1
0
mirror of https://github.com/RPCS3/llvm-mirror.git synced 2024-11-22 02:33:06 +01:00
llvm-mirror/lib/Target/RISCV/RISCVInstrInfoZfh.td
Craig Topper 0a8fb0b4d7 [RISCV] Custom lower (i32 (fptoui/fptosi X)).
I stumbled onto a case where our (sext_inreg (assertzexti32 (fptoui X)), i32)
isel pattern can cause an fcvt.wu and fcvt.lu to be emitted if
the assertzexti32 has an additional user. If we add a one use check
it would just cause a fcvt.lu followed by a sext.w when only need
a fcvt.wu to satisfy both users.

To mitigate this I've added custom isel and new ISD opcodes for
fcvt.wu. This allows us to keep know it started life as a conversion
to i32 without needing to match multiple nodes. ComputeNumSignBits
has been taught that this new nodes produces 33 sign bits. To
prevent regressions when we need to zero extend the result of an
(i32 (fptoui X)), I've added a DAG combine to convert it to an
(i64 (fptoui X)) before type legalization. In most cases this would
happen in InstCombine, but a zero_extend can be created for function
returns or arguments.

To keep everything consistent I've added new nodes for fptosi as well.

Reviewed By: luismarques

Differential Revision: https://reviews.llvm.org/D106346
2021-07-24 10:50:43 -07:00

389 lines
16 KiB
TableGen

//===-- RISCVInstrInfoFH.td - RISC-V 'FH' instructions -----*- tablegen -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file describes the RISC-V instructions from the standard 'Zfh'
// half-precision floating-point extension, version 0.1.
// This version is still experimental as the 'Zfh' extension hasn't been
// ratified yet.
//
//===----------------------------------------------------------------------===//
//===----------------------------------------------------------------------===//
// RISC-V specific DAG Nodes.
//===----------------------------------------------------------------------===//
def SDT_RISCVFMV_H_X
: SDTypeProfile<1, 1, [SDTCisVT<0, f16>, SDTCisVT<1, XLenVT>]>;
def SDT_RISCVFMV_X_ANYEXTH
: SDTypeProfile<1, 1, [SDTCisVT<0, XLenVT>, SDTCisVT<1, f16>]>;
def riscv_fmv_h_x
: SDNode<"RISCVISD::FMV_H_X", SDT_RISCVFMV_H_X>;
def riscv_fmv_x_anyexth
: SDNode<"RISCVISD::FMV_X_ANYEXTH", SDT_RISCVFMV_X_ANYEXTH>;
//===----------------------------------------------------------------------===//
// Instruction class templates
//===----------------------------------------------------------------------===//
let hasSideEffects = 0, mayLoad = 0, mayStore = 0 in
class FPFMAH_rrr_frm<RISCVOpcode opcode, string opcodestr>
: RVInstR4Frm<0b10, opcode, (outs FPR16:$rd),
(ins FPR16:$rs1, FPR16:$rs2, FPR16:$rs3, frmarg:$funct3),
opcodestr, "$rd, $rs1, $rs2, $rs3, $funct3">;
class FPFMAHDynFrmAlias<FPFMAH_rrr_frm Inst, string OpcodeStr>
: InstAlias<OpcodeStr#" $rd, $rs1, $rs2, $rs3",
(Inst FPR16:$rd, FPR16:$rs1, FPR16:$rs2, FPR16:$rs3, 0b111)>;
let hasSideEffects = 0, mayLoad = 0, mayStore = 0 in
class FPALUH_rr<bits<7> funct7, bits<3> funct3, string opcodestr>
: RVInstR<funct7, funct3, OPC_OP_FP, (outs FPR16:$rd),
(ins FPR16:$rs1, FPR16:$rs2), opcodestr, "$rd, $rs1, $rs2">;
let hasSideEffects = 0, mayLoad = 0, mayStore = 0 in
class FPALUH_rr_frm<bits<7> funct7, string opcodestr>
: RVInstRFrm<funct7, OPC_OP_FP, (outs FPR16:$rd),
(ins FPR16:$rs1, FPR16:$rs2, frmarg:$funct3), opcodestr,
"$rd, $rs1, $rs2, $funct3">;
class FPALUHDynFrmAlias<FPALUH_rr_frm Inst, string OpcodeStr>
: InstAlias<OpcodeStr#" $rd, $rs1, $rs2",
(Inst FPR16:$rd, FPR16:$rs1, FPR16:$rs2, 0b111)>;
let hasSideEffects = 0, mayLoad = 0, mayStore = 0 in
class FPCmpH_rr<bits<3> funct3, string opcodestr>
: RVInstR<0b1010010, funct3, OPC_OP_FP, (outs GPR:$rd),
(ins FPR16:$rs1, FPR16:$rs2), opcodestr, "$rd, $rs1, $rs2">,
Sched<[WriteFCmp16, ReadFCmp16, ReadFCmp16]>;
//===----------------------------------------------------------------------===//
// Instructions
//===----------------------------------------------------------------------===//
let Predicates = [HasStdExtZfh] in {
let hasSideEffects = 0, mayLoad = 1, mayStore = 0 in
def FLH : RVInstI<0b001, OPC_LOAD_FP, (outs FPR16:$rd),
(ins GPR:$rs1, simm12:$imm12),
"flh", "$rd, ${imm12}(${rs1})">,
Sched<[WriteFLD16, ReadFMemBase]>;
// Operands for stores are in the order srcreg, base, offset rather than
// reflecting the order these fields are specified in the instruction
// encoding.
let hasSideEffects = 0, mayLoad = 0, mayStore = 1 in
def FSH : RVInstS<0b001, OPC_STORE_FP, (outs),
(ins FPR16:$rs2, GPR:$rs1, simm12:$imm12),
"fsh", "$rs2, ${imm12}(${rs1})">,
Sched<[WriteFST16, ReadStoreData, ReadFMemBase]>;
def FMADD_H : FPFMAH_rrr_frm<OPC_MADD, "fmadd.h">,
Sched<[WriteFMA16, ReadFMA16, ReadFMA16, ReadFMA16]>;
def : FPFMAHDynFrmAlias<FMADD_H, "fmadd.h">;
def FMSUB_H : FPFMAH_rrr_frm<OPC_MSUB, "fmsub.h">,
Sched<[WriteFMA16, ReadFMA16, ReadFMA16, ReadFMA16]>;
def : FPFMAHDynFrmAlias<FMSUB_H, "fmsub.h">;
def FNMSUB_H : FPFMAH_rrr_frm<OPC_NMSUB, "fnmsub.h">,
Sched<[WriteFMA16, ReadFMA16, ReadFMA16, ReadFMA16]>;
def : FPFMAHDynFrmAlias<FNMSUB_H, "fnmsub.h">;
def FNMADD_H : FPFMAH_rrr_frm<OPC_NMADD, "fnmadd.h">,
Sched<[WriteFMA16, ReadFMA16, ReadFMA16, ReadFMA16]>;
def : FPFMAHDynFrmAlias<FNMADD_H, "fnmadd.h">;
def FADD_H : FPALUH_rr_frm<0b0000010, "fadd.h">,
Sched<[WriteFALU16, ReadFALU16, ReadFALU16]>;
def : FPALUHDynFrmAlias<FADD_H, "fadd.h">;
def FSUB_H : FPALUH_rr_frm<0b0000110, "fsub.h">,
Sched<[WriteFALU16, ReadFALU16, ReadFALU16]>;
def : FPALUHDynFrmAlias<FSUB_H, "fsub.h">;
def FMUL_H : FPALUH_rr_frm<0b0001010, "fmul.h">,
Sched<[WriteFMul16, ReadFMul16, ReadFMul16]>;
def : FPALUHDynFrmAlias<FMUL_H, "fmul.h">;
def FDIV_H : FPALUH_rr_frm<0b0001110, "fdiv.h">,
Sched<[WriteFDiv16, ReadFDiv16, ReadFDiv16]>;
def : FPALUHDynFrmAlias<FDIV_H, "fdiv.h">;
def FSQRT_H : FPUnaryOp_r_frm<0b0101110, FPR16, FPR16, "fsqrt.h">,
Sched<[WriteFSqrt16, ReadFSqrt16]> {
let rs2 = 0b00000;
}
def : FPUnaryOpDynFrmAlias<FSQRT_H, "fsqrt.h", FPR16, FPR16>;
def FSGNJ_H : FPALUH_rr<0b0010010, 0b000, "fsgnj.h">,
Sched<[WriteFSGNJ16, ReadFSGNJ16, ReadFSGNJ16]>;
def FSGNJN_H : FPALUH_rr<0b0010010, 0b001, "fsgnjn.h">,
Sched<[WriteFSGNJ16, ReadFSGNJ16, ReadFSGNJ16]>;
def FSGNJX_H : FPALUH_rr<0b0010010, 0b010, "fsgnjx.h">,
Sched<[WriteFSGNJ16, ReadFSGNJ16, ReadFSGNJ16]>;
def FMIN_H : FPALUH_rr<0b0010110, 0b000, "fmin.h">,
Sched<[WriteFMinMax16, ReadFMinMax16, ReadFMinMax16]>;
def FMAX_H : FPALUH_rr<0b0010110, 0b001, "fmax.h">,
Sched<[WriteFMinMax16, ReadFMinMax16, ReadFMinMax16]>;
def FCVT_W_H : FPUnaryOp_r_frm<0b1100010, GPR, FPR16, "fcvt.w.h">,
Sched<[WriteFCvtF16ToI32, ReadFCvtF16ToI32]> {
let rs2 = 0b00000;
}
def : FPUnaryOpDynFrmAlias<FCVT_W_H, "fcvt.w.h", GPR, FPR16>;
def FCVT_WU_H : FPUnaryOp_r_frm<0b1100010, GPR, FPR16, "fcvt.wu.h">,
Sched<[WriteFCvtF16ToI32, ReadFCvtF16ToI32]> {
let rs2 = 0b00001;
}
def : FPUnaryOpDynFrmAlias<FCVT_WU_H, "fcvt.wu.h", GPR, FPR16>;
def FCVT_H_W : FPUnaryOp_r_frm<0b1101010, FPR16, GPR, "fcvt.h.w">,
Sched<[WriteFCvtI32ToF16, ReadFCvtI32ToF16]> {
let rs2 = 0b00000;
}
def : FPUnaryOpDynFrmAlias<FCVT_H_W, "fcvt.h.w", FPR16, GPR>;
def FCVT_H_WU : FPUnaryOp_r_frm<0b1101010, FPR16, GPR, "fcvt.h.wu">,
Sched<[WriteFCvtI32ToF16, ReadFCvtI32ToF16]> {
let rs2 = 0b00001;
}
def : FPUnaryOpDynFrmAlias<FCVT_H_WU, "fcvt.h.wu", FPR16, GPR>;
def FCVT_H_S : FPUnaryOp_r_frm<0b0100010, FPR16, FPR32, "fcvt.h.s">,
Sched<[WriteFCvtF32ToF16, ReadFCvtF32ToF16]> {
let rs2 = 0b00000;
}
def : FPUnaryOpDynFrmAlias<FCVT_H_S, "fcvt.h.s", FPR16, FPR32>;
def FCVT_S_H : FPUnaryOp_r<0b0100000, 0b000, FPR32, FPR16, "fcvt.s.h">,
Sched<[WriteFCvtF16ToF32, ReadFCvtF16ToF32]> {
let rs2 = 0b00010;
}
def FMV_X_H : FPUnaryOp_r<0b1110010, 0b000, GPR, FPR16, "fmv.x.h">,
Sched<[WriteFMovF16ToI16, ReadFMovF16ToI16]> {
let rs2 = 0b00000;
}
def FMV_H_X : FPUnaryOp_r<0b1111010, 0b000, FPR16, GPR, "fmv.h.x">,
Sched<[WriteFMovI16ToF16, ReadFMovI16ToF16]> {
let rs2 = 0b00000;
}
def FEQ_H : FPCmpH_rr<0b010, "feq.h">;
def FLT_H : FPCmpH_rr<0b001, "flt.h">;
def FLE_H : FPCmpH_rr<0b000, "fle.h">;
def FCLASS_H : FPUnaryOp_r<0b1110010, 0b001, GPR, FPR16, "fclass.h">,
Sched<[WriteFClass16, ReadFClass16]> {
let rs2 = 0b00000;
}
} // Predicates = [HasStdExtZfh]
let Predicates = [HasStdExtZfh, IsRV64] in {
def FCVT_L_H : FPUnaryOp_r_frm<0b1100010, GPR, FPR16, "fcvt.l.h">,
Sched<[WriteFCvtF16ToI64, ReadFCvtF16ToI64]> {
let rs2 = 0b00010;
}
def : FPUnaryOpDynFrmAlias<FCVT_L_H, "fcvt.l.h", GPR, FPR16>;
def FCVT_LU_H : FPUnaryOp_r_frm<0b1100010, GPR, FPR16, "fcvt.lu.h">,
Sched<[WriteFCvtF16ToI64, ReadFCvtF16ToI64]> {
let rs2 = 0b00011;
}
def : FPUnaryOpDynFrmAlias<FCVT_LU_H, "fcvt.lu.h", GPR, FPR16>;
def FCVT_H_L : FPUnaryOp_r_frm<0b1101010, FPR16, GPR, "fcvt.h.l">,
Sched<[WriteFCvtI64ToF16, ReadFCvtI64ToF16]> {
let rs2 = 0b00010;
}
def : FPUnaryOpDynFrmAlias<FCVT_H_L, "fcvt.h.l", FPR16, GPR>;
def FCVT_H_LU : FPUnaryOp_r_frm<0b1101010, FPR16, GPR, "fcvt.h.lu">,
Sched<[WriteFCvtI64ToF16, ReadFCvtI64ToF16]> {
let rs2 = 0b00011;
}
def : FPUnaryOpDynFrmAlias<FCVT_H_LU, "fcvt.h.lu", FPR16, GPR>;
} // Predicates = [HasStdExtZfh, IsRV64]
let Predicates = [HasStdExtZfh, HasStdExtD] in {
def FCVT_H_D : FPUnaryOp_r_frm<0b0100010, FPR16, FPR64, "fcvt.h.d">,
Sched<[WriteFCvtF64ToF16, ReadFCvtF64ToF16]> {
let rs2 = 0b00001;
}
def : FPUnaryOpDynFrmAlias<FCVT_H_D, "fcvt.h.d", FPR16, FPR64>;
def FCVT_D_H : FPUnaryOp_r<0b0100001, 0b000, FPR64, FPR16, "fcvt.d.h">,
Sched<[WriteFCvtF16ToF64, ReadFCvtF16ToF64]> {
let rs2 = 0b00010;
}
} // Predicates = [HasStdExtZfh, HasStdExtD]
//===----------------------------------------------------------------------===//
// Assembler Pseudo Instructions (User-Level ISA, Version 2.2, Chapter 20)
//===----------------------------------------------------------------------===//
let Predicates = [HasStdExtZfh] in {
def : InstAlias<"flh $rd, (${rs1})", (FLH FPR16:$rd, GPR:$rs1, 0), 0>;
def : InstAlias<"fsh $rs2, (${rs1})", (FSH FPR16:$rs2, GPR:$rs1, 0), 0>;
def : InstAlias<"fmv.h $rd, $rs", (FSGNJ_H FPR16:$rd, FPR16:$rs, FPR16:$rs)>;
def : InstAlias<"fabs.h $rd, $rs", (FSGNJX_H FPR16:$rd, FPR16:$rs, FPR16:$rs)>;
def : InstAlias<"fneg.h $rd, $rs", (FSGNJN_H FPR16:$rd, FPR16:$rs, FPR16:$rs)>;
// fgt.h/fge.h are recognised by the GNU assembler but the canonical
// flt.h/fle.h forms will always be printed. Therefore, set a zero weight.
def : InstAlias<"fgt.h $rd, $rs, $rt",
(FLT_H GPR:$rd, FPR16:$rt, FPR16:$rs), 0>;
def : InstAlias<"fge.h $rd, $rs, $rt",
(FLE_H GPR:$rd, FPR16:$rt, FPR16:$rs), 0>;
def PseudoFLH : PseudoFloatLoad<"flh", FPR16>;
def PseudoFSH : PseudoStore<"fsh", FPR16>;
} // Predicates = [HasStdExtZfh]
//===----------------------------------------------------------------------===//
// Pseudo-instructions and codegen patterns
//===----------------------------------------------------------------------===//
/// Generic pattern classes
class PatFpr16Fpr16<SDPatternOperator OpNode, RVInstR Inst>
: Pat<(OpNode FPR16:$rs1, FPR16:$rs2), (Inst $rs1, $rs2)>;
class PatFpr16Fpr16DynFrm<SDPatternOperator OpNode, RVInstRFrm Inst>
: Pat<(OpNode FPR16:$rs1, FPR16:$rs2), (Inst $rs1, $rs2, 0b111)>;
let Predicates = [HasStdExtZfh] in {
/// Float constants
def : Pat<(f16 (fpimm0)), (FMV_H_X X0)>;
/// Float conversion operations
// [u]int32<->float conversion patterns must be gated on IsRV32 or IsRV64, so
// are defined later.
/// Float arithmetic operations
def : PatFpr16Fpr16DynFrm<fadd, FADD_H>;
def : PatFpr16Fpr16DynFrm<fsub, FSUB_H>;
def : PatFpr16Fpr16DynFrm<fmul, FMUL_H>;
def : PatFpr16Fpr16DynFrm<fdiv, FDIV_H>;
def : Pat<(fsqrt FPR16:$rs1), (FSQRT_H FPR16:$rs1, 0b111)>;
def : Pat<(fneg FPR16:$rs1), (FSGNJN_H $rs1, $rs1)>;
def : Pat<(fabs FPR16:$rs1), (FSGNJX_H $rs1, $rs1)>;
def : PatFpr16Fpr16<fcopysign, FSGNJ_H>;
def : Pat<(fcopysign FPR16:$rs1, (fneg FPR16:$rs2)), (FSGNJN_H $rs1, $rs2)>;
def : Pat<(fcopysign FPR16:$rs1, FPR32:$rs2),
(FSGNJ_H $rs1, (FCVT_H_S $rs2, 0b111))>;
def : Pat<(fcopysign FPR32:$rs1, FPR16:$rs2), (FSGNJ_S $rs1, (FCVT_S_H $rs2))>;
// fmadd: rs1 * rs2 + rs3
def : Pat<(fma FPR16:$rs1, FPR16:$rs2, FPR16:$rs3),
(FMADD_H $rs1, $rs2, $rs3, 0b111)>;
// fmsub: rs1 * rs2 - rs3
def : Pat<(fma FPR16:$rs1, FPR16:$rs2, (fneg FPR16:$rs3)),
(FMSUB_H FPR16:$rs1, FPR16:$rs2, FPR16:$rs3, 0b111)>;
// fnmsub: -rs1 * rs2 + rs3
def : Pat<(fma (fneg FPR16:$rs1), FPR16:$rs2, FPR16:$rs3),
(FNMSUB_H FPR16:$rs1, FPR16:$rs2, FPR16:$rs3, 0b111)>;
// fnmadd: -rs1 * rs2 - rs3
def : Pat<(fma (fneg FPR16:$rs1), FPR16:$rs2, (fneg FPR16:$rs3)),
(FNMADD_H FPR16:$rs1, FPR16:$rs2, FPR16:$rs3, 0b111)>;
// The ratified 20191213 ISA spec defines fmin and fmax in a way that matches
// LLVM's fminnum and fmaxnum
// <https://github.com/riscv/riscv-isa-manual/commit/cd20cee7efd9bac7c5aa127ec3b451749d2b3cce>.
def : PatFpr16Fpr16<fminnum, FMIN_H>;
def : PatFpr16Fpr16<fmaxnum, FMAX_H>;
/// Setcc
def : PatFpr16Fpr16<seteq, FEQ_H>;
def : PatFpr16Fpr16<setoeq, FEQ_H>;
def : PatFpr16Fpr16<setlt, FLT_H>;
def : PatFpr16Fpr16<setolt, FLT_H>;
def : PatFpr16Fpr16<setle, FLE_H>;
def : PatFpr16Fpr16<setole, FLE_H>;
def Select_FPR16_Using_CC_GPR : SelectCC_rrirr<FPR16, GPR>;
/// Loads
defm : LdPat<load, FLH, f16>;
/// Stores
defm : StPat<store, FSH, FPR16, f16>;
/// Float conversion operations
// f32 -> f16, f16 -> f32
def : Pat<(fpround FPR32:$rs1), (FCVT_H_S FPR32:$rs1, 0b111)>;
def : Pat<(fpextend FPR16:$rs1), (FCVT_S_H FPR16:$rs1)>;
// Moves (no conversion)
def : Pat<(riscv_fmv_h_x GPR:$src), (FMV_H_X GPR:$src)>;
def : Pat<(riscv_fmv_x_anyexth FPR16:$src), (FMV_X_H FPR16:$src)>;
} // Predicates = [HasStdExtZfh]
let Predicates = [HasStdExtZfh, IsRV32] in {
// half->[u]int. Round-to-zero must be used.
def : Pat<(i32 (fp_to_sint FPR16:$rs1)), (FCVT_W_H $rs1, 0b001)>;
def : Pat<(i32 (fp_to_uint FPR16:$rs1)), (FCVT_WU_H $rs1, 0b001)>;
// half->int32 with current rounding mode.
def : Pat<(i32 (lrint FPR16:$rs1)), (FCVT_W_H $rs1, 0b111)>;
// half->int32 rounded to nearest with ties rounded away from zero.
def : Pat<(i32 (lround FPR16:$rs1)), (FCVT_W_H $rs1, 0b100)>;
// [u]int->half. Match GCC and default to using dynamic rounding mode.
def : Pat<(sint_to_fp (i32 GPR:$rs1)), (FCVT_H_W $rs1, 0b111)>;
def : Pat<(uint_to_fp (i32 GPR:$rs1)), (FCVT_H_WU $rs1, 0b111)>;
} // Predicates = [HasStdExtZfh, IsRV32]
let Predicates = [HasStdExtZfh, IsRV64] in {
// Use target specific isd nodes to help us remember the result is sign
// extended. Matching sext_inreg+fptoui/fptosi may cause the conversion to be
// duplicated if it has another user that didn't need the sign_extend.
def : Pat<(riscv_fcvt_w_rv64 FPR16:$rs1), (FCVT_W_H $rs1, 0b001)>;
def : Pat<(riscv_fcvt_wu_rv64 FPR16:$rs1), (FCVT_WU_H $rs1, 0b001)>;
// half->[u]int64. Round-to-zero must be used.
def : Pat<(i64 (fp_to_sint FPR16:$rs1)), (FCVT_L_H $rs1, 0b001)>;
def : Pat<(i64 (fp_to_uint FPR16:$rs1)), (FCVT_LU_H $rs1, 0b001)>;
// half->int64 with current rounding mode.
def : Pat<(i64 (lrint FPR16:$rs1)), (FCVT_L_H $rs1, 0b111)>;
def : Pat<(i64 (llrint FPR16:$rs1)), (FCVT_L_H $rs1, 0b111)>;
// half->int64 rounded to nearest with ties rounded away from zero.
def : Pat<(i64 (lround FPR16:$rs1)), (FCVT_L_H $rs1, 0b100)>;
def : Pat<(i64 (llround FPR16:$rs1)), (FCVT_L_H $rs1, 0b100)>;
// [u]int->fp. Match GCC and default to using dynamic rounding mode.
def : Pat<(sint_to_fp (i64 (sexti32 (i64 GPR:$rs1)))), (FCVT_H_W $rs1, 0b111)>;
def : Pat<(uint_to_fp (i64 (zexti32 (i64 GPR:$rs1)))), (FCVT_H_WU $rs1, 0b111)>;
def : Pat<(sint_to_fp (i64 GPR:$rs1)), (FCVT_H_L $rs1, 0b111)>;
def : Pat<(uint_to_fp (i64 GPR:$rs1)), (FCVT_H_LU $rs1, 0b111)>;
} // Predicates = [HasStdExtZfh, IsRV64]
let Predicates = [HasStdExtZfh, HasStdExtD] in {
/// Float conversion operations
// f64 -> f16, f16 -> f64
def : Pat<(fpround FPR64:$rs1), (FCVT_H_D FPR64:$rs1, 0b111)>;
def : Pat<(fpextend FPR16:$rs1), (FCVT_D_H FPR16:$rs1)>;
/// Float arithmetic operations
def : Pat<(fcopysign FPR16:$rs1, FPR64:$rs2),
(FSGNJ_H $rs1, (FCVT_H_D $rs2, 0b111))>;
def : Pat<(fcopysign FPR64:$rs1, FPR16:$rs2), (FSGNJ_D $rs1, (FCVT_D_H $rs2))>;
}