
auto Def = MRI.getUniqueVRegDef(MO->getReg());
if (Def && Def->getOpcode() == AMDGPU::V_MOV_B32_e32 &&
Def->getOperand(1).isImm())
return Def->getOperand(1).getImm();
return AMDGPU::NoRegister;
}
static void updateLiveVariables(LiveVariables *LV, MachineInstr &MI,
MachineInstr &NewMI) {
if (LV) {
unsigned NumOps = MI.getNumOperands();
for (unsigned I = 1; I < NumOps; ++I) {
MachineOperand &Op = MI.getOperand(I);
if (Op.isReg() && Op.isKill())
LV->replaceKillInstruction(Op.getReg(), MI, NewMI);
}
}
}
MachineInstr *SIInstrInfo::convertToThreeAddress(MachineFunction::iterator &MBB,
MachineInstr &MI,
LiveVariables *LV) const {
unsigned Opc = MI.getOpcode();
bool IsF16 = false;
bool IsFMA = Opc == AMDGPU::V_FMAC_F32_e32 || Opc == AMDGPU::V_FMAC_F32_e64 ||
Opc == AMDGPU::V_FMAC_F16_e32 || Opc == AMDGPU::V_FMAC_F16_e64 ||
Opc == AMDGPU::V_FMAC_F64_e32 || Opc == AMDGPU::V_FMAC_F64_e64;
bool IsF64 = Opc == AMDGPU::V_FMAC_F64_e32 || Opc == AMDGPU::V_FMAC_F64_e64;
switch (Opc) {
default:
return nullptr;
case AMDGPU::V_MAC_F16_e64:
case AMDGPU::V_FMAC_F16_e64:
IsF16 = true;
LLVM_FALLTHROUGH;
case AMDGPU::V_MAC_F32_e64:
case AMDGPU::V_FMAC_F32_e64:
case AMDGPU::V_FMAC_F64_e64:
break;
case AMDGPU::V_MAC_F16_e32:
case AMDGPU::V_FMAC_F16_e32:
IsF16 = true;
LLVM_FALLTHROUGH;
case AMDGPU::V_MAC_F32_e32:
case AMDGPU::V_FMAC_F32_e32:
case AMDGPU::V_FMAC_F64_e32: {
int Src0Idx = AMDGPU::getNamedOperandIdx(MI.getOpcode(),
AMDGPU::OpName::src0);
const MachineOperand *Src0 = &MI.getOperand(Src0Idx);
if (!Src0->isReg() && !Src0->isImm())
return nullptr;
if (Src0->isImm() && !isInlineConstant(MI, Src0Idx, *Src0))
return nullptr;
break;
}
}
const MachineOperand *Dst = getNamedOperand(MI, AMDGPU::OpName::vdst);
const MachineOperand *Src0 = getNamedOperand(MI, AMDGPU::OpName::src0);
const MachineOperand *Src0Mods =
getNamedOperand(MI, AMDGPU::OpName::src0_modifiers);
const MachineOperand *Src1 = getNamedOperand(MI, AMDGPU::OpName::src1);
const MachineOperand *Src1Mods =
getNamedOperand(MI, AMDGPU::OpName::src1_modifiers);
const MachineOperand *Src2 = getNamedOperand(MI, AMDGPU::OpName::src2);
const MachineOperand *Clamp = getNamedOperand(MI, AMDGPU::OpName::clamp);
const MachineOperand *Omod = getNamedOperand(MI, AMDGPU::OpName::omod);
MachineInstrBuilder MIB;
if (!Src0Mods && !Src1Mods && !Clamp && !Omod && !IsF64 &&
// If we have an SGPR input, we will violate the constant bus restriction.
(ST.getConstantBusLimit(Opc) > 1 || !Src0->isReg() ||
!RI.isSGPRReg(MBB->getParent()->getRegInfo(), Src0->getReg()))) {
if (auto Imm = getFoldableImm(Src2)) {
unsigned NewOpc =
IsFMA ? (IsF16 ? AMDGPU::V_FMAAK_F16 : AMDGPU::V_FMAAK_F32)
: (IsF16 ? AMDGPU::V_MADAK_F16 : AMDGPU::V_MADAK_F32);
if (pseudoToMCOpcode(NewOpc) != -1) {
MIB = BuildMI(*MBB, MI, MI.getDebugLoc(), get(NewOpc))
.add(*Dst)
.add(*Src0)
.add(*Src1)
.addImm(Imm);
updateLiveVariables(LV, MI, *MIB);
return MIB;
}
}
unsigned NewOpc = IsFMA
? (IsF16 ? AMDGPU::V_FMAMK_F16 : AMDGPU::V_FMAMK_F32)
: (IsF16 ? AMDGPU::V_MADMK_F16 : AMDGPU::V_MADMK_F32);
if (auto Imm = getFoldableImm(Src1)) {
if (pseudoToMCOpcode(NewOpc) != -1) {
MIB = BuildMI(*MBB, MI, MI.getDebugLoc(), get(NewOpc))
.add(*Dst)
.add(*Src0)
.addImm(Imm)
.add(*Src2);
updateLiveVariables(LV, MI, *MIB);
return MIB;
}
}
if (auto Imm = getFoldableImm(Src0)) {
if (pseudoToMCOpcode(NewOpc) != -1 &&
isOperandLegal(
MI, AMDGPU::getNamedOperandIdx(NewOpc, AMDGPU::OpName::src0),
Src1)) {
MIB = BuildMI(*MBB, MI, MI.getDebugLoc(), get(NewOpc))
.add(*Dst)
.add(*Src1)
.addImm(Imm)
.add(*Src2);
updateLiveVariables(LV, MI, *MIB);
return MIB;
}
}
}
unsigned NewOpc = IsFMA ? (IsF16 ? AMDGPU::V_FMA_F16_e64
: IsF64 ? AMDGPU::V_FMA_F64_e64
: AMDGPU::V_FMA_F32_e64)
: (IsF16 ? AMDGPU::V_MAD_F16_e64 : AMDGPU::V_MAD_F32_e64);
if (pseudoToMCOpcode(NewOpc) == -1)
return nullptr;
MIB = BuildMI(*MBB, MI, MI.getDebugLoc(), get(NewOpc))
.add(*Dst)
.addImm(Src0Mods ? Src0Mods->getImm() : 0)
.add(*Src0)
.addImm(Src1Mods ? Src1Mods->getImm() : 0)
.add(*Src1)
.addImm(0) // Src mods
.add(*Src2)
.addImm(Clamp ? Clamp->getImm() : 0)
.addImm(Omod ? Omod->getImm() : 0);
updateLiveVariables(LV, MI, *MIB);
return MIB;
}
// It's not generally safe to move VALU instructions across these since it will
// start using the register as a base index rather than directly.
// XXX - Why isn't hasSideEffects sufficient for these?
static bool changesVGPRIndexingMode(const MachineInstr &MI) {
switch (MI.getOpcode()) {
case AMDGPU::S_SET_GPR_IDX_ON:
case AMDGPU::S_SET_GPR_IDX_MODE:
case AMDGPU::S_SET_GPR_IDX_OFF:
return true;
default:
return false;
}
}
bool SIInstrInfo::isSchedulingBoundary(const MachineInstr &MI,
const MachineBasicBlock *MBB,
const MachineFunction &MF) const {
// Skipping the check for SP writes in the base implementation. The reason it
// was added was apparently due to compile time concerns.
//
// TODO: Do we really want this barrier? It triggers unnecessary hazard nops
// but is probably avoidable.
// Copied from base implementation.
// Terminators and labels can't be scheduled around.
if (MI.isTerminator() || MI.isPosition())
return true;
// INLINEASM_BR can jump to another block
if (MI.getOpcode() == TargetOpcode::INLINEASM_BR)
return true;
// Target-independent instructions do not have an implicit-use of EXEC, even
// when they operate on VGPRs. Treating EXEC modifications as scheduling
// boundaries prevents incorrect movements of such instructions.
return MI.modifiesRegister(AMDGPU::EXEC, &RI) ||
MI.getOpcode() == AMDGPU::S_SETREG_IMM32_B32 ||
MI.getOpcode() == AMDGPU::S_SETREG_B32 ||
changesVGPRIndexingMode(MI);
}
bool SIInstrInfo::isAlwaysGDS(uint16_t Opcode) const {
return Opcode == AMDGPU::DS_ORDERED_COUNT ||
Opcode == AMDGPU::DS_GWS_INIT ||
Opcode == AMDGPU::DS_GWS_SEMA_V ||
Opcode == AMDGPU::DS_GWS_SEMA_BR ||
Opcode == AMDGPU::DS_GWS_SEMA_P ||
Opcode == AMDGPU::DS_GWS_SEMA_RELEASE_ALL ||
Opcode == AMDGPU::DS_GWS_BARRIER;
}
bool SIInstrInfo::modifiesModeRegister(const MachineInstr &MI) {
// Skip the full operand and register alias search modifiesRegister
// does. There's only a handful of instructions that touch this, it's only an
// implicit def, and doesn't alias any other registers.
if (const MCPhysReg *ImpDef = MI.getDesc().getImplicitDefs()) {
for (; ImpDef && *ImpDef; ++ImpDef) {
if (*ImpDef == AMDGPU::MODE)
return true;
}
}
return false;
}
bool SIInstrInfo::hasUnwantedEffectsWhenEXECEmpty(const MachineInstr &MI) const {
unsigned Opcode = MI.getOpcode();
if (MI.mayStore() && isSMRD(MI))
return true; // scalar store or atomic
// This will terminate the function when other lanes may need to continue.
if (MI.isReturn())
return true;
// These instructions cause shader I/O that may cause hardware lockups
// when executed with an empty EXEC mask.
//
// Note: exp with VM = DONE = 0 is automatically skipped by hardware when
// EXEC = 0, but checking for that case here seems not worth it
// given the typical code patterns.
if (Opcode == AMDGPU::S_SENDMSG || Opcode == AMDGPU::S_SENDMSGHALT ||
isEXP(Opcode) ||
Opcode == AMDGPU::DS_ORDERED_COUNT || Opcode == AMDGPU::S_TRAP ||
Opcode == AMDGPU::DS_GWS_INIT || Opcode == AMDGPU::DS_GWS_BARRIER)
return true;
if (MI.isCall() || MI.isInlineAsm())
return true; // conservative assumption
// A mode change is a scalar operation that influences vector instructions.
if (modifiesModeRegister(MI))
return true;
// These are like SALU instructions in terms of effects, so it's questionable
// whether we should return true for those.
//
// However, executing them with EXEC = 0 causes them to operate on undefined
// data, which we avoid by returning true here.
if (Opcode == AMDGPU::V_READFIRSTLANE_B32 ||
Opcode == AMDGPU::V_READLANE_B32 || Opcode == AMDGPU::V_WRITELANE_B32)
return true;
return false;
}
bool SIInstrInfo::mayReadEXEC(const MachineRegisterInfo &MRI,
const MachineInstr &MI) const {
if (MI.isMetaInstruction())
return false;
// This won't read exec if this is an SGPR->SGPR copy.
if (MI.isCopyLike()) {
if (!RI.isSGPRReg(MRI, MI.getOperand(0).getReg()))
return true;
// Make sure this isn't copying exec as a normal operand
return MI.readsRegister(AMDGPU::EXEC, &RI);
}
// Make a conservative assumption about the callee.
if (MI.isCall())
return true;
// Be conservative with any unhandled generic opcodes.
if (!isTargetSpecificOpcode(MI.getOpcode()))
return true;
return !isSALU(MI) || MI.readsRegister(AMDGPU::EXEC, &RI);
}
bool SIInstrInfo::isInlineConstant(const APInt &Imm) const {
switch (Imm.getBitWidth()) {
case 1: // This likely will be a condition code mask.
return true;
case 32:
return AMDGPU::isInlinableLiteral32(Imm.getSExtValue(),
ST.hasInv2PiInlineImm());
case 64:
return AMDGPU::isInlinableLiteral64(Imm.getSExtValue(),
ST.hasInv2PiInlineImm());
case 16:
return ST.has16BitInsts() &&
AMDGPU::isInlinableLiteral16(Imm.getSExtValue(),
ST.hasInv2PiInlineImm());
default:
llvm_unreachable("invalid bitwidth");
}
}
bool SIInstrInfo::isInlineConstant(const MachineOperand &MO,
uint8_t OperandType) const {
if (!MO.isImm() ||
OperandType < AMDGPU::OPERAND_SRC_FIRST ||
OperandType > AMDGPU::OPERAND_SRC_LAST)
return false;
// MachineOperand provides no way to tell the true operand size, since it only
// records a 64-bit value. We need to know the size to determine if a 32-bit
// floating point immediate bit pattern is legal for an integer immediate. It
// would be for any 32-bit integer operand, but would not be for a 64-bit one.
int64_t Imm = MO.getImm();
switch (OperandType) {
case AMDGPU::OPERAND_REG_IMM_INT32:
case AMDGPU::OPERAND_REG_IMM_FP32:
case AMDGPU::OPERAND_REG_INLINE_C_INT32:
case AMDGPU::OPERAND_REG_INLINE_C_FP32:
case AMDGPU::OPERAND_REG_IMM_V2FP32:
case AMDGPU::OPERAND_REG_INLINE_C_V2FP32:
case AMDGPU::OPERAND_REG_IMM_V2INT32:
case AMDGPU::OPERAND_REG_INLINE_C_V2INT32:
case AMDGPU::OPERAND_REG_INLINE_AC_INT32:
case AMDGPU::OPERAND_REG_INLINE_AC_FP32: {
int32_t Trunc = static_cast<int32_t>(Imm);
return AMDGPU::isInlinableLiteral32(Trunc, ST.hasInv2PiInlineImm());
}
case AMDGPU::OPERAND_REG_IMM_INT64:
case AMDGPU::OPERAND_REG_IMM_FP64:
case AMDGPU::OPERAND_REG_INLINE_C_INT64:
case AMDGPU::OPERAND_REG_INLINE_C_FP64:
case AMDGPU::OPERAND_REG_INLINE_AC_FP64:
return AMDGPU::isInlinableLiteral64(MO.getImm(),
ST.hasInv2PiInlineImm());
case AMDGPU::OPERAND_REG_IMM_INT16:
case AMDGPU::OPERAND_REG_INLINE_C_INT16:
case AMDGPU::OPERAND_REG_INLINE_AC_INT16:
// We would expect inline immediates to not be concerned with an integer/fp
// distinction. However, in the case of 16-bit integer operations, the
// "floating point" values appear to not work. It seems read the low 16-bits
// of 32-bit immediates, which happens to always work for the integer
// values.
//
// See llvm bugzilla 46302.
//
// TODO: Theoretically we could use op-sel to use the high bits of the
// 32-bit FP values.
return AMDGPU::isInlinableIntLiteral(Imm);
case AMDGPU::OPERAND_REG_IMM_V2INT16:
case AMDGPU::OPERAND_REG_INLINE_C_V2INT16:
case AMDGPU::OPERAND_REG_INLINE_AC_V2INT16:
// This suffers the same problem as the scalar 16-bit cases.
return AMDGPU::isInlinableIntLiteralV216(Imm);
case AMDGPU::OPERAND_REG_IMM_FP16:
case AMDGPU::OPERAND_REG_INLINE_C_FP16:
case AMDGPU::OPERAND_REG_INLINE_AC_FP16: {
if (isInt<16>(Imm) || isUInt<16>(Imm)) {
// A few special case instructions have 16-bit operands on subtargets
// where 16-bit instructions are not legal.
// TODO: Do the 32-bit immediates work? We shouldn't really need to handle
// constants in these cases
int16_t Trunc = static_cast<int16_t>(Imm);
return ST.has16BitInsts() &&
AMDGPU::isInlinableLiteral16(Trunc, ST.hasInv2PiInlineImm());
}
return false;
}
case AMDGPU::OPERAND_REG_IMM_V2FP16:
case AMDGPU::OPERAND_REG_INLINE_C_V2FP16:
case AMDGPU::OPERAND_REG_INLINE_AC_V2FP16: {
uint32_t Trunc = static_cast<uint32_t>(Imm);
return AMDGPU::isInlinableLiteralV216(Trunc, ST.hasInv2PiInlineImm());
}
default:
llvm_unreachable("invalid bitwidth");
}
}
bool SIInstrInfo::isLiteralConstantLike(const MachineOperand &MO,
const MCOperandInfo &OpInfo) const {
switch (MO.getType()) {
case MachineOperand::MO_Register:
return false;
case MachineOperand::MO_Immediate:
return !isInlineConstant(MO, OpInfo);
case MachineOperand::MO_FrameIndex:
case MachineOperand::MO_MachineBasicBlock:
case MachineOperand::MO_ExternalSymbol:
case MachineOperand::MO_GlobalAddress:
case MachineOperand::MO_MCSymbol:
return true;
default:
llvm_unreachable("unexpected operand type");
}
}
static bool compareMachineOp(const MachineOperand &Op0,
const MachineOperand &Op1) {
if (Op0.getType() != Op1.getType())
return false;
switch (Op0.getType()) {
case MachineOperand::MO_Register:
return Op0.getReg() == Op1.getReg();
case MachineOperand::MO_Immediate:
return Op0.getImm() == Op1.getImm();
default:
llvm_unreachable("Didn't expect to be comparing these operand types");
}
}
bool SIInstrInfo::isImmOperandLegal(const MachineInstr &MI, unsigned OpNo,
const MachineOperand &MO) const {
const MCInstrDesc &InstDesc = MI.getDesc();
const MCOperandInfo &OpInfo = InstDesc.OpInfo[OpNo];
assert(MO.isImm() || MO.isTargetIndex() || MO.isFI() || MO.isGlobal());
if (OpInfo.OperandType == MCOI::OPERAND_IMMEDIATE)
return true;
if (OpInfo.RegClass < 0)
return false;
if (MO.isImm() && isInlineConstant(MO, OpInfo)) {
if (isMAI(MI) && ST.hasMFMAInlineLiteralBug() &&
OpNo ==(unsigned)AMDGPU::getNamedOperandIdx(MI.getOpcode(),
AMDGPU::OpName::src2))
return false;
return RI.opCanUseInlineConstant(OpInfo.OperandType);
}
if (!RI.opCanUseLiteralConstant(OpInfo.OperandType))
return false;
if (!isVOP3(MI) || !AMDGPU::isSISrcOperand(InstDesc, OpNo))
return true;
return ST.hasVOP3Literal();
}
bool SIInstrInfo::hasVALU32BitEncoding(unsigned Opcode) const {
// GFX90A does not have V_MUL_LEGACY_F32_e32.
if (Opcode == AMDGPU::V_MUL_LEGACY_F32_e64 && ST.hasGFX90AInsts())
return false;
int Op32 = AMDGPU::getVOPe32(Opcode);
if (Op32 == -1)
return false;
return pseudoToMCOpcode(Op32) != -1;
}
bool SIInstrInfo::hasModifiers(unsigned Opcode) const {
// The src0_modifier operand is present on all instructions
// that have modifiers.
return AMDGPU::getNamedOperandIdx(Opcode,
AMDGPU::OpName::src0_modifiers) != -1;
}
bool SIInstrInfo::hasModifiersSet(const MachineInstr &MI,
unsigned OpName) const {
const MachineOperand *Mods = getNamedOperand(MI, OpName);
return Mods && Mods->getImm();
}
bool SIInstrInfo::hasAnyModifiersSet(const MachineInstr &MI) const {
return hasModifiersSet(MI, AMDGPU::OpName::src0_modifiers) ||
hasModifiersSet(MI, AMDGPU::OpName::src1_modifiers) ||
hasModifiersSet(MI, AMDGPU::OpName::src2_modifiers) ||
hasModifiersSet(MI, AMDGPU::OpName::clamp) ||
hasModifiersSet(MI, AMDGPU::OpName::omod);
}
bool SIInstrInfo::canShrink(const MachineInstr &MI,
const MachineRegisterInfo &MRI) const {
const MachineOperand *Src2 = getNamedOperand(MI, AMDGPU::OpName::src2);
// Can't shrink instruction with three operands.
// FIXME: v_cndmask_b32 has 3 operands and is shrinkable, but we need to add
// a special case for it. It can only be shrunk if the third operand
// is vcc, and src0_modifiers and src1_modifiers are not set.
// We should handle this the same way we handle vopc, by addding
// a register allocation hint pre-regalloc and then do the shrinking
// post-regalloc.
if (Src2) {
switch (MI.getOpcode()) {
default: return false;
case AMDGPU::V_ADDC_U32_e64:
case AMDGPU::V_SUBB_U32_e64:
case AMDGPU::V_SUBBREV_U32_e64: {
const MachineOperand *Src1
= getNamedOperand(MI, AMDGPU::OpName::src1);
if (!Src1->isReg() || !RI.isVGPR(MRI, Src1->getReg()))
return false;
// Additional verification is needed for sdst/src2.
return true;
}
case AMDGPU::V_MAC_F32_e64:
case AMDGPU::V_MAC_F16_e64:
case AMDGPU::V_FMAC_F32_e64:
case AMDGPU::V_FMAC_F16_e64:
case AMDGPU::V_FMAC_F64_e64:
if (!Src2->isReg() || !RI.isVGPR(MRI, Src2->getReg()) ||
hasModifiersSet(MI, AMDGPU::OpName::src2_modifiers))
return false;
break;
case AMDGPU::V_CNDMASK_B32_e64:
break;
}
}
const MachineOperand *Src1 = getNamedOperand(MI, AMDGPU::OpName::src1);
if (Src1 && (!Src1->isReg() || !RI.isVGPR(MRI, Src1->getReg()) ||
hasModifiersSet(MI, AMDGPU::OpName::src1_modifiers)))
return false;
// We don't need to check src0, all input types are legal, so just make sure
// src0 isn't using any modifiers.
if (hasModifiersSet(MI, AMDGPU::OpName::src0_modifiers))
return false;
// Can it be shrunk to a valid 32 bit opcode?
if (!hasVALU32BitEncoding(MI.getOpcode()))
return false;
// Check output modifiers
return !hasModifiersSet(MI, AMDGPU::OpName::omod) &&
!hasModifiersSet(MI, AMDGPU::OpName::clamp);
}
// Set VCC operand with all flags from \p Orig, except for setting it as
// implicit.
static void copyFlagsToImplicitVCC(MachineInstr &MI,
const MachineOperand &Orig) {
for (MachineOperand &Use : MI.implicit_operands()) {
if (Use.isUse() &&
(Use.getReg() == AMDGPU::VCC || Use.getReg() == AMDGPU::VCC_LO)) {
Use.setIsUndef(Orig.isUndef());
Use.setIsKill(Orig.isKill());
return;
}
}
}
MachineInstr *SIInstrInfo::buildShrunkInst(MachineInstr &MI,
unsigned Op32) const {
MachineBasicBlock *MBB = MI.getParent();;
MachineInstrBuilder Inst32 =
BuildMI(*MBB, MI, MI.getDebugLoc(), get(Op32))
.setMIFlags(MI.getFlags());
// Add the dst operand if the 32-bit encoding also has an explicit $vdst.
// For VOPC instructions, this is replaced by an implicit def of vcc.
int Op32DstIdx = AMDGPU::getNamedOperandIdx(Op32, AMDGPU::OpName::vdst);
if (Op32DstIdx != -1) {
// dst
Inst32.add(MI.getOperand(0));
} else {
assert(((MI.getOperand(0).getReg() == AMDGPU::VCC) ||
(MI.getOperand(0).getReg() == AMDGPU::VCC_LO)) &&
"Unexpected case");
}
Inst32.add(*getNamedOperand(MI, AMDGPU::OpName::src0));
const MachineOperand *Src1 = getNamedOperand(MI, AMDGPU::OpName::src1);
if (Src1)
Inst32.add(*Src1);
const MachineOperand *Src2 = getNamedOperand(MI, AMDGPU::OpName::src2);
if (Src2) {
int Op32Src2Idx = AMDGPU::getNamedOperandIdx(Op32, AMDGPU::OpName::src2);
if (Op32Src2Idx != -1) {
Inst32.add(*Src2);
} else {
// In the case of V_CNDMASK_B32_e32, the explicit operand src2 is
// replaced with an implicit read of vcc or vcc_lo. The implicit read
// of vcc was already added during the initial BuildMI, but we
// 1) may need to change vcc to vcc_lo to preserve the original register
// 2) have to preserve the original flags.
fixImplicitOperands(*Inst32);
copyFlagsToImplicitVCC(*Inst32, *Src2);
}
}
return Inst32;
}
bool SIInstrInfo::usesConstantBus(const MachineRegisterInfo &MRI,
const MachineOperand &MO,
const MCOperandInfo &OpInfo) const {
// Literal constants use the constant bus.
//if (isLiteralConstantLike(MO, OpInfo))
// return true;
if (MO.isImm())
return !isInlineConstant(MO, OpInfo);
if (!MO.isReg())
return true; // Misc other operands like FrameIndex
if (!MO.isUse())
return false;
if (MO.getReg().isVirtual())
return RI.isSGPRClass(MRI.getRegClass(MO.getReg()));
// Null is free
if (MO.getReg() == AMDGPU::SGPR_NULL)
return false;
// SGPRs use the constant bus
if (MO.isImplicit()) {
return MO.getReg() == AMDGPU::M0 ||
MO.getReg() == AMDGPU::VCC ||
MO.getReg() == AMDGPU::VCC_LO;
} else {
return AMDGPU::SReg_32RegClass.contains(MO.getReg()) ||
AMDGPU::SReg_64RegClass.contains(MO.getReg());
}
}
static Register findImplicitSGPRRead(const MachineInstr &MI) {
for (const MachineOperand &MO : MI.implicit_operands()) {
// We only care about reads.
if (MO.isDef())
continue;
switch (MO.getReg()) {
case AMDGPU::VCC:
case AMDGPU::VCC_LO:
case AMDGPU::VCC_HI:
case AMDGPU::M0:
case AMDGPU::FLAT_SCR:
return MO.getReg();
default:
break;
}
}
return AMDGPU::NoRegister;
}
static bool shouldReadExec(const MachineInstr &MI) {
if (SIInstrInfo::isVALU(MI)) {
switch (MI.getOpcode()) {
case AMDGPU::V_READLANE_B32:
case AMDGPU::V_WRITELANE_B32:
return false;
}
return true;
}
if (MI.isPreISelOpcode() ||
SIInstrInfo::isGenericOpcode(MI.getOpcode()) ||
SIInstrInfo::isSALU(MI) ||
SIInstrInfo::isSMRD(MI))
return false;
return true;
}
static bool isSubRegOf(const SIRegisterInfo &TRI,
const MachineOperand &SuperVec,
const MachineOperand &SubReg) {
if (SubReg.getReg().isPhysical())
return TRI.isSubRegister(SuperVec.getReg(), SubReg.getReg());
return SubReg.getSubReg() != AMDGPU::NoSubRegister &&
SubReg.getReg() == SuperVec.getReg();
}
bool SIInstrInfo::verifyInstruction(const MachineInstr &MI,
StringRef &ErrInfo) const {
uint16_t Opcode = MI.getOpcode();
if (SIInstrInfo::isGenericOpcode(MI.getOpcode()))
return true;
const MachineFunction *MF = MI.getParent()->getParent();
const MachineRegisterInfo &MRI = MF->getRegInfo();
int Src0Idx = AMDGPU::getNamedOperandIdx(Opcode, AMDGPU::OpName::src0);
int Src1Idx = AMDGPU::getNamedOperandIdx(Opcode, AMDGPU::OpName::src1);
int Src2Idx = AMDGPU::getNamedOperandIdx(Opcode, AMDGPU::OpName::src2);
// Make sure the number of operands is correct.
const MCInstrDesc &Desc = get(Opcode);
if (!Desc.isVariadic() &&
Desc.getNumOperands() != MI.getNumExplicitOperands()) {
ErrInfo = "Instruction has wrong number of operands.";
return false;
}
if (MI.isInlineAsm()) {
// Verify register classes for inlineasm constraints.
for (unsigned I = InlineAsm::MIOp_FirstOperand, E = MI.getNumOperands();
I != E; ++I) {
const TargetRegisterClass *RC = MI.getRegClassConstraint(I, this, &RI);
if (!RC)
continue;
const MachineOperand &Op = MI.getOperand(I);
if (!Op.isReg())
continue;
Register Reg = Op.getReg();
if (!Reg.isVirtual() && !RC->contains(Reg)) {
ErrInfo = "inlineasm operand has incorrect register class.";
return false;
}
}
return true;
}
if (isMIMG(MI) && MI.memoperands_empty() && MI.mayLoadOrStore()) {
ErrInfo = "missing memory operand from MIMG instruction.";
return false;
}
// Make sure the register classes are correct.
for (int i = 0, e = Desc.getNumOperands(); i != e; ++i) {
const MachineOperand &MO = MI.getOperand(i);
if (MO.isFPImm()) {
ErrInfo = "FPImm Machine Operands are not supported. ISel should bitcast "
"all fp values to integers.";
return false;
}
int RegClass = Desc.OpInfo[i].RegClass;
switch (Desc.OpInfo[i].OperandType) {
case MCOI::OPERAND_REGISTER:
if (MI.getOperand(i).isImm() || MI.getOperand(i).isGlobal()) {
ErrInfo = "Illegal immediate value for operand.";
return false;
}
break;
case AMDGPU::OPERAND_REG_IMM_INT32:
case AMDGPU::OPERAND_REG_IMM_FP32:
break;
case AMDGPU::OPERAND_REG_INLINE_C_INT32:
case AMDGPU::OPERAND_REG_INLINE_C_FP32:
case AMDGPU::OPERAND_REG_INLINE_C_INT64:
case AMDGPU::OPERAND_REG_INLINE_C_FP64:
case AMDGPU::OPERAND_REG_INLINE_C_INT16:
case AMDGPU::OPERAND_REG_INLINE_C_FP16:
case AMDGPU::OPERAND_REG_INLINE_AC_INT32:
case AMDGPU::OPERAND_REG_INLINE_AC_FP32:
case AMDGPU::OPERAND_REG_INLINE_AC_INT16:
case AMDGPU::OPERAND_REG_INLINE_AC_FP16:
case AMDGPU::OPERAND_REG_INLINE_AC_FP64: {
if (!MO.isReg() && (!MO.isImm() || !isInlineConstant(MI, i))) {
ErrInfo = "Illegal immediate value for operand.";
return false;
}
break;
}
case MCOI::OPERAND_IMMEDIATE:
case AMDGPU::OPERAND_KIMM32:
// Check if this operand is an immediate.
// FrameIndex operands will be replaced by immediates, so they are
// allowed.
if (!MI.getOperand(i).isImm() && !MI.getOperand(i).isFI()) {
ErrInfo = "Expected immediate, but got non-immediate";
return false;
}
LLVM_FALLTHROUGH;
default:
continue;
}
if (!MO.isReg())
continue;
Register Reg = MO.getReg();
if (!Reg)
continue;
// FIXME: Ideally we would have separate instruction definitions with the
// aligned register constraint.
// FIXME: We do not verify inline asm operands, but custom inline asm
// verification is broken anyway
if (ST.needsAlignedVGPRs()) {
const TargetRegisterClass *RC = RI.getRegClassForReg(MRI, Reg);
const bool IsVGPR = RI.hasVGPRs(RC);
const bool IsAGPR = !IsVGPR && RI.hasAGPRs(RC);
if ((IsVGPR || IsAGPR) && MO.getSubReg()) {
const TargetRegisterClass *SubRC =
RI.getSubRegClass(RC, MO.getSubReg());
RC = RI.getCompatibleSubRegClass(RC, SubRC, MO.getSubReg());
if (RC)
RC = SubRC;
}
// Check that this is the aligned version of the class.
if (!RC || !RI.isProperlyAlignedRC(*RC)) {
ErrInfo = "Subtarget requires even aligned vector registers";
return false;
}
}
if (RegClass != -1) {
if (Reg.isVirtual())
continue;
const TargetRegisterClass *RC = RI.getRegClass(RegClass);
if (!RC->contains(Reg)) {
ErrInfo = "Operand has incorrect register class.";
return false;
}
}
}
// Verify SDWA
if (isSDWA(MI)) {
if (!ST.hasSDWA()) {
ErrInfo = "SDWA is not supported on this target";
return false;
}
int DstIdx = AMDGPU::getNamedOperandIdx(Opcode, AMDGPU::OpName::vdst);
const int OpIndicies[] = { DstIdx, Src0Idx, Src1Idx, Src2Idx };
for (int OpIdx: OpIndicies) {
if (OpIdx == -1)
continue;
const MachineOperand &MO = MI.getOperand(OpIdx);
if (!ST.hasSDWAScalar()) {
// Only VGPRS on VI
if (!MO.isReg() || !RI.hasVGPRs(RI.getRegClassForReg(MRI, MO.getReg()))) {
ErrInfo = "Only VGPRs allowed as operands in SDWA instructions on VI";
return false;
}
} else {
// No immediates on GFX9
if (!MO.isReg()) {
ErrInfo =
"Only reg allowed as operands in SDWA instructions on GFX9+";
return false;
}
}
}
if (!ST.hasSDWAOmod()) {
// No omod allowed on VI
const MachineOperand *OMod = getNamedOperand(MI, AMDGPU::OpName::omod);
if (OMod != nullptr &&
(!OMod->isImm() || OMod->getImm() != 0)) {
ErrInfo = "OMod not allowed in SDWA instructions on VI";
return false;
}
}
uint16_t BasicOpcode = AMDGPU::getBasicFromSDWAOp(Opcode);
if (isVOPC(BasicOpcode)) {
if (!ST.hasSDWASdst() && DstIdx != -1) {
// Only vcc allowed as dst on VI for VOPC
const MachineOperand &Dst = MI.getOperand(DstIdx);
if (!Dst.isReg() || Dst.getReg() != AMDGPU::VCC) {
ErrInfo = "Only VCC allowed as dst in SDWA instructions on VI";
return false;
}
} else if (!ST.hasSDWAOutModsVOPC()) {
// No clamp allowed on GFX9 for VOPC
const MachineOperand *Clamp = getNamedOperand(MI, AMDGPU::OpName::clamp);
if (Clamp && (!Clamp->isImm() || Clamp->getImm() != 0)) {
ErrInfo = "Clamp not allowed in VOPC SDWA instructions on VI";
return false;
}
// No omod allowed on GFX9 for VOPC
const MachineOperand *OMod = getNamedOperand(MI, AMDGPU::OpName::omod);
if (OMod && (!OMod->isImm() || OMod->getImm() != 0)) {
ErrInfo = "OMod not allowed in VOPC SDWA instructions on VI";
return false;
}
}
}
const MachineOperand *DstUnused = getNamedOperand(MI, AMDGPU::OpName::dst_unused);
if (DstUnused && DstUnused->isImm() &&
DstUnused->getImm() == AMDGPU::SDWA::UNUSED_PRESERVE) {
const MachineOperand &Dst = MI.getOperand(DstIdx);
if (!Dst.isReg() || !Dst.isTied()) {
ErrInfo = "Dst register should have tied register";
return false;
}
const MachineOperand &TiedMO =
MI.getOperand(MI.findTiedOperandIdx(DstIdx));
if (!TiedMO.isReg() || !TiedMO.isImplicit() || !TiedMO.isUse()) {
ErrInfo =
"Dst register should be tied to implicit use of preserved register";
return false;
} else if (TiedMO.getReg().isPhysical() &&
Dst.getReg() != TiedMO.getReg()) {
ErrInfo = "Dst register should use same physical register as preserved";
return false;
}
}
}
// Verify MIMG
if (isMIMG(MI.getOpcode()) && !MI.mayStore()) {
// Ensure that the return type used is large enough for all the options
// being used TFE/LWE require an extra result register.
const MachineOperand *DMask = getNamedOperand(MI, AMDGPU::OpName::dmask);
if (DMask) {
uint64_t DMaskImm = DMask->getImm();
uint32_t RegCount =
isGather4(MI.getOpcode()) ? 4 : countPopulation(DMaskImm);
const MachineOperand *TFE = getNamedOperand(MI, AMDGPU::OpName::tfe);
const MachineOperand *LWE = getNamedOperand(MI, AMDGPU::OpName::lwe);
const MachineOperand *D16 = getNamedOperand(MI, AMDGPU::OpName::d16);
// Adjust for packed 16 bit values
if (D16 && D16->getImm() && !ST.hasUnpackedD16VMem())
RegCount >>= 1;
// Adjust if using LWE or TFE
if ((LWE && LWE->getImm()) || (TFE && TFE->getImm()))
RegCount += 1;
const uint32_t DstIdx =
AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::vdata);
const MachineOperand &Dst = MI.getOperand(DstIdx);
if (Dst.isReg()) {
const TargetRegisterClass *DstRC = getOpRegClass(MI, DstIdx);
uint32_t DstSize = RI.getRegSizeInBits(*DstRC) / 32;
if (RegCount > DstSize) {
ErrInfo = "MIMG instruction returns too many registers for dst "
"register class";
return false;
}
}
}
}
// Verify VOP*. Ignore multiple sgpr operands on writelane.
if (Desc.getOpcode() != AMDGPU::V_WRITELANE_B32
&& (isVOP1(MI) || isVOP2(MI) || isVOP3(MI) || isVOPC(MI) || isSDWA(MI))) {
// Only look at the true operands. Only a real operand can use the constant
// bus, and we don't want to check pseudo-operands like the source modifier
// flags.
const int OpIndices[] = { Src0Idx, Src1Idx, Src2Idx };
unsigned ConstantBusCount = 0;
bool UsesLiteral = false;
const MachineOperand *LiteralVal = nullptr;
if (AMDGPU::getNamedOperandIdx(Opcode, AMDGPU::OpName::imm) != -1)
++ConstantBusCount;
SmallVector<Register, 2> SGPRsUsed;
Register SGPRUsed;
for (int OpIdx : OpIndices) {
if (OpIdx == -1)
break;
const MachineOperand &MO = MI.getOperand(OpIdx);
if (usesConstantBus(MRI, MO, MI.getDesc().OpInfo[OpIdx])) {
if (MO.isReg()) {
SGPRUsed = MO.getReg();
if (llvm::all_of(SGPRsUsed, [SGPRUsed](unsigned SGPR) {
return SGPRUsed != SGPR;
})) {
++ConstantBusCount;
SGPRsUsed.push_back(SGPRUsed);
}
} else {
if (!UsesLiteral) {
++ConstantBusCount;
UsesLiteral = true;
LiteralVal = &MO;
} else if (!MO.isIdenticalTo(*LiteralVal)) {
assert(isVOP3(MI));
ErrInfo = "VOP3 instruction uses more than one literal";
return false;
}
}
}
}
SGPRUsed = findImplicitSGPRRead(MI);
if (SGPRUsed != AMDGPU::NoRegister) {
// Implicit uses may safely overlap true overands
if (llvm::all_of(SGPRsUsed, [this, SGPRUsed](unsigned SGPR) {
return !RI.regsOverlap(SGPRUsed, SGPR);
})) {
++ConstantBusCount;
SGPRsUsed.push_back(SGPRUsed);
}
}
// v_writelane_b32 is an exception from constant bus restriction:
// vsrc0 can be sgpr, const or m0 and lane select sgpr, m0 or inline-const
if (ConstantBusCount > ST.getConstantBusLimit(Opcode) &&
Opcode != AMDGPU::V_WRITELANE_B32) {
ErrInfo = "VOP* instruction violates constant bus restriction";
return false;
}
if (isVOP3(MI) && UsesLiteral && !ST.hasVOP3Literal()) {
ErrInfo = "VOP3 instruction uses literal";
return false;
}
}
// Special case for writelane - this can break the multiple constant bus rule,
// but still can't use more than one SGPR register
if (Desc.getOpcode() == AMDGPU::V_WRITELANE_B32) {
unsigned SGPRCount = 0;
Register SGPRUsed = AMDGPU::NoRegister;
for (int OpIdx : {Src0Idx, Src1Idx, Src2Idx}) {
if (OpIdx == -1)
break;
const MachineOperand &MO = MI.getOperand(OpIdx);
if (usesConstantBus(MRI, MO, MI.getDesc().OpInfo[OpIdx])) {
if (MO.isReg() && MO.getReg() != AMDGPU::M0) {
if (MO.getReg() != SGPRUsed)
++SGPRCount;
SGPRUsed = MO.getReg();
}
}
if (SGPRCount > ST.getConstantBusLimit(Opcode)) {
ErrInfo = "WRITELANE instruction violates constant bus restriction";
return false;
}
}
}
// Verify misc. restrictions on specific instructions.
if (Desc.getOpcode() == AMDGPU::V_DIV_SCALE_F32_e64 ||
Desc.getOpcode() == AMDGPU::V_DIV_SCALE_F64_e64) {
const MachineOperand &Src0 = MI.getOperand(Src0Idx);
const MachineOperand &Src1 = MI.getOperand(Src1Idx);
const MachineOperand &Src2 = MI.getOperand(Src2Idx);
if (Src0.isReg() && Src1.isReg() && Src2.isReg()) {
if (!compareMachineOp(Src0, Src1) &&
!compareMachineOp(Src0, Src2)) {
ErrInfo = "v_div_scale_{f32|f64} require src0 = src1 or src2";
return false;
}
}
if ((getNamedOperand(MI, AMDGPU::OpName::src0_modifiers)->getImm() &
SISrcMods::ABS) ||
(getNamedOperand(MI, AMDGPU::OpName::src1_modifiers)->getImm() &
SISrcMods::ABS) ||
(getNamedOperand(MI, AMDGPU::OpName::src2_modifiers)->getImm() &
SISrcMods::ABS)) {
ErrInfo = "ABS not allowed in VOP3B instructions";
return false;
}
}
if (isSOP2(MI) || isSOPC(MI)) {
const MachineOperand &Src0 = MI.getOperand(Src0Idx);
const MachineOperand &Src1 = MI.getOperand(Src1Idx);
unsigned Immediates = 0;
if (!Src0.isReg() &&
!isInlineConstant(Src0, Desc.OpInfo[Src0Idx].OperandType))
Immediates++;
if (!Src1.isReg() &&
!isInlineConstant(Src1, Desc.OpInfo[Src1Idx].OperandType))
Immediates++;
if (Immediates > 1) {
ErrInfo = "SOP2/SOPC instruction requires too many immediate constants";
return false;
}
}
if (isSOPK(MI)) {
auto Op = getNamedOperand(MI, AMDGPU::OpName::simm16);
if (Desc.isBranch()) {
if (!Op->isMBB()) {
ErrInfo = "invalid branch target for SOPK instruction";
return false;
}
} else {
uint64_t Imm = Op->getImm();
if (sopkIsZext(MI)) {
if (!isUInt<16>(Imm)) {
ErrInfo = "invalid immediate for SOPK instruction";
return false;
}
} else {
if (!isInt<16>(Imm)) {
ErrInfo = "invalid immediate for SOPK instruction";
return false;
}
}
}
}
if (Desc.getOpcode() == AMDGPU::V_MOVRELS_B32_e32 ||
Desc.getOpcode() == AMDGPU::V_MOVRELS_B32_e64 ||
Desc.getOpcode() == AMDGPU::V_MOVRELD_B32_e32 ||
Desc.getOpcode() == AMDGPU::V_MOVRELD_B32_e64) {
const bool IsDst = Desc.getOpcode() == AMDGPU::V_MOVRELD_B32_e32 ||
Desc.getOpcode() == AMDGPU::V_MOVRELD_B32_e64;
const unsigned StaticNumOps = Desc.getNumOperands() +
Desc.getNumImplicitUses();
const unsigned NumImplicitOps = IsDst ? 2 : 1;
// Allow additional implicit operands. This allows a fixup done by the post
// RA scheduler where the main implicit operand is killed and implicit-defs
// are added for sub-registers that remain live after this instruction.
if (MI.getNumOperands() < StaticNumOps + NumImplicitOps) {
ErrInfo = "missing implicit register operands";
return false;
}
const MachineOperand *Dst = getNamedOperand(MI, AMDGPU::OpName::vdst);
if (IsDst) {
if (!Dst->isUse()) {
ErrInfo = "v_movreld_b32 vdst should be a use operand";
return false;
}
unsigned UseOpIdx;
if (!MI.isRegTiedToUseOperand(StaticNumOps, &UseOpIdx) ||
UseOpIdx != StaticNumOps + 1) {
ErrInfo = "movrel implicit operands should be tied";
return false;
}
}
const MachineOperand &Src0 = MI.getOperand(Src0Idx);
const MachineOperand &ImpUse
= MI.getOperand(StaticNumOps + NumImplicitOps - 1);
if (!ImpUse.isReg() || !ImpUse.isUse() ||
!isSubRegOf(RI, ImpUse, IsDst ? *Dst : Src0)) {
ErrInfo = "src0 should be subreg of implicit vector use";
return false;
}
}
// Make sure we aren't losing exec uses in the td files. This mostly requires
// being careful when using let Uses to try to add other use registers.
if (shouldReadExec(MI)) {
if (!MI.hasRegisterImplicitUseOperand(AMDGPU::EXEC)) {
ErrInfo = "VALU instruction does not implicitly read exec mask";
return false;
}
}
if (isSMRD(MI)) {
if (MI.mayStore()) {
// The register offset form of scalar stores may only use m0 as the
// soffset register.
const MachineOperand *Soff = getNamedOperand(MI, AMDGPU::OpName::soff);
if (Soff && Soff->getReg() != AMDGPU::M0) {
ErrInfo = "scalar stores must use m0 as offset register";
return false;
}
}
}
if (isFLAT(MI) && !ST.hasFlatInstOffsets()) {
const MachineOperand *Offset = getNamedOperand(MI, AMDGPU::OpName::offset);
if (Offset->getImm() != 0) {
ErrInfo = "subtarget does not support offsets in flat instructions";
return false;
}
}
if (isMIMG(MI)) {
const MachineOperand *DimOp = getNamedOperand(MI, AMDGPU::OpName::dim);
if (DimOp) {
int VAddr0Idx = AMDGPU::getNamedOperandIdx(Opcode,
AMDGPU::OpName::vaddr0);
int SRsrcIdx = AMDGPU::getNamedOperandIdx(Opcode, AMDGPU::OpName::srsrc);
const AMDGPU::MIMGInfo *Info = AMDGPU::getMIMGInfo(Opcode);
const AMDGPU::MIMGBaseOpcodeInfo *BaseOpcode =
AMDGPU::getMIMGBaseOpcodeInfo(Info->BaseOpcode);
const AMDGPU::MIMGDimInfo *Dim =
AMDGPU::getMIMGDimInfoByEncoding(DimOp->getImm());
if (!Dim) {
ErrInfo = "dim is out of range";
return false;
}
bool IsA16 = false;
if (ST.hasR128A16()) {
const MachineOperand *R128A16 = getNamedOperand(MI, AMDGPU::OpName::r128);
IsA16 = R128A16->getImm() != 0;
} else if (ST.hasGFX10A16()) {
const MachineOperand *A16 = getNamedOperand(MI, AMDGPU::OpName::a16);
IsA16 = A16->getImm() != 0;
}
bool IsNSA = SRsrcIdx - VAddr0Idx > 1;
unsigned AddrWords =
AMDGPU::getAddrSizeMIMGOp(BaseOpcode, Dim, IsA16, ST.hasG16());
unsigned VAddrWords;
if (IsNSA) {
VAddrWords = SRsrcIdx - VAddr0Idx;
} else {
const TargetRegisterClass *RC = getOpRegClass(MI, VAddr0Idx);
VAddrWords = MRI.getTargetRegisterInfo()->getRegSizeInBits(*RC) / 32;
if (AddrWords > 8)
AddrWords = 16;
}
if (VAddrWords != AddrWords) {
LLVM_DEBUG(dbgs() << "bad vaddr size, expected " << AddrWords
<< " but got " << VAddrWords << "\n");
ErrInfo = "bad vaddr size";
return false;
}
}
}
const MachineOperand *DppCt = getNamedOperand(MI, AMDGPU::OpName::dpp_ctrl);
if (DppCt) {
using namespace AMDGPU::DPP;
unsigned DC = DppCt->getImm();
if (DC == DppCtrl::DPP_UNUSED1 || DC == DppCtrl::DPP_UNUSED2 ||
DC == DppCtrl::DPP_UNUSED3 || DC > DppCtrl::DPP_LAST ||
(DC >= DppCtrl::DPP_UNUSED4_FIRST && DC <= DppCtrl::DPP_UNUSED4_LAST) ||
(DC >= DppCtrl::DPP_UNUSED5_FIRST && DC <= DppCtrl::DPP_UNUSED5_LAST) ||
(DC >= DppCtrl::DPP_UNUSED6_FIRST && DC <= DppCtrl::DPP_UNUSED6_LAST) ||
(DC >= DppCtrl::DPP_UNUSED7_FIRST && DC <= DppCtrl::DPP_UNUSED7_LAST) ||
(DC >= DppCtrl::DPP_UNUSED8_FIRST && DC <= DppCtrl::DPP_UNUSED8_LAST)) {
ErrInfo = "Invalid dpp_ctrl value";
return false;
}
if (DC >= DppCtrl::WAVE_SHL1 && DC <= DppCtrl::WAVE_ROR1 &&
ST.getGeneration() >= AMDGPUSubtarget::GFX10) {
ErrInfo = "Invalid dpp_ctrl value: "
"wavefront shifts are not supported on GFX10+";
return false;
}
if (DC >= DppCtrl::BCAST15 && DC <= DppCtrl::BCAST31 &&
ST.getGeneration() >= AMDGPUSubtarget::GFX10) {
ErrInfo = "Invalid dpp_ctrl value: "
"broadcasts are not supported on GFX10+";
return false;
}
if (DC >= DppCtrl::ROW_SHARE_FIRST && DC <= DppCtrl::ROW_XMASK_LAST &&
ST.getGeneration() < AMDGPUSubtarget::GFX10) {
if (DC >= DppCtrl::ROW_NEWBCAST_FIRST &&
DC <= DppCtrl::ROW_NEWBCAST_LAST &&
!ST.hasGFX90AInsts()) {
ErrInfo = "Invalid dpp_ctrl value: "
"row_newbroadcast/row_share is not supported before "
"GFX90A/GFX10";
return false;
} else if (DC > DppCtrl::ROW_NEWBCAST_LAST || !ST.hasGFX90AInsts()) {
ErrInfo = "Invalid dpp_ctrl value: "
"row_share and row_xmask are not supported before GFX10";
return false;
}
}
int DstIdx = AMDGPU::getNamedOperandIdx(Opcode, AMDGPU::OpName::vdst);
int Src0Idx = AMDGPU::getNamedOperandIdx(Opcode, AMDGPU::OpName::src0);
if (Opcode != AMDGPU::V_MOV_B64_DPP_PSEUDO &&
((DstIdx >= 0 &&
(Desc.OpInfo[DstIdx].RegClass == AMDGPU::VReg_64RegClassID ||
Desc.OpInfo[DstIdx].RegClass == AMDGPU::VReg_64_Align2RegClassID)) ||
((Src0Idx >= 0 &&
(Desc.OpInfo[Src0Idx].RegClass == AMDGPU::VReg_64RegClassID ||
Desc.OpInfo[Src0Idx].RegClass ==
AMDGPU::VReg_64_Align2RegClassID)))) &&
!AMDGPU::isLegal64BitDPPControl(DC)) {
ErrInfo = "Invalid dpp_ctrl value: "
"64 bit dpp only support row_newbcast";
return false;
}
}
if ((MI.mayStore() || MI.mayLoad()) && !isVGPRSpill(MI)) {
const MachineOperand *Dst = getNamedOperand(MI, AMDGPU::OpName::vdst);
uint16_t DataNameIdx = isDS(Opcode) ? AMDGPU::OpName::data0
: AMDGPU::OpName::vdata;
const MachineOperand *Data = getNamedOperand(MI, DataNameIdx);
const MachineOperand *Data2 = getNamedOperand(MI, AMDGPU::OpName::data1);
if (Data && !Data->isReg())
Data = nullptr;
if (ST.hasGFX90AInsts()) {
if (Dst && Data &&
(RI.isAGPR(MRI, Dst->getReg()) != RI.isAGPR(MRI, Data->getReg()))) {
ErrInfo = "Invalid register class: "
"vdata and vdst should be both VGPR or AGPR";
return false;
}
if (Data && Data2 &&
(RI.isAGPR(MRI, Data->getReg()) != RI.isAGPR(MRI, Data2->getReg()))) {
ErrInfo = "Invalid register class: "
"both data operands should be VGPR or AGPR";
return false;
}
} else {
if ((Dst && RI.isAGPR(MRI, Dst->getReg())) ||
(Data && RI.isAGPR(MRI, Data->getReg())) ||
(Data2 && RI.isAGPR(MRI, Data2->getReg()))) {
ErrInfo = "Invalid register class: "
"agpr loads and stores not supported on this GPU";
return false;
}
}
}
if (ST.needsAlignedVGPRs() &&
(MI.getOpcode() == AMDGPU::DS_GWS_INIT ||
MI.getOpcode() == AMDGPU::DS_GWS_SEMA_BR ||
MI.getOpcode() == AMDGPU::DS_GWS_BARRIER)) {
const MachineOperand *Op = getNamedOperand(MI, AMDGPU::OpName::data0);
Register Reg = Op->getReg();
bool Aligned = true;
if (Reg.isPhysical()) {
Aligned = !(RI.getHWRegIndex(Reg) & 1);
} else {
const TargetRegisterClass &RC = *MRI.getRegClass(Reg);
Aligned = RI.getRegSizeInBits(RC) > 32 && RI.isProperlyAlignedRC(RC) &&
!(RI.getChannelFromSubReg(Op->getSubReg()) & 1);
}
if (!Aligned) {
ErrInfo = "Subtarget requires even aligned vector registers "
"for DS_GWS instructions";
return false;
}
}
return true;
}
unsigned SIInstrInfo::getVALUOp(const MachineInstr &MI) const {
switch (MI.getOpcode()) {
default: return AMDGPU::INSTRUCTION_LIST_END;
case AMDGPU::REG_SEQUENCE: return AMDGPU::REG_SEQUENCE;
case AMDGPU::COPY: return AMDGPU::COPY;
case AMDGPU::PHI: return AMDGPU::PHI;
case AMDGPU::INSERT_SUBREG: return AMDGPU::INSERT_SUBREG;
case AMDGPU::WQM: return AMDGPU::WQM;
case AMDGPU::SOFT_WQM: return AMDGPU::SOFT_WQM;
case AMDGPU::STRICT_WWM: return AMDGPU::STRICT_WWM;
case AMDGPU::STRICT_WQM: return AMDGPU::STRICT_WQM;
case AMDGPU::S_MOV_B32: {
const MachineRegisterInfo &MRI = MI.getParent()->getParent()->getRegInfo();
return MI.getOperand(1).isReg() ||
RI.isAGPR(MRI, MI.getOperand(0).getReg()) ?
AMDGPU::COPY : AMDGPU::V_MOV_B32_e32;
}
case AMDGPU::S_ADD_I32:
return ST.hasAddNoCarry() ? AMDGPU::V_ADD_U32_e64 : AMDGPU::V_ADD_CO_U32_e32;
case AMDGPU::S_ADDC_U32:
return AMDGPU::V_ADDC_U32_e32;
case AMDGPU::S_SUB_I32:
return ST.hasAddNoCarry() ? AMDGPU::V_SUB_U32_e64 : AMDGPU::V_SUB_CO_U32_e32;
// FIXME: These are not consistently handled, and selected when the carry is
// used.
case AMDGPU::S_ADD_U32:
return AMDGPU::V_ADD_CO_U32_e32;
case AMDGPU::S_SUB_U32:
return AMDGPU::V_SUB_CO_U32_e32;
case AMDGPU::S_SUBB_U32: return AMDGPU::V_SUBB_U32_e32;
case AMDGPU::S_MUL_I32: return AMDGPU::V_MUL_LO_U32_e64;
case AMDGPU::S_MUL_HI_U32: return AMDGPU::V_MUL_HI_U32_e64;
case AMDGPU::S_MUL_HI_I32: return AMDGPU::V_MUL_HI_I32_e64;
case AMDGPU::S_AND_B32: return AMDGPU::V_AND_B32_e64;
case AMDGPU::S_OR_B32: return AMDGPU::V_OR_B32_e64;
case AMDGPU::S_XOR_B32: return AMDGPU::V_XOR_B32_e64;
case AMDGPU::S_XNOR_B32:
return ST.hasDLInsts() ? AMDGPU::V_XNOR_B32_e64 : AMDGPU::INSTRUCTION_LIST_END;
case AMDGPU::S_MIN_I32: return AMDGPU::V_MIN_I32_e64;
case AMDGPU::S_MIN_U32: return AMDGPU::V_MIN_U32_e64;
case AMDGPU::S_MAX_I32: return AMDGPU::V_MAX_I32_e64;
case AMDGPU::S_MAX_U32: return AMDGPU::V_MAX_U32_e64;
case AMDGPU::S_ASHR_I32: return AMDGPU::V_ASHR_I32_e32;
case AMDGPU::S_ASHR_I64: return AMDGPU::V_ASHR_I64_e64;
case AMDGPU::S_LSHL_B32: return AMDGPU::V_LSHL_B32_e32;
case AMDGPU::S_LSHL_B64: return AMDGPU::V_LSHL_B64_e64;
case AMDGPU::S_LSHR_B32: return AMDGPU::V_LSHR_B32_e32;
case AMDGPU::S_LSHR_B64: return AMDGPU::V_LSHR_B64_e64;
case AMDGPU::S_SEXT_I32_I8: return AMDGPU::V_BFE_I32_e64;
case AMDGPU::S_SEXT_I32_I16: return AMDGPU::V_BFE_I32_e64;
case AMDGPU::S_BFE_U32: return AMDGPU::V_BFE_U32_e64;
case AMDGPU::S_BFE_I32: return AMDGPU::V_BFE_I32_e64;
case AMDGPU::S_BFM_B32: return AMDGPU::V_BFM_B32_e64;
case AMDGPU::S_BREV_B32: return AMDGPU::V_BFREV_B32_e32;
case AMDGPU::S_NOT_B32: return AMDGPU::V_NOT_B32_e32;
case AMDGPU::S_NOT_B64: return AMDGPU::V_NOT_B32_e32;
case AMDGPU::S_CMP_EQ_I32: return AMDGPU::V_CMP_EQ_I32_e32;
case AMDGPU::S_CMP_LG_I32: return AMDGPU::V_CMP_NE_I32_e32;
case AMDGPU::S_CMP_GT_I32: return AMDGPU::V_CMP_GT_I32_e32;
case AMDGPU::S_CMP_GE_I32: return AMDGPU::V_CMP_GE_I32_e32;
case AMDGPU::S_CMP_LT_I32: return AMDGPU::V_CMP_LT_I32_e32;
case AMDGPU::S_CMP_LE_I32: return AMDGPU::V_CMP_LE_I32_e32;
case AMDGPU::S_CMP_EQ_U32: return AMDGPU::V_CMP_EQ_U32_e32;
case AMDGPU::S_CMP_LG_U32: return AMDGPU::V_CMP_NE_U32_e32;
case AMDGPU::S_CMP_GT_U32: return AMDGPU::V_CMP_GT_U32_e32;
case AMDGPU::S_CMP_GE_U32: return AMDGPU::V_CMP_GE_U32_e32;
case AMDGPU::S_CMP_LT_U32: return AMDGPU::V_CMP_LT_U32_e32;
case AMDGPU::S_CMP_LE_U32: return AMDGPU::V_CMP_LE_U32_e32;
case AMDGPU::S_CMP_EQ_U64: return AMDGPU::V_CMP_EQ_U64_e32;
case AMDGPU::S_CMP_LG_U64: return AMDGPU::V_CMP_NE_U64_e32;
case AMDGPU::S_BCNT1_I32_B32: return AMDGPU::V_BCNT_U32_B32_e64;
case AMDGPU::S_FF1_I32_B32: return AMDGPU::V_FFBL_B32_e32;
case AMDGPU::S_FLBIT_I32_B32: return AMDGPU::V_FFBH_U32_e32;
case AMDGPU::S_FLBIT_I32: return AMDGPU::V_FFBH_I32_e64;
case AMDGPU::S_CBRANCH_SCC0: return AMDGPU::S_CBRANCH_VCCZ;
case AMDGPU::S_CBRANCH_SCC1: return AMDGPU::S_CBRANCH_VCCNZ;
}
llvm_unreachable(
"Unexpected scalar opcode without corresponding vector one!");
}
static unsigned adjustAllocatableRegClass(const GCNSubtarget &ST,
const MachineRegisterInfo &MRI,
const MCInstrDesc &TID,
unsigned RCID,
bool IsAllocatable) {
if ((IsAllocatable || !ST.hasGFX90AInsts() || !MRI.reservedRegsFrozen()) &&
(TID.mayLoad() || TID.mayStore() ||
(TID.TSFlags & (SIInstrFlags::DS | SIInstrFlags::MIMG)))) {
switch (RCID) {
case AMDGPU::AV_32RegClassID: return AMDGPU::VGPR_32RegClassID;
case AMDGPU::AV_64RegClassID: return AMDGPU::VReg_64RegClassID;
case AMDGPU::AV_96RegClassID: return AMDGPU::VReg_96RegClassID;
case AMDGPU::AV_128RegClassID: return AMDGPU::VReg_128RegClassID;
case AMDGPU::AV_160RegClassID: return AMDGPU::VReg_160RegClassID;
default:
break;
}
}
return RCID;
}
const TargetRegisterClass *SIInstrInfo::getRegClass(const MCInstrDesc &TID,
unsigned OpNum, const TargetRegisterInfo *TRI,
const MachineFunction &MF)
const {
if (OpNum >= TID.getNumOperands())
return nullptr;
auto RegClass = TID.OpInfo[OpNum].RegClass;
bool IsAllocatable = false;
if (TID.TSFlags & (SIInstrFlags::DS | SIInstrFlags::FLAT)) {
// vdst and vdata should be both VGPR or AGPR, same for the DS instructions
// with two data operands. Request register class constainted to VGPR only
// of both operands present as Machine Copy Propagation can not check this
// constraint and possibly other passes too.
//
// The check is limited to FLAT and DS because atomics in non-flat encoding
// have their vdst and vdata tied to be the same register.
const int VDstIdx = AMDGPU::getNamedOperandIdx(TID.Opcode,
AMDGPU::OpName::vdst);
const int DataIdx = AMDGPU::getNamedOperandIdx(TID.Opcode,
(TID.TSFlags & SIInstrFlags::DS) ? AMDGPU::OpName::data0
: AMDGPU::OpName::vdata);
if (DataIdx != -1) {
IsAllocatable = VDstIdx != -1 ||
AMDGPU::getNamedOperandIdx(TID.Opcode,
AMDGPU::OpName::data1) != -1;
}
}
RegClass = adjustAllocatableRegClass(ST, MF.getRegInfo(), TID, RegClass,
IsAllocatable);
return RI.getRegClass(RegClass);
}
const TargetRegisterClass *SIInstrInfo::getOpRegClass(const MachineInstr &MI,
unsigned OpNo) const {
const MachineRegisterInfo &MRI = MI.getParent()->getParent()->getRegInfo();
const MCInstrDesc &Desc = get(MI.getOpcode());
if (MI.isVariadic() || OpNo >= Desc.getNumOperands() ||
Desc.OpInfo[OpNo].RegClass == -1) {
Register Reg = MI.getOperand(OpNo).getReg();
if (Reg.isVirtual())
return MRI.getRegClass(Reg);
return RI.getPhysRegClass(Reg);
}
unsigned RCID = Desc.OpInfo[OpNo].RegClass;
RCID = adjustAllocatableRegClass(ST, MRI, Desc, RCID, true);
return RI.getRegClass(RCID);
}
void SIInstrInfo::legalizeOpWithMove(MachineInstr &MI, unsigned OpIdx) const {
MachineBasicBlock::iterator I = MI;
MachineBasicBlock *MBB = MI.getParent();
MachineOperand &MO = MI.getOperand(OpIdx);
MachineRegisterInfo &MRI = MBB->getParent()->getRegInfo();
unsigned RCID = get(MI.getOpcode()).OpInfo[OpIdx].RegClass;
const TargetRegisterClass *RC = RI.getRegClass(RCID);
unsigned Size = RI.getRegSizeInBits(*RC);
unsigned Opcode = (Size == 64) ? AMDGPU::V_MOV_B64_PSEUDO : AMDGPU::V_MOV_B32_e32;
if (MO.isReg())
Opcode = AMDGPU::COPY;
else if (RI.isSGPRClass(RC))
Opcode = (Size == 64) ? AMDGPU::S_MOV_B64 : AMDGPU::S_MOV_B32;
const TargetRegisterClass *VRC = RI.getEquivalentVGPRClass(RC);
const TargetRegisterClass *VRC64 = RI.getVGPR64Class();
if (RI.getCommonSubClass(VRC64, VRC))
VRC = VRC64;
else
VRC = &AMDGPU::VGPR_32RegClass;
Register Reg = MRI.createVirtualRegister(VRC);
DebugLoc DL = MBB->findDebugLoc(I);
BuildMI(*MI.getParent(), I, DL, get(Opcode), Reg).add(MO);
MO.ChangeToRegister(Reg, false);
}
unsigned SIInstrInfo::buildExtractSubReg(MachineBasicBlock::iterator MI,
MachineRegisterInfo &MRI,
MachineOperand &SuperReg,
const TargetRegisterClass *SuperRC,
unsigned SubIdx,
const TargetRegisterClass *SubRC)
const {
MachineBasicBlock *MBB = MI->getParent();
DebugLoc DL = MI->getDebugLoc();
Register SubReg = MRI.createVirtualRegister(SubRC);
if (SuperReg.getSubReg() == AMDGPU::NoSubRegister) {
BuildMI(*MBB, MI, DL, get(TargetOpcode::COPY), SubReg)
.addReg(SuperReg.getReg(), 0, SubIdx);
return SubReg;
}
// Just in case the super register is itself a sub-register, copy it to a new
// value so we don't need to worry about merging its subreg index with the
// SubIdx passed to this function. The register coalescer should be able to
// eliminate this extra copy.
Register NewSuperReg = MRI.createVirtualRegister(SuperRC);
BuildMI(*MBB, MI, DL, get(TargetOpcode::COPY), NewSuperReg)
.addReg(SuperReg.getReg(), 0, SuperReg.getSubReg());
BuildMI(*MBB, MI, DL, get(TargetOpcode::COPY), SubReg)
.addReg(NewSuperReg, 0, SubIdx);
return SubReg;
}
MachineOperand SIInstrInfo::buildExtractSubRegOrImm(
MachineBasicBlock::iterator MII,
MachineRegisterInfo &MRI,
MachineOperand &Op,
const TargetRegisterClass *SuperRC,
unsigned SubIdx,
const TargetRegisterClass *SubRC) const {
if (Op.isImm()) {
if (SubIdx == AMDGPU::sub0)
return MachineOperand::CreateImm(static_cast<int32_t>(Op.getImm()));
if (SubIdx == AMDGPU::sub1)
return MachineOperand::CreateImm(static_cast<int32_t>(Op.getImm() >> 32));
llvm_unreachable("Unhandled register index for immediate");
}
unsigned SubReg = buildExtractSubReg(MII, MRI, Op, SuperRC,
SubIdx, SubRC);
return MachineOperand::CreateReg(SubReg, false);
}
// Change the order of operands from (0, 1, 2) to (0, 2, 1)
void SIInstrInfo::swapOperands(MachineInstr &Inst) const {
assert(Inst.getNumExplicitOperands() == 3);
MachineOperand Op1 = Inst.getOperand(1);
Inst.RemoveOperand(1);
Inst.addOperand(Op1);
}
bool SIInstrInfo::isLegalRegOperand(const MachineRegisterInfo &MRI,
const MCOperandInfo &OpInfo,
const MachineOperand &MO) const {
if (!MO.isReg())
return false;
Register Reg = MO.getReg();
const TargetRegisterClass *DRC = RI.getRegClass(OpInfo.RegClass);
if (Reg.isPhysical())
return DRC->contains(Reg);
const TargetRegisterClass *RC = MRI.getRegClass(Reg);
if (MO.getSubReg()) {
const MachineFunction *MF = MO.getParent()->getParent()->getParent();
const TargetRegisterClass *SuperRC = RI.getLargestLegalSuperClass(RC, *MF);
if (!SuperRC)
return false;
DRC = RI.getMatchingSuperRegClass(SuperRC, DRC, MO.getSubReg());
if (!DRC)
return false;
}
return RC->hasSuperClassEq(DRC);
}
bool SIInstrInfo::isLegalVSrcOperand(const MachineRegisterInfo &MRI,
const MCOperandInfo &OpInfo,
const MachineOperand &MO) const {
if (MO.isReg())
return isLegalRegOperand(MRI, OpInfo, MO);
// Handle non-register types that are treated like immediates.
assert(MO.isImm() || MO.isTargetIndex() || MO.isFI() || MO.isGlobal());
return true;
}
bool SIInstrInfo::isOperandLegal(const MachineInstr &MI, unsigned OpIdx,
const MachineOperand *MO) const {
const MachineFunction &MF = *MI.getParent()->getParent();
const MachineRegisterInfo &MRI = MF.getRegInfo();
const MCInstrDesc &InstDesc = MI.getDesc();
const MCOperandInfo &OpInfo = InstDesc.OpInfo[OpIdx];
const TargetRegisterClass *DefinedRC =
OpInfo.RegClass != -1 ? RI.getRegClass(OpInfo.RegClass) : nullptr;
if (!MO)
MO = &MI.getOperand(OpIdx);
int ConstantBusLimit = ST.getConstantBusLimit(MI.getOpcode());
int VOP3LiteralLimit = ST.hasVOP3Literal() ? 1 : 0;
if (isVALU(MI) && usesConstantBus(MRI, *MO, OpInfo)) {
if (isVOP3(MI) && isLiteralConstantLike(*MO, OpInfo) && !VOP3LiteralLimit--)
return false;
SmallDenseSet<RegSubRegPair> SGPRsUsed;
if (MO->isReg())
SGPRsUsed.insert(RegSubRegPair(MO->getReg(), MO->getSubReg()));
for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
if (i == OpIdx)
continue;
const MachineOperand &Op = MI.getOperand(i);
if (Op.isReg()) {
RegSubRegPair SGPR(Op.getReg(), Op.getSubReg());
if (!SGPRsUsed.count(SGPR) &&
usesConstantBus(MRI, Op, InstDesc.OpInfo[i])) {
if (--ConstantBusLimit <= 0)
return false;
SGPRsUsed.insert(SGPR);
}
} else if (InstDesc.OpInfo[i].OperandType == AMDGPU::OPERAND_KIMM32) {
if (--ConstantBusLimit <= 0)
return false;
} else if (isVOP3(MI) && AMDGPU::isSISrcOperand(InstDesc, i) &&
isLiteralConstantLike(Op, InstDesc.OpInfo[i])) {
if (!VOP3LiteralLimit--)
return false;
if (--ConstantBusLimit <= 0)
return false;
}
}
}
if (MO->isReg()) {
assert(DefinedRC);
if (!isLegalRegOperand(MRI, OpInfo, *MO))
return false;
bool IsAGPR = RI.isAGPR(MRI, MO->getReg());
if (IsAGPR && !ST.hasMAIInsts())
return false;
unsigned Opc = MI.getOpcode();
if (IsAGPR &&
(!ST.hasGFX90AInsts() || !MRI.reservedRegsFrozen()) &&
(MI.mayLoad() || MI.mayStore() || isDS(Opc) || isMIMG(Opc)))
return false;
// Atomics should have both vdst and vdata either vgpr or agpr.
const int VDstIdx = AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::vdst);
const int DataIdx = AMDGPU::getNamedOperandIdx(Opc,
isDS(Opc) ? AMDGPU::OpName::data0 : AMDGPU::OpName::vdata);
if ((int)OpIdx == VDstIdx && DataIdx != -1 &&
MI.getOperand(DataIdx).isReg() &&
RI.isAGPR(MRI, MI.getOperand(DataIdx).getReg()) != IsAGPR)
return false;
if ((int)OpIdx == DataIdx) {
if (VDstIdx != -1 &&
RI.isAGPR(MRI, MI.getOperand(VDstIdx).getReg()) != IsAGPR)
return false;
// DS instructions with 2 src operands also must have tied RC.
const int Data1Idx = AMDGPU::getNamedOperandIdx(Opc,
AMDGPU::OpName::data1);
if (Data1Idx != -1 && MI.getOperand(Data1Idx).isReg() &&
RI.isAGPR(MRI, MI.getOperand(Data1Idx).getReg()) != IsAGPR)
return false;
}
if (Opc == AMDGPU::V_ACCVGPR_WRITE_B32_e64 &&
(int)OpIdx == AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::src0) &&
RI.isSGPRReg(MRI, MO->getReg()))
return false;
return true;
}
// Handle non-register types that are treated like immediates.
assert(MO->isImm() || MO->isTargetIndex() || MO->isFI() || MO->isGlobal());
if (!DefinedRC) {
// This operand expects an immediate.
return true;
}
return isImmOperandLegal(MI, OpIdx, *MO);
}
void SIInstrInfo::legalizeOperandsVOP2(MachineRegisterInfo &MRI,
MachineInstr &MI) const {
unsigned Opc = MI.getOpcode();
const MCInstrDesc &InstrDesc = get(Opc);
int Src0Idx = AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::src0);
MachineOperand &Src0 = MI.getOperand(Src0Idx);
int Src1Idx = AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::src1);
MachineOperand &Src1 = MI.getOperand(Src1Idx);
// If there is an implicit SGPR use such as VCC use for v_addc_u32/v_subb_u32
// we need to only have one constant bus use before GFX10.
bool HasImplicitSGPR = findImplicitSGPRRead(MI) != AMDGPU::NoRegister;
if (HasImplicitSGPR && ST.getConstantBusLimit(Opc) <= 1 &&
Src0.isReg() && (RI.isSGPRReg(MRI, Src0.getReg()) ||
isLiteralConstantLike(Src0, InstrDesc.OpInfo[Src0Idx])))
legalizeOpWithMove(MI, Src0Idx);
// Special case: V_WRITELANE_B32 accepts only immediate or SGPR operands for
// both the value to write (src0) and lane select (src1). Fix up non-SGPR
// src0/src1 with V_READFIRSTLANE.
if (Opc == AMDGPU::V_WRITELANE_B32) {
const DebugLoc &DL = MI.getDebugLoc();
if (Src0.isReg() && RI.isVGPR(MRI, Src0.getReg())) {
Register Reg = MRI.createVirtualRegister(&AMDGPU::SReg_32_XM0RegClass);
BuildMI(*MI.getParent(), MI, DL, get(AMDGPU::V_READFIRSTLANE_B32), Reg)
.add(Src0);
Src0.ChangeToRegister(Reg, false);
}
if (Src1.isReg() && RI.isVGPR(MRI, Src1.getReg())) {
Register Reg = MRI.createVirtualRegister(&AMDGPU::SReg_32_XM0RegClass);
const DebugLoc &DL = MI.getDebugLoc();
BuildMI(*MI.getParent(), MI, DL, get(AMDGPU::V_READFIRSTLANE_B32), Reg)
.add(Src1);
Src1.ChangeToRegister(Reg, false);
}
return;
}
// No VOP2 instructions support AGPRs.
if (Src0.isReg() && RI.isAGPR(MRI, Src0.getReg()))
legalizeOpWithMove(MI, Src0Idx);
if (Src1.isReg() && RI.isAGPR(MRI, Src1.getReg()))
legalizeOpWithMove(MI, Src1Idx);
// VOP2 src0 instructions support all operand types, so we don't need to check
// their legality. If src1 is already legal, we don't need to do anything.
if (isLegalRegOperand(MRI, InstrDesc.OpInfo[Src1Idx], Src1))
return;
// Special case: V_READLANE_B32 accepts only immediate or SGPR operands for
// lane select. Fix up using V_READFIRSTLANE, since we assume that the lane
// select is uniform.
if (Opc == AMDGPU::V_READLANE_B32 && Src1.isReg() &&
RI.isVGPR(MRI, Src1.getReg())) {
Register Reg = MRI.createVirtualRegister(&AMDGPU::SReg_32_XM0RegClass);
const DebugLoc &DL = MI.getDebugLoc();
BuildMI(*MI.getParent(), MI, DL, get(AMDGPU::V_READFIRSTLANE_B32), Reg)
.add(Src1);
Src1.ChangeToRegister(Reg, false);
return;
}
// We do not use commuteInstruction here because it is too aggressive and will
// commute if it is possible. We only want to commute here if it improves
// legality. This can be called a fairly large number of times so don't waste
// compile time pointlessly swapping and checking legality again.
if (HasImplicitSGPR || !MI.isCommutable()) {
legalizeOpWithMove(MI, Src1Idx);
return;
}
// If src0 can be used as src1, commuting will make the operands legal.
// Otherwise we have to give up and insert a move.
//
// TODO: Other immediate-like operand kinds could be commuted if there was a
// MachineOperand::ChangeTo* for them.
if ((!Src1.isImm() && !Src1.isReg()) ||
!isLegalRegOperand(MRI, InstrDesc.OpInfo[Src1Idx], Src0)) {
legalizeOpWithMove(MI, Src1Idx);
return;
}
int CommutedOpc = commuteOpcode(MI);
if (CommutedOpc == -1) {
legalizeOpWithMove(MI, Src1Idx);
return;
}
MI.setDesc(get(CommutedOpc));
Register Src0Reg = Src0.getReg();
unsigned Src0SubReg = Src0.getSubReg();
bool Src0Kill = Src0.isKill();
if (Src1.isImm())
Src0.ChangeToImmediate(Src1.getImm());
else if (Src1.isReg()) {
Src0.ChangeToRegister(Src1.getReg(), false, false, Src1.isKill());
Src0.setSubReg(Src1.getSubReg());
} else
llvm_unreachable("Should only have register or immediate operands");
Src1.ChangeToRegister(Src0Reg, false, false, Src0Kill);
Src1.setSubReg(Src0SubReg);
fixImplicitOperands(MI);
}
// Legalize VOP3 operands. All operand types are supported for any operand
// but only one literal constant and only starting from GFX10.
void SIInstrInfo::legalizeOperandsVOP3(MachineRegisterInfo &MRI,
MachineInstr &MI) const {
unsigned Opc = MI.getOpcode();
int VOP3Idx[3] = {
AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::src0),
AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::src1),
AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::src2)
};
if (Opc == AMDGPU::V_PERMLANE16_B32_e64 ||
Opc == AMDGPU::V_PERMLANEX16_B32_e64) {
// src1 and src2 must be scalar
MachineOperand &Src1 = MI.getOperand(VOP3Idx[1]);
MachineOperand &Src2 = MI.getOperand(VOP3Idx[2]);
const DebugLoc &DL = MI.getDebugLoc();
if (Src1.isReg() && !RI.isSGPRClass(MRI.getRegClass(Src1.getReg()))) {
Register Reg = MRI.createVirtualRegister(&AMDGPU::SReg_32_XM0RegClass);
BuildMI(*MI.getParent(), MI, DL, get(AMDGPU::V_READFIRSTLANE_B32), Reg)
.add(Src1);
Src1.ChangeToRegister(Reg, false);
}
if (Src2.isReg() && !RI.isSGPRClass(MRI.getRegClass(Src2.getReg()))) {
Register Reg = MRI.createVirtualRegister(&AMDGPU::SReg_32_XM0RegClass);
BuildMI(*MI.getParent(), MI, DL, get(AMDGPU::V_READFIRSTLANE_B32), Reg)
.add(Src2);
Src2.ChangeToRegister(Reg, false);
}
}
// Find the one SGPR operand we are allowed to use.
int ConstantBusLimit = ST.getConstantBusLimit(Opc);
int LiteralLimit = ST.hasVOP3Literal() ? 1 : 0;
SmallDenseSet<unsigned> SGPRsUsed;
Register SGPRReg = findUsedSGPR(MI, VOP3Idx);
if (SGPRReg != AMDGPU::NoRegister) {
SGPRsUsed.insert(SGPRReg);
--ConstantBusLimit;
}
for (unsigned i = 0; i < 3; ++i) {
int Idx = VOP3Idx[i];
if (Idx == -1)
break;
MachineOperand &MO = MI.getOperand(Idx);
if (!MO.isReg()) {
if (!isLiteralConstantLike(MO, get(Opc).OpInfo[Idx]))
continue;
if (LiteralLimit > 0 && ConstantBusLimit > 0) {
--LiteralLimit;
--ConstantBusLimit;
continue;
}
--LiteralLimit;
--ConstantBusLimit;
legalizeOpWithMove(MI, Idx);
continue;
}
if (RI.hasAGPRs(MRI.getRegClass(MO.getReg())) &&
!isOperandLegal(MI, Idx, &MO)) {
legalizeOpWithMove(MI, Idx);
continue;
}
if (!RI.isSGPRClass(MRI.getRegClass(MO.getReg())))
continue; // VGPRs are legal
// We can use one SGPR in each VOP3 instruction prior to GFX10
// and two starting from GFX10.
if (SGPRsUsed.count(MO.getReg()))
continue;
if (ConstantBusLimit > 0) {
SGPRsUsed.insert(MO.getReg());
--ConstantBusLimit;
continue;
}
// If we make it this far, then the operand is not legal and we must
// legalize it.
legalizeOpWithMove(MI, Idx);
}
}
Register SIInstrInfo::readlaneVGPRToSGPR(Register SrcReg, MachineInstr &UseMI,
MachineRegisterInfo &MRI) const {
const TargetRegisterClass *VRC = MRI.getRegClass(SrcReg);
const TargetRegisterClass *SRC = RI.getEquivalentSGPRClass(VRC);
Register DstReg = MRI.createVirtualRegister(SRC);
unsigned SubRegs = RI.getRegSizeInBits(*VRC) / 32;
if (RI.hasAGPRs(VRC)) {
VRC = RI.getEquivalentVGPRClass(VRC);
Register NewSrcReg = MRI.createVirtualRegister(VRC);
BuildMI(*UseMI.getParent(), UseMI, UseMI.getDebugLoc(),
get(TargetOpcode::COPY), NewSrcReg)
.addReg(SrcReg);
SrcReg = NewSrcReg;
}
if (SubRegs == 1) {
BuildMI(*UseMI.getParent(), UseMI, UseMI.getDebugLoc(),
get(AMDGPU::V_READFIRSTLANE_B32), DstReg)
.addReg(SrcReg);
return DstReg;
}
SmallVector<unsigned, 8> SRegs;
for (unsigned i = 0; i < SubRegs; ++i) {
Register SGPR = MRI.createVirtualRegister(&AMDGPU::SGPR_32RegClass);
BuildMI(*UseMI.getParent(), UseMI, UseMI.getDebugLoc(),
get(AMDGPU::V_READFIRSTLANE_B32), SGPR)
.addReg(SrcReg, 0, RI.getSubRegFromChannel(i));
SRegs.push_back(SGPR);
}
MachineInstrBuilder MIB =
BuildMI(*UseMI.getParent(), UseMI, UseMI.getDebugLoc(),
get(AMDGPU::REG_SEQUENCE), DstReg);
for (unsigned i = 0; i < SubRegs; ++i) {
MIB.addReg(SRegs[i]);
MIB.addImm(RI.getSubRegFromChannel(i));
}
return DstReg;
}
void SIInstrInfo::legalizeOperandsSMRD(MachineRegisterInfo &MRI,
MachineInstr &MI) const {
// If the pointer is store in VGPRs, then we need to move them to
// SGPRs using v_readfirstlane. This is safe because we only select
// loads with uniform pointers to SMRD instruction so we know the
// pointer value is uniform.
MachineOperand *SBase = getNamedOperand(MI, AMDGPU::OpName::sbase);
if (SBase && !RI.isSGPRClass(MRI.getRegClass(SBase->getReg()))) {
Register SGPR = readlaneVGPRToSGPR(SBase->getReg(), MI, MRI);
SBase->setReg(SGPR);
}
MachineOperand *SOff = getNamedOperand(MI, AMDGPU::OpName::soff);
if (SOff && !RI.isSGPRClass(MRI.getRegClass(SOff->getReg()))) {
Register SGPR = readlaneVGPRToSGPR(SOff->getReg(), MI, MRI);
SOff->setReg(SGPR);
}
}
bool SIInstrInfo::moveFlatAddrToVGPR(MachineInstr &Inst) const {
unsigned Opc = Inst.getOpcode();
int OldSAddrIdx = AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::saddr);
if (OldSAddrIdx < 0)
return false;
assert(isSegmentSpecificFLAT(Inst));
int NewOpc = AMDGPU::getGlobalVaddrOp(Opc);
if (NewOpc < 0)
NewOpc = AMDGPU::getFlatScratchInstSVfromSS(Opc);
if (NewOpc < 0)
return false;
MachineRegisterInfo &MRI = Inst.getMF()->getRegInfo();
MachineOperand &SAddr = Inst.getOperand(OldSAddrIdx);
if (RI.isSGPRReg(MRI, SAddr.getReg()))
return false;
int NewVAddrIdx = AMDGPU::getNamedOperandIdx(NewOpc, AMDGPU::OpName::vaddr);
if (NewVAddrIdx < 0)
return false;
int OldVAddrIdx = AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::vaddr);
// Check vaddr, it shall be zero or absent.
MachineInstr *VAddrDef = nullptr;
if (OldVAddrIdx >= 0) {
MachineOperand &VAddr = Inst.getOperand(OldVAddrIdx);
VAddrDef = MRI.getUniqueVRegDef(VAddr.getReg());
if (!VAddrDef || VAddrDef->getOpcode() != AMDGPU::V_MOV_B32_e32 ||
!VAddrDef->getOperand(1).isImm() ||
VAddrDef->getOperand(1).getImm() != 0)
return false;
}
const MCInstrDesc &NewDesc = get(NewOpc);
Inst.setDesc(NewDesc);
// Callers expect interator to be valid after this call, so modify the
// instruction in place.
if (OldVAddrIdx == NewVAddrIdx) {
MachineOperand &NewVAddr = Inst.getOperand(NewVAddrIdx);
// Clear use list from the old vaddr holding a zero register.
MRI.removeRegOperandFromUseList(&NewVAddr);
MRI.moveOperands(&NewVAddr, &SAddr, 1);
Inst.RemoveOperand(OldSAddrIdx);
// Update the use list with the pointer we have just moved from vaddr to
// saddr poisition. Otherwise new vaddr will be missing from the use list.
MRI.removeRegOperandFromUseList(&NewVAddr);
MRI.addRegOperandToUseList(&NewVAddr);
} else {
assert(OldSAddrIdx == NewVAddrIdx);
if (OldVAddrIdx >= 0) {
int NewVDstIn = AMDGPU::getNamedOperandIdx(NewOpc,
AMDGPU::OpName::vdst_in);
// RemoveOperand doesn't try to fixup tied operand indexes at it goes, so
// it asserts. Untie the operands for now and retie them afterwards.
if (NewVDstIn != -1) {
int OldVDstIn = AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::vdst_in);
Inst.untieRegOperand(OldVDstIn);
}
Inst.RemoveOperand(OldVAddrIdx);
if (NewVDstIn != -1) {
int NewVDst = AMDGPU::getNamedOperandIdx(NewOpc, AMDGPU::OpName::vdst);
Inst.tieOperands(NewVDst, NewVDstIn);
}
}
}
if (VAddrDef && MRI.use_nodbg_empty(VAddrDef->getOperand(0).getReg()))
VAddrDef->eraseFromParent();
return true;
}
// FIXME: Remove this when SelectionDAG is obsoleted.
void SIInstrInfo::legalizeOperandsFLAT(MachineRegisterInfo &MRI,
MachineInstr &MI) const {
if (!isSegmentSpecificFLAT(MI))
return;
// Fixup SGPR operands in VGPRs. We only select these when the DAG divergence
// thinks they are uniform, so a readfirstlane should be valid.
MachineOperand *SAddr = getNamedOperand(MI, AMDGPU::OpName::saddr);
if (!SAddr || RI.isSGPRClass(MRI.getRegClass(SAddr->getReg())))
return;
if (moveFlatAddrToVGPR(MI))
return;
Register ToSGPR = readlaneVGPRToSGPR(SAddr->getReg(), MI, MRI);
SAddr->setReg(ToSGPR);
}
void SIInstrInfo::legalizeGenericOperand(MachineBasicBlock &InsertMBB,
MachineBasicBlock::iterator I,
const TargetRegisterClass *DstRC,
MachineOperand &Op,
MachineRegisterInfo &MRI,
const DebugLoc &DL) const {
Register OpReg = Op.getReg();
unsigned OpSubReg = Op.getSubReg();
const TargetRegisterClass *OpRC = RI.getSubClassWithSubReg(
RI.getRegClassForReg(MRI, OpReg), OpSubReg);
// Check if operand is already the correct register class.
if (DstRC == OpRC)
return;
Register DstReg = MRI.createVirtualRegister(DstRC);
MachineInstr *Copy =
BuildMI(InsertMBB, I, DL, get(AMDGPU::COPY), DstReg).add(Op);
Op.setReg(DstReg);
Op.setSubReg(0);
MachineInstr *Def = MRI.getVRegDef(OpReg);
if (!Def)
return;
// Try to eliminate the copy if it is copying an immediate value.
if (Def->isMoveImmediate() && DstRC != &AMDGPU::VReg_1RegClass)
FoldImmediate(*Copy, *Def, OpReg, &MRI);
bool ImpDef = Def->isImplicitDef();
while (!ImpDef && Def && Def->isCopy()) {
if (Def->getOperand(1).getReg().isPhysical())
break;
Def = MRI.getUniqueVRegDef(Def->getOperand(1).getReg());
ImpDef = Def && Def->isImplicitDef();
}
if (!RI.isSGPRClass(DstRC) && !Copy->readsRegister(AMDGPU::EXEC, &RI) &&
!ImpDef)
Copy->addOperand(MachineOperand::CreateReg(AMDGPU::EXEC, false, true));
}
// Emit the actual waterfall loop, executing the wrapped instruction for each
// unique value of \p Rsrc across all lanes. In the best case we execute 1
// iteration, in the worst case we execute 64 (once per lane).
static void
emitLoadSRsrcFromVGPRLoop(const SIInstrInfo &TII, MachineRegisterInfo &MRI,
MachineBasicBlock &OrigBB, MachineBasicBlock &LoopBB,
const DebugLoc &DL, MachineOperand &Rsrc) {
MachineFunction &MF = *OrigBB.getParent();
const GCNSubtarget &ST = MF.getSubtarget<GCNSubtarget>();
const SIRegisterInfo *TRI = ST.getRegisterInfo();
unsigned Exec = ST.isWave32() ? AMDGPU::EXEC_LO : AMDGPU::EXEC;
unsigned SaveExecOpc =
ST.isWave32() ? AMDGPU::S_AND_SAVEEXEC_B32 : AMDGPU::S_AND_SAVEEXEC_B64;
unsigned XorTermOpc =
ST.isWave32() ? AMDGPU::S_XOR_B32_term : AMDGPU::S_XOR_B64_term;
unsigned AndOpc =
ST.isWave32() ? AMDGPU::S_AND_B32 : AMDGPU::S_AND_B64;
const auto *BoolXExecRC = TRI->getRegClass(AMDGPU::SReg_1_XEXECRegClassID);
MachineBasicBlock::iterator I = LoopBB.begin();
SmallVector<Register, 8> ReadlanePieces;
Register CondReg = AMDGPU::NoRegister;
Register VRsrc = Rsrc.getReg();
unsigned VRsrcUndef = getUndefRegState(Rsrc.isUndef());
unsigned RegSize = TRI->getRegSizeInBits(Rsrc.getReg(), MRI);
unsigned NumSubRegs = RegSize / 32;
assert(NumSubRegs % 2 == 0 && NumSubRegs <= 32 && "Unhandled register size");
for (unsigned Idx = 0; Idx < NumSubRegs; Idx += 2) {
Register CurRegLo = MRI.createVirtualRegister(&AMDGPU::SGPR_32RegClass);
Register CurRegHi = MRI.createVirtualRegister(&AMDGPU::SGPR_32RegClass);
// Read the next variant <- also loop target.
BuildMI(LoopBB, I, DL, TII.get(AMDGPU::V_READFIRSTLANE_B32), CurRegLo)
.addReg(VRsrc, VRsrcUndef, TRI->getSubRegFromChannel(Idx));
// Read the next variant <- also loop target.
BuildMI(LoopBB, I, DL, TII.get(AMDGPU::V_READFIRSTLANE_B32), CurRegHi)
.addReg(VRsrc, VRsrcUndef, TRI->getSubRegFromChannel(Idx + 1));
ReadlanePieces.push_back(CurRegLo);
ReadlanePieces.push_back(CurRegHi);
// Comparison is to be done as 64-bit.
Register CurReg = MRI.createVirtualRegister(&AMDGPU::SGPR_64RegClass);
BuildMI(LoopBB, I, DL, TII.get(AMDGPU::REG_SEQUENCE), CurReg)
.addReg(CurRegLo)
.addImm(AMDGPU::sub0)
.addReg(CurRegHi)
.addImm(AMDGPU::sub1);
Register NewCondReg = MRI.createVirtualRegister(BoolXExecRC);
auto Cmp =
BuildMI(LoopBB, I, DL, TII.get(AMDGPU::V_CMP_EQ_U64_e64), NewCondReg)
.addReg(CurReg);
if (NumSubRegs <= 2)
Cmp.addReg(VRsrc);
else
Cmp.addReg(VRsrc, VRsrcUndef, TRI->getSubRegFromChannel(Idx, 2));
// Combine the comparision results with AND.
if (CondReg == AMDGPU::NoRegister) // First.
CondReg = NewCondReg;
else { // If not the first, we create an AND.
Register AndReg = MRI.createVirtualRegister(BoolXExecRC);
BuildMI(LoopBB, I, DL, TII.get(AndOpc), AndReg)
.addReg(CondReg)
.addReg(NewCondReg);
CondReg = AndReg;
}
} // End for loop.
auto SRsrcRC = TRI->getEquivalentSGPRClass(MRI.getRegClass(VRsrc));
Register SRsrc = MRI.createVirtualRegister(SRsrcRC);
// Build scalar Rsrc.
auto Merge = BuildMI(LoopBB, I, DL, TII.get(AMDGPU::REG_SEQUENCE), SRsrc);
unsigned Channel = 0;
for (Register Piece : ReadlanePieces) {
Merge.addReg(Piece)
.addImm(TRI->getSubRegFromChannel(Channel++));
}
// Update Rsrc operand to use the SGPR Rsrc.
Rsrc.setReg(SRsrc);
Rsrc.setIsKill(true);
Register SaveExec = MRI.createVirtualRegister(BoolXExecRC);
MRI.setSimpleHint(SaveExec, CondReg);
// Update EXEC to matching lanes, saving original to SaveExec.
BuildMI(LoopBB, I, DL, TII.get(SaveExecOpc), SaveExec)
.addReg(CondReg, RegState::Kill);
// The original instruction is here; we insert the terminators after it.
I = LoopBB.end();
// Update EXEC, switch all done bits to 0 and all todo bits to 1.
BuildMI(LoopBB, I, DL, TII.get(XorTermOpc), Exec)
.addReg(Exec)
.addReg(SaveExec);
BuildMI(LoopBB, I, DL, TII.get(AMDGPU::SI_WATERFALL_LOOP)).addMBB(&LoopBB);
}
// Build a waterfall loop around \p MI, replacing the VGPR \p Rsrc register
// with SGPRs by iterating over all unique values across all lanes.
// Returns the loop basic block that now contains \p MI.
static MachineBasicBlock *
loadSRsrcFromVGPR(const SIInstrInfo &TII, MachineInstr &MI,
MachineOperand &Rsrc, MachineDominatorTree *MDT,
MachineBasicBlock::iterator Begin = nullptr,
MachineBasicBlock::iterator End = nullptr) {
MachineBasicBlock &MBB = *MI.getParent();
MachineFunction &MF = *MBB.getParent();
const GCNSubtarget &ST = MF.getSubtarget<GCNSubtarget>();
const SIRegisterInfo *TRI = ST.getRegisterInfo();
MachineRegisterInfo &MRI = MF.getRegInfo();
if (!Begin.isValid())
Begin = &MI;
if (!End.isValid()) {
End = &MI;
++End;
}
const DebugLoc &DL = MI.getDebugLoc();
unsigned Exec = ST.isWave32() ? AMDGPU::EXEC_LO : AMDGPU::EXEC;
unsigned MovExecOpc = ST.isWave32() ? AMDGPU::S_MOV_B32 : AMDGPU::S_MOV_B64;
const auto *BoolXExecRC = TRI->getRegClass(AMDGPU::SReg_1_XEXECRegClassID);
Register SaveExec = MRI.createVirtualRegister(BoolXExecRC);
// Save the EXEC mask
BuildMI(MBB, Begin, DL, TII.get(MovExecOpc), SaveExec).addReg(Exec);
// Killed uses in the instruction we are waterfalling around will be
// incorrect due to the added control-flow.
MachineBasicBlock::iterator AfterMI = MI;
++AfterMI;
for (auto I = Begin; I != AfterMI; I++) {
for (auto &MO : I->uses()) {
if (MO.isReg() && MO.isUse()) {
MRI.clearKillFlags(MO.getReg());
}
}
}
// To insert the loop we need to split the block. Move everything after this
// point to a new block, and insert a new empty block between the two.
MachineBasicBlock *LoopBB = MF.CreateMachineBasicBlock();
MachineBasicBlock *RemainderBB = MF.CreateMachineBasicBlock();
MachineFunction::iterator MBBI(MBB);
++MBBI;
MF.insert(MBBI, LoopBB);
MF.insert(MBBI, RemainderBB);
LoopBB->addSuccessor(LoopBB);
LoopBB->addSuccessor(RemainderBB);
// Move Begin to MI to the LoopBB, and the remainder of the block to
// RemainderBB.
RemainderBB->transferSuccessorsAndUpdatePHIs(&MBB);
RemainderBB->splice(RemainderBB->begin(), &MBB, End, MBB.end());
LoopBB->splice(LoopBB->begin(), &MBB, Begin, MBB.end());
MBB.addSuccessor(LoopBB);
// Update dominators. We know that MBB immediately dominates LoopBB, that
// LoopBB immediately dominates RemainderBB, and that RemainderBB immediately
// dominates all of the successors transferred to it from MBB that MBB used
// to properly dominate.
if (MDT) {
MDT->addNewBlock(LoopBB, &MBB);
MDT->addNewBlock(RemainderBB, LoopBB);
for (auto &Succ : RemainderBB->successors()) {
if (MDT->properlyDominates(&MBB, Succ)) {
MDT->changeImmediateDominator(Succ, RemainderBB);
}
}
}
emitLoadSRsrcFromVGPRLoop(TII, MRI, MBB, *LoopBB, DL, Rsrc);
// Restore the EXEC mask
MachineBasicBlock::iterator First = RemainderBB->begin();
BuildMI(*RemainderBB, First, DL, TII.get(MovExecOpc), Exec).addReg(SaveExec);
return LoopBB;
}
// Extract pointer from Rsrc and return a zero-value Rsrc replacement.
static std::tuple<unsigned, unsigned>
extractRsrcPtr(const SIInstrInfo &TII, MachineInstr &MI, MachineOperand &Rsrc) {
MachineBasicBlock &MBB = *MI.getParent();
MachineFunction &MF = *MBB.getParent();
MachineRegisterInfo &MRI = MF.getRegInfo();
// Extract the ptr from the resource descriptor.
unsigned RsrcPtr =
TII.buildExtractSubReg(MI, MRI, Rsrc, &AMDGPU::VReg_128RegClass,
AMDGPU::sub0_sub1, &AMDGPU::VReg_64RegClass);
// Create an empty resource descriptor
Register Zero64 = MRI.createVirtualRegister(&AMDGPU::SReg_64RegClass);
Register SRsrcFormatLo = MRI.createVirtualRegister(&AMDGPU::SGPR_32RegClass);
Register SRsrcFormatHi = MRI.createVirtualRegister(&AMDGPU::SGPR_32RegClass);
Register NewSRsrc = MRI.createVirtualRegister(&AMDGPU::SGPR_128RegClass);
uint64_t RsrcDataFormat = TII.getDefaultRsrcDataFormat();
// Zero64 = 0
BuildMI(MBB, MI, MI.getDebugLoc(), TII.get(AMDGPU::S_MOV_B64), Zero64)
.addImm(0);
// SRsrcFormatLo = RSRC_DATA_FORMAT{31-0}
BuildMI(MBB, MI, MI.getDebugLoc(), TII.get(AMDGPU::S_MOV_B32), SRsrcFormatLo)
.addImm(RsrcDataFormat & 0xFFFFFFFF);
// SRsrcFormatHi = RSRC_DATA_FORMAT{63-32}
BuildMI(MBB, MI, MI.getDebugLoc(), TII.get(AMDGPU::S_MOV_B32), SRsrcFormatHi)
.addImm(RsrcDataFormat >> 32);
// NewSRsrc = {Zero64, SRsrcFormat}
BuildMI(MBB, MI, MI.getDebugLoc(), TII.get(AMDGPU::REG_SEQUENCE), NewSRsrc)
.addReg(Zero64)
.addImm(AMDGPU::sub0_sub1)
.addReg(SRsrcFormatLo)
.addImm(AMDGPU::sub2)
.addReg(SRsrcFormatHi)
.addImm(AMDGPU::sub3);
return std::make_tuple(RsrcPtr, NewSRsrc);
}
MachineBasicBlock *
SIInstrInfo::legalizeOperands(MachineInstr &MI,
MachineDominatorTree *MDT) const {
MachineFunction &MF = *MI.getParent()->getParent();
MachineRegisterInfo &MRI = MF.getRegInfo();
MachineBasicBlock *CreatedBB = nullptr;
// Legalize VOP2
if (isVOP2(MI) || isVOPC(MI)) {
legalizeOperandsVOP2(MRI, MI);
return CreatedBB;
}
// Legalize VOP3
if (isVOP3(MI)) {
legalizeOperandsVOP3(MRI, MI);
return CreatedBB;
}
// Legalize SMRD
if (isSMRD(MI)) {
legalizeOperandsSMRD(MRI, MI);
return CreatedBB;
}
// Legalize FLAT
if (isFLAT(MI)) {
legalizeOperandsFLAT(MRI, MI);
return CreatedBB;
}
// Legalize REG_SEQUENCE and PHI
// The register class of the operands much be the same type as the register
// class of the output.
if (MI.getOpcode() == AMDGPU::PHI) {
const TargetRegisterClass *RC = nullptr, *SRC = nullptr, *VRC = nullptr;
for (unsigned i = 1, e = MI.getNumOperands(); i != e; i += 2) {
if (!MI.getOperand(i).isReg() || !MI.getOperand(i).getReg().isVirtual())
continue;
const TargetRegisterClass *OpRC =
MRI.getRegClass(MI.getOperand(i).getReg());
if (RI.hasVectorRegisters(OpRC)) {
VRC = OpRC;
} else {
SRC = OpRC;
}
}
// If any of the operands are VGPR registers, then they all most be
// otherwise we will create illegal VGPR->SGPR copies when legalizing
// them.
if (VRC || !RI.isSGPRClass(getOpRegClass(MI, 0))) {
if (!VRC) {
assert(SRC);
if (getOpRegClass(MI, 0) == &AMDGPU::VReg_1RegClass) {
VRC = &AMDGPU::VReg_1RegClass;
} else
VRC = RI.hasAGPRs(getOpRegClass(MI, 0))
? RI.getEquivalentAGPRClass(SRC)
: RI.getEquivalentVGPRClass(SRC);
} else {
VRC = RI.hasAGPRs(getOpRegClass(MI, 0))
? RI.getEquivalentAGPRClass(VRC)
: RI.getEquivalentVGPRClass(VRC);
}
RC = VRC;
} else {
RC = SRC;
}
// Update all the operands so they have the same type.
for (unsigned I = 1, E = MI.getNumOperands(); I != E; I += 2) {
MachineOperand &Op = MI.getOperand(I);
if (!Op.isReg() || !Op.getReg().isVirtual())
continue;
// MI is a PHI instruction.
MachineBasicBlock *InsertBB = MI.getOperand(I + 1).getMBB();
MachineBasicBlock::iterator Insert = InsertBB->getFirstTerminator();
// Avoid creating no-op copies with the same src and dst reg class. These
// confuse some of the machine passes.
legalizeGenericOperand(*InsertBB, Insert, RC, Op, MRI, MI.getDebugLoc());
}
}
// REG_SEQUENCE doesn't really require operand legalization, but if one has a
// VGPR dest type and SGPR sources, insert copies so all operands are
// VGPRs. This seems to help operand folding / the register coalescer.
if (MI.getOpcode() == AMDGPU::REG_SEQUENCE) {
MachineBasicBlock *MBB = MI.getParent();
const TargetRegisterClass *DstRC = getOpRegClass(MI, 0);
if (RI.hasVGPRs(DstRC)) {
// Update all the operands so they are VGPR register classes. These may
// not be the same register class because REG_SEQUENCE supports mixing
// subregister index types e.g. sub0_sub1 + sub2 + sub3
for (unsigned I = 1, E = MI.getNumOperands(); I != E; I += 2) {
MachineOperand &Op = MI.getOperand(I);
if (!Op.isReg() || !Op.getReg().isVirtual())
continue;
const TargetRegisterClass *OpRC = MRI.getRegClass(Op.getReg());
const TargetRegisterClass *VRC = RI.getEquivalentVGPRClass(OpRC);
if (VRC == OpRC)
continue;
legalizeGenericOperand(*MBB, MI, VRC, Op, MRI, MI.getDebugLoc());
Op.setIsKill();
}
}
return CreatedBB;
}
// Legalize INSERT_SUBREG
// src0 must have the same register class as dst
if (MI.getOpcode() == AMDGPU::INSERT_SUBREG) {
Register Dst = MI.getOperand(0).getReg();
Register Src0 = MI.getOperand(1).getReg();
const TargetRegisterClass *DstRC = MRI.getRegClass(Dst);
const TargetRegisterClass *Src0RC = MRI.getRegClass(Src0);
if (DstRC != Src0RC) {
MachineBasicBlock *MBB = MI.getParent();
MachineOperand &Op = MI.getOperand(1);
legalizeGenericOperand(*MBB, MI, DstRC, Op, MRI, MI.getDebugLoc());
}
return CreatedBB;
}
// Legalize SI_INIT_M0
if (MI.getOpcode() == AMDGPU::SI_INIT_M0) {
MachineOperand &Src = MI.getOperand(0);
if (Src.isReg() && RI.hasVectorRegisters(MRI.getRegClass(Src.getReg())))
Src.setReg(readlaneVGPRToSGPR(Src.getReg(), MI, MRI));
return CreatedBB;
}
// Legalize MIMG and MUBUF/MTBUF for shaders.
//
// Shaders only generate MUBUF/MTBUF instructions via intrinsics or via
// scratch memory access. In both cases, the legalization never involves
// conversion to the addr64 form.
if (isMIMG(MI) || (AMDGPU::isGraphics(MF.getFunction().getCallingConv()) &&
(isMUBUF(MI) || isMTBUF(MI)))) {
MachineOperand *SRsrc = getNamedOperand(MI, AMDGPU::OpName::srsrc);
if (SRsrc && !RI.isSGPRClass(MRI.getRegClass(SRsrc->getReg())))
CreatedBB = loadSRsrcFromVGPR(*this, MI, *SRsrc, MDT);
MachineOperand *SSamp = getNamedOperand(MI, AMDGPU::OpName::ssamp);
if (SSamp && !RI.isSGPRClass(MRI.getRegClass(SSamp->getReg())))
CreatedBB = loadSRsrcFromVGPR(*this, MI, *SSamp, MDT);
return CreatedBB;
}
// Legalize SI_CALL
if (MI.getOpcode() == AMDGPU::SI_CALL_ISEL) {
MachineOperand *Dest = &MI.getOperand(0);
if (!RI.isSGPRClass(MRI.getRegClass(Dest->getReg()))) {
// Move everything between ADJCALLSTACKUP and ADJCALLSTACKDOWN and
// following copies, we also need to move copies from and to physical
// registers into the loop block.
unsigned FrameSetupOpcode = getCallFrameSetupOpcode();
unsigned FrameDestroyOpcode = getCallFrameDestroyOpcode();
// Also move the copies to physical registers into the loop block
MachineBasicBlock &MBB = *MI.getParent();
MachineBasicBlock::iterator Start(&MI);
while (Start->getOpcode() != FrameSetupOpcode)
--Start;
MachineBasicBlock::iterator End(&MI);
while (End->getOpcode() != FrameDestroyOpcode)
++End;
// Also include following copies of the return value
++End;
while (End != MBB.end() && End->isCopy() && End->getOperand(1).isReg() &&
MI.definesRegister(End->getOperand(1).getReg()))
++End;
CreatedBB = loadSRsrcFromVGPR(*this, MI, *Dest, MDT, Start, End);
}
}
// Legalize MUBUF* instructions.
int RsrcIdx =
AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::srsrc);
if (RsrcIdx != -1) {
// We have an MUBUF instruction
MachineOperand *Rsrc = &MI.getOperand(RsrcIdx);
unsigned RsrcRC = get(MI.getOpcode()).OpInfo[RsrcIdx].RegClass;
if (RI.getCommonSubClass(MRI.getRegClass(Rsrc->getReg()),
RI.getRegClass(RsrcRC))) {
// The operands are legal.
// FIXME: We may need to legalize operands besided srsrc.
return CreatedBB;
}
// Legalize a VGPR Rsrc.
//
// If the instruction is _ADDR64, we can avoid a waterfall by extracting
// the base pointer from the VGPR Rsrc, adding it to the VAddr, then using
// a zero-value SRsrc.
//
// If the instruction is _OFFSET (both idxen and offen disabled), and we
// support ADDR64 instructions, we can convert to ADDR64 and do the same as
// above.
//
// Otherwise we are on non-ADDR64 hardware, and/or we have
// idxen/offen/bothen and we fall back to a waterfall loop.
MachineBasicBlock &MBB = *MI.getParent();
MachineOperand *VAddr = getNamedOperand(MI, AMDGPU::OpName::vaddr);
if (VAddr && AMDGPU::getIfAddr64Inst(MI.getOpcode()) != -1) {
// This is already an ADDR64 instruction so we need to add the pointer
// extracted from the resource descriptor to the current value of VAddr.
Register NewVAddrLo = MRI.createVirtualRegister(&AMDGPU::VGPR_32RegClass);
Register NewVAddrHi = MRI.createVirtualRegister(&AMDGPU::VGPR_32RegClass);
Register NewVAddr = MRI.createVirtualRegister(&AMDGPU::VReg_64RegClass);
const auto *BoolXExecRC = RI.getRegClass(AMDGPU::SReg_1_XEXECRegClassID);
Register CondReg0 = MRI.createVirtualRegister(BoolXExecRC);
Register CondReg1 = MRI.createVirtualRegister(BoolXExecRC);
unsigned RsrcPtr, NewSRsrc;
std::tie(RsrcPtr, NewSRsrc) = extractRsrcPtr(*this, MI, *Rsrc);
// NewVaddrLo = RsrcPtr:sub0 + VAddr:sub0
const DebugLoc &DL = MI.getDebugLoc();
BuildMI(MBB, MI, DL, get(AMDGPU::V_ADD_CO_U32_e64), NewVAddrLo)
.addDef(CondReg0)
.addReg(RsrcPtr, 0, AMDGPU::sub0)
.addReg(VAddr->getReg(), 0, AMDGPU::sub0)
.addImm(0);
// NewVaddrHi = RsrcPtr:sub1 + VAddr:sub1
BuildMI(MBB, MI, DL, get(AMDGPU::V_ADDC_U32_e64), NewVAddrHi)
.addDef(CondReg1, RegState::Dead)
.addReg(RsrcPtr, 0, AMDGPU::sub1)
.addReg(VAddr->getReg(), 0, AMDGPU::sub1)
.addReg(CondReg0, RegState::Kill)
.addImm(0);
// NewVaddr = {NewVaddrHi, NewVaddrLo}
BuildMI(MBB, MI, MI.getDebugLoc(), get(AMDGPU::REG_SEQUENCE), NewVAddr)
.addReg(NewVAddrLo)
.addImm(AMDGPU::sub0)
.addReg(NewVAddrHi)
.addImm(AMDGPU::sub1);
VAddr->setReg(NewVAddr);
Rsrc->setReg(NewSRsrc);
} else if (!VAddr && ST.hasAddr64()) {
// This instructions is the _OFFSET variant, so we need to convert it to
// ADDR64.
assert(ST.getGeneration() < AMDGPUSubtarget::VOLCANIC_ISLANDS &&
"FIXME: Need to emit flat atomics here");
unsigned RsrcPtr, NewSRsrc;
std::tie(RsrcPtr, NewSRsrc) = extractRsrcPtr(*this, MI, *Rsrc);
Register NewVAddr = MRI.createVirtualRegister(&AMDGPU::VReg_64RegClass);
MachineOperand *VData = getNamedOperand(MI, AMDGPU::OpName::vdata);
MachineOperand *Offset = getNamedOperand(MI, AMDGPU::OpName::offset);
MachineOperand *SOffset = getNamedOperand(MI, AMDGPU::OpName::soffset);
unsigned Addr64Opcode = AMDGPU::getAddr64Inst(MI.getOpcode());
// Atomics rith return have have an additional tied operand and are
// missing some of the special bits.
MachineOperand *VDataIn = getNamedOperand(MI, AMDGPU::OpName::vdata_in);
MachineInstr *Addr64;
if (!VDataIn) {
// Regular buffer load / store.
MachineInstrBuilder MIB =
BuildMI(MBB, MI, MI.getDebugLoc(), get(Addr64Opcode))
.add(*VData)
.addReg(NewVAddr)
.addReg(NewSRsrc)
.add(*SOffset)
.add(*Offset);
if (const MachineOperand *CPol =
getNamedOperand(MI, AMDGPU::OpName::cpol)) {
MIB.addImm(CPol->getImm());
}
if (const MachineOperand *TFE =
getNamedOperand(MI, AMDGPU::OpName::tfe)) {
MIB.addImm(TFE->getImm());
}
MIB.addImm(getNamedImmOperand(MI, AMDGPU::OpName::swz));
MIB.cloneMemRefs(MI);
Addr64 = MIB;
} else {
// Atomics with return.
Addr64 = BuildMI(MBB, MI, MI.getDebugLoc(), get(Addr64Opcode))
.add(*VData)
.add(*VDataIn)
.addReg(NewVAddr)
.addReg(NewSRsrc)
.add(*SOffset)
.add(*Offset)
.addImm(getNamedImmOperand(MI, AMDGPU::OpName::cpol))
.cloneMemRefs(MI);
}
MI.removeFromParent();
// NewVaddr = {NewVaddrHi, NewVaddrLo}
BuildMI(MBB, Addr64, Addr64->getDebugLoc(), get(AMDGPU::REG_SEQUENCE),
NewVAddr)
.addReg(RsrcPtr, 0, AMDGPU::sub0)
.addImm(AMDGPU::sub0)
.addReg(RsrcPtr, 0, AMDGPU::sub1)
.addImm(AMDGPU::sub1);
} else {
// This is another variant; legalize Rsrc with waterfall loop from VGPRs
// to SGPRs.
CreatedBB = loadSRsrcFromVGPR(*this, MI, *Rsrc, MDT);
return CreatedBB;
}
}
return CreatedBB;
}
MachineBasicBlock *SIInstrInfo::moveToVALU(MachineInstr &TopInst,
MachineDominatorTree *MDT) const {
SetVectorType Worklist;
Worklist.insert(&TopInst);
MachineBasicBlock *CreatedBB = nullptr;
MachineBasicBlock *CreatedBBTmp = nullptr;
while (!Worklist.empty()) {
MachineInstr &Inst = *Worklist.pop_back_val();
MachineBasicBlock *MBB = Inst.getParent();
MachineRegisterInfo &MRI = MBB->getParent()->getRegInfo();
unsigned Opcode = Inst.getOpcode();
unsigned NewOpcode = getVALUOp(Inst);
// Handle some special cases
switch (Opcode) {
default:
break;
case AMDGPU::S_ADD_U64_PSEUDO:
case AMDGPU::S_SUB_U64_PSEUDO:
splitScalar64BitAddSub(Worklist, Inst, MDT);
Inst.eraseFromParent();
continue;
case AMDGPU::S_ADD_I32:
case AMDGPU::S_SUB_I32: {
// FIXME: The u32 versions currently selected use the carry.
bool Changed;
std::tie(Changed, CreatedBBTmp) = moveScalarAddSub(Worklist, Inst, MDT);
if (CreatedBBTmp && TopInst.getParent() == CreatedBBTmp)
CreatedBB = CreatedBBTmp;
if (Changed)
continue;
// Default handling
break;
}
case AMDGPU::S_AND_B64:
splitScalar64BitBinaryOp(Worklist, Inst, AMDGPU::S_AND_B32, MDT);
Inst.eraseFromParent();
continue;
case AMDGPU::S_OR_B64:
splitScalar64BitBinaryOp(Worklist, Inst, AMDGPU::S_OR_B32, MDT);
Inst.eraseFromParent();
continue;
case AMDGPU::S_XOR_B64:
splitScalar64BitBinaryOp(Worklist, Inst, AMDGPU::S_XOR_B32, MDT);
Inst.eraseFromParent();
continue;
case AMDGPU::S_NAND_B64:
splitScalar64BitBinaryOp(Worklist, Inst, AMDGPU::S_NAND_B32, MDT);
Inst.eraseFromParent();
continue;
case AMDGPU::S_NOR_B64:
splitScalar64BitBinaryOp(Worklist, Inst, AMDGPU::S_NOR_B32, MDT);
Inst.eraseFromParent();
continue;
case AMDGPU::S_XNOR_B64:
if (ST.hasDLInsts())
splitScalar64BitBinaryOp(Worklist, Inst, AMDGPU::S_XNOR_B32, MDT);
else
splitScalar64BitXnor(Worklist, Inst, MDT);
Inst.eraseFromParent();
continue;
case AMDGPU::S_ANDN2_B64:
splitScalar64BitBinaryOp(Worklist, Inst, AMDGPU::S_ANDN2_B32, MDT);
Inst.eraseFromParent();
continue;
case AMDGPU::S_ORN2_B64:
splitScalar64BitBinaryOp(Worklist, Inst, AMDGPU::S_ORN2_B32, MDT);
Inst.eraseFromParent();
continue;
case AMDGPU::S_BREV_B64:
splitScalar64BitUnaryOp(Worklist, Inst, AMDGPU::S_BREV_B32, true);
Inst.eraseFromParent();
continue;
case AMDGPU::S_NOT_B64:
splitScalar64BitUnaryOp(Worklist, Inst, AMDGPU::S_NOT_B32);
Inst.eraseFromParent();
continue;
case AMDGPU::S_BCNT1_I32_B64:
splitScalar64BitBCNT(Worklist, Inst);
Inst.eraseFromParent();
continue;
case AMDGPU::S_BFE_I64:
splitScalar64BitBFE(Worklist, Inst);
Inst.eraseFromParent();
continue;
case AMDGPU::S_LSHL_B32:
if (ST.hasOnlyRevVALUShifts()) {
NewOpcode = AMDGPU::V_LSHLREV_B32_e64;
swapOperands(Inst);
}
break;
case AMDGPU::S_ASHR_I32:
if (ST.hasOnlyRevVALUShifts()) {
NewOpcode = AMDGPU::V_ASHRREV_I32_e64;
swapOperands(Inst);
}
break;
case AMDGPU::S_LSHR_B32:
if (ST.hasOnlyRevVALUShifts()) {
NewOpcode = AMDGPU::V_LSHRREV_B32_e64;
swapOperands(Inst);
}
break;
case AMDGPU::S_LSHL_B64:
if (ST.hasOnlyRevVALUShifts()) {
NewOpcode = AMDGPU::V_LSHLREV_B64_e64;
swapOperands(Inst);
}
break;
case AMDGPU::S_ASHR_I64:
if (ST.hasOnlyRevVALUShifts()) {
NewOpcode = AMDGPU::V_ASHRREV_I64_e64;
swapOperands(Inst);
}
break;
case AMDGPU::S_LSHR_B64:
if (ST.hasOnlyRevVALUShifts()) {
NewOpcode = AMDGPU::V_LSHRREV_B64_e64;
swapOperands(Inst);
}
break;
case AMDGPU::S_ABS_I32:
lowerScalarAbs(Worklist, Inst);
Inst.eraseFromParent();
continue;
case AMDGPU::S_CBRANCH_SCC0:
case AMDGPU::S_CBRANCH_SCC1:
// Clear unused bits of vcc
if (ST.isWave32())
BuildMI(*MBB, Inst, Inst.getDebugLoc(), get(AMDGPU::S_AND_B32),
AMDGPU::VCC_LO)
.addReg(AMDGPU::EXEC_LO)
.addReg(AMDGPU::VCC_LO);
else
BuildMI(*MBB, Inst, Inst.getDebugLoc(), get(AMDGPU::S_AND_B64),
AMDGPU::VCC)
.addReg(AMDGPU::EXEC)
.addReg(AMDGPU::VCC);
break;
case AMDGPU::S_BFE_U64:
case AMDGPU::S_BFM_B64:
llvm_unreachable("Moving this op to VALU not implemented");
case AMDGPU::S_PACK_LL_B32_B16:
case AMDGPU::S_PACK_LH_B32_B16:
case AMDGPU::S_PACK_HH_B32_B16:
movePackToVALU(Worklist, MRI, Inst);
Inst.eraseFromParent();
continue;
case AMDGPU::S_XNOR_B32:
lowerScalarXnor(Worklist, Inst);
Inst.eraseFromParent();
continue;
case AMDGPU::S_NAND_B32:
splitScalarNotBinop(Worklist, Inst, AMDGPU::S_AND_B32);
Inst.eraseFromParent();
continue;
case AMDGPU::S_NOR_B32:
splitScalarNotBinop(Worklist, Inst, AMDGPU::S_OR_B32);
Inst.eraseFromParent();
continue;
case AMDGPU::S_ANDN2_B32:
splitScalarBinOpN2(Worklist, Inst, AMDGPU::S_AND_B32);
Inst.eraseFromParent();
continue;
case AMDGPU::S_ORN2_B32:
splitScalarBinOpN2(Worklist, Inst, AMDGPU::S_OR_B32);
Inst.eraseFromParent();
continue;
// TODO: remove as soon as everything is ready
// to replace VGPR to SGPR copy with V_READFIRSTLANEs.
// S_ADD/SUB_CO_PSEUDO as well as S_UADDO/USUBO_PSEUDO
// can only be selected from the uniform SDNode.
case AMDGPU::S_ADD_CO_PSEUDO:
case AMDGPU::S_SUB_CO_PSEUDO: {
unsigned Opc = (Inst.getOpcode() == AMDGPU::S_ADD_CO_PSEUDO)
? AMDGPU::V_ADDC_U32_e64
: AMDGPU::V_SUBB_U32_e64;
const auto *CarryRC = RI.getRegClass(AMDGPU::SReg_1_XEXECRegClassID);
Register CarryInReg = Inst.getOperand(4).getReg();
if (!MRI.constrainRegClass(CarryInReg, CarryRC)) {
Register NewCarryReg = MRI.createVirtualRegister(CarryRC);
BuildMI(*MBB, &Inst, Inst.getDebugLoc(), get(AMDGPU::COPY), NewCarryReg)
.addReg(CarryInReg);
}
Register CarryOutReg = Inst.getOperand(1).getReg();
Register DestReg = MRI.createVirtualRegister(RI.getEquivalentVGPRClass(
MRI.getRegClass(Inst.getOperand(0).getReg())));
MachineInstr *CarryOp =
BuildMI(*MBB, &Inst, Inst.getDebugLoc(), get(Opc), DestReg)
.addReg(CarryOutReg, RegState::Define)
.add(Inst.getOperand(2))
.add(Inst.getOperand(3))
.addReg(CarryInReg)
.addImm(0);
CreatedBBTmp = legalizeOperands(*CarryOp);
if (CreatedBBTmp && TopInst.getParent() == CreatedBBTmp)
CreatedBB = CreatedBBTmp;
MRI.replaceRegWith(Inst.getOperand(0).getReg(), DestReg);
addUsersToMoveToVALUWorklist(DestReg, MRI, Worklist);
Inst.eraseFromParent();
}
continue;
case AMDGPU::S_UADDO_PSEUDO:
case AMDGPU::S_USUBO_PSEUDO: {
const DebugLoc &DL = Inst.getDebugLoc();
MachineOperand &Dest0 = Inst.getOperand(0);
MachineOperand &Dest1 = Inst.getOperand(1);
MachineOperand &Src0 = Inst.getOperand(2);
MachineOperand &Src1 = Inst.getOperand(3);
unsigned Opc = (Inst.getOpcode() == AMDGPU::S_UADDO_PSEUDO)
? AMDGPU::V_ADD_CO_U32_e64
: AMDGPU::V_SUB_CO_U32_e64;
const TargetRegisterClass *NewRC =
RI.getEquivalentVGPRClass(MRI.getRegClass(Dest0.getReg()));
Register DestReg = MRI.createVirtualRegister(NewRC);
MachineInstr *NewInstr = BuildMI(*MBB, &Inst, DL, get(Opc), DestReg)
.addReg(Dest1.getReg(), RegState::Define)
.add(Src0)
.add(Src1)
.addImm(0); // clamp bit
CreatedBBTmp = legalizeOperands(*NewInstr, MDT);
if (CreatedBBTmp && TopInst.getParent() == CreatedBBTmp)
CreatedBB = CreatedBBTmp;
MRI.replaceRegWith(Dest0.getReg(), DestReg);
addUsersToMoveToVALUWorklist(NewInstr->getOperand(0).getReg(), MRI,
Worklist);
Inst.eraseFromParent();
}
continue;
case AMDGPU::S_CSELECT_B32:
case AMDGPU::S_CSELECT_B64:
lowerSelect(Worklist, Inst, MDT);
Inst.eraseFromParent();
continue;
}
if (NewOpcode == AMDGPU::INSTRUCTION_LIST_END) {
// We cannot move this instruction to the VALU, so we should try to
// legalize its operands instead.
CreatedBBTmp = legalizeOperands(Inst, MDT);
if (CreatedBBTmp && TopInst.getParent() == CreatedBBTmp)
CreatedBB = CreatedBBTmp;
continue;
}
// Use the new VALU Opcode.
const MCInstrDesc &NewDesc = get(NewOpcode);
Inst.setDesc(NewDesc);
// Remove any references to SCC. Vector instructions can't read from it, and
// We're just about to add the implicit use / defs of VCC, and we don't want
// both.
for (unsigned i = Inst.getNumOperands() - 1; i > 0; --i) {
MachineOperand &Op = Inst.getOperand(i);
if (Op.isReg() && Op.getReg() == AMDGPU::SCC) {
// Only propagate through live-def of SCC.
if (Op.isDef() && !Op.isDead())
addSCCDefUsersToVALUWorklist(Op, Inst, Worklist);
if (Op.isUse())
addSCCDefsToVALUWorklist(Op, Worklist);
Inst.RemoveOperand(i);
}
}
if (Opcode == AMDGPU::S_SEXT_I32_I8 || Opcode == AMDGPU::S_SEXT_I32_I16) {
// We are converting these to a BFE, so we need to add the missing
// operands for the size and offset.
unsigned Size = (Opcode == AMDGPU::S_SEXT_I32_I8) ? 8 : 16;
Inst.addOperand(MachineOperand::CreateImm(0));
Inst.addOperand(MachineOperand::CreateImm(Size));
} else if (Opcode == AMDGPU::S_BCNT1_I32_B32) {
// The VALU version adds the second operand to the result, so insert an
// extra 0 operand.
Inst.addOperand(MachineOperand::CreateImm(0));
}
Inst.addImplicitDefUseOperands(*Inst.getParent()->getParent());
fixImplicitOperands(Inst);
if (Opcode == AMDGPU::S_BFE_I32 || Opcode == AMDGPU::S_BFE_U32) {
const MachineOperand &OffsetWidthOp = Inst.getOperand(2);
// If we need to move this to VGPRs, we need to unpack the second operand
// back into the 2 separate ones for bit offset and width.
assert(OffsetWidthOp.isImm() &&
"Scalar BFE is only implemented for constant width and offset");
uint32_t Imm = OffsetWidthOp.getImm();
uint32_t Offset = Imm & 0x3f; // Extract bits [5:0].
uint32_t BitWidth = (Imm & 0x7f0000) >> 16; // Extract bits [22:16].
Inst.RemoveOperand(2); // Remove old immediate.
Inst.addOperand(MachineOperand::CreateImm(Offset));
Inst.addOperand(MachineOperand::CreateImm(BitWidth));
}
bool HasDst = Inst.getOperand(0).isReg() && Inst.getOperand(0).isDef();
unsigned NewDstReg = AMDGPU::NoRegister;
if (HasDst) {
Register DstReg = Inst.getOperand(0).getReg();
if (DstReg.isPhysical())
continue;
// Update the destination register class.
const TargetRegisterClass *NewDstRC = getDestEquivalentVGPRClass(Inst);
if (!NewDstRC)
continue;
if (Inst.isCopy() && Inst.getOperand(1).getReg().isVirtual() &&
NewDstRC == RI.getRegClassForReg(MRI, Inst.getOperand(1).getReg())) {
// Instead of creating a copy where src and dst are the same register
// class, we just replace all uses of dst with src. These kinds of
// copies interfere with the heuristics MachineSink uses to decide
// whether or not to split a critical edge. Since the pass assumes
// that copies will end up as machine instructions and not be
// eliminated.
addUsersToMoveToVALUWorklist(DstReg, MRI, Worklist);
MRI.replaceRegWith(DstReg, Inst.getOperand(1).getReg());
MRI.clearKillFlags(Inst.getOperand(1).getReg());
Inst.getOperand(0).setReg(DstReg);
// Make sure we don't leave around a dead VGPR->SGPR copy. Normally
// these are deleted later, but at -O0 it would leave a suspicious
// looking illegal copy of an undef register.
for (unsigned I = Inst.getNumOperands() - 1; I != 0; --I)
Inst.RemoveOperand(I);
Inst.setDesc(get(AMDGPU::IMPLICIT_DEF));
continue;
}
NewDstReg = MRI.createVirtualRegister(NewDstRC);
MRI.replaceRegWith(DstReg, NewDstReg);
}
// Legalize the operands
CreatedBBTmp = legalizeOperands(Inst, MDT);
if (CreatedBBTmp && TopInst.getParent() == CreatedBBTmp)
CreatedBB = CreatedBBTmp;
if (HasDst)
addUsersToMoveToVALUWorklist(NewDstReg, MRI, Worklist);
}
return CreatedBB;
}
// Add/sub require special handling to deal with carry outs.
std::pair<bool, MachineBasicBlock *>
SIInstrInfo::moveScalarAddSub(SetVectorType &Worklist, MachineInstr &Inst,
MachineDominatorTree *MDT) const {
if (ST.hasAddNoCarry()) {
// Assume there is no user of scc since we don't select this in that case.
// Since scc isn't used, it doesn't really matter if the i32 or u32 variant
// is used.
MachineBasicBlock &MBB = *Inst.getParent();
MachineRegisterInfo &MRI = MBB.getParent()->getRegInfo();
Register OldDstReg = Inst.getOperand(0).getReg();
Register ResultReg = MRI.createVirtualRegister(&AMDGPU::VGPR_32RegClass);
unsigned Opc = Inst.getOpcode();
assert(Opc == AMDGPU::S_ADD_I32 || Opc == AMDGPU::S_SUB_I32);
unsigned NewOpc = Opc == AMDGPU::S_ADD_I32 ?
AMDGPU::V_ADD_U32_e64 : AMDGPU::V_SUB_U32_e64;
assert(Inst.getOperand(3).getReg() == AMDGPU::SCC);
Inst.RemoveOperand(3);
Inst.setDesc(get(NewOpc));
Inst.addOperand(MachineOperand::CreateImm(0)); // clamp bit
Inst.addImplicitDefUseOperands(*MBB.getParent());
MRI.replaceRegWith(OldDstReg, ResultReg);
MachineBasicBlock *NewBB = legalizeOperands(Inst, MDT);
addUsersToMoveToVALUWorklist(ResultReg, MRI, Worklist);
return std::make_pair(true, NewBB);
}
return std::make_pair(false, nullptr);
}
void SIInstrInfo::lowerSelect(SetVectorType &Worklist, MachineInstr &Inst,
MachineDominatorTree *MDT) const {
MachineBasicBlock &MBB = *Inst.getParent();
MachineRegisterInfo &MRI = MBB.getParent()->getRegInfo();
MachineBasicBlock::iterator MII = Inst;
DebugLoc DL = Inst.getDebugLoc();
MachineOperand &Dest = Inst.getOperand(0);
MachineOperand &Src0 = Inst.getOperand(1);
MachineOperand &Src1 = Inst.getOperand(2);
MachineOperand &Cond = Inst.getOperand(3);
Register SCCSource = Cond.getReg();
// Find SCC def, and if that is a copy (SCC = COPY reg) then use reg instead.
if (!Cond.isUndef()) {
for (MachineInstr &CandI :
make_range(std::next(MachineBasicBlock::reverse_iterator(Inst)),
Inst.getParent()->rend())) {
if (CandI.findRegisterDefOperandIdx(AMDGPU::SCC, false, false, &RI) !=
-1) {
if (CandI.isCopy() && CandI.getOperand(0).getReg() == AMDGPU::SCC) {
SCCSource = CandI.getOperand(1).getReg();
}
break;
}
}
}
// If this is a trivial select where the condition is effectively not SCC
// (SCCSource is a source of copy to SCC), then the select is semantically
// equivalent to copying SCCSource. Hence, there is no need to create
// V_CNDMASK, we can just use that and bail out.
if ((SCCSource != AMDGPU::SCC) && Src0.isImm() && (Src0.getImm() == -1) &&
Src1.isImm() && (Src1.getImm() == 0)) {
MRI.replaceRegWith(Dest.getReg(), SCCSource);
return;
}
const TargetRegisterClass *TC = ST.getWavefrontSize() == 64
? &AMDGPU::SReg_64_XEXECRegClass
: &AMDGPU::SReg_32_XM0_XEXECRegClass;
Register CopySCC = MRI.createVirtualRegister(TC);
if (SCCSource == AMDGPU::SCC) {
// Insert a trivial select instead of creating a copy, because a copy from
// SCC would semantically mean just copying a single bit, but we may need
// the result to be a vector condition mask that needs preserving.
unsigned Opcode = (ST.getWavefrontSize() == 64) ? AMDGPU::S_CSELECT_B64
: AMDGPU::S_CSELECT_B32;
auto NewSelect =
BuildMI(MBB, MII, DL, get(Opcode), CopySCC).addImm(-1).addImm(0);
NewSelect->getOperand(3).setIsUndef(Cond.isUndef());
} else {
BuildMI(MBB, MII, DL, get(AMDGPU::COPY), CopySCC).addReg(SCCSource);
}
Register ResultReg = MRI.createVirtualRegister(&AMDGPU::VGPR_32RegClass);
auto UpdatedInst =
BuildMI(MBB, MII, DL, get(AMDGPU::V_CNDMASK_B32_e64), ResultReg)
.addImm(0)
.add(Src1) // False
.addImm(0)
.add(Src0) // True
.addReg(CopySCC);
MRI.replaceRegWith(Dest.getReg(), ResultReg);
legalizeOperands(*UpdatedInst, MDT);
addUsersToMoveToVALUWorklist(ResultReg, MRI, Worklist);
}
void SIInstrInfo::lowerScalarAbs(SetVectorType &Worklist,
MachineInstr &Inst) const {
MachineBasicBlock &MBB = *Inst.getParent();
MachineRegisterInfo &MRI = MBB.getParent()->getRegInfo();
MachineBasicBlock::iterator MII = Inst;
DebugLoc DL = Inst.getDebugLoc();
MachineOperand &Dest = Inst.getOperand(0);
MachineOperand &Src = Inst.getOperand(1);
Register TmpReg = MRI.createVirtualRegister(&AMDGPU::VGPR_32RegClass);
Register ResultReg = MRI.createVirtualRegister(&AMDGPU::VGPR_32RegClass);
unsigned SubOp = ST.hasAddNoCarry() ?
AMDGPU::V_SUB_U32_e32 : AMDGPU::V_SUB_CO_U32_e32;
BuildMI(MBB, MII, DL, get(SubOp), TmpReg)
.addImm(0)
.addReg(Src.getReg());
BuildMI(MBB, MII, DL, get(AMDGPU::V_MAX_I32_e64), ResultReg)
.addReg(Src.getReg())
.addReg(TmpReg);
MRI.replaceRegWith(Dest.getReg(), ResultReg);
addUsersToMoveToVALUWorklist(ResultReg, MRI, Worklist);
}
void SIInstrInfo::lowerScalarXnor(SetVectorType &Worklist,
MachineInstr &Inst) const {
MachineBasicBlock &MBB = *Inst.getParent();
MachineRegisterInfo &MRI = MBB.getParent()->getRegInfo();
MachineBasicBlock::iterator MII = Inst;
const DebugLoc &DL = Inst.getDebugLoc();
MachineOperand &Dest = Inst.getOperand(0);
MachineOperand &Src0 = Inst.getOperand(1);
MachineOperand &Src1 = Inst.getOperand(2);
if (ST.hasDLInsts()) {
Register NewDest = MRI.createVirtualRegister(&AMDGPU::VGPR_32RegClass);
legalizeGenericOperand(MBB, MII, &AMDGPU::VGPR_32RegClass, Src0, MRI, DL);
legalizeGenericOperand(MBB, MII, &AMDGPU::VGPR_32RegClass, Src1, MRI, DL);
BuildMI(MBB, MII, DL, get(AMDGPU::V_XNOR_B32_e64), NewDest)
.add(Src0)
.add(Src1);
MRI.replaceRegWith(Dest.getReg(), NewDest);
addUsersToMoveToVALUWorklist(NewDest, MRI, Worklist);
} else {
// Using the identity !(x ^ y) == (!x ^ y) == (x ^ !y), we can
// invert either source and then perform the XOR. If either source is a
// scalar register, then we can leave the inversion on the scalar unit to
// acheive a better distrubution of scalar and vector instructions.
bool Src0IsSGPR = Src0.isReg() &&
RI.isSGPRClass(MRI.getRegClass(Src0.getReg()));
bool Src1IsSGPR = Src1.isReg() &&
RI.isSGPRClass(MRI.getRegClass(Src1.getReg()));
MachineInstr *Xor;
Register Temp = MRI.createVirtualRegister(&AMDGPU::SReg_32RegClass);
Register NewDest = MRI.createVirtualRegister(&AMDGPU::SReg_32RegClass);
// Build a pair of scalar instructions and add them to the work list.
// The next iteration over the work list will lower these to the vector
// unit as necessary.
if (Src0IsSGPR) {
BuildMI(MBB, MII, DL, get(AMDGPU::S_NOT_B32), Temp).add(Src0);
Xor = BuildMI(MBB, MII, DL, get(AMDGPU::S_XOR_B32), NewDest)
.addReg(Temp)
.add(Src1);
} else if (Src1IsSGPR) {
BuildMI(MBB, MII, DL, get(AMDGPU::S_NOT_B32), Temp).add(Src1);
Xor = BuildMI(MBB, MII, DL, get(AMDGPU::S_XOR_B32), NewDest)
.add(Src0)
.addReg(Temp);
} else {
Xor = BuildMI(MBB, MII, DL, get(AMDGPU::S_XOR_B32), Temp)
.add(Src0)
.add(Src1);
MachineInstr *Not =
BuildMI(MBB, MII, DL, get(AMDGPU::S_NOT_B32), NewDest).addReg(Temp);
Worklist.insert(Not);
}
MRI.replaceRegWith(Dest.getReg(), NewDest);
Worklist.insert(Xor);
addUsersToMoveToVALUWorklist(NewDest, MRI, Worklist);
}
}
void SIInstrInfo::splitScalarNotBinop(SetVectorType &Worklist,
MachineInstr &Inst,
unsigned Opcode) const {
MachineBasicBlock &MBB = *Inst.getParent();
MachineRegisterInfo &MRI = MBB.getParent()->getRegInfo();
MachineBasicBlock::iterator MII = Inst;
const DebugLoc &DL = Inst.getDebugLoc();
MachineOperand &Dest = Inst.getOperand(0);
MachineOperand &Src0 = Inst.getOperand(1);
MachineOperand &Src1 = Inst.getOperand(2);
Register NewDest = MRI.createVirtualRegister(&AMDGPU::SReg_32RegClass);
Register Interm = MRI.createVirtualRegister(&AMDGPU::SReg_32RegClass);
MachineInstr &Op = *BuildMI(MBB, MII, DL, get(Opcode), Interm)
.add(Src0)
.add(Src1);
MachineInstr &Not = *BuildMI(MBB, MII, DL, get(AMDGPU::S_NOT_B32), NewDest)
.addReg(Interm);
Worklist.insert(&Op);
Worklist.insert(&Not);
MRI.replaceRegWith(Dest.getReg(), NewDest);
addUsersToMoveToVALUWorklist(NewDest, MRI, Worklist);
}
void SIInstrInfo::splitScalarBinOpN2(SetVectorType& Worklist,
MachineInstr &Inst,
unsigned Opcode) const {
MachineBasicBlock &MBB = *Inst.getParent();
MachineRegisterInfo &MRI = MBB.getParent()->getRegInfo();
MachineBasicBlock::iterator MII = Inst;
const DebugLoc &DL = Inst.getDebugLoc();
MachineOperand &Dest = Inst.getOperand(0);
MachineOperand &Src0 = Inst.getOperand(1);
MachineOperand &Src1 = Inst.getOperand(2);
Register NewDest = MRI.createVirtualRegister(&AMDGPU::SReg_32_XM0RegClass);
Register Interm = MRI.createVirtualRegister(&AMDGPU::SReg_32_XM0RegClass);
MachineInstr &Not = *BuildMI(MBB, MII, DL, get(AMDGPU::S_NOT_B32), Interm)
.add(Src1);
MachineInstr &Op = *BuildMI(MBB, MII, DL, get(Opcode), NewDest)
.add(Src0)
.addReg(Interm);
Worklist.insert(&Not);
Worklist.insert(&Op);
MRI.replaceRegWith(Dest.getReg(), NewDest);
addUsersToMoveToVALUWorklist(NewDest, MRI, Worklist);
}
void SIInstrInfo::splitScalar64BitUnaryOp(
SetVectorType &Worklist, MachineInstr &Inst,
unsigned Opcode, bool Swap) const {
MachineBasicBlock &MBB = *Inst.getParent();
MachineRegisterInfo &MRI = MBB.getParent()->getRegInfo();
MachineOperand &Dest = Inst.getOperand(0);
MachineOperand &Src0 = Inst.getOperand(1);
DebugLoc DL = Inst.getDebugLoc();
MachineBasicBlock::iterator MII = Inst;
const MCInstrDesc &InstDesc = get(Opcode);
const TargetRegisterClass *Src0RC = Src0.isReg() ?
MRI.getRegClass(Src0.getReg()) :
&AMDGPU::SGPR_32RegClass;
const TargetRegisterClass *Src0SubRC = RI.getSubRegClass(Src0RC, AMDGPU::sub0);
MachineOperand SrcReg0Sub0 = buildExtractSubRegOrImm(MII, MRI, Src0, Src0RC,
AMDGPU::sub0, Src0SubRC);
const TargetRegisterClass *DestRC = MRI.getRegClass(Dest.getReg());
const TargetRegisterClass *NewDestRC = RI.getEquivalentVGPRClass(DestRC);
const TargetRegisterClass *NewDestSubRC = RI.getSubRegClass(NewDestRC, AMDGPU::sub0);
Register DestSub0 = MRI.createVirtualRegister(NewDestSubRC);
MachineInstr &LoHalf = *BuildMI(MBB, MII, DL, InstDesc, DestSub0).add(SrcReg0Sub0);
MachineOperand SrcReg0Sub1 = buildExtractSubRegOrImm(MII, MRI, Src0, Src0RC,
AMDGPU::sub1, Src0SubRC);
Register DestSub1 = MRI.createVirtualRegister(NewDestSubRC);
MachineInstr &HiHalf = *BuildMI(MBB, MII, DL, InstDesc, DestSub1).add(SrcReg0Sub1);
if (Swap)
std::swap(DestSub0, DestSub1);
Register FullDestReg = MRI.createVirtualRegister(NewDestRC);
BuildMI(MBB, MII, DL, get(TargetOpcode::REG_SEQUENCE), FullDestReg)
.addReg(DestSub0)
.addImm(AMDGPU::sub0)
.addReg(DestSub1)
.addImm(AMDGPU::sub1);
MRI.replaceRegWith(Dest.getReg(), FullDestReg);
Worklist.insert(&LoHalf);
Worklist.insert(&HiHalf);
// We don't need to legalizeOperands here because for a single operand, src0
// will support any kind of input.
// Move all users of this moved value.
addUsersToMoveToVALUWorklist(FullDestReg, MRI, Worklist);
}
void SIInstrInfo::splitScalar64BitAddSub(SetVectorType &Worklist,
MachineInstr &Inst,
MachineDominatorTree *MDT) const {
bool IsAdd = (Inst.getOpcode() == AMDGPU::S_ADD_U64_PSEUDO);
MachineBasicBlock &MBB = *Inst.getParent();
MachineRegisterInfo &MRI = MBB.getParent()->getRegInfo();
const auto *CarryRC = RI.getRegClass(AMDGPU::SReg_1_XEXECRegClassID);
Register FullDestReg = MRI.createVirtualRegister(&AMDGPU::VReg_64RegClass);
Register DestSub0 = MRI.createVirtualRegister(&AMDGPU::VGPR_32RegClass);
Register DestSub1 = MRI.createVirtualRegister(&AMDGPU::VGPR_32RegClass);
Register CarryReg = MRI.createVirtualRegister(CarryRC);
Register DeadCarryReg = MRI.createVirtualRegister(CarryRC);
MachineOperand &Dest = Inst.getOperand(0);
MachineOperand &Src0 = Inst.getOperand(1);
MachineOperand &Src1 = Inst.getOperand(2);
const DebugLoc &DL = Inst.getDebugLoc();
MachineBasicBlock::iterator MII = Inst;
const TargetRegisterClass *Src0RC = MRI.getRegClass(Src0.getReg());
const TargetRegisterClass *Src1RC = MRI.getRegClass(Src1.getReg());
const TargetRegisterClass *Src0SubRC = RI.getSubRegClass(Src0RC, AMDGPU::sub0);
const TargetRegisterClass *Src1SubRC = RI.getSubRegClass(Src1RC, AMDGPU::sub0);
MachineOperand SrcReg0Sub0 = buildExtractSubRegOrImm(MII, MRI, Src0, Src0RC,
AMDGPU::sub0, Src0SubRC);
MachineOperand SrcReg1Sub0 = buildExtractSubRegOrImm(MII, MRI, Src1, Src1RC,
AMDGPU::sub0, Src1SubRC);
MachineOperand SrcReg0Sub1 = buildExtractSubRegOrImm(MII, MRI, Src0, Src0RC,
AMDGPU::sub1, Src0SubRC);
MachineOperand SrcReg1Sub1 = buildExtractSubRegOrImm(MII, MRI, Src1, Src1RC,
AMDGPU::sub1, Src1SubRC);
unsigned LoOpc = IsAdd ? AMDGPU::V_ADD_CO_U32_e64 : AMDGPU::V_SUB_CO_U32_e64;
MachineInstr *LoHalf =
BuildMI(MBB, MII, DL, get(LoOpc), DestSub0)
.addReg(CarryReg, RegState::Define)
.add(SrcReg0Sub0)
.add(SrcReg1Sub0)
.addImm(0); // clamp bit
unsigned HiOpc = IsAdd ? AMDGPU::V_ADDC_U32_e64 : AMDGPU::V_SUBB_U32_e64;
MachineInstr *HiHalf =
BuildMI(MBB, MII, DL, get(HiOpc), DestSub1)
.addReg(DeadCarryReg, RegState::Define | RegState::Dead)
.add(SrcReg0Sub1)
.add(SrcReg1Sub1)
.addReg(CarryReg, RegState::Kill)
.addImm(0); // clamp bit
BuildMI(MBB, MII, DL, get(TargetOpcode::REG_SEQUENCE), FullDestReg)
.addReg(DestSub0)
.addImm(AMDGPU::sub0)
.addReg(DestSub1)
.addImm(AMDGPU::sub1);
MRI.replaceRegWith(Dest.getReg(), FullDestReg);
// Try to legalize the operands in case we need to swap the order to keep it
// valid.
legalizeOperands(*LoHalf, MDT);
legalizeOperands(*HiHalf, MDT);
// Move all users of this moved vlaue.
addUsersToMoveToVALUWorklist(FullDestReg, MRI, Worklist);
}
void SIInstrInfo::splitScalar64BitBinaryOp(SetVectorType &Worklist,
MachineInstr &Inst, unsigned Opcode,
MachineDominatorTree *MDT) const {
MachineBasicBlock &MBB = *Inst.getParent();
MachineRegisterInfo &MRI = MBB.getParent()->getRegInfo();
MachineOperand &Dest = Inst.getOperand(0);
MachineOperand &Src0 = Inst.getOperand(1);
MachineOperand &Src1 = Inst.getOperand(2);
DebugLoc DL = Inst.getDebugLoc();
MachineBasicBlock::iterator MII = Inst;
const MCInstrDesc &InstDesc = get(Opcode);
const TargetRegisterClass *Src0RC = Src0.isReg() ?
MRI.getRegClass(Src0.getReg()) :
&AMDGPU::SGPR_32RegClass;
const TargetRegisterClass *Src0SubRC = RI.getSubRegClass(Src0RC, AMDGPU::sub0);
const TargetRegisterClass *Src1RC = Src1.isReg() ?
MRI.getRegClass(Src1.getReg()) :
&AMDGPU::SGPR_32RegClass;
const TargetRegisterClass *Src1SubRC = RI.getSubRegClass(Src1RC, AMDGPU::sub0);
MachineOperand SrcReg0Sub0 = buildExtractSubRegOrImm(MII, MRI, Src0, Src0RC,
AMDGPU::sub0, Src0SubRC);
MachineOperand SrcReg1Sub0 = buildExtractSubRegOrImm(MII, MRI, Src1, Src1RC,
AMDGPU::sub0, Src1SubRC);
MachineOperand SrcReg0Sub1 = buildExtractSubRegOrImm(MII, MRI, Src0, Src0RC,
AMDGPU::sub1, Src0SubRC);
MachineOperand SrcReg1Sub1 = buildExtractSubRegOrImm(MII, MRI, Src1, Src1RC,
AMDGPU::sub1, Src1SubRC);
const TargetRegisterClass *DestRC = MRI.getRegClass(Dest.getReg());
const TargetRegisterClass *NewDestRC = RI.getEquivalentVGPRClass(DestRC);
const TargetRegisterClass *NewDestSubRC = RI.getSubRegClass(NewDestRC, AMDGPU::sub0);
Register DestSub0 = MRI.createVirtualRegister(NewDestSubRC);
MachineInstr &LoHalf = *BuildMI(MBB, MII, DL, InstDesc, DestSub0)
.add(SrcReg0Sub0)
.add(SrcReg1Sub0);
Register DestSub1 = MRI.createVirtualRegister(NewDestSubRC);
MachineInstr &HiHalf = *BuildMI(MBB, MII, DL, InstDesc, DestSub1)
.add(SrcReg0Sub1)
.add(SrcReg1Sub1);
Register FullDestReg = MRI.createVirtualRegister(NewDestRC);
BuildMI(MBB, MII, DL, get(TargetOpcode::REG_SEQUENCE), FullDestReg)
.addReg(DestSub0)
.addImm(AMDGPU::sub0)
.addReg(DestSub1)
.addImm(AMDGPU::sub1);
MRI.replaceRegWith(Dest.getReg(), FullDestReg);
Worklist.insert(&LoHalf);
Worklist.insert(&HiHalf);
// Move all users of this moved vlaue.
addUsersToMoveToVALUWorklist(FullDestReg, MRI, Worklist);
}
void SIInstrInfo::splitScalar64BitXnor(SetVectorType &Worklist,
MachineInstr &Inst,
MachineDominatorTree *MDT) const {
MachineBasicBlock &MBB = *Inst.getParent();
MachineRegisterInfo &MRI = MBB.getParent()->getRegInfo();
MachineOperand &Dest = Inst.getOperand(0);
MachineOperand &Src0 = Inst.getOperand(1);
MachineOperand &Src1 = Inst.getOperand(2);
const DebugLoc &DL = Inst.getDebugLoc();
MachineBasicBlock::iterator MII = Inst;
const TargetRegisterClass *DestRC = MRI.getRegClass(Dest.getReg());
Register Interm = MRI.createVirtualRegister(&AMDGPU::SReg_64RegClass);
MachineOperand* Op0;
MachineOperand* Op1;
if (Src0.isReg() && RI.isSGPRReg(MRI, Src0.getReg())) {
Op0 = &Src0;
Op1 = &Src1;
} else {
Op0 = &Src1;
Op1 = &Src0;
}
BuildMI(MBB, MII, DL, get(AMDGPU::S_NOT_B64), Interm)
.add(*Op0);
Register NewDest = MRI.createVirtualRegister(DestRC);
MachineInstr &Xor = *BuildMI(MBB, MII, DL, get(AMDGPU::S_XOR_B64), NewDest)
.addReg(Interm)
.add(*Op1);
MRI.replaceRegWith(Dest.getReg(), NewDest);
Worklist.insert(&Xor);
}
void SIInstrInfo::splitScalar64BitBCNT(
SetVectorType &Worklist, MachineInstr &Inst) const {
MachineBasicBlock &MBB = *Inst.getParent();
MachineRegisterInfo &MRI = MBB.getParent()->getRegInfo();
MachineBasicBlock::iterator MII = Inst;
const DebugLoc &DL = Inst.getDebugLoc();
MachineOperand &Dest = Inst.getOperand(0);
MachineOperand &Src = Inst.getOperand(1);
const MCInstrDesc &InstDesc = get(AMDGPU::V_BCNT_U32_B32_e64);
const TargetRegisterClass *SrcRC = Src.isReg() ?
MRI.getRegClass(Src.getReg()) :
&AMDGPU::SGPR_32RegClass;
Register MidReg = MRI.createVirtualRegister(&AMDGPU::VGPR_32RegClass);
Register ResultReg = MRI.createVirtualRegister(&AMDGPU::VGPR_32RegClass);
const TargetRegisterClass *SrcSubRC = RI.getSubRegClass(SrcRC, AMDGPU::sub0);
MachineOperand SrcRegSub0 = buildExtractSubRegOrImm(MII, MRI, Src, SrcRC,
AMDGPU::sub0, SrcSubRC);
MachineOperand SrcRegSub1 = buildExtractSubRegOrImm(MII, MRI, Src, SrcRC,
AMDGPU::sub1, SrcSubRC);
BuildMI(MBB, MII, DL, InstDesc, MidReg).add(SrcRegSub0).addImm(0);
BuildMI(MBB, MII, DL, InstDesc, ResultReg).add(SrcRegSub1).addReg(MidReg);
MRI.replaceRegWith(Dest.getReg(), ResultReg);
// We don't need to legalize operands here. src0 for etiher instruction can be
// an SGPR, and the second input is unused or determined here.
addUsersToMoveToVALUWorklist(ResultReg, MRI, Worklist);
}
void SIInstrInfo::splitScalar64BitBFE(SetVectorType &Worklist,
MachineInstr &Inst) const {
MachineBasicBlock &MBB = *Inst.getParent();
MachineRegisterInfo &MRI = MBB.getParent()->getRegInfo();
MachineBasicBlock::iterator MII = Inst;
const DebugLoc &DL = Inst.getDebugLoc();
MachineOperand &Dest = Inst.getOperand(0);
uint32_t Imm = Inst.getOperand(2).getImm();
uint32_t Offset = Imm & 0x3f; // Extract bits [5:0].
uint32_t BitWidth = (Imm & 0x7f0000) >> 16; // Extract bits [22:16].
(void) Offset;
// Only sext_inreg cases handled.
assert(Inst.getOpcode() == AMDGPU::S_BFE_I64 && BitWidth <= 32 &&
Offset == 0 && "Not implemented");
if (BitWidth < 32) {
Register MidRegLo = MRI.createVirtualRegister(&AMDGPU::VGPR_32RegClass);
Register MidRegHi = MRI.createVirtualRegister(&AMDGPU::VGPR_32RegClass);
Register ResultReg = MRI.createVirtualRegister(&AMDGPU::VReg_64RegClass);
BuildMI(MBB, MII, DL, get(AMDGPU::V_BFE_I32_e64), MidRegLo)
.addReg(Inst.getOperand(1).getReg(), 0, AMDGPU::sub0)
.addImm(0)
.addImm(BitWidth);
BuildMI(MBB, MII, DL, get(AMDGPU::V_ASHRREV_I32_e32), MidRegHi)
.addImm(31)
.addReg(MidRegLo);
BuildMI(MBB, MII, DL, get(TargetOpcode::REG_SEQUENCE), ResultReg)
.addReg(MidRegLo)
.addImm(AMDGPU::sub0)
.addReg(MidRegHi)
.addImm(AMDGPU::sub1);
MRI.replaceRegWith(Dest.getReg(), ResultReg);
addUsersToMoveToVALUWorklist(ResultReg, MRI, Worklist);
return;
}
MachineOperand &Src = Inst.getOperand(1);
Register TmpReg = MRI.createVirtualRegister(&AMDGPU::VGPR_32RegClass);
Register ResultReg = MRI.createVirtualRegister(&AMDGPU::VReg_64RegClass);
BuildMI(MBB, MII, DL, get(AMDGPU::V_ASHRREV_I32_e64), TmpReg)
.addImm(31)
.addReg(Src.getReg(), 0, AMDGPU::sub0);
BuildMI(MBB, MII, DL, get(TargetOpcode::REG_SEQUENCE), ResultReg)
.addReg(Src.getReg(), 0, AMDGPU::sub0)
.addImm(AMDGPU::sub0)
.addReg(TmpReg)
.addImm(AMDGPU::sub1);
MRI.replaceRegWith(Dest.getReg(), ResultReg);
addUsersToMoveToVALUWorklist(ResultReg, MRI, Worklist);
}
void SIInstrInfo::addUsersToMoveToVALUWorklist(
Register DstReg,
MachineRegisterInfo &MRI,
SetVectorType &Worklist) const {
for (MachineRegisterInfo::use_iterator I = MRI.use_begin(DstReg),
E = MRI.use_end(); I != E;) {
MachineInstr &UseMI = *I->getParent();
unsigned OpNo = 0;
switch (UseMI.getOpcode()) {
case AMDGPU::COPY:
case AMDGPU::WQM:
case AMDGPU::SOFT_WQM:
case AMDGPU::STRICT_WWM:
case AMDGPU::STRICT_WQM:
case AMDGPU::REG_SEQUENCE:
case AMDGPU::PHI:
case AMDGPU::INSERT_SUBREG:
break;
default:
OpNo = I.getOperandNo();
break;
}
if (!RI.hasVectorRegisters(getOpRegClass(UseMI, OpNo))) {
Worklist.insert(&UseMI);
do {
++I;
} while (I != E && I->getParent() == &UseMI);
} else {
++I;
}
}
}
void SIInstrInfo::movePackToVALU(SetVectorType &Worklist,
MachineRegisterInfo &MRI,
MachineInstr &Inst) const {
Register ResultReg = MRI.createVirtualRegister(&AMDGPU::VGPR_32RegClass);
MachineBasicBlock *MBB = Inst.getParent();
MachineOperand &Src0 = Inst.getOperand(1);
MachineOperand &Src1 = Inst.getOperand(2);
const DebugLoc &DL = Inst.getDebugLoc();
switch (Inst.getOpcode()) {
case AMDGPU::S_PACK_LL_B32_B16: {
Register ImmReg = MRI.createVirtualRegister(&AMDGPU::VGPR_32RegClass);
Register TmpReg = MRI.createVirtualRegister(&AMDGPU::VGPR_32RegClass);
// FIXME: Can do a lot better if we know the high bits of src0 or src1 are
// 0.
BuildMI(*MBB, Inst, DL, get(AMDGPU::V_MOV_B32_e32), ImmReg)
.addImm(0xffff);
BuildMI(*MBB, Inst, DL, get(AMDGPU::V_AND_B32_e64), TmpReg)
.addReg(ImmReg, RegState::Kill)
.add(Src0);
BuildMI(*MBB, Inst, DL, get(AMDGPU::V_LSHL_OR_B32_e64), ResultReg)
.add(Src1)
.addImm(16)
.addReg(TmpReg, RegState::Kill);
break;
}
case AMDGPU::S_PACK_LH_B32_B16: {
Register ImmReg = MRI.createVirtualRegister(&AMDGPU::VGPR_32RegClass);
BuildMI(*MBB, Inst, DL, get(AMDGPU::V_MOV_B32_e32), ImmReg)
.addImm(0xffff);
BuildMI(*MBB, Inst, DL, get(AMDGPU::V_BFI_B32_e64), ResultReg)
.addReg(ImmReg, RegState::Kill)
.add(Src0)
.add(Src1);
break;
}
case AMDGPU::S_PACK_HH_B32_B16: {
Register ImmReg = MRI.createVirtualRegister(&AMDGPU::VGPR_32RegClass);
Register TmpReg = MRI.createVirtualRegister(&AMDGPU::VGPR_32RegClass);
BuildMI(*MBB, Inst, DL, get(AMDGPU::V_LSHRREV_B32_e64), TmpReg)
.addImm(16)
.add(Src0);
BuildMI(*MBB, Inst, DL, get(AMDGPU::V_MOV_B32_e32), ImmReg)
.addImm(0xffff0000);
BuildMI(*MBB, Inst, DL, get(AMDGPU::V_AND_OR_B32_e64), ResultReg)
.add(Src1)
.addReg(ImmReg, RegState::Kill)
.addReg(TmpReg, RegState::Kill);
break;
}
default:
llvm_unreachable("unhandled s_pack_* instruction");
}
MachineOperand &Dest = Inst.getOperand(0);
MRI.replaceRegWith(Dest.getReg(), ResultReg);
addUsersToMoveToVALUWorklist(ResultReg, MRI, Worklist);
}
void SIInstrInfo::addSCCDefUsersToVALUWorklist(MachineOperand &Op,
MachineInstr &SCCDefInst,
SetVectorType &Worklist) const {
bool SCCUsedImplicitly = false;
// Ensure that def inst defines SCC, which is still live.
assert(Op.isReg() && Op.getReg() == AMDGPU::SCC && Op.isDef() &&
!Op.isDead() && Op.getParent() == &SCCDefInst);
SmallVector<MachineInstr *, 4> CopyToDelete;
// This assumes that all the users of SCC are in the same block
// as the SCC def.
for (MachineInstr &MI : // Skip the def inst itself.
make_range(std::next(MachineBasicBlock::iterator(SCCDefInst)),
SCCDefInst.getParent()->end())) {
// Check if SCC is used first.
if (MI.findRegisterUseOperandIdx(AMDGPU::SCC, false, &RI) != -1) {
if (MI.isCopy()) {
MachineRegisterInfo &MRI = MI.getParent()->getParent()->getRegInfo();
Register DestReg = MI.getOperand(0).getReg();
for (auto &User : MRI.use_nodbg_instructions(DestReg)) {
if ((User.getOpcode() == AMDGPU::S_ADD_CO_PSEUDO) ||
(User.getOpcode() == AMDGPU::S_SUB_CO_PSEUDO)) {
User.getOperand(4).setReg(RI.getVCC());
Worklist.insert(&User);
} else if (User.getOpcode() == AMDGPU::V_CNDMASK_B32_e64) {
User.getOperand(5).setReg(RI.getVCC());
// No need to add to Worklist.
}
}
CopyToDelete.push_back(&MI);
} else {
if (MI.getOpcode() == AMDGPU::S_CSELECT_B32 ||
MI.getOpcode() == AMDGPU::S_CSELECT_B64) {
// This is an implicit use of SCC and it is really expected by
// the SCC users to handle.
// We cannot preserve the edge to the user so add the explicit
// copy: SCC = COPY VCC.
// The copy will be cleaned up during the processing of the user
// in lowerSelect.
SCCUsedImplicitly = true;
}
Worklist.insert(&MI);
}
}
// Exit if we find another SCC def.
if (MI.findRegisterDefOperandIdx(AMDGPU::SCC, false, false, &RI) != -1)
break;
}
for (auto &Copy : CopyToDelete)
Copy->eraseFromParent();
if (SCCUsedImplicitly) {
BuildMI(*SCCDefInst.getParent(), std::next(SCCDefInst.getIterator()),
SCCDefInst.getDebugLoc(), get(AMDGPU::COPY), AMDGPU::SCC)
.addReg(RI.getVCC());
}
}
// Instructions that use SCC may be converted to VALU instructions. When that
// happens, the SCC register is changed to VCC_LO. The instruction that defines
// SCC must be changed to an instruction that defines VCC. This function makes
// sure that the instruction that defines SCC is added to the moveToVALU
// worklist.
void SIInstrInfo::addSCCDefsToVALUWorklist(MachineOperand &Op,
SetVectorType &Worklist) const {
assert(Op.isReg() && Op.getReg() == AMDGPU::SCC && Op.isUse());
MachineInstr *SCCUseInst = Op.getParent();
// Look for a preceeding instruction that either defines VCC or SCC. If VCC
// then there is nothing to do because the defining instruction has been
// converted to a VALU already. If SCC then that instruction needs to be
// converted to a VALU.
for (MachineInstr &MI :
make_range(std::next(MachineBasicBlock::reverse_iterator(SCCUseInst)),
SCCUseInst->getParent()->rend())) {
if (MI.modifiesRegister(AMDGPU::VCC, &RI))
break;
if (MI.definesRegister(AMDGPU::SCC, &RI)) {
Worklist.insert(&MI);
break;
}
}
}
const TargetRegisterClass *SIInstrInfo::getDestEquivalentVGPRClass(
const MachineInstr &Inst) const {
const TargetRegisterClass *NewDstRC = getOpRegClass(Inst, 0);
switch (Inst.getOpcode()) {
// For target instructions, getOpRegClass just returns the virtual register
// class associated with the operand, so we need to find an equivalent VGPR
// register class in order to move the instruction to the VALU.
case AMDGPU::COPY:
case AMDGPU::PHI:
case AMDGPU::REG_SEQUENCE:
case AMDGPU::INSERT_SUBREG:
case AMDGPU::WQM:
case AMDGPU::SOFT_WQM:
case AMDGPU::STRICT_WWM:
case AMDGPU::STRICT_WQM: {
const TargetRegisterClass *SrcRC = getOpRegClass(Inst, 1);
if (RI.hasAGPRs(SrcRC)) {
if (RI.hasAGPRs(NewDstRC))
return nullptr;
switch (Inst.getOpcode()) {
case AMDGPU::PHI:
case AMDGPU::REG_SEQUENCE:
case AMDGPU::INSERT_SUBREG:
NewDstRC = RI.getEquivalentAGPRClass(NewDstRC);
break;
default:
NewDstRC = RI.getEquivalentVGPRClass(NewDstRC);
}
if (!NewDstRC)
return nullptr;
} else {
if (RI.hasVGPRs(NewDstRC) || NewDstRC == &AMDGPU::VReg_1RegClass)
return nullptr;
NewDstRC = RI.getEquivalentVGPRClass(NewDstRC);
if (!NewDstRC)
return nullptr;
}
return NewDstRC;
}
default:
return NewDstRC;
}
}
// Find the one SGPR operand we are allowed to use.
Register SIInstrInfo::findUsedSGPR(const MachineInstr &MI,
int OpIndices[3]) const {
const MCInstrDesc &Desc = MI.getDesc();
// Find the one SGPR operand we are allowed to use.
//
// First we need to consider the instruction's operand requirements before
// legalizing. Some operands are required to be SGPRs, such as implicit uses
// of VCC, but we are still bound by the constant bus requirement to only use
// one.
//
// If the operand's class is an SGPR, we can never move it.
Register SGPRReg = findImplicitSGPRRead(MI);
if (SGPRReg != AMDGPU::NoRegister)
return SGPRReg;
Register UsedSGPRs[3] = { AMDGPU::NoRegister };
const MachineRegisterInfo &MRI = MI.getParent()->getParent()->getRegInfo();
for (unsigned i = 0; i < 3; ++i) {
int Idx = OpIndices[i];
if (Idx == -1)
break;
const MachineOperand &MO = MI.getOperand(Idx);
if (!MO.isReg())
continue;
// Is this operand statically required to be an SGPR based on the operand
// constraints?
const TargetRegisterClass *OpRC = RI.getRegClass(Desc.OpInfo[Idx].RegClass);
bool IsRequiredSGPR = RI.isSGPRClass(OpRC);
if (IsRequiredSGPR)
return MO.getReg();
// If this could be a VGPR or an SGPR, Check the dynamic register class.
Register Reg = MO.getReg();
const TargetRegisterClass *RegRC = MRI.getRegClass(Reg);
if (RI.isSGPRClass(RegRC))
UsedSGPRs[i] = Reg;
}
// We don't have a required SGPR operand, so we have a bit more freedom in
// selecting operands to move.
// Try to select the most used SGPR. If an SGPR is equal to one of the
// others, we choose that.
//
// e.g.
// V_FMA_F32 v0, s0, s0, s0 -> No moves
// V_FMA_F32 v0, s0, s1, s0 -> Move s1
// TODO: If some of the operands are 64-bit SGPRs and some 32, we should
// prefer those.
if (UsedSGPRs[0] != AMDGPU::NoRegister) {
if (UsedSGPRs[0] == UsedSGPRs[1] || UsedSGPRs[0] == UsedSGPRs[2])
SGPRReg = UsedSGPRs[0];
}
if (SGPRReg == AMDGPU::NoRegister && UsedSGPRs[1] != AMDGPU::NoRegister) {
if (UsedSGPRs[1] == UsedSGPRs[2])
SGPRReg = UsedSGPRs[1];
}
return SGPRReg;
}
MachineOperand *SIInstrInfo::getNamedOperand(MachineInstr &MI,
unsigned OperandName) const {
int Idx = AMDGPU::getNamedOperandIdx(MI.getOpcode(), OperandName);
if (Idx == -1)
return nullptr;
return &MI.getOperand(Idx);
}
uint64_t SIInstrInfo::getDefaultRsrcDataFormat() const {
if (ST.getGeneration() >= AMDGPUSubtarget::GFX10) {
return (AMDGPU::MTBUFFormat::UFMT_32_FLOAT << 44) |
(1ULL << 56) | // RESOURCE_LEVEL = 1
(3ULL << 60); // OOB_SELECT = 3
}
uint64_t RsrcDataFormat = AMDGPU::RSRC_DATA_FORMAT;
if (ST.isAmdHsaOS()) {
// Set ATC = 1. GFX9 doesn't have this bit.
if (ST.getGeneration() <= AMDGPUSubtarget::VOLCANIC_ISLANDS)
RsrcDataFormat |= (1ULL << 56);
// Set MTYPE = 2 (MTYPE_UC = uncached). GFX9 doesn't have this.
// BTW, it disables TC L2 and therefore decreases performance.
if (ST.getGeneration() == AMDGPUSubtarget::VOLCANIC_ISLANDS)
RsrcDataFormat |= (2ULL << 59);
}
return RsrcDataFormat;
}
uint64_t SIInstrInfo::getScratchRsrcWords23() const {
uint64_t Rsrc23 = getDefaultRsrcDataFormat() |
AMDGPU::RSRC_TID_ENABLE |
0xffffffff; // Size;
// GFX9 doesn't have ELEMENT_SIZE.
if (ST.getGeneration() <= AMDGPUSubtarget::VOLCANIC_ISLANDS) {
uint64_t EltSizeValue = Log2_32(ST.getMaxPrivateElementSize(true)) - 1;
Rsrc23 |= EltSizeValue << AMDGPU::RSRC_ELEMENT_SIZE_SHIFT;
}
// IndexStride = 64 / 32.
uint64_t IndexStride = ST.getWavefrontSize() == 64 ? 3 : 2;
Rsrc23 |= IndexStride << AMDGPU::RSRC_INDEX_STRIDE_SHIFT;
// If TID_ENABLE is set, DATA_FORMAT specifies stride bits [14:17].
// Clear them unless we want a huge stride.
if (ST.getGeneration() >= AMDGPUSubtarget::VOLCANIC_ISLANDS &&
ST.getGeneration() <= AMDGPUSubtarget::GFX9)
Rsrc23 &= ~AMDGPU::RSRC_DATA_FORMAT;
return Rsrc23;
}
bool SIInstrInfo::isLowLatencyInstruction(const MachineInstr &MI) const {
unsigned Opc = MI.getOpcode();
return isSMRD(Opc);
}
bool SIInstrInfo::isHighLatencyDef(int Opc) const {
return get(Opc).mayLoad() &&
(isMUBUF(Opc) || isMTBUF(Opc) || isMIMG(Opc) || isFLAT(Opc));
}
unsigned SIInstrInfo::isStackAccess(const MachineInstr &MI,
int &FrameIndex) const {
const MachineOperand *Addr = getNamedOperand(MI, AMDGPU::OpName::vaddr);
if (!Addr || !Addr->isFI())
return AMDGPU::NoRegister;
assert(!MI.memoperands_empty() &&
(*MI.memoperands_begin())->getAddrSpace() == AMDGPUAS::PRIVATE_ADDRESS);
FrameIndex = Addr->getIndex();
return getNamedOperand(MI, AMDGPU::OpName::vdata)->getReg();
}
unsigned SIInstrInfo::isSGPRStackAccess(const MachineInstr &MI,
int &FrameIndex) const {
const MachineOperand *Addr = getNamedOperand(MI, AMDGPU::OpName::addr);
assert(Addr && Addr->isFI());
FrameIndex = Addr->getIndex();
return getNamedOperand(MI, AMDGPU::OpName::data)->getReg();
}
unsigned SIInstrInfo::isLoadFromStackSlot(const MachineInstr &MI,
int &FrameIndex) const {
if (!MI.mayLoad())
return AMDGPU::NoRegister;
if (isMUBUF(MI) || isVGPRSpill(MI))
return isStackAccess(MI, FrameIndex);
if (isSGPRSpill(MI))
return isSGPRStackAccess(MI, FrameIndex);
return AMDGPU::NoRegister;
}
unsigned SIInstrInfo::isStoreToStackSlot(const MachineInstr &MI,
int &FrameIndex) const {
if (!MI.mayStore())
return AMDGPU::NoRegister;
if (isMUBUF(MI) || isVGPRSpill(MI))
return isStackAccess(MI, FrameIndex);
if (isSGPRSpill(MI))
return isSGPRStackAccess(MI, FrameIndex);
return AMDGPU::NoRegister;
}
unsigned SIInstrInfo::getInstBundleSize(const MachineInstr &MI) const {
unsigned Size = 0;
MachineBasicBlock::const_instr_iterator I = MI.getIterator();
MachineBasicBlock::const_instr_iterator E = MI.getParent()->instr_end();
while (++I != E && I->isInsideBundle()) {
assert(!I->isBundle() && "No nested bundle!");
Size += getInstSizeInBytes(*I);
}
return Size;
}
unsigned SIInstrInfo::getInstSizeInBytes(const MachineInstr &MI) const {
unsigned Opc = MI.getOpcode();
const MCInstrDesc &Desc = getMCOpcodeFromPseudo(Opc);
unsigned DescSize = Desc.getSize();
// If we have a definitive size, we can use it. Otherwise we need to inspect
// the operands to know the size.
if (isFixedSize(MI)) {
unsigned Size = DescSize;
// If we hit the buggy offset, an extra nop will be inserted in MC so
// estimate the worst case.
if (MI.isBranch() && ST.hasOffset3fBug())
Size += 4;
return Size;
}
// 4-byte instructions may have a 32-bit literal encoded after them. Check
// operands that coud ever be literals.
if (isVALU(MI) || isSALU(MI)) {
int Src0Idx = AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::src0);
if (Src0Idx == -1)
return DescSize; // No operands.
if (isLiteralConstantLike(MI.getOperand(Src0Idx), Desc.OpInfo[Src0Idx]))
return isVOP3(MI) ? 12 : (DescSize + 4);
int Src1Idx = AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::src1);
if (Src1Idx == -1)
return DescSize;
if (isLiteralConstantLike(MI.getOperand(Src1Idx), Desc.OpInfo[Src1Idx]))
return isVOP3(MI) ? 12 : (DescSize + 4);
int Src2Idx = AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::src2);
if (Src2Idx == -1)
return DescSize;
if (isLiteralConstantLike(MI.getOperand(Src2Idx), Desc.OpInfo[Src2Idx]))
return isVOP3(MI) ? 12 : (DescSize + 4);
return DescSize;
}
// Check whether we have extra NSA words.
if (isMIMG(MI)) {
int VAddr0Idx = AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::vaddr0);
if (VAddr0Idx < 0)
return 8;
int RSrcIdx = AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::srsrc);
return 8 + 4 * ((RSrcIdx - VAddr0Idx + 2) / 4);
}
switch (Opc) {
case TargetOpcode::BUNDLE:
return getInstBundleSize(MI);
case TargetOpcode::INLINEASM:
case TargetOpcode::INLINEASM_BR: {
const MachineFunction *MF = MI.getParent()->getParent();
const char *AsmStr = MI.getOperand(0).getSymbolName();
return getInlineAsmLength(AsmStr, *MF->getTarget().getMCAsmInfo(), &ST);
}
default:
if (MI.isMetaInstruction())
return 0;
return DescSize;
}
}
bool SIInstrInfo::mayAccessFlatAddressSpace(const MachineInstr &MI) const {
if (!isFLAT(MI))
return false;
if (MI.memoperands_empty())
return true;
for (const MachineMemOperand *MMO : MI.memoperands()) {
if (MMO->getAddrSpace() == AMDGPUAS::FLAT_ADDRESS)
return true;
}
return false;
}
bool SIInstrInfo::isNonUniformBranchInstr(MachineInstr &Branch) const {
return Branch.getOpcode() == AMDGPU::SI_NON_UNIFORM_BRCOND_PSEUDO;
}
void SIInstrInfo::convertNonUniformIfRegion(MachineBasicBlock *IfEntry,
MachineBasicBlock *IfEnd) const {
MachineBasicBlock::iterator TI = IfEntry->getFirstTerminator();
assert(TI != IfEntry->end());
MachineInstr *Branch = &(*TI);
MachineFunction *MF = IfEntry->getParent();
MachineRegisterInfo &MRI = IfEntry->getParent()->getRegInfo();
if (Branch->getOpcode() == AMDGPU::SI_NON_UNIFORM_BRCOND_PSEUDO) {
Register DstReg = MRI.createVirtualRegister(RI.getBoolRC());
MachineInstr *SIIF =
BuildMI(*MF, Branch->getDebugLoc(), get(AMDGPU::SI_IF), DstReg)
.add(Branch->getOperand(0))
.add(Branch->getOperand(1));
MachineInstr *SIEND =
BuildMI(*MF, Branch->getDebugLoc(), get(AMDGPU::SI_END_CF))
.addReg(DstReg);
IfEntry->erase(TI);
IfEntry->insert(IfEntry->end(), SIIF);
IfEnd->insert(IfEnd->getFirstNonPHI(), SIEND);
}
}
void SIInstrInfo::convertNonUniformLoopRegion(
MachineBasicBlock *LoopEntry, MachineBasicBlock *LoopEnd) const {
MachineBasicBlock::iterator TI = LoopEnd->getFirstTerminator();
// We expect 2 terminators, one conditional and one unconditional.
assert(TI != LoopEnd->end());
MachineInstr *Branch = &(*TI);
MachineFunction *MF = LoopEnd->getParent();
MachineRegisterInfo &MRI = LoopEnd->getParent()->getRegInfo();
if (Branch->getOpcode() == AMDGPU::SI_NON_UNIFORM_BRCOND_PSEUDO) {
Register DstReg = MRI.createVirtualRegister(RI.getBoolRC());
Register BackEdgeReg = MRI.createVirtualRegister(RI.getBoolRC());
MachineInstrBuilder HeaderPHIBuilder =
BuildMI(*(MF), Branch->getDebugLoc(), get(TargetOpcode::PHI), DstReg);
for (MachineBasicBlock::pred_iterator PI = LoopEntry->pred_begin(),
E = LoopEntry->pred_end();
PI != E; ++PI) {
if (*PI == LoopEnd) {
HeaderPHIBuilder.addReg(BackEdgeReg);
} else {
MachineBasicBlock *PMBB = *PI;
Register ZeroReg = MRI.createVirtualRegister(RI.getBoolRC());
materializeImmediate(*PMBB, PMBB->getFirstTerminator(), DebugLoc(),
ZeroReg, 0);
HeaderPHIBuilder.addReg(ZeroReg);
}
HeaderPHIBuilder.addMBB(*PI);
}
MachineInstr *HeaderPhi = HeaderPHIBuilder;
MachineInstr *SIIFBREAK = BuildMI(*(MF), Branch->getDebugLoc(),
get(AMDGPU::SI_IF_BREAK), BackEdgeReg)
.addReg(DstReg)
.add(Branch->getOperand(0));
MachineInstr *SILOOP =
BuildMI(*(MF), Branch->getDebugLoc(), get(AMDGPU::SI_LOOP))
.addReg(BackEdgeReg)
.addMBB(LoopEntry);
LoopEntry->insert(LoopEntry->begin(), HeaderPhi);
LoopEnd->erase(TI);
LoopEnd->insert(LoopEnd->end(), SIIFBREAK);
LoopEnd->insert(LoopEnd->end(), SILOOP);
}
}
ArrayRef<std::pair<int, const char *>>
SIInstrInfo::getSerializableTargetIndices() const {
static const std::pair<int, const char *> TargetIndices[] = {
{AMDGPU::TI_CONSTDATA_START, "amdgpu-constdata-start"},
{AMDGPU::TI_SCRATCH_RSRC_DWORD0, "amdgpu-scratch-rsrc-dword0"},
{AMDGPU::TI_SCRATCH_RSRC_DWORD1, "amdgpu-scratch-rsrc-dword1"},
{AMDGPU::TI_SCRATCH_RSRC_DWORD2, "amdgpu-scratch-rsrc-dword2"},
{AMDGPU::TI_SCRATCH_RSRC_DWORD3, "amdgpu-scratch-rsrc-dword3"}};
return makeArrayRef(TargetIndices);
}
/// This is used by the post-RA scheduler (SchedulePostRAList.cpp). The
/// post-RA version of misched uses CreateTargetMIHazardRecognizer.
ScheduleHazardRecognizer *
SIInstrInfo::CreateTargetPostRAHazardRecognizer(const InstrItineraryData *II,
const ScheduleDAG *DAG) const {
return new GCNHazardRecognizer(DAG->MF);
}
/// This is the hazard recognizer used at -O0 by the PostRAHazardRecognizer
/// pass.
ScheduleHazardRecognizer *
SIInstrInfo::CreateTargetPostRAHazardRecognizer(const MachineFunction &MF) const {
return new GCNHazardRecognizer(MF);
}
std::pair<unsigned, unsigned>
SIInstrInfo::decomposeMachineOperandsTargetFlags(unsigned TF) const {
return std::make_pair(TF & MO_MASK, TF & ~MO_MASK);
}
ArrayRef<std::pair<unsigned, const char *>>
SIInstrInfo::getSerializableDirectMachineOperandTargetFlags() const {
static const std::pair<unsigned, const char *> TargetFlags[] = {
{ MO_GOTPCREL, "amdgpu-gotprel" },
{ MO_GOTPCREL32_LO, "amdgpu-gotprel32-lo" },
{ MO_GOTPCREL32_HI, "amdgpu-gotprel32-hi" },
{ MO_REL32_LO, "amdgpu-rel32-lo" },
{ MO_REL32_HI, "amdgpu-rel32-hi" },
{ MO_ABS32_LO, "amdgpu-abs32-lo" },
{ MO_ABS32_HI, "amdgpu-abs32-hi" },
};
return makeArrayRef(TargetFlags);
}
bool SIInstrInfo::isBasicBlockPrologue(const MachineInstr &MI) const {
return !MI.isTerminator() && MI.getOpcode() != AMDGPU::COPY &&
MI.modifiesRegister(AMDGPU::EXEC, &RI);
}
MachineInstrBuilder
SIInstrInfo::getAddNoCarry(MachineBasicBlock &MBB,
MachineBasicBlock::iterator I,
const DebugLoc &DL,
Register DestReg) const {
if (ST.hasAddNoCarry())
return BuildMI(MBB, I, DL, get(AMDGPU::V_ADD_U32_e64), DestReg);
MachineRegisterInfo &MRI = MBB.getParent()->getRegInfo();
Register UnusedCarry = MRI.createVirtualRegister(RI.getBoolRC());
MRI.setRegAllocationHint(UnusedCarry, 0, RI.getVCC());
return BuildMI(MBB, I, DL, get(AMDGPU::V_ADD_CO_U32_e64), DestReg)
.addReg(UnusedCarry, RegState::Define | RegState::Dead);
}
MachineInstrBuilder SIInstrInfo::getAddNoCarry(MachineBasicBlock &MBB,
MachineBasicBlock::iterator I,
const DebugLoc &DL,
Register DestReg,
RegScavenger &RS) const {
if (ST.hasAddNoCarry())
return BuildMI(MBB, I, DL, get(AMDGPU::V_ADD_U32_e32), DestReg);
// If available, prefer to use vcc.
Register UnusedCarry = !RS.isRegUsed(AMDGPU::VCC)
? Register(RI.getVCC())
: RS.scavengeRegister(RI.getBoolRC(), I, 0, false);
// TODO: Users need to deal with this.
if (!UnusedCarry.isValid())
return MachineInstrBuilder();
return BuildMI(MBB, I, DL, get(AMDGPU::V_ADD_CO_U32_e64), DestReg)
.addReg(UnusedCarry, RegState::Define | RegState::Dead);
}
bool SIInstrInfo::isKillTerminator(unsigned Opcode) {
switch (Opcode) {
case AMDGPU::SI_KILL_F32_COND_IMM_TERMINATOR:
case AMDGPU::SI_KILL_I1_TERMINATOR:
return true;
default:
return false;
}
}
const MCInstrDesc &SIInstrInfo::getKillTerminatorFromPseudo(unsigned Opcode) const {
switch (Opcode) {
case AMDGPU::SI_KILL_F32_COND_IMM_PSEUDO:
return get(AMDGPU::SI_KILL_F32_COND_IMM_TERMINATOR);
case AMDGPU::SI_KILL_I1_PSEUDO:
return get(AMDGPU::SI_KILL_I1_TERMINATOR);
default:
llvm_unreachable("invalid opcode, expected SI_KILL_*_PSEUDO");
}
}
void SIInstrInfo::fixImplicitOperands(MachineInstr &MI) const {
if (!ST.isWave32())
return;
for (auto &Op : MI.implicit_operands()) {
if (Op.isReg() && Op.getReg() == AMDGPU::VCC)
Op.setReg(AMDGPU::VCC_LO);
}
}
bool SIInstrInfo::isBufferSMRD(const MachineInstr &MI) const {
if (!isSMRD(MI))
return false;
// Check that it is using a buffer resource.
int Idx = AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::sbase);
if (Idx == -1) // e.g. s_memtime
return false;
const auto RCID = MI.getDesc().OpInfo[Idx].RegClass;
return RI.getRegClass(RCID)->hasSubClassEq(&AMDGPU::SGPR_128RegClass);
}
// Depending on the used address space and instructions, some immediate offsets
// are allowed and some are not.
// In general, flat instruction offsets can only be non-negative, global and
// scratch instruction offsets can also be negative.
//
// There are several bugs related to these offsets:
// On gfx10.1, flat instructions that go into the global address space cannot
// use an offset.
//
// For scratch instructions, the address can be either an SGPR or a VGPR.
// The following offsets can be used, depending on the architecture (x means
// cannot be used):
// +----------------------------+------+------+
// | Address-Mode | SGPR | VGPR |
// +----------------------------+------+------+
// | gfx9 | | |
// | negative, 4-aligned offset | x | ok |
// | negative, unaligned offset | x | ok |
// +----------------------------+------+------+
// | gfx10 | | |
// | negative, 4-aligned offset | ok | ok |
// | negative, unaligned offset | ok | x |
// +----------------------------+------+------+
// | gfx10.3 | | |
// | negative, 4-aligned offset | ok | ok |
// | negative, unaligned offset | ok | ok |
// +----------------------------+------+------+
//
// This function ignores the addressing mode, so if an offset cannot be used in
// one addressing mode, it is considered illegal.
bool SIInstrInfo::isLegalFLATOffset(int64_t Offset, unsigned AddrSpace,
uint64_t FlatVariant) const {
// TODO: Should 0 be special cased?
if (!ST.hasFlatInstOffsets())
return false;
if (ST.hasFlatSegmentOffsetBug() && FlatVariant == SIInstrFlags::FLAT &&
(AddrSpace == AMDGPUAS::FLAT_ADDRESS ||
AddrSpace == AMDGPUAS::GLOBAL_ADDRESS))
return false;
bool Signed = FlatVariant != SIInstrFlags::FLAT;
if (ST.hasNegativeScratchOffsetBug() &&
FlatVariant == SIInstrFlags::FlatScratch)
Signed = false;
if (ST.hasNegativeUnalignedScratchOffsetBug() &&
FlatVariant == SIInstrFlags::FlatScratch && Offset < 0 &&
(Offset % 4) != 0) {
return false;
}
unsigned N = AMDGPU::getNumFlatOffsetBits(ST, Signed);
return Signed ? isIntN(N, Offset) : isUIntN(N, Offset);
}
// See comment on SIInstrInfo::isLegalFLATOffset for what is legal and what not.
std::pair<int64_t, int64_t>
SIInstrInfo::splitFlatOffset(int64_t COffsetVal, unsigned AddrSpace,
uint64_t FlatVariant) const {
int64_t RemainderOffset = COffsetVal;
int64_t ImmField = 0;
bool Signed = FlatVariant != SIInstrFlags::FLAT;
if (ST.hasNegativeScratchOffsetBug() &&
FlatVariant == SIInstrFlags::FlatScratch)
Signed = false;
const unsigned NumBits = AMDGPU::getNumFlatOffsetBits(ST, Signed);
if (Signed) {
// Use signed division by a power of two to truncate towards 0.
int64_t D = 1LL << (NumBits - 1);
RemainderOffset = (COffsetVal / D) * D;
ImmField = COffsetVal - RemainderOffset;
if (ST.hasNegativeUnalignedScratchOffsetBug() &&
FlatVariant == SIInstrFlags::FlatScratch && ImmField < 0 &&
(ImmField % 4) != 0) {
// Make ImmField a multiple of 4
RemainderOffset += ImmField % 4;
ImmField -= ImmField % 4;
}
} else if (COffsetVal >= 0) {
ImmField = COffsetVal & maskTrailingOnes<uint64_t>(NumBits);
RemainderOffset = COffsetVal - ImmField;
}
assert(isLegalFLATOffset(ImmField, AddrSpace, FlatVariant));
assert(RemainderOffset + ImmField == COffsetVal);
return {ImmField, RemainderOffset};
}
// This must be kept in sync with the SIEncodingFamily class in SIInstrInfo.td
enum SIEncodingFamily {
SI = 0,
VI = 1,
SDWA = 2,
SDWA9 = 3,
GFX80 = 4,
GFX9 = 5,
GFX10 = 6,
SDWA10 = 7,
GFX90A = 8
};
static SIEncodingFamily subtargetEncodingFamily(const GCNSubtarget &ST) {
switch (ST.getGeneration()) {
default:
break;
case AMDGPUSubtarget::SOUTHERN_ISLANDS:
case AMDGPUSubtarget::SEA_ISLANDS:
return SIEncodingFamily::SI;
case AMDGPUSubtarget::VOLCANIC_ISLANDS:
case AMDGPUSubtarget::GFX9:
return SIEncodingFamily::VI;
case AMDGPUSubtarget::GFX10:
return SIEncodingFamily::GFX10;
}
llvm_unreachable("Unknown subtarget generation!");
}
bool SIInstrInfo::isAsmOnlyOpcode(int MCOp) const {
switch(MCOp) {
// These opcodes use indirect register addressing so
// they need special handling by codegen (currently missing).
// Therefore it is too risky to allow these opcodes
// to be selected by dpp combiner or sdwa peepholer.
case AMDGPU::V_MOVRELS_B32_dpp_gfx10:
case AMDGPU::V_MOVRELS_B32_sdwa_gfx10:
case AMDGPU::V_MOVRELD_B32_dpp_gfx10:
case AMDGPU::V_MOVRELD_B32_sdwa_gfx10:
case AMDGPU::V_MOVRELSD_B32_dpp_gfx10:
case AMDGPU::V_MOVRELSD_B32_sdwa_gfx10:
case AMDGPU::V_MOVRELSD_2_B32_dpp_gfx10:
case AMDGPU::V_MOVRELSD_2_B32_sdwa_gfx10:
return true;
default:
return false;
}
}
int SIInstrInfo::pseudoToMCOpcode(int Opcode) const {
SIEncodingFamily Gen = subtargetEncodingFamily(ST);
if ((get(Opcode).TSFlags & SIInstrFlags::renamedInGFX9) != 0 &&
ST.getGeneration() == AMDGPUSubtarget::GFX9)
Gen = SIEncodingFamily::GFX9;
// Adjust the encoding family to GFX80 for D16 buffer instructions when the
// subtarget has UnpackedD16VMem feature.
// TODO: remove this when we discard GFX80 encoding.
if (ST.hasUnpackedD16VMem() && (get(Opcode).TSFlags & SIInstrFlags::D16Buf))
Gen = SIEncodingFamily::GFX80;
if (get(Opcode).TSFlags & SIInstrFlags::SDWA) {
switch (ST.getGeneration()) {
default:
Gen = SIEncodingFamily::SDWA;
break;
case AMDGPUSubtarget::GFX9:
Gen = SIEncodingFamily::SDWA9;
break;
case AMDGPUSubtarget::GFX10:
Gen = SIEncodingFamily::SDWA10;
break;
}
}
int MCOp = AMDGPU::getMCOpcode(Opcode, Gen);
// -1 means that Opcode is already a native instruction.
if (MCOp == -1)
return Opcode;
if (ST.hasGFX90AInsts()) {
uint16_t NMCOp = (uint16_t)-1;
NMCOp = AMDGPU::getMCOpcode(Opcode, SIEncodingFamily::GFX90A);
if (NMCOp == (uint16_t)-1)
NMCOp = AMDGPU::getMCOpcode(Opcode, SIEncodingFamily::GFX9);
if (NMCOp != (uint16_t)-1)
MCOp = NMCOp;
}
// (uint16_t)-1 means that Opcode is a pseudo instruction that has
// no encoding in the given subtarget generation.
if (MCOp == (uint16_t)-1)
return -1;
if (isAsmOnlyOpcode(MCOp))
return -1;
return MCOp;
}
static
TargetInstrInfo::RegSubRegPair getRegOrUndef(const MachineOperand &RegOpnd) {
assert(RegOpnd.isReg());
return RegOpnd.isUndef() ? TargetInstrInfo::RegSubRegPair() :
getRegSubRegPair(RegOpnd);
}
TargetInstrInfo::RegSubRegPair
llvm::getRegSequenceSubReg(MachineInstr &MI, unsigned SubReg) {
assert(MI.isRegSequence());
for (unsigned I = 0, E = (MI.getNumOperands() - 1)/ 2; I < E; ++I)
if (MI.getOperand(1 + 2 * I + 1).getImm() == SubReg) {
auto &RegOp = MI.getOperand(1 + 2 * I);
return getRegOrUndef(RegOp);
}
return TargetInstrInfo::RegSubRegPair();
}
// Try to find the definition of reg:subreg in subreg-manipulation pseudos
// Following a subreg of reg:subreg isn't supported
static bool followSubRegDef(MachineInstr &MI,
TargetInstrInfo::RegSubRegPair &RSR) {
if (!RSR.SubReg)
return false;
switch (MI.getOpcode()) {
default: break;
case AMDGPU::REG_SEQUENCE:
RSR = getRegSequenceSubReg(MI, RSR.SubReg);
return true;
// EXTRACT_SUBREG ins't supported as this would follow a subreg of subreg
case AMDGPU::INSERT_SUBREG:
if (RSR.SubReg == (unsigned)MI.getOperand(3).getImm())
// inserted the subreg we're looking for
RSR = getRegOrUndef(MI.getOperand(2));
else { // the subreg in the rest of the reg
auto R1 = getRegOrUndef(MI.getOperand(1));
if (R1.SubReg) // subreg of subreg isn't supported
return false;
RSR.Reg = R1.Reg;
}
return true;
}
return false;
}
MachineInstr *llvm::getVRegSubRegDef(const TargetInstrInfo::RegSubRegPair &P,
MachineRegisterInfo &MRI) {
assert(MRI.isSSA());
if (!P.Reg.isVirtual())
return nullptr;
auto RSR = P;
auto *DefInst = MRI.getVRegDef(RSR.Reg);
while (auto *MI = DefInst) {
DefInst = nullptr;
switch (MI->getOpcode()) {
case AMDGPU::COPY:
case AMDGPU::V_MOV_B32_e32: {
auto &Op1 = MI->getOperand(1);
if (Op1.isReg() && Op1.getReg().isVirtual()) {
if (Op1.isUndef())
return nullptr;
RSR = getRegSubRegPair(Op1);
DefInst = MRI.getVRegDef(RSR.Reg);
}
break;
}
default:
if (followSubRegDef(*MI, RSR)) {
if (!RSR.Reg)
return nullptr;
DefInst = MRI.getVRegDef(RSR.Reg);
}
}
if (!DefInst)
return MI;
}
return nullptr;
}
bool llvm::execMayBeModifiedBeforeUse(const MachineRegisterInfo &MRI,
Register VReg,
const MachineInstr &DefMI,
const MachineInstr &UseMI) {
assert(MRI.isSSA() && "Must be run on SSA");
auto *TRI = MRI.getTargetRegisterInfo();
auto *DefBB = DefMI.getParent();
// Don't bother searching between blocks, although it is possible this block
// doesn't modify exec.
if (UseMI.getParent() != DefBB)
return true;
const int MaxInstScan = 20;
int NumInst = 0;
// Stop scan at the use.
auto E = UseMI.getIterator();
for (auto I = std::next(DefMI.getIterator()); I != E; ++I) {
if (I->isDebugInstr())
continue;
if (++NumInst > MaxInstScan)
return true;
if (I->modifiesRegister(AMDGPU::EXEC, TRI))
return true;
}
return false;
}
bool llvm::execMayBeModifiedBeforeAnyUse(const MachineRegisterInfo &MRI,
Register VReg,
const MachineInstr &DefMI) {
assert(MRI.isSSA() && "Must be run on SSA");
auto *TRI = MRI.getTargetRegisterInfo();
auto *DefBB = DefMI.getParent();
const int MaxUseScan = 10;
int NumUse = 0;
for (auto &Use : MRI.use_nodbg_operands(VReg)) {
auto &UseInst = *Use.getParent();
// Don't bother searching between blocks, although it is possible this block
// doesn't modify exec.
if (UseInst.getParent() != DefBB)
return true;
if (++NumUse > MaxUseScan)
return true;
}
if (NumUse == 0)
return false;
const int MaxInstScan = 20;
int NumInst = 0;
// Stop scan when we have seen all the uses.
for (auto I = std::next(DefMI.getIterator()); ; ++I) {
assert(I != DefBB->end());
if (I->isDebugInstr())
continue;
if (++NumInst > MaxInstScan)
return true;
for (const MachineOperand &Op : I->operands()) {
// We don't check reg masks here as they're used only on calls:
// 1. EXEC is only considered const within one BB
// 2. Call should be a terminator instruction if present in a BB
if (!Op.isReg())
continue;
Register Reg = Op.getReg();
if (Op.isUse()) {
if (Reg == VReg && --NumUse == 0)
return false;
} else if (TRI->regsOverlap(Reg, AMDGPU::EXEC))
return true;
}
}
}
MachineInstr *SIInstrInfo::createPHIDestinationCopy(
MachineBasicBlock &MBB, MachineBasicBlock::iterator LastPHIIt,
const DebugLoc &DL, Register Src, Register Dst) const {
auto Cur = MBB.begin();
if (Cur != MBB.end())
do {
if (!Cur->isPHI() && Cur->readsRegister(Dst))
return BuildMI(MBB, Cur, DL, get(TargetOpcode::COPY), Dst).addReg(Src);
++Cur;
} while (Cur != MBB.end() && Cur != LastPHIIt);
return TargetInstrInfo::createPHIDestinationCopy(MBB, LastPHIIt, DL, Src,
Dst);
}
MachineInstr *SIInstrInfo::createPHISourceCopy(
MachineBasicBlock &MBB, MachineBasicBlock::iterator InsPt,
const DebugLoc &DL, Register Src, unsigned SrcSubReg, Register Dst) const {
if (InsPt != MBB.end() &&
(InsPt->getOpcode() == AMDGPU::SI_IF ||
InsPt->getOpcode() == AMDGPU::SI_ELSE ||
InsPt->getOpcode() == AMDGPU::SI_IF_BREAK) &&
InsPt->definesRegister(Src)) {
InsPt++;
return BuildMI(MBB, InsPt, DL,
get(ST.isWave32() ? AMDGPU::S_MOV_B32_term
: AMDGPU::S_MOV_B64_term),
Dst)
.addReg(Src, 0, SrcSubReg)
.addReg(AMDGPU::EXEC, RegState::Implicit);
}
return TargetInstrInfo::createPHISourceCopy(MBB, InsPt, DL, Src, SrcSubReg,
Dst);
}
bool llvm::SIInstrInfo::isWave32() const { return ST.isWave32(); }
MachineInstr *SIInstrInfo::foldMemoryOperandImpl(
MachineFunction &MF, MachineInstr &MI, ArrayRef<unsigned> Ops,
MachineBasicBlock::iterator InsertPt, int FrameIndex, LiveIntervals *LIS,
VirtRegMap *VRM) const {
// This is a bit of a hack (copied from AArch64). Consider this instruction:
//
// %0:sreg_32 = COPY $m0
//
// We explicitly chose SReg_32 for the virtual register so such a copy might
// be eliminated by RegisterCoalescer. However, that may not be possible, and
// %0 may even spill. We can't spill $m0 normally (it would require copying to
// a numbered SGPR anyway), and since it is in the SReg_32 register class,
// TargetInstrInfo::foldMemoryOperand() is going to try.
// A similar issue also exists with spilling and reloading $exec registers.
//
// To prevent that, constrain the %0 register class here.
if (MI.isFullCopy()) {
Register DstReg = MI.getOperand(0).getReg();
Register SrcReg = MI.getOperand(1).getReg();
if ((DstReg.isVirtual() || SrcReg.isVirtual()) &&
(DstReg.isVirtual() != SrcReg.isVirtual())) {
MachineRegisterInfo &MRI = MF.getRegInfo();
Register VirtReg = DstReg.isVirtual() ? DstReg : SrcReg;
const TargetRegisterClass *RC = MRI.getRegClass(VirtReg);
if (RC->hasSuperClassEq(&AMDGPU::SReg_32RegClass)) {
MRI.constrainRegClass(VirtReg, &AMDGPU::SReg_32_XM0_XEXECRegClass);
return nullptr;
} else if (RC->hasSuperClassEq(&AMDGPU::SReg_64RegClass)) {
MRI.constrainRegClass(VirtReg, &AMDGPU::SReg_64_XEXECRegClass);
return nullptr;
}
}
}
return nullptr;
}
unsigned SIInstrInfo::getInstrLatency(const InstrItineraryData *ItinData,
const MachineInstr &MI,
unsigned *PredCost) const {
if (MI.isBundle()) {
MachineBasicBlock::const_instr_iterator I(MI.getIterator());
MachineBasicBlock::const_instr_iterator E(MI.getParent()->instr_end());
unsigned Lat = 0, Count = 0;
for (++I; I != E && I->isBundledWithPred(); ++I) {
++Count;
Lat = std::max(Lat, SchedModel.computeInstrLatency(&*I));
}
return Lat + Count - 1;
}
return SchedModel.computeInstrLatency(&MI);
}
unsigned SIInstrInfo::getDSShaderTypeValue(const MachineFunction &MF) {
switch (MF.getFunction().getCallingConv()) {
case CallingConv::AMDGPU_PS:
return 1;
case CallingConv::AMDGPU_VS:
return 2;
case CallingConv::AMDGPU_GS:
return 3;
case CallingConv::AMDGPU_HS:
case CallingConv::AMDGPU_LS:
case CallingConv::AMDGPU_ES:
report_fatal_error("ds_ordered_count unsupported for this calling conv");
case CallingConv::AMDGPU_CS:
case CallingConv::AMDGPU_KERNEL:
case CallingConv::C:
case CallingConv::Fast:
default:
// Assume other calling conventions are various compute callable functions
return 0;
}
}