mirror of
https://github.com/RPCS3/llvm-mirror.git
synced 2024-11-22 02:33:06 +01:00
1166 lines
45 KiB
C++
1166 lines
45 KiB
C++
//===- ArgumentPromotion.cpp - Promote by-reference arguments -------------===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This pass promotes "by reference" arguments to be "by value" arguments. In
|
|
// practice, this means looking for internal functions that have pointer
|
|
// arguments. If it can prove, through the use of alias analysis, that an
|
|
// argument is *only* loaded, then it can pass the value into the function
|
|
// instead of the address of the value. This can cause recursive simplification
|
|
// of code and lead to the elimination of allocas (especially in C++ template
|
|
// code like the STL).
|
|
//
|
|
// This pass also handles aggregate arguments that are passed into a function,
|
|
// scalarizing them if the elements of the aggregate are only loaded. Note that
|
|
// by default it refuses to scalarize aggregates which would require passing in
|
|
// more than three operands to the function, because passing thousands of
|
|
// operands for a large array or structure is unprofitable! This limit can be
|
|
// configured or disabled, however.
|
|
//
|
|
// Note that this transformation could also be done for arguments that are only
|
|
// stored to (returning the value instead), but does not currently. This case
|
|
// would be best handled when and if LLVM begins supporting multiple return
|
|
// values from functions.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "llvm/Transforms/IPO/ArgumentPromotion.h"
|
|
#include "llvm/ADT/DepthFirstIterator.h"
|
|
#include "llvm/ADT/None.h"
|
|
#include "llvm/ADT/Optional.h"
|
|
#include "llvm/ADT/STLExtras.h"
|
|
#include "llvm/ADT/ScopeExit.h"
|
|
#include "llvm/ADT/SmallPtrSet.h"
|
|
#include "llvm/ADT/SmallVector.h"
|
|
#include "llvm/ADT/Statistic.h"
|
|
#include "llvm/ADT/Twine.h"
|
|
#include "llvm/Analysis/AssumptionCache.h"
|
|
#include "llvm/Analysis/BasicAliasAnalysis.h"
|
|
#include "llvm/Analysis/CGSCCPassManager.h"
|
|
#include "llvm/Analysis/CallGraph.h"
|
|
#include "llvm/Analysis/CallGraphSCCPass.h"
|
|
#include "llvm/Analysis/LazyCallGraph.h"
|
|
#include "llvm/Analysis/Loads.h"
|
|
#include "llvm/Analysis/MemoryLocation.h"
|
|
#include "llvm/Analysis/TargetLibraryInfo.h"
|
|
#include "llvm/Analysis/TargetTransformInfo.h"
|
|
#include "llvm/IR/Argument.h"
|
|
#include "llvm/IR/Attributes.h"
|
|
#include "llvm/IR/BasicBlock.h"
|
|
#include "llvm/IR/CFG.h"
|
|
#include "llvm/IR/Constants.h"
|
|
#include "llvm/IR/DataLayout.h"
|
|
#include "llvm/IR/DerivedTypes.h"
|
|
#include "llvm/IR/Function.h"
|
|
#include "llvm/IR/IRBuilder.h"
|
|
#include "llvm/IR/InstrTypes.h"
|
|
#include "llvm/IR/Instruction.h"
|
|
#include "llvm/IR/Instructions.h"
|
|
#include "llvm/IR/Metadata.h"
|
|
#include "llvm/IR/Module.h"
|
|
#include "llvm/IR/NoFolder.h"
|
|
#include "llvm/IR/PassManager.h"
|
|
#include "llvm/IR/Type.h"
|
|
#include "llvm/IR/Use.h"
|
|
#include "llvm/IR/User.h"
|
|
#include "llvm/IR/Value.h"
|
|
#include "llvm/InitializePasses.h"
|
|
#include "llvm/Pass.h"
|
|
#include "llvm/Support/Casting.h"
|
|
#include "llvm/Support/Debug.h"
|
|
#include "llvm/Support/FormatVariadic.h"
|
|
#include "llvm/Support/raw_ostream.h"
|
|
#include "llvm/Transforms/IPO.h"
|
|
#include <algorithm>
|
|
#include <cassert>
|
|
#include <cstdint>
|
|
#include <functional>
|
|
#include <iterator>
|
|
#include <map>
|
|
#include <set>
|
|
#include <utility>
|
|
#include <vector>
|
|
|
|
using namespace llvm;
|
|
|
|
#define DEBUG_TYPE "argpromotion"
|
|
|
|
STATISTIC(NumArgumentsPromoted, "Number of pointer arguments promoted");
|
|
STATISTIC(NumAggregatesPromoted, "Number of aggregate arguments promoted");
|
|
STATISTIC(NumByValArgsPromoted, "Number of byval arguments promoted");
|
|
STATISTIC(NumArgumentsDead, "Number of dead pointer args eliminated");
|
|
|
|
/// A vector used to hold the indices of a single GEP instruction
|
|
using IndicesVector = std::vector<uint64_t>;
|
|
|
|
/// DoPromotion - This method actually performs the promotion of the specified
|
|
/// arguments, and returns the new function. At this point, we know that it's
|
|
/// safe to do so.
|
|
static Function *
|
|
doPromotion(Function *F, SmallPtrSetImpl<Argument *> &ArgsToPromote,
|
|
SmallPtrSetImpl<Argument *> &ByValArgsToTransform,
|
|
Optional<function_ref<void(CallBase &OldCS, CallBase &NewCS)>>
|
|
ReplaceCallSite) {
|
|
// Start by computing a new prototype for the function, which is the same as
|
|
// the old function, but has modified arguments.
|
|
FunctionType *FTy = F->getFunctionType();
|
|
std::vector<Type *> Params;
|
|
|
|
using ScalarizeTable = std::set<std::pair<Type *, IndicesVector>>;
|
|
|
|
// ScalarizedElements - If we are promoting a pointer that has elements
|
|
// accessed out of it, keep track of which elements are accessed so that we
|
|
// can add one argument for each.
|
|
//
|
|
// Arguments that are directly loaded will have a zero element value here, to
|
|
// handle cases where there are both a direct load and GEP accesses.
|
|
std::map<Argument *, ScalarizeTable> ScalarizedElements;
|
|
|
|
// OriginalLoads - Keep track of a representative load instruction from the
|
|
// original function so that we can tell the alias analysis implementation
|
|
// what the new GEP/Load instructions we are inserting look like.
|
|
// We need to keep the original loads for each argument and the elements
|
|
// of the argument that are accessed.
|
|
std::map<std::pair<Argument *, IndicesVector>, LoadInst *> OriginalLoads;
|
|
|
|
// Attribute - Keep track of the parameter attributes for the arguments
|
|
// that we are *not* promoting. For the ones that we do promote, the parameter
|
|
// attributes are lost
|
|
SmallVector<AttributeSet, 8> ArgAttrVec;
|
|
AttributeList PAL = F->getAttributes();
|
|
|
|
// First, determine the new argument list
|
|
unsigned ArgNo = 0;
|
|
for (Function::arg_iterator I = F->arg_begin(), E = F->arg_end(); I != E;
|
|
++I, ++ArgNo) {
|
|
if (ByValArgsToTransform.count(&*I)) {
|
|
// Simple byval argument? Just add all the struct element types.
|
|
Type *AgTy = I->getParamByValType();
|
|
StructType *STy = cast<StructType>(AgTy);
|
|
llvm::append_range(Params, STy->elements());
|
|
ArgAttrVec.insert(ArgAttrVec.end(), STy->getNumElements(),
|
|
AttributeSet());
|
|
++NumByValArgsPromoted;
|
|
} else if (!ArgsToPromote.count(&*I)) {
|
|
// Unchanged argument
|
|
Params.push_back(I->getType());
|
|
ArgAttrVec.push_back(PAL.getParamAttributes(ArgNo));
|
|
} else if (I->use_empty()) {
|
|
// Dead argument (which are always marked as promotable)
|
|
++NumArgumentsDead;
|
|
} else {
|
|
// Okay, this is being promoted. This means that the only uses are loads
|
|
// or GEPs which are only used by loads
|
|
|
|
// In this table, we will track which indices are loaded from the argument
|
|
// (where direct loads are tracked as no indices).
|
|
ScalarizeTable &ArgIndices = ScalarizedElements[&*I];
|
|
for (User *U : make_early_inc_range(I->users())) {
|
|
Instruction *UI = cast<Instruction>(U);
|
|
Type *SrcTy;
|
|
if (LoadInst *L = dyn_cast<LoadInst>(UI))
|
|
SrcTy = L->getType();
|
|
else
|
|
SrcTy = cast<GetElementPtrInst>(UI)->getSourceElementType();
|
|
// Skip dead GEPs and remove them.
|
|
if (isa<GetElementPtrInst>(UI) && UI->use_empty()) {
|
|
UI->eraseFromParent();
|
|
continue;
|
|
}
|
|
|
|
IndicesVector Indices;
|
|
Indices.reserve(UI->getNumOperands() - 1);
|
|
// Since loads will only have a single operand, and GEPs only a single
|
|
// non-index operand, this will record direct loads without any indices,
|
|
// and gep+loads with the GEP indices.
|
|
for (User::op_iterator II = UI->op_begin() + 1, IE = UI->op_end();
|
|
II != IE; ++II)
|
|
Indices.push_back(cast<ConstantInt>(*II)->getSExtValue());
|
|
// GEPs with a single 0 index can be merged with direct loads
|
|
if (Indices.size() == 1 && Indices.front() == 0)
|
|
Indices.clear();
|
|
ArgIndices.insert(std::make_pair(SrcTy, Indices));
|
|
LoadInst *OrigLoad;
|
|
if (LoadInst *L = dyn_cast<LoadInst>(UI))
|
|
OrigLoad = L;
|
|
else
|
|
// Take any load, we will use it only to update Alias Analysis
|
|
OrigLoad = cast<LoadInst>(UI->user_back());
|
|
OriginalLoads[std::make_pair(&*I, Indices)] = OrigLoad;
|
|
}
|
|
|
|
// Add a parameter to the function for each element passed in.
|
|
for (const auto &ArgIndex : ArgIndices) {
|
|
// not allowed to dereference ->begin() if size() is 0
|
|
Params.push_back(GetElementPtrInst::getIndexedType(
|
|
cast<PointerType>(I->getType())->getElementType(),
|
|
ArgIndex.second));
|
|
ArgAttrVec.push_back(AttributeSet());
|
|
assert(Params.back());
|
|
}
|
|
|
|
if (ArgIndices.size() == 1 && ArgIndices.begin()->second.empty())
|
|
++NumArgumentsPromoted;
|
|
else
|
|
++NumAggregatesPromoted;
|
|
}
|
|
}
|
|
|
|
Type *RetTy = FTy->getReturnType();
|
|
|
|
// Construct the new function type using the new arguments.
|
|
FunctionType *NFTy = FunctionType::get(RetTy, Params, FTy->isVarArg());
|
|
|
|
// Create the new function body and insert it into the module.
|
|
Function *NF = Function::Create(NFTy, F->getLinkage(), F->getAddressSpace(),
|
|
F->getName());
|
|
NF->copyAttributesFrom(F);
|
|
NF->copyMetadata(F, 0);
|
|
|
|
// The new function will have the !dbg metadata copied from the original
|
|
// function. The original function may not be deleted, and dbg metadata need
|
|
// to be unique so we need to drop it.
|
|
F->setSubprogram(nullptr);
|
|
|
|
LLVM_DEBUG(dbgs() << "ARG PROMOTION: Promoting to:" << *NF << "\n"
|
|
<< "From: " << *F);
|
|
|
|
// Recompute the parameter attributes list based on the new arguments for
|
|
// the function.
|
|
NF->setAttributes(AttributeList::get(F->getContext(), PAL.getFnAttributes(),
|
|
PAL.getRetAttributes(), ArgAttrVec));
|
|
ArgAttrVec.clear();
|
|
|
|
F->getParent()->getFunctionList().insert(F->getIterator(), NF);
|
|
NF->takeName(F);
|
|
|
|
// Loop over all of the callers of the function, transforming the call sites
|
|
// to pass in the loaded pointers.
|
|
//
|
|
SmallVector<Value *, 16> Args;
|
|
const DataLayout &DL = F->getParent()->getDataLayout();
|
|
while (!F->use_empty()) {
|
|
CallBase &CB = cast<CallBase>(*F->user_back());
|
|
assert(CB.getCalledFunction() == F);
|
|
const AttributeList &CallPAL = CB.getAttributes();
|
|
IRBuilder<NoFolder> IRB(&CB);
|
|
|
|
// Loop over the operands, inserting GEP and loads in the caller as
|
|
// appropriate.
|
|
auto AI = CB.arg_begin();
|
|
ArgNo = 0;
|
|
for (Function::arg_iterator I = F->arg_begin(), E = F->arg_end(); I != E;
|
|
++I, ++AI, ++ArgNo)
|
|
if (!ArgsToPromote.count(&*I) && !ByValArgsToTransform.count(&*I)) {
|
|
Args.push_back(*AI); // Unmodified argument
|
|
ArgAttrVec.push_back(CallPAL.getParamAttributes(ArgNo));
|
|
} else if (ByValArgsToTransform.count(&*I)) {
|
|
// Emit a GEP and load for each element of the struct.
|
|
Type *AgTy = I->getParamByValType();
|
|
StructType *STy = cast<StructType>(AgTy);
|
|
Value *Idxs[2] = {
|
|
ConstantInt::get(Type::getInt32Ty(F->getContext()), 0), nullptr};
|
|
const StructLayout *SL = DL.getStructLayout(STy);
|
|
Align StructAlign = *I->getParamAlign();
|
|
for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
|
|
Idxs[1] = ConstantInt::get(Type::getInt32Ty(F->getContext()), i);
|
|
auto *Idx =
|
|
IRB.CreateGEP(STy, *AI, Idxs, (*AI)->getName() + "." + Twine(i));
|
|
// TODO: Tell AA about the new values?
|
|
Align Alignment =
|
|
commonAlignment(StructAlign, SL->getElementOffset(i));
|
|
Args.push_back(IRB.CreateAlignedLoad(
|
|
STy->getElementType(i), Idx, Alignment, Idx->getName() + ".val"));
|
|
ArgAttrVec.push_back(AttributeSet());
|
|
}
|
|
} else if (!I->use_empty()) {
|
|
// Non-dead argument: insert GEPs and loads as appropriate.
|
|
ScalarizeTable &ArgIndices = ScalarizedElements[&*I];
|
|
// Store the Value* version of the indices in here, but declare it now
|
|
// for reuse.
|
|
std::vector<Value *> Ops;
|
|
for (const auto &ArgIndex : ArgIndices) {
|
|
Value *V = *AI;
|
|
LoadInst *OrigLoad =
|
|
OriginalLoads[std::make_pair(&*I, ArgIndex.second)];
|
|
if (!ArgIndex.second.empty()) {
|
|
Ops.reserve(ArgIndex.second.size());
|
|
Type *ElTy = V->getType();
|
|
for (auto II : ArgIndex.second) {
|
|
// Use i32 to index structs, and i64 for others (pointers/arrays).
|
|
// This satisfies GEP constraints.
|
|
Type *IdxTy =
|
|
(ElTy->isStructTy() ? Type::getInt32Ty(F->getContext())
|
|
: Type::getInt64Ty(F->getContext()));
|
|
Ops.push_back(ConstantInt::get(IdxTy, II));
|
|
// Keep track of the type we're currently indexing.
|
|
if (auto *ElPTy = dyn_cast<PointerType>(ElTy))
|
|
ElTy = ElPTy->getElementType();
|
|
else
|
|
ElTy = GetElementPtrInst::getTypeAtIndex(ElTy, II);
|
|
}
|
|
// And create a GEP to extract those indices.
|
|
V = IRB.CreateGEP(ArgIndex.first, V, Ops, V->getName() + ".idx");
|
|
Ops.clear();
|
|
}
|
|
// Since we're replacing a load make sure we take the alignment
|
|
// of the previous load.
|
|
LoadInst *newLoad =
|
|
IRB.CreateLoad(OrigLoad->getType(), V, V->getName() + ".val");
|
|
newLoad->setAlignment(OrigLoad->getAlign());
|
|
// Transfer the AA info too.
|
|
AAMDNodes AAInfo;
|
|
OrigLoad->getAAMetadata(AAInfo);
|
|
newLoad->setAAMetadata(AAInfo);
|
|
|
|
Args.push_back(newLoad);
|
|
ArgAttrVec.push_back(AttributeSet());
|
|
}
|
|
}
|
|
|
|
// Push any varargs arguments on the list.
|
|
for (; AI != CB.arg_end(); ++AI, ++ArgNo) {
|
|
Args.push_back(*AI);
|
|
ArgAttrVec.push_back(CallPAL.getParamAttributes(ArgNo));
|
|
}
|
|
|
|
SmallVector<OperandBundleDef, 1> OpBundles;
|
|
CB.getOperandBundlesAsDefs(OpBundles);
|
|
|
|
CallBase *NewCS = nullptr;
|
|
if (InvokeInst *II = dyn_cast<InvokeInst>(&CB)) {
|
|
NewCS = InvokeInst::Create(NF, II->getNormalDest(), II->getUnwindDest(),
|
|
Args, OpBundles, "", &CB);
|
|
} else {
|
|
auto *NewCall = CallInst::Create(NF, Args, OpBundles, "", &CB);
|
|
NewCall->setTailCallKind(cast<CallInst>(&CB)->getTailCallKind());
|
|
NewCS = NewCall;
|
|
}
|
|
NewCS->setCallingConv(CB.getCallingConv());
|
|
NewCS->setAttributes(
|
|
AttributeList::get(F->getContext(), CallPAL.getFnAttributes(),
|
|
CallPAL.getRetAttributes(), ArgAttrVec));
|
|
NewCS->copyMetadata(CB, {LLVMContext::MD_prof, LLVMContext::MD_dbg});
|
|
Args.clear();
|
|
ArgAttrVec.clear();
|
|
|
|
// Update the callgraph to know that the callsite has been transformed.
|
|
if (ReplaceCallSite)
|
|
(*ReplaceCallSite)(CB, *NewCS);
|
|
|
|
if (!CB.use_empty()) {
|
|
CB.replaceAllUsesWith(NewCS);
|
|
NewCS->takeName(&CB);
|
|
}
|
|
|
|
// Finally, remove the old call from the program, reducing the use-count of
|
|
// F.
|
|
CB.eraseFromParent();
|
|
}
|
|
|
|
// Since we have now created the new function, splice the body of the old
|
|
// function right into the new function, leaving the old rotting hulk of the
|
|
// function empty.
|
|
NF->getBasicBlockList().splice(NF->begin(), F->getBasicBlockList());
|
|
|
|
// Loop over the argument list, transferring uses of the old arguments over to
|
|
// the new arguments, also transferring over the names as well.
|
|
for (Function::arg_iterator I = F->arg_begin(), E = F->arg_end(),
|
|
I2 = NF->arg_begin();
|
|
I != E; ++I) {
|
|
if (!ArgsToPromote.count(&*I) && !ByValArgsToTransform.count(&*I)) {
|
|
// If this is an unmodified argument, move the name and users over to the
|
|
// new version.
|
|
I->replaceAllUsesWith(&*I2);
|
|
I2->takeName(&*I);
|
|
++I2;
|
|
continue;
|
|
}
|
|
|
|
if (ByValArgsToTransform.count(&*I)) {
|
|
// In the callee, we create an alloca, and store each of the new incoming
|
|
// arguments into the alloca.
|
|
Instruction *InsertPt = &NF->begin()->front();
|
|
|
|
// Just add all the struct element types.
|
|
Type *AgTy = I->getParamByValType();
|
|
Align StructAlign = *I->getParamAlign();
|
|
Value *TheAlloca = new AllocaInst(AgTy, DL.getAllocaAddrSpace(), nullptr,
|
|
StructAlign, "", InsertPt);
|
|
StructType *STy = cast<StructType>(AgTy);
|
|
Value *Idxs[2] = {ConstantInt::get(Type::getInt32Ty(F->getContext()), 0),
|
|
nullptr};
|
|
const StructLayout *SL = DL.getStructLayout(STy);
|
|
|
|
for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
|
|
Idxs[1] = ConstantInt::get(Type::getInt32Ty(F->getContext()), i);
|
|
Value *Idx = GetElementPtrInst::Create(
|
|
AgTy, TheAlloca, Idxs, TheAlloca->getName() + "." + Twine(i),
|
|
InsertPt);
|
|
I2->setName(I->getName() + "." + Twine(i));
|
|
Align Alignment = commonAlignment(StructAlign, SL->getElementOffset(i));
|
|
new StoreInst(&*I2++, Idx, false, Alignment, InsertPt);
|
|
}
|
|
|
|
// Anything that used the arg should now use the alloca.
|
|
I->replaceAllUsesWith(TheAlloca);
|
|
TheAlloca->takeName(&*I);
|
|
continue;
|
|
}
|
|
|
|
// There potentially are metadata uses for things like llvm.dbg.value.
|
|
// Replace them with undef, after handling the other regular uses.
|
|
auto RauwUndefMetadata = make_scope_exit(
|
|
[&]() { I->replaceAllUsesWith(UndefValue::get(I->getType())); });
|
|
|
|
if (I->use_empty())
|
|
continue;
|
|
|
|
// Otherwise, if we promoted this argument, then all users are load
|
|
// instructions (or GEPs with only load users), and all loads should be
|
|
// using the new argument that we added.
|
|
ScalarizeTable &ArgIndices = ScalarizedElements[&*I];
|
|
|
|
while (!I->use_empty()) {
|
|
if (LoadInst *LI = dyn_cast<LoadInst>(I->user_back())) {
|
|
assert(ArgIndices.begin()->second.empty() &&
|
|
"Load element should sort to front!");
|
|
I2->setName(I->getName() + ".val");
|
|
LI->replaceAllUsesWith(&*I2);
|
|
LI->eraseFromParent();
|
|
LLVM_DEBUG(dbgs() << "*** Promoted load of argument '" << I->getName()
|
|
<< "' in function '" << F->getName() << "'\n");
|
|
} else {
|
|
GetElementPtrInst *GEP = cast<GetElementPtrInst>(I->user_back());
|
|
assert(!GEP->use_empty() &&
|
|
"GEPs without uses should be cleaned up already");
|
|
IndicesVector Operands;
|
|
Operands.reserve(GEP->getNumIndices());
|
|
for (const Use &Idx : GEP->indices())
|
|
Operands.push_back(cast<ConstantInt>(Idx)->getSExtValue());
|
|
|
|
// GEPs with a single 0 index can be merged with direct loads
|
|
if (Operands.size() == 1 && Operands.front() == 0)
|
|
Operands.clear();
|
|
|
|
Function::arg_iterator TheArg = I2;
|
|
for (ScalarizeTable::iterator It = ArgIndices.begin();
|
|
It->second != Operands; ++It, ++TheArg) {
|
|
assert(It != ArgIndices.end() && "GEP not handled??");
|
|
}
|
|
|
|
TheArg->setName(formatv("{0}.{1:$[.]}.val", I->getName(),
|
|
make_range(Operands.begin(), Operands.end())));
|
|
|
|
LLVM_DEBUG(dbgs() << "*** Promoted agg argument '" << TheArg->getName()
|
|
<< "' of function '" << NF->getName() << "'\n");
|
|
|
|
// All of the uses must be load instructions. Replace them all with
|
|
// the argument specified by ArgNo.
|
|
while (!GEP->use_empty()) {
|
|
LoadInst *L = cast<LoadInst>(GEP->user_back());
|
|
L->replaceAllUsesWith(&*TheArg);
|
|
L->eraseFromParent();
|
|
}
|
|
GEP->eraseFromParent();
|
|
}
|
|
}
|
|
// Increment I2 past all of the arguments added for this promoted pointer.
|
|
std::advance(I2, ArgIndices.size());
|
|
}
|
|
|
|
return NF;
|
|
}
|
|
|
|
/// Return true if we can prove that all callees pass in a valid pointer for the
|
|
/// specified function argument.
|
|
static bool allCallersPassValidPointerForArgument(Argument *Arg, Type *Ty) {
|
|
Function *Callee = Arg->getParent();
|
|
const DataLayout &DL = Callee->getParent()->getDataLayout();
|
|
|
|
unsigned ArgNo = Arg->getArgNo();
|
|
|
|
// Look at all call sites of the function. At this point we know we only have
|
|
// direct callees.
|
|
for (User *U : Callee->users()) {
|
|
CallBase &CB = cast<CallBase>(*U);
|
|
|
|
if (!isDereferenceablePointer(CB.getArgOperand(ArgNo), Ty, DL))
|
|
return false;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
/// Returns true if Prefix is a prefix of longer. That means, Longer has a size
|
|
/// that is greater than or equal to the size of prefix, and each of the
|
|
/// elements in Prefix is the same as the corresponding elements in Longer.
|
|
///
|
|
/// This means it also returns true when Prefix and Longer are equal!
|
|
static bool isPrefix(const IndicesVector &Prefix, const IndicesVector &Longer) {
|
|
if (Prefix.size() > Longer.size())
|
|
return false;
|
|
return std::equal(Prefix.begin(), Prefix.end(), Longer.begin());
|
|
}
|
|
|
|
/// Checks if Indices, or a prefix of Indices, is in Set.
|
|
static bool prefixIn(const IndicesVector &Indices,
|
|
std::set<IndicesVector> &Set) {
|
|
std::set<IndicesVector>::iterator Low;
|
|
Low = Set.upper_bound(Indices);
|
|
if (Low != Set.begin())
|
|
Low--;
|
|
// Low is now the last element smaller than or equal to Indices. This means
|
|
// it points to a prefix of Indices (possibly Indices itself), if such
|
|
// prefix exists.
|
|
//
|
|
// This load is safe if any prefix of its operands is safe to load.
|
|
return Low != Set.end() && isPrefix(*Low, Indices);
|
|
}
|
|
|
|
/// Mark the given indices (ToMark) as safe in the given set of indices
|
|
/// (Safe). Marking safe usually means adding ToMark to Safe. However, if there
|
|
/// is already a prefix of Indices in Safe, Indices are implicitely marked safe
|
|
/// already. Furthermore, any indices that Indices is itself a prefix of, are
|
|
/// removed from Safe (since they are implicitely safe because of Indices now).
|
|
static void markIndicesSafe(const IndicesVector &ToMark,
|
|
std::set<IndicesVector> &Safe) {
|
|
std::set<IndicesVector>::iterator Low;
|
|
Low = Safe.upper_bound(ToMark);
|
|
// Guard against the case where Safe is empty
|
|
if (Low != Safe.begin())
|
|
Low--;
|
|
// Low is now the last element smaller than or equal to Indices. This
|
|
// means it points to a prefix of Indices (possibly Indices itself), if
|
|
// such prefix exists.
|
|
if (Low != Safe.end()) {
|
|
if (isPrefix(*Low, ToMark))
|
|
// If there is already a prefix of these indices (or exactly these
|
|
// indices) marked a safe, don't bother adding these indices
|
|
return;
|
|
|
|
// Increment Low, so we can use it as a "insert before" hint
|
|
++Low;
|
|
}
|
|
// Insert
|
|
Low = Safe.insert(Low, ToMark);
|
|
++Low;
|
|
// If there we're a prefix of longer index list(s), remove those
|
|
std::set<IndicesVector>::iterator End = Safe.end();
|
|
while (Low != End && isPrefix(ToMark, *Low)) {
|
|
std::set<IndicesVector>::iterator Remove = Low;
|
|
++Low;
|
|
Safe.erase(Remove);
|
|
}
|
|
}
|
|
|
|
/// isSafeToPromoteArgument - As you might guess from the name of this method,
|
|
/// it checks to see if it is both safe and useful to promote the argument.
|
|
/// This method limits promotion of aggregates to only promote up to three
|
|
/// elements of the aggregate in order to avoid exploding the number of
|
|
/// arguments passed in.
|
|
static bool isSafeToPromoteArgument(Argument *Arg, Type *ByValTy, AAResults &AAR,
|
|
unsigned MaxElements) {
|
|
using GEPIndicesSet = std::set<IndicesVector>;
|
|
|
|
// Quick exit for unused arguments
|
|
if (Arg->use_empty())
|
|
return true;
|
|
|
|
// We can only promote this argument if all of the uses are loads, or are GEP
|
|
// instructions (with constant indices) that are subsequently loaded.
|
|
//
|
|
// Promoting the argument causes it to be loaded in the caller
|
|
// unconditionally. This is only safe if we can prove that either the load
|
|
// would have happened in the callee anyway (ie, there is a load in the entry
|
|
// block) or the pointer passed in at every call site is guaranteed to be
|
|
// valid.
|
|
// In the former case, invalid loads can happen, but would have happened
|
|
// anyway, in the latter case, invalid loads won't happen. This prevents us
|
|
// from introducing an invalid load that wouldn't have happened in the
|
|
// original code.
|
|
//
|
|
// This set will contain all sets of indices that are loaded in the entry
|
|
// block, and thus are safe to unconditionally load in the caller.
|
|
GEPIndicesSet SafeToUnconditionallyLoad;
|
|
|
|
// This set contains all the sets of indices that we are planning to promote.
|
|
// This makes it possible to limit the number of arguments added.
|
|
GEPIndicesSet ToPromote;
|
|
|
|
// If the pointer is always valid, any load with first index 0 is valid.
|
|
|
|
if (ByValTy)
|
|
SafeToUnconditionallyLoad.insert(IndicesVector(1, 0));
|
|
|
|
// Whenever a new underlying type for the operand is found, make sure it's
|
|
// consistent with the GEPs and loads we've already seen and, if necessary,
|
|
// use it to see if all incoming pointers are valid (which implies the 0-index
|
|
// is safe).
|
|
Type *BaseTy = ByValTy;
|
|
auto UpdateBaseTy = [&](Type *NewBaseTy) {
|
|
if (BaseTy)
|
|
return BaseTy == NewBaseTy;
|
|
|
|
BaseTy = NewBaseTy;
|
|
if (allCallersPassValidPointerForArgument(Arg, BaseTy)) {
|
|
assert(SafeToUnconditionallyLoad.empty());
|
|
SafeToUnconditionallyLoad.insert(IndicesVector(1, 0));
|
|
}
|
|
|
|
return true;
|
|
};
|
|
|
|
// First, iterate the entry block and mark loads of (geps of) arguments as
|
|
// safe.
|
|
BasicBlock &EntryBlock = Arg->getParent()->front();
|
|
// Declare this here so we can reuse it
|
|
IndicesVector Indices;
|
|
for (Instruction &I : EntryBlock)
|
|
if (LoadInst *LI = dyn_cast<LoadInst>(&I)) {
|
|
Value *V = LI->getPointerOperand();
|
|
if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(V)) {
|
|
V = GEP->getPointerOperand();
|
|
if (V == Arg) {
|
|
// This load actually loads (part of) Arg? Check the indices then.
|
|
Indices.reserve(GEP->getNumIndices());
|
|
for (Use &Idx : GEP->indices())
|
|
if (ConstantInt *CI = dyn_cast<ConstantInt>(Idx))
|
|
Indices.push_back(CI->getSExtValue());
|
|
else
|
|
// We found a non-constant GEP index for this argument? Bail out
|
|
// right away, can't promote this argument at all.
|
|
return false;
|
|
|
|
if (!UpdateBaseTy(GEP->getSourceElementType()))
|
|
return false;
|
|
|
|
// Indices checked out, mark them as safe
|
|
markIndicesSafe(Indices, SafeToUnconditionallyLoad);
|
|
Indices.clear();
|
|
}
|
|
} else if (V == Arg) {
|
|
// Direct loads are equivalent to a GEP with a single 0 index.
|
|
markIndicesSafe(IndicesVector(1, 0), SafeToUnconditionallyLoad);
|
|
|
|
if (BaseTy && LI->getType() != BaseTy)
|
|
return false;
|
|
|
|
BaseTy = LI->getType();
|
|
}
|
|
}
|
|
|
|
// Now, iterate all uses of the argument to see if there are any uses that are
|
|
// not (GEP+)loads, or any (GEP+)loads that are not safe to promote.
|
|
SmallVector<LoadInst *, 16> Loads;
|
|
IndicesVector Operands;
|
|
for (Use &U : Arg->uses()) {
|
|
User *UR = U.getUser();
|
|
Operands.clear();
|
|
if (LoadInst *LI = dyn_cast<LoadInst>(UR)) {
|
|
// Don't hack volatile/atomic loads
|
|
if (!LI->isSimple())
|
|
return false;
|
|
Loads.push_back(LI);
|
|
// Direct loads are equivalent to a GEP with a zero index and then a load.
|
|
Operands.push_back(0);
|
|
|
|
if (!UpdateBaseTy(LI->getType()))
|
|
return false;
|
|
} else if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(UR)) {
|
|
if (GEP->use_empty()) {
|
|
// Dead GEP's cause trouble later. Just remove them if we run into
|
|
// them.
|
|
continue;
|
|
}
|
|
|
|
if (!UpdateBaseTy(GEP->getSourceElementType()))
|
|
return false;
|
|
|
|
// Ensure that all of the indices are constants.
|
|
for (Use &Idx : GEP->indices())
|
|
if (ConstantInt *C = dyn_cast<ConstantInt>(Idx))
|
|
Operands.push_back(C->getSExtValue());
|
|
else
|
|
return false; // Not a constant operand GEP!
|
|
|
|
// Ensure that the only users of the GEP are load instructions.
|
|
for (User *GEPU : GEP->users())
|
|
if (LoadInst *LI = dyn_cast<LoadInst>(GEPU)) {
|
|
// Don't hack volatile/atomic loads
|
|
if (!LI->isSimple())
|
|
return false;
|
|
Loads.push_back(LI);
|
|
} else {
|
|
// Other uses than load?
|
|
return false;
|
|
}
|
|
} else {
|
|
return false; // Not a load or a GEP.
|
|
}
|
|
|
|
// Now, see if it is safe to promote this load / loads of this GEP. Loading
|
|
// is safe if Operands, or a prefix of Operands, is marked as safe.
|
|
if (!prefixIn(Operands, SafeToUnconditionallyLoad))
|
|
return false;
|
|
|
|
// See if we are already promoting a load with these indices. If not, check
|
|
// to make sure that we aren't promoting too many elements. If so, nothing
|
|
// to do.
|
|
if (ToPromote.find(Operands) == ToPromote.end()) {
|
|
if (MaxElements > 0 && ToPromote.size() == MaxElements) {
|
|
LLVM_DEBUG(dbgs() << "argpromotion not promoting argument '"
|
|
<< Arg->getName()
|
|
<< "' because it would require adding more "
|
|
<< "than " << MaxElements
|
|
<< " arguments to the function.\n");
|
|
// We limit aggregate promotion to only promoting up to a fixed number
|
|
// of elements of the aggregate.
|
|
return false;
|
|
}
|
|
ToPromote.insert(std::move(Operands));
|
|
}
|
|
}
|
|
|
|
if (Loads.empty())
|
|
return true; // No users, this is a dead argument.
|
|
|
|
// Okay, now we know that the argument is only used by load instructions and
|
|
// it is safe to unconditionally perform all of them. Use alias analysis to
|
|
// check to see if the pointer is guaranteed to not be modified from entry of
|
|
// the function to each of the load instructions.
|
|
|
|
// Because there could be several/many load instructions, remember which
|
|
// blocks we know to be transparent to the load.
|
|
df_iterator_default_set<BasicBlock *, 16> TranspBlocks;
|
|
|
|
for (LoadInst *Load : Loads) {
|
|
// Check to see if the load is invalidated from the start of the block to
|
|
// the load itself.
|
|
BasicBlock *BB = Load->getParent();
|
|
|
|
MemoryLocation Loc = MemoryLocation::get(Load);
|
|
if (AAR.canInstructionRangeModRef(BB->front(), *Load, Loc, ModRefInfo::Mod))
|
|
return false; // Pointer is invalidated!
|
|
|
|
// Now check every path from the entry block to the load for transparency.
|
|
// To do this, we perform a depth first search on the inverse CFG from the
|
|
// loading block.
|
|
for (BasicBlock *P : predecessors(BB)) {
|
|
for (BasicBlock *TranspBB : inverse_depth_first_ext(P, TranspBlocks))
|
|
if (AAR.canBasicBlockModify(*TranspBB, Loc))
|
|
return false;
|
|
}
|
|
}
|
|
|
|
// If the path from the entry of the function to each load is free of
|
|
// instructions that potentially invalidate the load, we can make the
|
|
// transformation!
|
|
return true;
|
|
}
|
|
|
|
bool ArgumentPromotionPass::isDenselyPacked(Type *type, const DataLayout &DL) {
|
|
// There is no size information, so be conservative.
|
|
if (!type->isSized())
|
|
return false;
|
|
|
|
// If the alloc size is not equal to the storage size, then there are padding
|
|
// bytes. For x86_fp80 on x86-64, size: 80 alloc size: 128.
|
|
if (DL.getTypeSizeInBits(type) != DL.getTypeAllocSizeInBits(type))
|
|
return false;
|
|
|
|
// FIXME: This isn't the right way to check for padding in vectors with
|
|
// non-byte-size elements.
|
|
if (VectorType *seqTy = dyn_cast<VectorType>(type))
|
|
return isDenselyPacked(seqTy->getElementType(), DL);
|
|
|
|
// For array types, check for padding within members.
|
|
if (ArrayType *seqTy = dyn_cast<ArrayType>(type))
|
|
return isDenselyPacked(seqTy->getElementType(), DL);
|
|
|
|
if (!isa<StructType>(type))
|
|
return true;
|
|
|
|
// Check for padding within and between elements of a struct.
|
|
StructType *StructTy = cast<StructType>(type);
|
|
const StructLayout *Layout = DL.getStructLayout(StructTy);
|
|
uint64_t StartPos = 0;
|
|
for (unsigned i = 0, E = StructTy->getNumElements(); i < E; ++i) {
|
|
Type *ElTy = StructTy->getElementType(i);
|
|
if (!isDenselyPacked(ElTy, DL))
|
|
return false;
|
|
if (StartPos != Layout->getElementOffsetInBits(i))
|
|
return false;
|
|
StartPos += DL.getTypeAllocSizeInBits(ElTy);
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
/// Checks if the padding bytes of an argument could be accessed.
|
|
static bool canPaddingBeAccessed(Argument *arg) {
|
|
assert(arg->hasByValAttr());
|
|
|
|
// Track all the pointers to the argument to make sure they are not captured.
|
|
SmallPtrSet<Value *, 16> PtrValues;
|
|
PtrValues.insert(arg);
|
|
|
|
// Track all of the stores.
|
|
SmallVector<StoreInst *, 16> Stores;
|
|
|
|
// Scan through the uses recursively to make sure the pointer is always used
|
|
// sanely.
|
|
SmallVector<Value *, 16> WorkList(arg->users());
|
|
while (!WorkList.empty()) {
|
|
Value *V = WorkList.pop_back_val();
|
|
if (isa<GetElementPtrInst>(V) || isa<PHINode>(V)) {
|
|
if (PtrValues.insert(V).second)
|
|
llvm::append_range(WorkList, V->users());
|
|
} else if (StoreInst *Store = dyn_cast<StoreInst>(V)) {
|
|
Stores.push_back(Store);
|
|
} else if (!isa<LoadInst>(V)) {
|
|
return true;
|
|
}
|
|
}
|
|
|
|
// Check to make sure the pointers aren't captured
|
|
for (StoreInst *Store : Stores)
|
|
if (PtrValues.count(Store->getValueOperand()))
|
|
return true;
|
|
|
|
return false;
|
|
}
|
|
|
|
bool ArgumentPromotionPass::areFunctionArgsABICompatible(
|
|
const Function &F, const TargetTransformInfo &TTI,
|
|
SmallPtrSetImpl<Argument *> &ArgsToPromote,
|
|
SmallPtrSetImpl<Argument *> &ByValArgsToTransform) {
|
|
for (const Use &U : F.uses()) {
|
|
CallBase *CB = dyn_cast<CallBase>(U.getUser());
|
|
if (!CB)
|
|
return false;
|
|
const Function *Caller = CB->getCaller();
|
|
const Function *Callee = CB->getCalledFunction();
|
|
if (!TTI.areFunctionArgsABICompatible(Caller, Callee, ArgsToPromote) ||
|
|
!TTI.areFunctionArgsABICompatible(Caller, Callee, ByValArgsToTransform))
|
|
return false;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
/// PromoteArguments - This method checks the specified function to see if there
|
|
/// are any promotable arguments and if it is safe to promote the function (for
|
|
/// example, all callers are direct). If safe to promote some arguments, it
|
|
/// calls the DoPromotion method.
|
|
static Function *
|
|
promoteArguments(Function *F, function_ref<AAResults &(Function &F)> AARGetter,
|
|
unsigned MaxElements,
|
|
Optional<function_ref<void(CallBase &OldCS, CallBase &NewCS)>>
|
|
ReplaceCallSite,
|
|
const TargetTransformInfo &TTI) {
|
|
// Don't perform argument promotion for naked functions; otherwise we can end
|
|
// up removing parameters that are seemingly 'not used' as they are referred
|
|
// to in the assembly.
|
|
if(F->hasFnAttribute(Attribute::Naked))
|
|
return nullptr;
|
|
|
|
// Make sure that it is local to this module.
|
|
if (!F->hasLocalLinkage())
|
|
return nullptr;
|
|
|
|
// Don't promote arguments for variadic functions. Adding, removing, or
|
|
// changing non-pack parameters can change the classification of pack
|
|
// parameters. Frontends encode that classification at the call site in the
|
|
// IR, while in the callee the classification is determined dynamically based
|
|
// on the number of registers consumed so far.
|
|
if (F->isVarArg())
|
|
return nullptr;
|
|
|
|
// Don't transform functions that receive inallocas, as the transformation may
|
|
// not be safe depending on calling convention.
|
|
if (F->getAttributes().hasAttrSomewhere(Attribute::InAlloca))
|
|
return nullptr;
|
|
|
|
// First check: see if there are any pointer arguments! If not, quick exit.
|
|
SmallVector<Argument *, 16> PointerArgs;
|
|
for (Argument &I : F->args())
|
|
if (I.getType()->isPointerTy())
|
|
PointerArgs.push_back(&I);
|
|
if (PointerArgs.empty())
|
|
return nullptr;
|
|
|
|
// Second check: make sure that all callers are direct callers. We can't
|
|
// transform functions that have indirect callers. Also see if the function
|
|
// is self-recursive and check that target features are compatible.
|
|
bool isSelfRecursive = false;
|
|
for (Use &U : F->uses()) {
|
|
CallBase *CB = dyn_cast<CallBase>(U.getUser());
|
|
// Must be a direct call.
|
|
if (CB == nullptr || !CB->isCallee(&U))
|
|
return nullptr;
|
|
|
|
// Can't change signature of musttail callee
|
|
if (CB->isMustTailCall())
|
|
return nullptr;
|
|
|
|
if (CB->getParent()->getParent() == F)
|
|
isSelfRecursive = true;
|
|
}
|
|
|
|
// Can't change signature of musttail caller
|
|
// FIXME: Support promoting whole chain of musttail functions
|
|
for (BasicBlock &BB : *F)
|
|
if (BB.getTerminatingMustTailCall())
|
|
return nullptr;
|
|
|
|
const DataLayout &DL = F->getParent()->getDataLayout();
|
|
|
|
AAResults &AAR = AARGetter(*F);
|
|
|
|
// Check to see which arguments are promotable. If an argument is promotable,
|
|
// add it to ArgsToPromote.
|
|
SmallPtrSet<Argument *, 8> ArgsToPromote;
|
|
SmallPtrSet<Argument *, 8> ByValArgsToTransform;
|
|
for (Argument *PtrArg : PointerArgs) {
|
|
Type *AgTy = cast<PointerType>(PtrArg->getType())->getElementType();
|
|
|
|
// Replace sret attribute with noalias. This reduces register pressure by
|
|
// avoiding a register copy.
|
|
if (PtrArg->hasStructRetAttr()) {
|
|
unsigned ArgNo = PtrArg->getArgNo();
|
|
F->removeParamAttr(ArgNo, Attribute::StructRet);
|
|
F->addParamAttr(ArgNo, Attribute::NoAlias);
|
|
for (Use &U : F->uses()) {
|
|
CallBase &CB = cast<CallBase>(*U.getUser());
|
|
CB.removeParamAttr(ArgNo, Attribute::StructRet);
|
|
CB.addParamAttr(ArgNo, Attribute::NoAlias);
|
|
}
|
|
}
|
|
|
|
// If this is a byval argument, and if the aggregate type is small, just
|
|
// pass the elements, which is always safe, if the passed value is densely
|
|
// packed or if we can prove the padding bytes are never accessed.
|
|
//
|
|
// Only handle arguments with specified alignment; if it's unspecified, the
|
|
// actual alignment of the argument is target-specific.
|
|
bool isSafeToPromote = PtrArg->hasByValAttr() && PtrArg->getParamAlign() &&
|
|
(ArgumentPromotionPass::isDenselyPacked(AgTy, DL) ||
|
|
!canPaddingBeAccessed(PtrArg));
|
|
if (isSafeToPromote) {
|
|
if (StructType *STy = dyn_cast<StructType>(AgTy)) {
|
|
if (MaxElements > 0 && STy->getNumElements() > MaxElements) {
|
|
LLVM_DEBUG(dbgs() << "argpromotion disable promoting argument '"
|
|
<< PtrArg->getName()
|
|
<< "' because it would require adding more"
|
|
<< " than " << MaxElements
|
|
<< " arguments to the function.\n");
|
|
continue;
|
|
}
|
|
|
|
// If all the elements are single-value types, we can promote it.
|
|
bool AllSimple = true;
|
|
for (const auto *EltTy : STy->elements()) {
|
|
if (!EltTy->isSingleValueType()) {
|
|
AllSimple = false;
|
|
break;
|
|
}
|
|
}
|
|
|
|
// Safe to transform, don't even bother trying to "promote" it.
|
|
// Passing the elements as a scalar will allow sroa to hack on
|
|
// the new alloca we introduce.
|
|
if (AllSimple) {
|
|
ByValArgsToTransform.insert(PtrArg);
|
|
continue;
|
|
}
|
|
}
|
|
}
|
|
|
|
// If the argument is a recursive type and we're in a recursive
|
|
// function, we could end up infinitely peeling the function argument.
|
|
if (isSelfRecursive) {
|
|
if (StructType *STy = dyn_cast<StructType>(AgTy)) {
|
|
bool RecursiveType =
|
|
llvm::is_contained(STy->elements(), PtrArg->getType());
|
|
if (RecursiveType)
|
|
continue;
|
|
}
|
|
}
|
|
|
|
// Otherwise, see if we can promote the pointer to its value.
|
|
Type *ByValTy =
|
|
PtrArg->hasByValAttr() ? PtrArg->getParamByValType() : nullptr;
|
|
if (isSafeToPromoteArgument(PtrArg, ByValTy, AAR, MaxElements))
|
|
ArgsToPromote.insert(PtrArg);
|
|
}
|
|
|
|
// No promotable pointer arguments.
|
|
if (ArgsToPromote.empty() && ByValArgsToTransform.empty())
|
|
return nullptr;
|
|
|
|
if (!ArgumentPromotionPass::areFunctionArgsABICompatible(
|
|
*F, TTI, ArgsToPromote, ByValArgsToTransform))
|
|
return nullptr;
|
|
|
|
return doPromotion(F, ArgsToPromote, ByValArgsToTransform, ReplaceCallSite);
|
|
}
|
|
|
|
PreservedAnalyses ArgumentPromotionPass::run(LazyCallGraph::SCC &C,
|
|
CGSCCAnalysisManager &AM,
|
|
LazyCallGraph &CG,
|
|
CGSCCUpdateResult &UR) {
|
|
bool Changed = false, LocalChange;
|
|
|
|
// Iterate until we stop promoting from this SCC.
|
|
do {
|
|
LocalChange = false;
|
|
|
|
for (LazyCallGraph::Node &N : C) {
|
|
Function &OldF = N.getFunction();
|
|
|
|
FunctionAnalysisManager &FAM =
|
|
AM.getResult<FunctionAnalysisManagerCGSCCProxy>(C, CG).getManager();
|
|
// FIXME: This lambda must only be used with this function. We should
|
|
// skip the lambda and just get the AA results directly.
|
|
auto AARGetter = [&](Function &F) -> AAResults & {
|
|
assert(&F == &OldF && "Called with an unexpected function!");
|
|
return FAM.getResult<AAManager>(F);
|
|
};
|
|
|
|
const TargetTransformInfo &TTI = FAM.getResult<TargetIRAnalysis>(OldF);
|
|
Function *NewF =
|
|
promoteArguments(&OldF, AARGetter, MaxElements, None, TTI);
|
|
if (!NewF)
|
|
continue;
|
|
LocalChange = true;
|
|
|
|
// Directly substitute the functions in the call graph. Note that this
|
|
// requires the old function to be completely dead and completely
|
|
// replaced by the new function. It does no call graph updates, it merely
|
|
// swaps out the particular function mapped to a particular node in the
|
|
// graph.
|
|
C.getOuterRefSCC().replaceNodeFunction(N, *NewF);
|
|
FAM.clear(OldF, OldF.getName());
|
|
OldF.eraseFromParent();
|
|
}
|
|
|
|
Changed |= LocalChange;
|
|
} while (LocalChange);
|
|
|
|
if (!Changed)
|
|
return PreservedAnalyses::all();
|
|
|
|
return PreservedAnalyses::none();
|
|
}
|
|
|
|
namespace {
|
|
|
|
/// ArgPromotion - The 'by reference' to 'by value' argument promotion pass.
|
|
struct ArgPromotion : public CallGraphSCCPass {
|
|
// Pass identification, replacement for typeid
|
|
static char ID;
|
|
|
|
explicit ArgPromotion(unsigned MaxElements = 3)
|
|
: CallGraphSCCPass(ID), MaxElements(MaxElements) {
|
|
initializeArgPromotionPass(*PassRegistry::getPassRegistry());
|
|
}
|
|
|
|
void getAnalysisUsage(AnalysisUsage &AU) const override {
|
|
AU.addRequired<AssumptionCacheTracker>();
|
|
AU.addRequired<TargetLibraryInfoWrapperPass>();
|
|
AU.addRequired<TargetTransformInfoWrapperPass>();
|
|
getAAResultsAnalysisUsage(AU);
|
|
CallGraphSCCPass::getAnalysisUsage(AU);
|
|
}
|
|
|
|
bool runOnSCC(CallGraphSCC &SCC) override;
|
|
|
|
private:
|
|
using llvm::Pass::doInitialization;
|
|
|
|
bool doInitialization(CallGraph &CG) override;
|
|
|
|
/// The maximum number of elements to expand, or 0 for unlimited.
|
|
unsigned MaxElements;
|
|
};
|
|
|
|
} // end anonymous namespace
|
|
|
|
char ArgPromotion::ID = 0;
|
|
|
|
INITIALIZE_PASS_BEGIN(ArgPromotion, "argpromotion",
|
|
"Promote 'by reference' arguments to scalars", false,
|
|
false)
|
|
INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
|
|
INITIALIZE_PASS_DEPENDENCY(CallGraphWrapperPass)
|
|
INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
|
|
INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
|
|
INITIALIZE_PASS_END(ArgPromotion, "argpromotion",
|
|
"Promote 'by reference' arguments to scalars", false, false)
|
|
|
|
Pass *llvm::createArgumentPromotionPass(unsigned MaxElements) {
|
|
return new ArgPromotion(MaxElements);
|
|
}
|
|
|
|
bool ArgPromotion::runOnSCC(CallGraphSCC &SCC) {
|
|
if (skipSCC(SCC))
|
|
return false;
|
|
|
|
// Get the callgraph information that we need to update to reflect our
|
|
// changes.
|
|
CallGraph &CG = getAnalysis<CallGraphWrapperPass>().getCallGraph();
|
|
|
|
LegacyAARGetter AARGetter(*this);
|
|
|
|
bool Changed = false, LocalChange;
|
|
|
|
// Iterate until we stop promoting from this SCC.
|
|
do {
|
|
LocalChange = false;
|
|
// Attempt to promote arguments from all functions in this SCC.
|
|
for (CallGraphNode *OldNode : SCC) {
|
|
Function *OldF = OldNode->getFunction();
|
|
if (!OldF)
|
|
continue;
|
|
|
|
auto ReplaceCallSite = [&](CallBase &OldCS, CallBase &NewCS) {
|
|
Function *Caller = OldCS.getParent()->getParent();
|
|
CallGraphNode *NewCalleeNode =
|
|
CG.getOrInsertFunction(NewCS.getCalledFunction());
|
|
CallGraphNode *CallerNode = CG[Caller];
|
|
CallerNode->replaceCallEdge(cast<CallBase>(OldCS),
|
|
cast<CallBase>(NewCS), NewCalleeNode);
|
|
};
|
|
|
|
const TargetTransformInfo &TTI =
|
|
getAnalysis<TargetTransformInfoWrapperPass>().getTTI(*OldF);
|
|
if (Function *NewF = promoteArguments(OldF, AARGetter, MaxElements,
|
|
{ReplaceCallSite}, TTI)) {
|
|
LocalChange = true;
|
|
|
|
// Update the call graph for the newly promoted function.
|
|
CallGraphNode *NewNode = CG.getOrInsertFunction(NewF);
|
|
NewNode->stealCalledFunctionsFrom(OldNode);
|
|
if (OldNode->getNumReferences() == 0)
|
|
delete CG.removeFunctionFromModule(OldNode);
|
|
else
|
|
OldF->setLinkage(Function::ExternalLinkage);
|
|
|
|
// And updat ethe SCC we're iterating as well.
|
|
SCC.ReplaceNode(OldNode, NewNode);
|
|
}
|
|
}
|
|
// Remember that we changed something.
|
|
Changed |= LocalChange;
|
|
} while (LocalChange);
|
|
|
|
return Changed;
|
|
}
|
|
|
|
bool ArgPromotion::doInitialization(CallGraph &CG) {
|
|
return CallGraphSCCPass::doInitialization(CG);
|
|
}
|