1
0
mirror of https://github.com/RPCS3/llvm-mirror.git synced 2024-11-22 02:33:06 +01:00
llvm-mirror/lib/Target/X86/ImmutableGraph.h
Nicolás Alvarez 0bad578cf3 [docs] Fix doxygen comments wrongly attached to the llvm namespace
Looking at the Doxygen-generated documentation for the llvm namespace
currently shows all sorts of random comments from different parts of the
codebase. These are mostly caused by:

- File doc comments that aren't marked with \file, so they're attached to
  the next declaration, which is usually "namespace llvm {".
- Class doc comments placed before the namespace rather than before the
  class.
- Code comments before the namespace that (in my opinion) shouldn't be
  extracted by doxygen at all.

This commit fixes these comments. The generated doxygen documentation now
has proper docs for several classes and files, and the docs for the llvm
and llvm::detail namespaces are now empty.

Reviewed By: thakis, mizvekov

Differential Revision: https://reviews.llvm.org/D96736
2021-04-07 01:20:18 +02:00

446 lines
15 KiB
C++

//==========-- ImmutableGraph.h - A fast DAG implementation ---------=========//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
/// \file
/// Description: ImmutableGraph is a fast DAG implementation that cannot be
/// modified, except by creating a new ImmutableGraph. ImmutableGraph is
/// implemented as two arrays: one containing nodes, and one containing edges.
/// The advantages to this implementation are two-fold:
/// 1. Iteration and traversal operations benefit from cache locality.
/// 2. Operations on sets of nodes/edges are efficient, and representations of
/// those sets in memory are compact. For instance, a set of edges is
/// implemented as a bit vector, wherein each bit corresponds to one edge in
/// the edge array. This implies a lower bound of 64x spatial improvement
/// over, e.g., an llvm::DenseSet or llvm::SmallSet. It also means that
/// insert/erase/contains operations complete in negligible constant time:
/// insert and erase require one load and one store, and contains requires
/// just one load.
///
//===----------------------------------------------------------------------===//
#ifndef LLVM_LIB_TARGET_X86_IMMUTABLEGRAPH_H
#define LLVM_LIB_TARGET_X86_IMMUTABLEGRAPH_H
#include "llvm/ADT/BitVector.h"
#include "llvm/ADT/GraphTraits.h"
#include "llvm/ADT/STLExtras.h"
#include <algorithm>
#include <iterator>
#include <utility>
#include <vector>
namespace llvm {
template <typename NodeValueT, typename EdgeValueT> class ImmutableGraph {
using Traits = GraphTraits<ImmutableGraph<NodeValueT, EdgeValueT> *>;
template <typename> friend class ImmutableGraphBuilder;
public:
using node_value_type = NodeValueT;
using edge_value_type = EdgeValueT;
using size_type = int;
class Node;
class Edge {
friend class ImmutableGraph;
template <typename> friend class ImmutableGraphBuilder;
const Node *Dest;
edge_value_type Value;
public:
const Node *getDest() const { return Dest; };
const edge_value_type &getValue() const { return Value; }
};
class Node {
friend class ImmutableGraph;
template <typename> friend class ImmutableGraphBuilder;
const Edge *Edges;
node_value_type Value;
public:
const node_value_type &getValue() const { return Value; }
const Edge *edges_begin() const { return Edges; }
// Nodes are allocated sequentially. Edges for a node are stored together.
// The end of this Node's edges is the beginning of the next node's edges.
// An extra node was allocated to hold the end pointer for the last real
// node.
const Edge *edges_end() const { return (this + 1)->Edges; }
ArrayRef<Edge> edges() const {
return makeArrayRef(edges_begin(), edges_end());
}
};
protected:
ImmutableGraph(std::unique_ptr<Node[]> Nodes, std::unique_ptr<Edge[]> Edges,
size_type NodesSize, size_type EdgesSize)
: Nodes(std::move(Nodes)), Edges(std::move(Edges)), NodesSize(NodesSize),
EdgesSize(EdgesSize) {}
ImmutableGraph(const ImmutableGraph &) = delete;
ImmutableGraph(ImmutableGraph &&) = delete;
ImmutableGraph &operator=(const ImmutableGraph &) = delete;
ImmutableGraph &operator=(ImmutableGraph &&) = delete;
public:
ArrayRef<Node> nodes() const { return makeArrayRef(Nodes.get(), NodesSize); }
const Node *nodes_begin() const { return nodes().begin(); }
const Node *nodes_end() const { return nodes().end(); }
ArrayRef<Edge> edges() const { return makeArrayRef(Edges.get(), EdgesSize); }
const Edge *edges_begin() const { return edges().begin(); }
const Edge *edges_end() const { return edges().end(); }
size_type nodes_size() const { return NodesSize; }
size_type edges_size() const { return EdgesSize; }
// Node N must belong to this ImmutableGraph.
size_type getNodeIndex(const Node &N) const {
return std::distance(nodes_begin(), &N);
}
// Edge E must belong to this ImmutableGraph.
size_type getEdgeIndex(const Edge &E) const {
return std::distance(edges_begin(), &E);
}
// FIXME: Could NodeSet and EdgeSet be templated to share code?
class NodeSet {
const ImmutableGraph &G;
BitVector V;
public:
NodeSet(const ImmutableGraph &G, bool ContainsAll = false)
: G{G}, V{static_cast<unsigned>(G.nodes_size()), ContainsAll} {}
bool insert(const Node &N) {
size_type Idx = G.getNodeIndex(N);
bool AlreadyExists = V.test(Idx);
V.set(Idx);
return !AlreadyExists;
}
void erase(const Node &N) {
size_type Idx = G.getNodeIndex(N);
V.reset(Idx);
}
bool contains(const Node &N) const {
size_type Idx = G.getNodeIndex(N);
return V.test(Idx);
}
void clear() { V.reset(); }
size_type empty() const { return V.none(); }
/// Return the number of elements in the set
size_type count() const { return V.count(); }
/// Return the size of the set's domain
size_type size() const { return V.size(); }
/// Set union
NodeSet &operator|=(const NodeSet &RHS) {
assert(&this->G == &RHS.G);
V |= RHS.V;
return *this;
}
/// Set intersection
NodeSet &operator&=(const NodeSet &RHS) {
assert(&this->G == &RHS.G);
V &= RHS.V;
return *this;
}
/// Set disjoint union
NodeSet &operator^=(const NodeSet &RHS) {
assert(&this->G == &RHS.G);
V ^= RHS.V;
return *this;
}
using index_iterator = typename BitVector::const_set_bits_iterator;
index_iterator index_begin() const { return V.set_bits_begin(); }
index_iterator index_end() const { return V.set_bits_end(); }
void set(size_type Idx) { V.set(Idx); }
void reset(size_type Idx) { V.reset(Idx); }
class iterator {
const NodeSet &Set;
size_type Current;
void advance() {
assert(Current != -1);
Current = Set.V.find_next(Current);
}
public:
iterator(const NodeSet &Set, size_type Begin)
: Set{Set}, Current{Begin} {}
iterator operator++(int) {
iterator Tmp = *this;
advance();
return Tmp;
}
iterator &operator++() {
advance();
return *this;
}
Node *operator*() const {
assert(Current != -1);
return Set.G.nodes_begin() + Current;
}
bool operator==(const iterator &other) const {
assert(&this->Set == &other.Set);
return this->Current == other.Current;
}
bool operator!=(const iterator &other) const { return !(*this == other); }
};
iterator begin() const { return iterator{*this, V.find_first()}; }
iterator end() const { return iterator{*this, -1}; }
};
class EdgeSet {
const ImmutableGraph &G;
BitVector V;
public:
EdgeSet(const ImmutableGraph &G, bool ContainsAll = false)
: G{G}, V{static_cast<unsigned>(G.edges_size()), ContainsAll} {}
bool insert(const Edge &E) {
size_type Idx = G.getEdgeIndex(E);
bool AlreadyExists = V.test(Idx);
V.set(Idx);
return !AlreadyExists;
}
void erase(const Edge &E) {
size_type Idx = G.getEdgeIndex(E);
V.reset(Idx);
}
bool contains(const Edge &E) const {
size_type Idx = G.getEdgeIndex(E);
return V.test(Idx);
}
void clear() { V.reset(); }
bool empty() const { return V.none(); }
/// Return the number of elements in the set
size_type count() const { return V.count(); }
/// Return the size of the set's domain
size_type size() const { return V.size(); }
/// Set union
EdgeSet &operator|=(const EdgeSet &RHS) {
assert(&this->G == &RHS.G);
V |= RHS.V;
return *this;
}
/// Set intersection
EdgeSet &operator&=(const EdgeSet &RHS) {
assert(&this->G == &RHS.G);
V &= RHS.V;
return *this;
}
/// Set disjoint union
EdgeSet &operator^=(const EdgeSet &RHS) {
assert(&this->G == &RHS.G);
V ^= RHS.V;
return *this;
}
using index_iterator = typename BitVector::const_set_bits_iterator;
index_iterator index_begin() const { return V.set_bits_begin(); }
index_iterator index_end() const { return V.set_bits_end(); }
void set(size_type Idx) { V.set(Idx); }
void reset(size_type Idx) { V.reset(Idx); }
class iterator {
const EdgeSet &Set;
size_type Current;
void advance() {
assert(Current != -1);
Current = Set.V.find_next(Current);
}
public:
iterator(const EdgeSet &Set, size_type Begin)
: Set{Set}, Current{Begin} {}
iterator operator++(int) {
iterator Tmp = *this;
advance();
return Tmp;
}
iterator &operator++() {
advance();
return *this;
}
Edge *operator*() const {
assert(Current != -1);
return Set.G.edges_begin() + Current;
}
bool operator==(const iterator &other) const {
assert(&this->Set == &other.Set);
return this->Current == other.Current;
}
bool operator!=(const iterator &other) const { return !(*this == other); }
};
iterator begin() const { return iterator{*this, V.find_first()}; }
iterator end() const { return iterator{*this, -1}; }
};
private:
std::unique_ptr<Node[]> Nodes;
std::unique_ptr<Edge[]> Edges;
size_type NodesSize;
size_type EdgesSize;
};
template <typename GraphT> class ImmutableGraphBuilder {
using node_value_type = typename GraphT::node_value_type;
using edge_value_type = typename GraphT::edge_value_type;
static_assert(
std::is_base_of<ImmutableGraph<node_value_type, edge_value_type>,
GraphT>::value,
"Template argument to ImmutableGraphBuilder must derive from "
"ImmutableGraph<>");
using size_type = typename GraphT::size_type;
using NodeSet = typename GraphT::NodeSet;
using Node = typename GraphT::Node;
using EdgeSet = typename GraphT::EdgeSet;
using Edge = typename GraphT::Edge;
using BuilderEdge = std::pair<edge_value_type, size_type>;
using EdgeList = std::vector<BuilderEdge>;
using BuilderVertex = std::pair<node_value_type, EdgeList>;
using VertexVec = std::vector<BuilderVertex>;
public:
using BuilderNodeRef = size_type;
BuilderNodeRef addVertex(const node_value_type &V) {
auto I = AdjList.emplace(AdjList.end(), V, EdgeList{});
return std::distance(AdjList.begin(), I);
}
void addEdge(const edge_value_type &E, BuilderNodeRef From,
BuilderNodeRef To) {
AdjList[From].second.emplace_back(E, To);
}
bool empty() const { return AdjList.empty(); }
template <typename... ArgT> std::unique_ptr<GraphT> get(ArgT &&... Args) {
size_type VertexSize = AdjList.size(), EdgeSize = 0;
for (const auto &V : AdjList) {
EdgeSize += V.second.size();
}
auto VertexArray =
std::make_unique<Node[]>(VertexSize + 1 /* terminator node */);
auto EdgeArray = std::make_unique<Edge[]>(EdgeSize);
size_type VI = 0, EI = 0;
for (; VI < VertexSize; ++VI) {
VertexArray[VI].Value = std::move(AdjList[VI].first);
VertexArray[VI].Edges = &EdgeArray[EI];
auto NumEdges = static_cast<size_type>(AdjList[VI].second.size());
for (size_type VEI = 0; VEI < NumEdges; ++VEI, ++EI) {
auto &E = AdjList[VI].second[VEI];
EdgeArray[EI].Value = std::move(E.first);
EdgeArray[EI].Dest = &VertexArray[E.second];
}
}
assert(VI == VertexSize && EI == EdgeSize && "ImmutableGraph malformed");
VertexArray[VI].Edges = &EdgeArray[EdgeSize]; // terminator node
return std::make_unique<GraphT>(std::move(VertexArray),
std::move(EdgeArray), VertexSize, EdgeSize,
std::forward<ArgT>(Args)...);
}
template <typename... ArgT>
static std::unique_ptr<GraphT> trim(const GraphT &G, const NodeSet &TrimNodes,
const EdgeSet &TrimEdges,
ArgT &&... Args) {
size_type NewVertexSize = G.nodes_size() - TrimNodes.count();
size_type NewEdgeSize = G.edges_size() - TrimEdges.count();
auto NewVertexArray =
std::make_unique<Node[]>(NewVertexSize + 1 /* terminator node */);
auto NewEdgeArray = std::make_unique<Edge[]>(NewEdgeSize);
// Walk the nodes and determine the new index for each node.
size_type NewNodeIndex = 0;
std::vector<size_type> RemappedNodeIndex(G.nodes_size());
for (const Node &N : G.nodes()) {
if (TrimNodes.contains(N))
continue;
RemappedNodeIndex[G.getNodeIndex(N)] = NewNodeIndex++;
}
assert(NewNodeIndex == NewVertexSize &&
"Should have assigned NewVertexSize indices");
size_type VertexI = 0, EdgeI = 0;
for (const Node &N : G.nodes()) {
if (TrimNodes.contains(N))
continue;
NewVertexArray[VertexI].Value = N.getValue();
NewVertexArray[VertexI].Edges = &NewEdgeArray[EdgeI];
for (const Edge &E : N.edges()) {
if (TrimEdges.contains(E))
continue;
NewEdgeArray[EdgeI].Value = E.getValue();
size_type DestIdx = G.getNodeIndex(*E.getDest());
size_type NewIdx = RemappedNodeIndex[DestIdx];
assert(NewIdx < NewVertexSize);
NewEdgeArray[EdgeI].Dest = &NewVertexArray[NewIdx];
++EdgeI;
}
++VertexI;
}
assert(VertexI == NewVertexSize && EdgeI == NewEdgeSize &&
"Gadget graph malformed");
NewVertexArray[VertexI].Edges = &NewEdgeArray[NewEdgeSize]; // terminator
return std::make_unique<GraphT>(std::move(NewVertexArray),
std::move(NewEdgeArray), NewVertexSize,
NewEdgeSize, std::forward<ArgT>(Args)...);
}
private:
VertexVec AdjList;
};
template <typename NodeValueT, typename EdgeValueT>
struct GraphTraits<ImmutableGraph<NodeValueT, EdgeValueT> *> {
using GraphT = ImmutableGraph<NodeValueT, EdgeValueT>;
using NodeRef = typename GraphT::Node const *;
using EdgeRef = typename GraphT::Edge const &;
static NodeRef edge_dest(EdgeRef E) { return E.getDest(); }
using ChildIteratorType =
mapped_iterator<typename GraphT::Edge const *, decltype(&edge_dest)>;
static NodeRef getEntryNode(GraphT *G) { return G->nodes_begin(); }
static ChildIteratorType child_begin(NodeRef N) {
return {N->edges_begin(), &edge_dest};
}
static ChildIteratorType child_end(NodeRef N) {
return {N->edges_end(), &edge_dest};
}
static NodeRef getNode(typename GraphT::Node const &N) { return NodeRef{&N}; }
using nodes_iterator =
mapped_iterator<typename GraphT::Node const *, decltype(&getNode)>;
static nodes_iterator nodes_begin(GraphT *G) {
return {G->nodes_begin(), &getNode};
}
static nodes_iterator nodes_end(GraphT *G) {
return {G->nodes_end(), &getNode};
}
using ChildEdgeIteratorType = typename GraphT::Edge const *;
static ChildEdgeIteratorType child_edge_begin(NodeRef N) {
return N->edges_begin();
}
static ChildEdgeIteratorType child_edge_end(NodeRef N) {
return N->edges_end();
}
static typename GraphT::size_type size(GraphT *G) { return G->nodes_size(); }
};
} // end namespace llvm
#endif // LLVM_LIB_TARGET_X86_IMMUTABLEGRAPH_H