1
0
mirror of https://github.com/RPCS3/llvm-mirror.git synced 2024-11-25 12:12:47 +01:00
llvm-mirror/lib/Target/Hexagon/MCTargetDesc/HexagonMCDuplexInfo.cpp
Martin Storsjö 9d14adb9f6 [llvm] Rename StringRef _lower() method calls to _insensitive()
This is a mechanical change. This actually also renames the
similarly named methods in the SmallString class, however these
methods don't seem to be used outside of the llvm subproject, so
this doesn't break building of the rest of the monorepo.
2021-06-25 00:22:01 +03:00

1111 lines
37 KiB
C++

//===- HexagonMCDuplexInfo.cpp - Instruction bundle checking --------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This implements duplexing of instructions to reduce code size
//
//===----------------------------------------------------------------------===//
#include "HexagonMCExpr.h"
#include "MCTargetDesc/HexagonBaseInfo.h"
#include "MCTargetDesc/HexagonMCInstrInfo.h"
#include "MCTargetDesc/HexagonMCTargetDesc.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/MC/MCSubtargetInfo.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/MathExtras.h"
#include "llvm/Support/raw_ostream.h"
#include <cassert>
#include <cstdint>
#include <iterator>
#include <map>
#include <utility>
using namespace llvm;
using namespace Hexagon;
#define DEBUG_TYPE "hexagon-mcduplex-info"
// pair table of subInstructions with opcodes
static const std::pair<unsigned, unsigned> opcodeData[] = {
std::make_pair((unsigned)SA1_addi, 0),
std::make_pair((unsigned)SA1_addrx, 6144),
std::make_pair((unsigned)SA1_addsp, 3072),
std::make_pair((unsigned)SA1_and1, 4608),
std::make_pair((unsigned)SA1_clrf, 6768),
std::make_pair((unsigned)SA1_clrfnew, 6736),
std::make_pair((unsigned)SA1_clrt, 6752),
std::make_pair((unsigned)SA1_clrtnew, 6720),
std::make_pair((unsigned)SA1_cmpeqi, 6400),
std::make_pair((unsigned)SA1_combine0i, 7168),
std::make_pair((unsigned)SA1_combine1i, 7176),
std::make_pair((unsigned)SA1_combine2i, 7184),
std::make_pair((unsigned)SA1_combine3i, 7192),
std::make_pair((unsigned)SA1_combinerz, 7432),
std::make_pair((unsigned)SA1_combinezr, 7424),
std::make_pair((unsigned)SA1_dec, 4864),
std::make_pair((unsigned)SA1_inc, 4352),
std::make_pair((unsigned)SA1_seti, 2048),
std::make_pair((unsigned)SA1_setin1, 6656),
std::make_pair((unsigned)SA1_sxtb, 5376),
std::make_pair((unsigned)SA1_sxth, 5120),
std::make_pair((unsigned)SA1_tfr, 4096),
std::make_pair((unsigned)SA1_zxtb, 5888),
std::make_pair((unsigned)SA1_zxth, 5632),
std::make_pair((unsigned)SL1_loadri_io, 0),
std::make_pair((unsigned)SL1_loadrub_io, 4096),
std::make_pair((unsigned)SL2_deallocframe, 7936),
std::make_pair((unsigned)SL2_jumpr31, 8128),
std::make_pair((unsigned)SL2_jumpr31_f, 8133),
std::make_pair((unsigned)SL2_jumpr31_fnew, 8135),
std::make_pair((unsigned)SL2_jumpr31_t, 8132),
std::make_pair((unsigned)SL2_jumpr31_tnew, 8134),
std::make_pair((unsigned)SL2_loadrb_io, 4096),
std::make_pair((unsigned)SL2_loadrd_sp, 7680),
std::make_pair((unsigned)SL2_loadrh_io, 0),
std::make_pair((unsigned)SL2_loadri_sp, 7168),
std::make_pair((unsigned)SL2_loadruh_io, 2048),
std::make_pair((unsigned)SL2_return, 8000),
std::make_pair((unsigned)SL2_return_f, 8005),
std::make_pair((unsigned)SL2_return_fnew, 8007),
std::make_pair((unsigned)SL2_return_t, 8004),
std::make_pair((unsigned)SL2_return_tnew, 8006),
std::make_pair((unsigned)SS1_storeb_io, 4096),
std::make_pair((unsigned)SS1_storew_io, 0),
std::make_pair((unsigned)SS2_allocframe, 7168),
std::make_pair((unsigned)SS2_storebi0, 4608),
std::make_pair((unsigned)SS2_storebi1, 4864),
std::make_pair((unsigned)SS2_stored_sp, 2560),
std::make_pair((unsigned)SS2_storeh_io, 0),
std::make_pair((unsigned)SS2_storew_sp, 2048),
std::make_pair((unsigned)SS2_storewi0, 4096),
std::make_pair((unsigned)SS2_storewi1, 4352)};
bool HexagonMCInstrInfo::isDuplexPairMatch(unsigned Ga, unsigned Gb) {
switch (Ga) {
case HexagonII::HSIG_None:
default:
return false;
case HexagonII::HSIG_L1:
return (Gb == HexagonII::HSIG_L1 || Gb == HexagonII::HSIG_A);
case HexagonII::HSIG_L2:
return (Gb == HexagonII::HSIG_L1 || Gb == HexagonII::HSIG_L2 ||
Gb == HexagonII::HSIG_A);
case HexagonII::HSIG_S1:
return (Gb == HexagonII::HSIG_L1 || Gb == HexagonII::HSIG_L2 ||
Gb == HexagonII::HSIG_S1 || Gb == HexagonII::HSIG_A);
case HexagonII::HSIG_S2:
return (Gb == HexagonII::HSIG_L1 || Gb == HexagonII::HSIG_L2 ||
Gb == HexagonII::HSIG_S1 || Gb == HexagonII::HSIG_S2 ||
Gb == HexagonII::HSIG_A);
case HexagonII::HSIG_A:
return (Gb == HexagonII::HSIG_A);
case HexagonII::HSIG_Compound:
return (Gb == HexagonII::HSIG_Compound);
}
return false;
}
unsigned HexagonMCInstrInfo::iClassOfDuplexPair(unsigned Ga, unsigned Gb) {
switch (Ga) {
case HexagonII::HSIG_None:
default:
break;
case HexagonII::HSIG_L1:
switch (Gb) {
default:
break;
case HexagonII::HSIG_L1:
return 0;
case HexagonII::HSIG_A:
return 0x4;
}
break;
case HexagonII::HSIG_L2:
switch (Gb) {
default:
break;
case HexagonII::HSIG_L1:
return 0x1;
case HexagonII::HSIG_L2:
return 0x2;
case HexagonII::HSIG_A:
return 0x5;
}
break;
case HexagonII::HSIG_S1:
switch (Gb) {
default:
break;
case HexagonII::HSIG_L1:
return 0x8;
case HexagonII::HSIG_L2:
return 0x9;
case HexagonII::HSIG_S1:
return 0xA;
case HexagonII::HSIG_A:
return 0x6;
}
break;
case HexagonII::HSIG_S2:
switch (Gb) {
default:
break;
case HexagonII::HSIG_L1:
return 0xC;
case HexagonII::HSIG_L2:
return 0xD;
case HexagonII::HSIG_S1:
return 0xB;
case HexagonII::HSIG_S2:
return 0xE;
case HexagonII::HSIG_A:
return 0x7;
}
break;
case HexagonII::HSIG_A:
switch (Gb) {
default:
break;
case HexagonII::HSIG_A:
return 0x3;
}
break;
case HexagonII::HSIG_Compound:
switch (Gb) {
case HexagonII::HSIG_Compound:
return 0xFFFFFFFF;
}
break;
}
return 0xFFFFFFFF;
}
unsigned HexagonMCInstrInfo::getDuplexCandidateGroup(MCInst const &MCI) {
unsigned DstReg, PredReg, SrcReg, Src1Reg, Src2Reg;
switch (MCI.getOpcode()) {
default:
return HexagonII::HSIG_None;
//
// Group L1:
//
// Rd = memw(Rs+#u4:2)
// Rd = memub(Rs+#u4:0)
case Hexagon::L2_loadri_io:
DstReg = MCI.getOperand(0).getReg();
SrcReg = MCI.getOperand(1).getReg();
// Special case this one from Group L2.
// Rd = memw(r29+#u5:2)
if (HexagonMCInstrInfo::isIntRegForSubInst(DstReg)) {
if (HexagonMCInstrInfo::isIntReg(SrcReg) &&
Hexagon::R29 == SrcReg && inRange<5, 2>(MCI, 2)) {
return HexagonII::HSIG_L2;
}
// Rd = memw(Rs+#u4:2)
if (HexagonMCInstrInfo::isIntRegForSubInst(SrcReg) &&
inRange<4, 2>(MCI, 2)) {
return HexagonII::HSIG_L1;
}
}
break;
case Hexagon::L2_loadrub_io:
// Rd = memub(Rs+#u4:0)
DstReg = MCI.getOperand(0).getReg();
SrcReg = MCI.getOperand(1).getReg();
if (HexagonMCInstrInfo::isIntRegForSubInst(DstReg) &&
HexagonMCInstrInfo::isIntRegForSubInst(SrcReg) &&
inRange<4>(MCI, 2)) {
return HexagonII::HSIG_L1;
}
break;
//
// Group L2:
//
// Rd = memh/memuh(Rs+#u3:1)
// Rd = memb(Rs+#u3:0)
// Rd = memw(r29+#u5:2) - Handled above.
// Rdd = memd(r29+#u5:3)
// deallocframe
// [if ([!]p0[.new])] dealloc_return
// [if ([!]p0[.new])] jumpr r31
case Hexagon::L2_loadrh_io:
case Hexagon::L2_loadruh_io:
// Rd = memh/memuh(Rs+#u3:1)
DstReg = MCI.getOperand(0).getReg();
SrcReg = MCI.getOperand(1).getReg();
if (HexagonMCInstrInfo::isIntRegForSubInst(DstReg) &&
HexagonMCInstrInfo::isIntRegForSubInst(SrcReg) &&
inRange<3, 1>(MCI, 2)) {
return HexagonII::HSIG_L2;
}
break;
case Hexagon::L2_loadrb_io:
// Rd = memb(Rs+#u3:0)
DstReg = MCI.getOperand(0).getReg();
SrcReg = MCI.getOperand(1).getReg();
if (HexagonMCInstrInfo::isIntRegForSubInst(DstReg) &&
HexagonMCInstrInfo::isIntRegForSubInst(SrcReg) &&
inRange<3>(MCI, 2)) {
return HexagonII::HSIG_L2;
}
break;
case Hexagon::L2_loadrd_io:
// Rdd = memd(r29+#u5:3)
DstReg = MCI.getOperand(0).getReg();
SrcReg = MCI.getOperand(1).getReg();
if (HexagonMCInstrInfo::isDblRegForSubInst(DstReg) &&
HexagonMCInstrInfo::isIntReg(SrcReg) && Hexagon::R29 == SrcReg &&
inRange<5, 3>(MCI, 2)) {
return HexagonII::HSIG_L2;
}
break;
case Hexagon::L4_return:
case Hexagon::L2_deallocframe:
return HexagonII::HSIG_L2;
case Hexagon::EH_RETURN_JMPR:
case Hexagon::J2_jumpr:
case Hexagon::PS_jmpret:
// jumpr r31
// Actual form JMPR implicit-def %pc, implicit %r31, implicit internal %r0.
DstReg = MCI.getOperand(0).getReg();
if (Hexagon::R31 == DstReg)
return HexagonII::HSIG_L2;
break;
case Hexagon::J2_jumprt:
case Hexagon::J2_jumprf:
case Hexagon::J2_jumprtnew:
case Hexagon::J2_jumprfnew:
case Hexagon::J2_jumprtnewpt:
case Hexagon::J2_jumprfnewpt:
case Hexagon::PS_jmprett:
case Hexagon::PS_jmpretf:
case Hexagon::PS_jmprettnew:
case Hexagon::PS_jmpretfnew:
case Hexagon::PS_jmprettnewpt:
case Hexagon::PS_jmpretfnewpt:
DstReg = MCI.getOperand(1).getReg();
SrcReg = MCI.getOperand(0).getReg();
// [if ([!]p0[.new])] jumpr r31
if ((Hexagon::P0 == SrcReg) && (Hexagon::R31 == DstReg)) {
return HexagonII::HSIG_L2;
}
break;
case Hexagon::L4_return_t:
case Hexagon::L4_return_f:
case Hexagon::L4_return_tnew_pnt:
case Hexagon::L4_return_fnew_pnt:
case Hexagon::L4_return_tnew_pt:
case Hexagon::L4_return_fnew_pt:
// [if ([!]p0[.new])] dealloc_return
SrcReg = MCI.getOperand(1).getReg();
if (Hexagon::P0 == SrcReg) {
return HexagonII::HSIG_L2;
}
break;
//
// Group S1:
//
// memw(Rs+#u4:2) = Rt
// memb(Rs+#u4:0) = Rt
case Hexagon::S2_storeri_io:
// Special case this one from Group S2.
// memw(r29+#u5:2) = Rt
Src1Reg = MCI.getOperand(0).getReg();
Src2Reg = MCI.getOperand(2).getReg();
if (HexagonMCInstrInfo::isIntReg(Src1Reg) &&
HexagonMCInstrInfo::isIntRegForSubInst(Src2Reg) &&
Hexagon::R29 == Src1Reg && inRange<5, 2>(MCI, 1)) {
return HexagonII::HSIG_S2;
}
// memw(Rs+#u4:2) = Rt
if (HexagonMCInstrInfo::isIntRegForSubInst(Src1Reg) &&
HexagonMCInstrInfo::isIntRegForSubInst(Src2Reg) &&
inRange<4, 2>(MCI, 1)) {
return HexagonII::HSIG_S1;
}
break;
case Hexagon::S2_storerb_io:
// memb(Rs+#u4:0) = Rt
Src1Reg = MCI.getOperand(0).getReg();
Src2Reg = MCI.getOperand(2).getReg();
if (HexagonMCInstrInfo::isIntRegForSubInst(Src1Reg) &&
HexagonMCInstrInfo::isIntRegForSubInst(Src2Reg) &&
inRange<4>(MCI, 1)) {
return HexagonII::HSIG_S1;
}
break;
//
// Group S2:
//
// memh(Rs+#u3:1) = Rt
// memw(r29+#u5:2) = Rt
// memd(r29+#s6:3) = Rtt
// memw(Rs+#u4:2) = #U1
// memb(Rs+#u4) = #U1
// allocframe(#u5:3)
case Hexagon::S2_storerh_io:
// memh(Rs+#u3:1) = Rt
Src1Reg = MCI.getOperand(0).getReg();
Src2Reg = MCI.getOperand(2).getReg();
if (HexagonMCInstrInfo::isIntRegForSubInst(Src1Reg) &&
HexagonMCInstrInfo::isIntRegForSubInst(Src2Reg) &&
inRange<3, 1>(MCI, 1)) {
return HexagonII::HSIG_S2;
}
break;
case Hexagon::S2_storerd_io:
// memd(r29+#s6:3) = Rtt
Src1Reg = MCI.getOperand(0).getReg();
Src2Reg = MCI.getOperand(2).getReg();
if (HexagonMCInstrInfo::isDblRegForSubInst(Src2Reg) &&
HexagonMCInstrInfo::isIntReg(Src1Reg) && Hexagon::R29 == Src1Reg &&
inSRange<6, 3>(MCI, 1)) {
return HexagonII::HSIG_S2;
}
break;
case Hexagon::S4_storeiri_io:
// memw(Rs+#u4:2) = #U1
Src1Reg = MCI.getOperand(0).getReg();
if (HexagonMCInstrInfo::isIntRegForSubInst(Src1Reg) &&
inRange<4, 2>(MCI, 1) && inRange<1>(MCI, 2)) {
return HexagonII::HSIG_S2;
}
break;
case Hexagon::S4_storeirb_io:
// memb(Rs+#u4) = #U1
Src1Reg = MCI.getOperand(0).getReg();
if (HexagonMCInstrInfo::isIntRegForSubInst(Src1Reg) &&
inRange<4>(MCI, 1) && inRange<1>(MCI, 2)) {
return HexagonII::HSIG_S2;
}
break;
case Hexagon::S2_allocframe:
if (inRange<5, 3>(MCI, 2))
return HexagonII::HSIG_S2;
break;
//
// Group A:
//
// Rx = add(Rx,#s7)
// Rd = Rs
// Rd = #u6
// Rd = #-1
// if ([!]P0[.new]) Rd = #0
// Rd = add(r29,#u6:2)
// Rx = add(Rx,Rs)
// P0 = cmp.eq(Rs,#u2)
// Rdd = combine(#0,Rs)
// Rdd = combine(Rs,#0)
// Rdd = combine(#u2,#U2)
// Rd = add(Rs,#1)
// Rd = add(Rs,#-1)
// Rd = sxth/sxtb/zxtb/zxth(Rs)
// Rd = and(Rs,#1)
case Hexagon::A2_addi:
DstReg = MCI.getOperand(0).getReg();
SrcReg = MCI.getOperand(1).getReg();
if (HexagonMCInstrInfo::isIntRegForSubInst(DstReg)) {
// Rd = add(r29,#u6:2)
if (HexagonMCInstrInfo::isIntReg(SrcReg) && Hexagon::R29 == SrcReg &&
inRange<6, 2>(MCI, 2)) {
return HexagonII::HSIG_A;
}
// Rx = add(Rx,#s7)
if (DstReg == SrcReg) {
return HexagonII::HSIG_A;
}
// Rd = add(Rs,#1)
// Rd = add(Rs,#-1)
if (HexagonMCInstrInfo::isIntRegForSubInst(SrcReg) &&
(minConstant(MCI, 2) == 1 || minConstant(MCI, 2) == -1)) {
return HexagonII::HSIG_A;
}
}
break;
case Hexagon::A2_add:
// Rx = add(Rx,Rs)
DstReg = MCI.getOperand(0).getReg();
Src1Reg = MCI.getOperand(1).getReg();
Src2Reg = MCI.getOperand(2).getReg();
if (HexagonMCInstrInfo::isIntRegForSubInst(DstReg) && (DstReg == Src1Reg) &&
HexagonMCInstrInfo::isIntRegForSubInst(Src2Reg)) {
return HexagonII::HSIG_A;
}
break;
case Hexagon::A2_andir:
DstReg = MCI.getOperand(0).getReg();
SrcReg = MCI.getOperand(1).getReg();
if (HexagonMCInstrInfo::isIntRegForSubInst(DstReg) &&
HexagonMCInstrInfo::isIntRegForSubInst(SrcReg) &&
(minConstant(MCI, 2) == 1 || minConstant(MCI, 2) == 255)) {
return HexagonII::HSIG_A;
}
break;
case Hexagon::A2_tfr:
// Rd = Rs
DstReg = MCI.getOperand(0).getReg();
SrcReg = MCI.getOperand(1).getReg();
if (HexagonMCInstrInfo::isIntRegForSubInst(DstReg) &&
HexagonMCInstrInfo::isIntRegForSubInst(SrcReg)) {
return HexagonII::HSIG_A;
}
break;
case Hexagon::A2_tfrsi:
DstReg = MCI.getOperand(0).getReg();
if (HexagonMCInstrInfo::isIntRegForSubInst(DstReg)) {
return HexagonII::HSIG_A;
}
break;
case Hexagon::C2_cmoveit:
case Hexagon::C2_cmovenewit:
case Hexagon::C2_cmoveif:
case Hexagon::C2_cmovenewif:
// if ([!]P0[.new]) Rd = #0
// Actual form:
// %r16 = C2_cmovenewit internal %p0, 0, implicit undef %r16;
DstReg = MCI.getOperand(0).getReg(); // Rd
PredReg = MCI.getOperand(1).getReg(); // P0
if (HexagonMCInstrInfo::isIntRegForSubInst(DstReg) &&
Hexagon::P0 == PredReg && minConstant(MCI, 2) == 0) {
return HexagonII::HSIG_A;
}
break;
case Hexagon::C2_cmpeqi:
// P0 = cmp.eq(Rs,#u2)
DstReg = MCI.getOperand(0).getReg();
SrcReg = MCI.getOperand(1).getReg();
if (Hexagon::P0 == DstReg &&
HexagonMCInstrInfo::isIntRegForSubInst(SrcReg) &&
inRange<2>(MCI, 2)) {
return HexagonII::HSIG_A;
}
break;
case Hexagon::A2_combineii:
case Hexagon::A4_combineii:
// Rdd = combine(#u2,#U2)
DstReg = MCI.getOperand(0).getReg();
if (HexagonMCInstrInfo::isDblRegForSubInst(DstReg) &&
inRange<2>(MCI, 1) && inRange<2>(MCI, 2)) {
return HexagonII::HSIG_A;
}
break;
case Hexagon::A4_combineri:
// Rdd = combine(Rs,#0)
DstReg = MCI.getOperand(0).getReg();
SrcReg = MCI.getOperand(1).getReg();
if (HexagonMCInstrInfo::isDblRegForSubInst(DstReg) &&
HexagonMCInstrInfo::isIntRegForSubInst(SrcReg) &&
minConstant(MCI, 2) == 0) {
return HexagonII::HSIG_A;
}
break;
case Hexagon::A4_combineir:
// Rdd = combine(#0,Rs)
DstReg = MCI.getOperand(0).getReg();
SrcReg = MCI.getOperand(2).getReg();
if (HexagonMCInstrInfo::isDblRegForSubInst(DstReg) &&
HexagonMCInstrInfo::isIntRegForSubInst(SrcReg) &&
minConstant(MCI, 1) == 0) {
return HexagonII::HSIG_A;
}
break;
case Hexagon::A2_sxtb:
case Hexagon::A2_sxth:
case Hexagon::A2_zxtb:
case Hexagon::A2_zxth:
// Rd = sxth/sxtb/zxtb/zxth(Rs)
DstReg = MCI.getOperand(0).getReg();
SrcReg = MCI.getOperand(1).getReg();
if (HexagonMCInstrInfo::isIntRegForSubInst(DstReg) &&
HexagonMCInstrInfo::isIntRegForSubInst(SrcReg)) {
return HexagonII::HSIG_A;
}
break;
}
return HexagonII::HSIG_None;
}
bool HexagonMCInstrInfo::subInstWouldBeExtended(MCInst const &potentialDuplex) {
unsigned DstReg, SrcReg;
switch (potentialDuplex.getOpcode()) {
case Hexagon::A2_addi:
// testing for case of: Rx = add(Rx,#s7)
DstReg = potentialDuplex.getOperand(0).getReg();
SrcReg = potentialDuplex.getOperand(1).getReg();
if (DstReg == SrcReg && HexagonMCInstrInfo::isIntRegForSubInst(DstReg)) {
int64_t Value;
if (!potentialDuplex.getOperand(2).getExpr()->evaluateAsAbsolute(Value))
return true;
if (!isShiftedInt<7, 0>(Value))
return true;
}
break;
case Hexagon::A2_tfrsi:
DstReg = potentialDuplex.getOperand(0).getReg();
if (HexagonMCInstrInfo::isIntRegForSubInst(DstReg)) {
int64_t Value;
if (!potentialDuplex.getOperand(1).getExpr()->evaluateAsAbsolute(Value))
return true;
// Check for case of Rd = #-1.
if (Value == -1)
return false;
// Check for case of Rd = #u6.
if (!isShiftedUInt<6, 0>(Value))
return true;
}
break;
default:
break;
}
return false;
}
/// non-Symmetrical. See if these two instructions are fit for duplex pair.
bool HexagonMCInstrInfo::isOrderedDuplexPair(MCInstrInfo const &MCII,
MCInst const &MIa, bool ExtendedA,
MCInst const &MIb, bool ExtendedB,
bool bisReversable,
MCSubtargetInfo const &STI) {
// Slot 1 cannot be extended in duplexes PRM 10.5
if (ExtendedA)
return false;
// Only A2_addi and A2_tfrsi can be extended in duplex form PRM 10.5
if (ExtendedB) {
unsigned Opcode = MIb.getOpcode();
if ((Opcode != Hexagon::A2_addi) && (Opcode != Hexagon::A2_tfrsi))
return false;
}
unsigned MIaG = HexagonMCInstrInfo::getDuplexCandidateGroup(MIa),
MIbG = HexagonMCInstrInfo::getDuplexCandidateGroup(MIb);
static std::map<unsigned, unsigned> subinstOpcodeMap(std::begin(opcodeData),
std::end(opcodeData));
// If a duplex contains 2 insns in the same group, the insns must be
// ordered such that the numerically smaller opcode is in slot 1.
if ((MIaG != HexagonII::HSIG_None) && (MIaG == MIbG) && bisReversable) {
MCInst SubInst0 = HexagonMCInstrInfo::deriveSubInst(MIa);
MCInst SubInst1 = HexagonMCInstrInfo::deriveSubInst(MIb);
unsigned zeroedSubInstS0 =
subinstOpcodeMap.find(SubInst0.getOpcode())->second;
unsigned zeroedSubInstS1 =
subinstOpcodeMap.find(SubInst1.getOpcode())->second;
if (zeroedSubInstS0 < zeroedSubInstS1)
// subinstS0 (maps to slot 0) must be greater than
// subinstS1 (maps to slot 1)
return false;
}
// allocframe must always be in slot 0
if (MIb.getOpcode() == Hexagon::S2_allocframe)
return false;
if ((MIaG != HexagonII::HSIG_None) && (MIbG != HexagonII::HSIG_None)) {
// Prevent 2 instructions with extenders from duplexing
// Note that MIb (slot1) can be extended and MIa (slot0)
// can never be extended
if (subInstWouldBeExtended(MIa))
return false;
// If duplexing produces an extender, but the original did not
// have an extender, do not duplex.
if (subInstWouldBeExtended(MIb) && !ExtendedB)
return false;
}
// If jumpr r31 appears, it must be in slot 0, and never slot 1 (MIb).
if (MIbG == HexagonII::HSIG_L2) {
if ((MIb.getNumOperands() > 1) && MIb.getOperand(1).isReg() &&
(MIb.getOperand(1).getReg() == Hexagon::R31))
return false;
if ((MIb.getNumOperands() > 0) && MIb.getOperand(0).isReg() &&
(MIb.getOperand(0).getReg() == Hexagon::R31))
return false;
}
if (STI.getCPU().equals_insensitive("hexagonv5") ||
STI.getCPU().equals_insensitive("hexagonv55") ||
STI.getCPU().equals_insensitive("hexagonv60")) {
// If a store appears, it must be in slot 0 (MIa) 1st, and then slot 1 (MIb);
// therefore, not duplexable if slot 1 is a store, and slot 0 is not.
if ((MIbG == HexagonII::HSIG_S1) || (MIbG == HexagonII::HSIG_S2)) {
if ((MIaG != HexagonII::HSIG_S1) && (MIaG != HexagonII::HSIG_S2))
return false;
}
}
return (isDuplexPairMatch(MIaG, MIbG));
}
/// Symmetrical. See if these two instructions are fit for duplex pair.
bool HexagonMCInstrInfo::isDuplexPair(MCInst const &MIa, MCInst const &MIb) {
unsigned MIaG = getDuplexCandidateGroup(MIa),
MIbG = getDuplexCandidateGroup(MIb);
return (isDuplexPairMatch(MIaG, MIbG) || isDuplexPairMatch(MIbG, MIaG));
}
inline static void addOps(MCInst &subInstPtr, MCInst const &Inst,
unsigned opNum) {
if (Inst.getOperand(opNum).isReg()) {
switch (Inst.getOperand(opNum).getReg()) {
default:
llvm_unreachable("Not Duplexable Register");
break;
case Hexagon::R0:
case Hexagon::R1:
case Hexagon::R2:
case Hexagon::R3:
case Hexagon::R4:
case Hexagon::R5:
case Hexagon::R6:
case Hexagon::R7:
case Hexagon::D0:
case Hexagon::D1:
case Hexagon::D2:
case Hexagon::D3:
case Hexagon::R16:
case Hexagon::R17:
case Hexagon::R18:
case Hexagon::R19:
case Hexagon::R20:
case Hexagon::R21:
case Hexagon::R22:
case Hexagon::R23:
case Hexagon::D8:
case Hexagon::D9:
case Hexagon::D10:
case Hexagon::D11:
case Hexagon::P0:
subInstPtr.addOperand(Inst.getOperand(opNum));
break;
}
} else
subInstPtr.addOperand(Inst.getOperand(opNum));
}
MCInst HexagonMCInstrInfo::deriveSubInst(MCInst const &Inst) {
MCInst Result;
bool Absolute;
int64_t Value;
switch (Inst.getOpcode()) {
default:
// dbgs() << "opcode: "<< Inst->getOpcode() << "\n";
llvm_unreachable("Unimplemented subinstruction \n");
break;
case Hexagon::A2_addi:
Absolute = Inst.getOperand(2).getExpr()->evaluateAsAbsolute(Value);
if (Absolute) {
if (Value == 1) {
Result.setOpcode(Hexagon::SA1_inc);
addOps(Result, Inst, 0);
addOps(Result, Inst, 1);
break;
} // 1,2 SUBInst $Rd = add($Rs, #1)
if (Value == -1) {
Result.setOpcode(Hexagon::SA1_dec);
addOps(Result, Inst, 0);
addOps(Result, Inst, 1);
addOps(Result, Inst, 2);
break;
} // 1,2 SUBInst $Rd = add($Rs,#-1)
if (Inst.getOperand(1).getReg() == Hexagon::R29) {
Result.setOpcode(Hexagon::SA1_addsp);
addOps(Result, Inst, 0);
addOps(Result, Inst, 2);
break;
} // 1,3 SUBInst $Rd = add(r29, #$u6_2)
}
Result.setOpcode(Hexagon::SA1_addi);
addOps(Result, Inst, 0);
addOps(Result, Inst, 1);
addOps(Result, Inst, 2);
break; // 1,2,3 SUBInst $Rx = add($Rx, #$s7)
case Hexagon::A2_add:
Result.setOpcode(Hexagon::SA1_addrx);
addOps(Result, Inst, 0);
addOps(Result, Inst, 1);
addOps(Result, Inst, 2);
break; // 1,2,3 SUBInst $Rx = add($_src_, $Rs)
case Hexagon::S2_allocframe:
Result.setOpcode(Hexagon::SS2_allocframe);
addOps(Result, Inst, 2);
break; // 1 SUBInst allocframe(#$u5_3)
case Hexagon::A2_andir:
if (minConstant(Inst, 2) == 255) {
Result.setOpcode(Hexagon::SA1_zxtb);
addOps(Result, Inst, 0);
addOps(Result, Inst, 1);
break; // 1,2 $Rd = and($Rs, #255)
} else {
Result.setOpcode(Hexagon::SA1_and1);
addOps(Result, Inst, 0);
addOps(Result, Inst, 1);
break; // 1,2 SUBInst $Rd = and($Rs, #1)
}
case Hexagon::C2_cmpeqi:
Result.setOpcode(Hexagon::SA1_cmpeqi);
addOps(Result, Inst, 1);
addOps(Result, Inst, 2);
break; // 2,3 SUBInst p0 = cmp.eq($Rs, #$u2)
case Hexagon::A4_combineii:
case Hexagon::A2_combineii:
Absolute = Inst.getOperand(1).getExpr()->evaluateAsAbsolute(Value);
assert(Absolute);(void)Absolute;
if (Value == 1) {
Result.setOpcode(Hexagon::SA1_combine1i);
addOps(Result, Inst, 0);
addOps(Result, Inst, 2);
break; // 1,3 SUBInst $Rdd = combine(#1, #$u2)
}
if (Value == 3) {
Result.setOpcode(Hexagon::SA1_combine3i);
addOps(Result, Inst, 0);
addOps(Result, Inst, 2);
break; // 1,3 SUBInst $Rdd = combine(#3, #$u2)
}
if (Value == 0) {
Result.setOpcode(Hexagon::SA1_combine0i);
addOps(Result, Inst, 0);
addOps(Result, Inst, 2);
break; // 1,3 SUBInst $Rdd = combine(#0, #$u2)
}
if (Value == 2) {
Result.setOpcode(Hexagon::SA1_combine2i);
addOps(Result, Inst, 0);
addOps(Result, Inst, 2);
break; // 1,3 SUBInst $Rdd = combine(#2, #$u2)
}
break;
case Hexagon::A4_combineir:
Result.setOpcode(Hexagon::SA1_combinezr);
addOps(Result, Inst, 0);
addOps(Result, Inst, 2);
break; // 1,3 SUBInst $Rdd = combine(#0, $Rs)
case Hexagon::A4_combineri:
Result.setOpcode(Hexagon::SA1_combinerz);
addOps(Result, Inst, 0);
addOps(Result, Inst, 1);
break; // 1,2 SUBInst $Rdd = combine($Rs, #0)
case Hexagon::L4_return_tnew_pnt:
case Hexagon::L4_return_tnew_pt:
Result.setOpcode(Hexagon::SL2_return_tnew);
break; // none SUBInst if (p0.new) dealloc_return:nt
case Hexagon::L4_return_fnew_pnt:
case Hexagon::L4_return_fnew_pt:
Result.setOpcode(Hexagon::SL2_return_fnew);
break; // none SUBInst if (!p0.new) dealloc_return:nt
case Hexagon::L4_return_f:
Result.setOpcode(Hexagon::SL2_return_f);
break; // none SUBInst if (!p0) dealloc_return
case Hexagon::L4_return_t:
Result.setOpcode(Hexagon::SL2_return_t);
break; // none SUBInst if (p0) dealloc_return
case Hexagon::L4_return:
Result.setOpcode(Hexagon::SL2_return);
break; // none SUBInst dealloc_return
case Hexagon::L2_deallocframe:
Result.setOpcode(Hexagon::SL2_deallocframe);
break; // none SUBInst deallocframe
case Hexagon::EH_RETURN_JMPR:
case Hexagon::J2_jumpr:
case Hexagon::PS_jmpret:
Result.setOpcode(Hexagon::SL2_jumpr31);
break; // none SUBInst jumpr r31
case Hexagon::J2_jumprf:
case Hexagon::PS_jmpretf:
Result.setOpcode(Hexagon::SL2_jumpr31_f);
break; // none SUBInst if (!p0) jumpr r31
case Hexagon::J2_jumprfnew:
case Hexagon::J2_jumprfnewpt:
case Hexagon::PS_jmpretfnewpt:
case Hexagon::PS_jmpretfnew:
Result.setOpcode(Hexagon::SL2_jumpr31_fnew);
break; // none SUBInst if (!p0.new) jumpr:nt r31
case Hexagon::J2_jumprt:
case Hexagon::PS_jmprett:
Result.setOpcode(Hexagon::SL2_jumpr31_t);
break; // none SUBInst if (p0) jumpr r31
case Hexagon::J2_jumprtnew:
case Hexagon::J2_jumprtnewpt:
case Hexagon::PS_jmprettnewpt:
case Hexagon::PS_jmprettnew:
Result.setOpcode(Hexagon::SL2_jumpr31_tnew);
break; // none SUBInst if (p0.new) jumpr:nt r31
case Hexagon::L2_loadrb_io:
Result.setOpcode(Hexagon::SL2_loadrb_io);
addOps(Result, Inst, 0);
addOps(Result, Inst, 1);
addOps(Result, Inst, 2);
break; // 1,2,3 SUBInst $Rd = memb($Rs + #$u3_0)
case Hexagon::L2_loadrd_io:
Result.setOpcode(Hexagon::SL2_loadrd_sp);
addOps(Result, Inst, 0);
addOps(Result, Inst, 2);
break; // 1,3 SUBInst $Rdd = memd(r29 + #$u5_3)
case Hexagon::L2_loadrh_io:
Result.setOpcode(Hexagon::SL2_loadrh_io);
addOps(Result, Inst, 0);
addOps(Result, Inst, 1);
addOps(Result, Inst, 2);
break; // 1,2,3 SUBInst $Rd = memh($Rs + #$u3_1)
case Hexagon::L2_loadrub_io:
Result.setOpcode(Hexagon::SL1_loadrub_io);
addOps(Result, Inst, 0);
addOps(Result, Inst, 1);
addOps(Result, Inst, 2);
break; // 1,2,3 SUBInst $Rd = memub($Rs + #$u4_0)
case Hexagon::L2_loadruh_io:
Result.setOpcode(Hexagon::SL2_loadruh_io);
addOps(Result, Inst, 0);
addOps(Result, Inst, 1);
addOps(Result, Inst, 2);
break; // 1,2,3 SUBInst $Rd = memuh($Rs + #$u3_1)
case Hexagon::L2_loadri_io:
if (Inst.getOperand(1).getReg() == Hexagon::R29) {
Result.setOpcode(Hexagon::SL2_loadri_sp);
addOps(Result, Inst, 0);
addOps(Result, Inst, 2);
break; // 2 1,3 SUBInst $Rd = memw(r29 + #$u5_2)
} else {
Result.setOpcode(Hexagon::SL1_loadri_io);
addOps(Result, Inst, 0);
addOps(Result, Inst, 1);
addOps(Result, Inst, 2);
break; // 1,2,3 SUBInst $Rd = memw($Rs + #$u4_2)
}
case Hexagon::S4_storeirb_io:
Absolute = Inst.getOperand(2).getExpr()->evaluateAsAbsolute(Value);
assert(Absolute);(void)Absolute;
if (Value == 0) {
Result.setOpcode(Hexagon::SS2_storebi0);
addOps(Result, Inst, 0);
addOps(Result, Inst, 1);
break; // 1,2 SUBInst memb($Rs + #$u4_0)=#0
} else if (Value == 1) {
Result.setOpcode(Hexagon::SS2_storebi1);
addOps(Result, Inst, 0);
addOps(Result, Inst, 1);
break; // 2 1,2 SUBInst memb($Rs + #$u4_0)=#1
}
break;
case Hexagon::S2_storerb_io:
Result.setOpcode(Hexagon::SS1_storeb_io);
addOps(Result, Inst, 0);
addOps(Result, Inst, 1);
addOps(Result, Inst, 2);
break; // 1,2,3 SUBInst memb($Rs + #$u4_0) = $Rt
case Hexagon::S2_storerd_io:
Result.setOpcode(Hexagon::SS2_stored_sp);
addOps(Result, Inst, 1);
addOps(Result, Inst, 2);
break; // 2,3 SUBInst memd(r29 + #$s6_3) = $Rtt
case Hexagon::S2_storerh_io:
Result.setOpcode(Hexagon::SS2_storeh_io);
addOps(Result, Inst, 0);
addOps(Result, Inst, 1);
addOps(Result, Inst, 2);
break; // 1,2,3 SUBInst memb($Rs + #$u4_0) = $Rt
case Hexagon::S4_storeiri_io:
Absolute = Inst.getOperand(2).getExpr()->evaluateAsAbsolute(Value);
assert(Absolute);(void)Absolute;
if (Value == 0) {
Result.setOpcode(Hexagon::SS2_storewi0);
addOps(Result, Inst, 0);
addOps(Result, Inst, 1);
break; // 3 1,2 SUBInst memw($Rs + #$u4_2)=#0
} else if (Value == 1) {
Result.setOpcode(Hexagon::SS2_storewi1);
addOps(Result, Inst, 0);
addOps(Result, Inst, 1);
break; // 3 1,2 SUBInst memw($Rs + #$u4_2)=#1
} else if (Inst.getOperand(0).getReg() == Hexagon::R29) {
Result.setOpcode(Hexagon::SS2_storew_sp);
addOps(Result, Inst, 1);
addOps(Result, Inst, 2);
break; // 1 2,3 SUBInst memw(r29 + #$u5_2) = $Rt
}
break;
case Hexagon::S2_storeri_io:
if (Inst.getOperand(0).getReg() == Hexagon::R29) {
Result.setOpcode(Hexagon::SS2_storew_sp);
addOps(Result, Inst, 1);
addOps(Result, Inst, 2); // 1,2,3 SUBInst memw(sp + #$u5_2) = $Rt
} else {
Result.setOpcode(Hexagon::SS1_storew_io);
addOps(Result, Inst, 0);
addOps(Result, Inst, 1);
addOps(Result, Inst, 2); // 1,2,3 SUBInst memw($Rs + #$u4_2) = $Rt
}
break;
case Hexagon::A2_sxtb:
Result.setOpcode(Hexagon::SA1_sxtb);
addOps(Result, Inst, 0);
addOps(Result, Inst, 1);
break; // 1,2 SUBInst $Rd = sxtb($Rs)
case Hexagon::A2_sxth:
Result.setOpcode(Hexagon::SA1_sxth);
addOps(Result, Inst, 0);
addOps(Result, Inst, 1);
break; // 1,2 SUBInst $Rd = sxth($Rs)
case Hexagon::A2_tfr:
Result.setOpcode(Hexagon::SA1_tfr);
addOps(Result, Inst, 0);
addOps(Result, Inst, 1);
break; // 1,2 SUBInst $Rd = $Rs
case Hexagon::C2_cmovenewif:
Result.setOpcode(Hexagon::SA1_clrfnew);
addOps(Result, Inst, 0);
addOps(Result, Inst, 1);
break; // 2 SUBInst if (!p0.new) $Rd = #0
case Hexagon::C2_cmovenewit:
Result.setOpcode(Hexagon::SA1_clrtnew);
addOps(Result, Inst, 0);
addOps(Result, Inst, 1);
break; // 2 SUBInst if (p0.new) $Rd = #0
case Hexagon::C2_cmoveif:
Result.setOpcode(Hexagon::SA1_clrf);
addOps(Result, Inst, 0);
addOps(Result, Inst, 1);
break; // 2 SUBInst if (!p0) $Rd = #0
case Hexagon::C2_cmoveit:
Result.setOpcode(Hexagon::SA1_clrt);
addOps(Result, Inst, 0);
addOps(Result, Inst, 1);
break; // 2 SUBInst if (p0) $Rd = #0
case Hexagon::A2_tfrsi:
Absolute = Inst.getOperand(1).getExpr()->evaluateAsAbsolute(Value);
if (Absolute && Value == -1) {
Result.setOpcode(Hexagon::SA1_setin1);
addOps(Result, Inst, 0);
addOps(Result, Inst, 1);
break; // 2 1 SUBInst $Rd = #-1
} else {
Result.setOpcode(Hexagon::SA1_seti);
addOps(Result, Inst, 0);
addOps(Result, Inst, 1);
break; // 1,2 SUBInst $Rd = #$u6
}
case Hexagon::A2_zxtb:
Result.setOpcode(Hexagon::SA1_zxtb);
addOps(Result, Inst, 0);
addOps(Result, Inst, 1);
break; // 1,2 $Rd = and($Rs, #255)
case Hexagon::A2_zxth:
Result.setOpcode(Hexagon::SA1_zxth);
addOps(Result, Inst, 0);
addOps(Result, Inst, 1);
break; // 1,2 SUBInst $Rd = zxth($Rs)
}
return Result;
}
static bool isStoreInst(unsigned opCode) {
switch (opCode) {
case Hexagon::S2_storeri_io:
case Hexagon::S2_storerb_io:
case Hexagon::S2_storerh_io:
case Hexagon::S2_storerd_io:
case Hexagon::S4_storeiri_io:
case Hexagon::S4_storeirb_io:
case Hexagon::S2_allocframe:
return true;
default:
return false;
}
}
SmallVector<DuplexCandidate, 8>
HexagonMCInstrInfo::getDuplexPossibilties(MCInstrInfo const &MCII,
MCSubtargetInfo const &STI,
MCInst const &MCB) {
assert(isBundle(MCB));
SmallVector<DuplexCandidate, 8> duplexToTry;
// Use an "order matters" version of isDuplexPair.
unsigned numInstrInPacket = MCB.getNumOperands();
for (unsigned distance = 1; distance < numInstrInPacket; ++distance) {
for (unsigned j = HexagonMCInstrInfo::bundleInstructionsOffset,
k = j + distance;
(j < numInstrInPacket) && (k < numInstrInPacket); ++j, ++k) {
// Check if reversible.
bool bisReversable = true;
if (isStoreInst(MCB.getOperand(j).getInst()->getOpcode()) &&
isStoreInst(MCB.getOperand(k).getInst()->getOpcode())) {
LLVM_DEBUG(dbgs() << "skip out of order write pair: " << k << "," << j
<< "\n");
bisReversable = false;
}
if (HexagonMCInstrInfo::isMemReorderDisabled(MCB)) // }:mem_noshuf
bisReversable = false;
// Try in order.
if (isOrderedDuplexPair(
MCII, *MCB.getOperand(k).getInst(),
HexagonMCInstrInfo::hasExtenderForIndex(MCB, k - 1),
*MCB.getOperand(j).getInst(),
HexagonMCInstrInfo::hasExtenderForIndex(MCB, j - 1),
bisReversable, STI)) {
// Get iClass.
unsigned iClass = iClassOfDuplexPair(
getDuplexCandidateGroup(*MCB.getOperand(k).getInst()),
getDuplexCandidateGroup(*MCB.getOperand(j).getInst()));
// Save off pairs for duplex checking.
duplexToTry.push_back(DuplexCandidate(j, k, iClass));
LLVM_DEBUG(dbgs() << "adding pair: " << j << "," << k << ":"
<< MCB.getOperand(j).getInst()->getOpcode() << ","
<< MCB.getOperand(k).getInst()->getOpcode() << "\n");
continue;
} else {
LLVM_DEBUG(dbgs() << "skipping pair: " << j << "," << k << ":"
<< MCB.getOperand(j).getInst()->getOpcode() << ","
<< MCB.getOperand(k).getInst()->getOpcode() << "\n");
}
// Try reverse.
if (bisReversable) {
if (isOrderedDuplexPair(
MCII, *MCB.getOperand(j).getInst(),
HexagonMCInstrInfo::hasExtenderForIndex(MCB, j - 1),
*MCB.getOperand(k).getInst(),
HexagonMCInstrInfo::hasExtenderForIndex(MCB, k - 1),
bisReversable, STI)) {
// Get iClass.
unsigned iClass = iClassOfDuplexPair(
getDuplexCandidateGroup(*MCB.getOperand(j).getInst()),
getDuplexCandidateGroup(*MCB.getOperand(k).getInst()));
// Save off pairs for duplex checking.
duplexToTry.push_back(DuplexCandidate(k, j, iClass));
LLVM_DEBUG(dbgs()
<< "adding pair:" << k << "," << j << ":"
<< MCB.getOperand(j).getInst()->getOpcode() << ","
<< MCB.getOperand(k).getInst()->getOpcode() << "\n");
} else {
LLVM_DEBUG(dbgs()
<< "skipping pair: " << k << "," << j << ":"
<< MCB.getOperand(j).getInst()->getOpcode() << ","
<< MCB.getOperand(k).getInst()->getOpcode() << "\n");
}
}
}
}
return duplexToTry;
}