mirror of
https://github.com/RPCS3/llvm-mirror.git
synced 2024-11-22 02:33:06 +01:00
6b5a85d5d6
This is a rework of D85812, which didn't land.
When callee coroutine function is inlined into caller coroutine function before coro-split pass, llvm will emits "coroutine should have exactly one defining @llvm.coro.begin". It seems that coro-early pass can not handle this quiet well.
So we believe that unsplited coroutine function should not be inlined.
This patch fix such issue by not inlining function if it has attribute "coroutine.presplit" (it means the function has not been splited) to fix this issue
test plan: check-llvm, check-clang
In D85812, there was suggestions on moving the macros to Attributes.td to avoid circular header dependency issue.
I believe it's not worth doing just to be able to use one constant string in one place.
Today, there are already 3 possible attribute values for "coroutine.presplit": c6543cc6b8/llvm/lib/Transforms/Coroutines/CoroInternal.h (L40-L42)
If we move them into Attributes.td, we would be adding 3 new attributes to EnumAttr, just to support this, which I think is an overkill.
Instead, I think the best way to do this is to add an API in Function class that checks whether this function is a coroutine, by checking the attribute by name directly.
Differential Revision: https://reviews.llvm.org/D92706
213 lines
7.9 KiB
C++
213 lines
7.9 KiB
C++
//===- InlineAlways.cpp - Code to inline always_inline functions ----------===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file implements a custom inliner that handles only functions that
|
|
// are marked as "always inline".
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "llvm/Transforms/IPO/AlwaysInliner.h"
|
|
#include "llvm/ADT/SetVector.h"
|
|
#include "llvm/Analysis/AliasAnalysis.h"
|
|
#include "llvm/Analysis/AssumptionCache.h"
|
|
#include "llvm/Analysis/InlineCost.h"
|
|
#include "llvm/Analysis/ProfileSummaryInfo.h"
|
|
#include "llvm/Analysis/TargetLibraryInfo.h"
|
|
#include "llvm/IR/CallingConv.h"
|
|
#include "llvm/IR/DataLayout.h"
|
|
#include "llvm/IR/Instructions.h"
|
|
#include "llvm/IR/Module.h"
|
|
#include "llvm/IR/Type.h"
|
|
#include "llvm/InitializePasses.h"
|
|
#include "llvm/Transforms/IPO.h"
|
|
#include "llvm/Transforms/IPO/Inliner.h"
|
|
#include "llvm/Transforms/Utils/Cloning.h"
|
|
#include "llvm/Transforms/Utils/ModuleUtils.h"
|
|
|
|
using namespace llvm;
|
|
|
|
#define DEBUG_TYPE "inline"
|
|
|
|
PreservedAnalyses AlwaysInlinerPass::run(Module &M,
|
|
ModuleAnalysisManager &MAM) {
|
|
// Add inline assumptions during code generation.
|
|
FunctionAnalysisManager &FAM =
|
|
MAM.getResult<FunctionAnalysisManagerModuleProxy>(M).getManager();
|
|
auto GetAssumptionCache = [&](Function &F) -> AssumptionCache & {
|
|
return FAM.getResult<AssumptionAnalysis>(F);
|
|
};
|
|
auto &PSI = MAM.getResult<ProfileSummaryAnalysis>(M);
|
|
|
|
SmallSetVector<CallBase *, 16> Calls;
|
|
bool Changed = false;
|
|
SmallVector<Function *, 16> InlinedFunctions;
|
|
for (Function &F : M) {
|
|
// When callee coroutine function is inlined into caller coroutine function
|
|
// before coro-split pass,
|
|
// coro-early pass can not handle this quiet well.
|
|
// So we won't inline the coroutine function if it have not been unsplited
|
|
if (F.isPresplitCoroutine())
|
|
continue;
|
|
|
|
if (!F.isDeclaration() && F.hasFnAttribute(Attribute::AlwaysInline) &&
|
|
isInlineViable(F).isSuccess()) {
|
|
Calls.clear();
|
|
|
|
for (User *U : F.users())
|
|
if (auto *CB = dyn_cast<CallBase>(U))
|
|
if (CB->getCalledFunction() == &F)
|
|
Calls.insert(CB);
|
|
|
|
for (CallBase *CB : Calls) {
|
|
Function *Caller = CB->getCaller();
|
|
OptimizationRemarkEmitter ORE(Caller);
|
|
auto OIC = shouldInline(
|
|
*CB,
|
|
[&](CallBase &CB) {
|
|
return InlineCost::getAlways("always inline attribute");
|
|
},
|
|
ORE);
|
|
assert(OIC);
|
|
emitInlinedInto(ORE, CB->getDebugLoc(), CB->getParent(), F, *Caller,
|
|
*OIC, false, DEBUG_TYPE);
|
|
|
|
InlineFunctionInfo IFI(
|
|
/*cg=*/nullptr, GetAssumptionCache, &PSI,
|
|
&FAM.getResult<BlockFrequencyAnalysis>(*(CB->getCaller())),
|
|
&FAM.getResult<BlockFrequencyAnalysis>(F));
|
|
|
|
InlineResult Res = InlineFunction(
|
|
*CB, IFI, &FAM.getResult<AAManager>(F), InsertLifetime);
|
|
assert(Res.isSuccess() && "unexpected failure to inline");
|
|
(void)Res;
|
|
|
|
// Merge the attributes based on the inlining.
|
|
AttributeFuncs::mergeAttributesForInlining(*Caller, F);
|
|
|
|
Changed = true;
|
|
}
|
|
|
|
// Remember to try and delete this function afterward. This both avoids
|
|
// re-walking the rest of the module and avoids dealing with any iterator
|
|
// invalidation issues while deleting functions.
|
|
InlinedFunctions.push_back(&F);
|
|
}
|
|
}
|
|
|
|
// Remove any live functions.
|
|
erase_if(InlinedFunctions, [&](Function *F) {
|
|
F->removeDeadConstantUsers();
|
|
return !F->isDefTriviallyDead();
|
|
});
|
|
|
|
// Delete the non-comdat ones from the module and also from our vector.
|
|
auto NonComdatBegin = partition(
|
|
InlinedFunctions, [&](Function *F) { return F->hasComdat(); });
|
|
for (Function *F : make_range(NonComdatBegin, InlinedFunctions.end()))
|
|
M.getFunctionList().erase(F);
|
|
InlinedFunctions.erase(NonComdatBegin, InlinedFunctions.end());
|
|
|
|
if (!InlinedFunctions.empty()) {
|
|
// Now we just have the comdat functions. Filter out the ones whose comdats
|
|
// are not actually dead.
|
|
filterDeadComdatFunctions(M, InlinedFunctions);
|
|
// The remaining functions are actually dead.
|
|
for (Function *F : InlinedFunctions)
|
|
M.getFunctionList().erase(F);
|
|
}
|
|
|
|
return Changed ? PreservedAnalyses::none() : PreservedAnalyses::all();
|
|
}
|
|
|
|
namespace {
|
|
|
|
/// Inliner pass which only handles "always inline" functions.
|
|
///
|
|
/// Unlike the \c AlwaysInlinerPass, this uses the more heavyweight \c Inliner
|
|
/// base class to provide several facilities such as array alloca merging.
|
|
class AlwaysInlinerLegacyPass : public LegacyInlinerBase {
|
|
|
|
public:
|
|
AlwaysInlinerLegacyPass() : LegacyInlinerBase(ID, /*InsertLifetime*/ true) {
|
|
initializeAlwaysInlinerLegacyPassPass(*PassRegistry::getPassRegistry());
|
|
}
|
|
|
|
AlwaysInlinerLegacyPass(bool InsertLifetime)
|
|
: LegacyInlinerBase(ID, InsertLifetime) {
|
|
initializeAlwaysInlinerLegacyPassPass(*PassRegistry::getPassRegistry());
|
|
}
|
|
|
|
/// Main run interface method. We override here to avoid calling skipSCC().
|
|
bool runOnSCC(CallGraphSCC &SCC) override { return inlineCalls(SCC); }
|
|
|
|
static char ID; // Pass identification, replacement for typeid
|
|
|
|
InlineCost getInlineCost(CallBase &CB) override;
|
|
|
|
using llvm::Pass::doFinalization;
|
|
bool doFinalization(CallGraph &CG) override {
|
|
return removeDeadFunctions(CG, /*AlwaysInlineOnly=*/true);
|
|
}
|
|
};
|
|
}
|
|
|
|
char AlwaysInlinerLegacyPass::ID = 0;
|
|
INITIALIZE_PASS_BEGIN(AlwaysInlinerLegacyPass, "always-inline",
|
|
"Inliner for always_inline functions", false, false)
|
|
INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
|
|
INITIALIZE_PASS_DEPENDENCY(CallGraphWrapperPass)
|
|
INITIALIZE_PASS_DEPENDENCY(ProfileSummaryInfoWrapperPass)
|
|
INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
|
|
INITIALIZE_PASS_END(AlwaysInlinerLegacyPass, "always-inline",
|
|
"Inliner for always_inline functions", false, false)
|
|
|
|
Pass *llvm::createAlwaysInlinerLegacyPass(bool InsertLifetime) {
|
|
return new AlwaysInlinerLegacyPass(InsertLifetime);
|
|
}
|
|
|
|
/// Get the inline cost for the always-inliner.
|
|
///
|
|
/// The always inliner *only* handles functions which are marked with the
|
|
/// attribute to force inlining. As such, it is dramatically simpler and avoids
|
|
/// using the powerful (but expensive) inline cost analysis. Instead it uses
|
|
/// a very simple and boring direct walk of the instructions looking for
|
|
/// impossible-to-inline constructs.
|
|
///
|
|
/// Note, it would be possible to go to some lengths to cache the information
|
|
/// computed here, but as we only expect to do this for relatively few and
|
|
/// small functions which have the explicit attribute to force inlining, it is
|
|
/// likely not worth it in practice.
|
|
InlineCost AlwaysInlinerLegacyPass::getInlineCost(CallBase &CB) {
|
|
Function *Callee = CB.getCalledFunction();
|
|
|
|
// Only inline direct calls to functions with always-inline attributes
|
|
// that are viable for inlining.
|
|
if (!Callee)
|
|
return InlineCost::getNever("indirect call");
|
|
|
|
// When callee coroutine function is inlined into caller coroutine function
|
|
// before coro-split pass,
|
|
// coro-early pass can not handle this quiet well.
|
|
// So we won't inline the coroutine function if it have not been unsplited
|
|
if (Callee->isPresplitCoroutine())
|
|
return InlineCost::getNever("unsplited coroutine call");
|
|
|
|
// FIXME: We shouldn't even get here for declarations.
|
|
if (Callee->isDeclaration())
|
|
return InlineCost::getNever("no definition");
|
|
|
|
if (!CB.hasFnAttr(Attribute::AlwaysInline))
|
|
return InlineCost::getNever("no alwaysinline attribute");
|
|
|
|
auto IsViable = isInlineViable(*Callee);
|
|
if (!IsViable.isSuccess())
|
|
return InlineCost::getNever(IsViable.getFailureReason());
|
|
|
|
return InlineCost::getAlways("always inliner");
|
|
}
|