1
0
mirror of https://github.com/RPCS3/llvm-mirror.git synced 2024-11-22 02:33:06 +01:00
llvm-mirror/lib/Transforms/IPO/FunctionSpecialization.cpp
Chuanqi Xu 16bf4a4717 [FuncSpec] Add an option to specializing literal constant
Now the option is off by default. Since we are not sure if this option
would make the compile time increase aggressively. Although we tested it
on SPEC2017, we may need to test more to make it on by default.

Reviewed By: SjoerdMeijer

Differential Revision: https://reviews.llvm.org/D104365
2021-06-30 11:26:44 +08:00

651 lines
25 KiB
C++

//===- FunctionSpecialization.cpp - Function Specialization ---------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This specialises functions with constant parameters (e.g. functions,
// globals). Constant parameters like function pointers and constant globals
// are propagated to the callee by specializing the function.
//
// Current limitations:
// - It does not handle specialization of recursive functions,
// - It does not yet handle integer ranges.
// - Only 1 argument per function is specialised,
// - The cost-model could be further looked into,
// - We are not yet caching analysis results.
//
// Ideas:
// - With a function specialization attribute for arguments, we could have
// a direct way to steer function specialization, avoiding the cost-model,
// and thus control compile-times / code-size.
//
//===----------------------------------------------------------------------===//
#include "llvm/ADT/Statistic.h"
#include "llvm/Analysis/AssumptionCache.h"
#include "llvm/Analysis/CodeMetrics.h"
#include "llvm/Analysis/DomTreeUpdater.h"
#include "llvm/Analysis/InlineCost.h"
#include "llvm/Analysis/LoopInfo.h"
#include "llvm/Analysis/TargetLibraryInfo.h"
#include "llvm/Analysis/TargetTransformInfo.h"
#include "llvm/Transforms/Scalar/SCCP.h"
#include "llvm/Transforms/Utils/Cloning.h"
#include "llvm/Transforms/Utils/SizeOpts.h"
#include <cmath>
using namespace llvm;
#define DEBUG_TYPE "function-specialization"
STATISTIC(NumFuncSpecialized, "Number of functions specialized");
static cl::opt<bool> ForceFunctionSpecialization(
"force-function-specialization", cl::init(false), cl::Hidden,
cl::desc("Force function specialization for every call site with a "
"constant argument"));
static cl::opt<unsigned> FuncSpecializationMaxIters(
"func-specialization-max-iters", cl::Hidden,
cl::desc("The maximum number of iterations function specialization is run"),
cl::init(1));
static cl::opt<unsigned> MaxConstantsThreshold(
"func-specialization-max-constants", cl::Hidden,
cl::desc("The maximum number of clones allowed for a single function "
"specialization"),
cl::init(3));
static cl::opt<unsigned>
AvgLoopIterationCount("func-specialization-avg-iters-cost", cl::Hidden,
cl::desc("Average loop iteration count cost"),
cl::init(10));
static cl::opt<bool> EnableSpecializationForLiteralConstant(
"function-specialization-for-literal-constant", cl::init(false), cl::Hidden,
cl::desc("Make function specialization available for literal constant."));
// Helper to check if \p LV is either overdefined or a constant int.
static bool isOverdefined(const ValueLatticeElement &LV) {
return !LV.isUnknownOrUndef() && !LV.isConstant();
}
class FunctionSpecializer {
/// The IPSCCP Solver.
SCCPSolver &Solver;
/// Analyses used to help determine if a function should be specialized.
std::function<AssumptionCache &(Function &)> GetAC;
std::function<TargetTransformInfo &(Function &)> GetTTI;
std::function<TargetLibraryInfo &(Function &)> GetTLI;
SmallPtrSet<Function *, 2> SpecializedFuncs;
public:
FunctionSpecializer(SCCPSolver &Solver,
std::function<AssumptionCache &(Function &)> GetAC,
std::function<TargetTransformInfo &(Function &)> GetTTI,
std::function<TargetLibraryInfo &(Function &)> GetTLI)
: Solver(Solver), GetAC(GetAC), GetTTI(GetTTI), GetTLI(GetTLI) {}
/// Attempt to specialize functions in the module to enable constant
/// propagation across function boundaries.
///
/// \returns true if at least one function is specialized.
bool
specializeFunctions(SmallVectorImpl<Function *> &FuncDecls,
SmallVectorImpl<Function *> &CurrentSpecializations) {
// Attempt to specialize the argument-tracked functions.
bool Changed = false;
for (auto *F : FuncDecls) {
if (specializeFunction(F, CurrentSpecializations)) {
Changed = true;
LLVM_DEBUG(dbgs() << "FnSpecialization: Can specialize this func.\n");
} else {
LLVM_DEBUG(
dbgs() << "FnSpecialization: Cannot specialize this func.\n");
}
}
for (auto *SpecializedFunc : CurrentSpecializations) {
SpecializedFuncs.insert(SpecializedFunc);
// TODO: If we want to support specializing specialized functions,
// initialize here the state of the newly created functions, marking
// them argument-tracked and executable.
// Replace the function arguments for the specialized functions.
for (Argument &Arg : SpecializedFunc->args())
if (!Arg.use_empty() && tryToReplaceWithConstant(&Arg))
LLVM_DEBUG(dbgs() << "FnSpecialization: Replaced constant argument: "
<< Arg.getName() << "\n");
}
NumFuncSpecialized += NbFunctionsSpecialized;
return Changed;
}
bool tryToReplaceWithConstant(Value *V) {
if (!V->getType()->isSingleValueType() || isa<CallBase>(V) ||
V->user_empty())
return false;
const ValueLatticeElement &IV = Solver.getLatticeValueFor(V);
if (isOverdefined(IV))
return false;
auto *Const = IV.isConstant() ? Solver.getConstant(IV)
: UndefValue::get(V->getType());
V->replaceAllUsesWith(Const);
// TODO: Update the solver here if we want to specialize specialized
// functions.
return true;
}
private:
// The number of functions specialised, used for collecting statistics and
// also in the cost model.
unsigned NbFunctionsSpecialized = 0;
/// This function decides whether to specialize function \p F based on the
/// known constant values its arguments can take on. Specialization is
/// performed on the first interesting argument. Specializations based on
/// additional arguments will be evaluated on following iterations of the
/// main IPSCCP solve loop. \returns true if the function is specialized and
/// false otherwise.
bool specializeFunction(Function *F,
SmallVectorImpl<Function *> &Specializations) {
// Do not specialize the cloned function again.
if (SpecializedFuncs.contains(F)) {
return false;
}
// If we're optimizing the function for size, we shouldn't specialize it.
if (F->hasOptSize() ||
shouldOptimizeForSize(F, nullptr, nullptr, PGSOQueryType::IRPass))
return false;
// Exit if the function is not executable. There's no point in specializing
// a dead function.
if (!Solver.isBlockExecutable(&F->getEntryBlock()))
return false;
LLVM_DEBUG(dbgs() << "FnSpecialization: Try function: " << F->getName()
<< "\n");
// Determine if we should specialize the function based on the values the
// argument can take on. If specialization is not profitable, we continue
// on to the next argument.
for (Argument &A : F->args()) {
LLVM_DEBUG(dbgs() << "FnSpecialization: Analysing arg: " << A.getName()
<< "\n");
// True if this will be a partial specialization. We will need to keep
// the original function around in addition to the added specializations.
bool IsPartial = true;
// Determine if this argument is interesting. If we know the argument can
// take on any constant values, they are collected in Constants. If the
// argument can only ever equal a constant value in Constants, the
// function will be completely specialized, and the IsPartial flag will
// be set to false by isArgumentInteresting (that function only adds
// values to the Constants list that are deemed profitable).
SmallVector<Constant *, 4> Constants;
if (!isArgumentInteresting(&A, Constants, IsPartial)) {
LLVM_DEBUG(dbgs() << "FnSpecialization: Argument is not interesting\n");
continue;
}
assert(!Constants.empty() && "No constants on which to specialize");
LLVM_DEBUG(dbgs() << "FnSpecialization: Argument is interesting!\n"
<< "FnSpecialization: Specializing '" << F->getName()
<< "' on argument: " << A << "\n"
<< "FnSpecialization: Constants are:\n\n";
for (unsigned I = 0; I < Constants.size(); ++I) dbgs()
<< *Constants[I] << "\n";
dbgs() << "FnSpecialization: End of constants\n\n");
// Create a version of the function in which the argument is marked
// constant with the given value.
for (auto *C : Constants) {
// Clone the function. We leave the ValueToValueMap empty to allow
// IPSCCP to propagate the constant arguments.
ValueToValueMapTy EmptyMap;
Function *Clone = CloneFunction(F, EmptyMap);
Argument *ClonedArg = Clone->arg_begin() + A.getArgNo();
// Rewrite calls to the function so that they call the clone instead.
rewriteCallSites(F, Clone, *ClonedArg, C);
// Initialize the lattice state of the arguments of the function clone,
// marking the argument on which we specialized the function constant
// with the given value.
Solver.markArgInFuncSpecialization(F, ClonedArg, C);
// Mark all the specialized functions
Specializations.push_back(Clone);
NbFunctionsSpecialized++;
}
// TODO: if we want to support specialize specialized functions, and if
// the function has been completely specialized, the original function is
// no longer needed, so we would need to mark it unreachable here.
// FIXME: Only one argument per function.
return true;
}
return false;
}
/// Compute the cost of specializing function \p F.
InstructionCost getSpecializationCost(Function *F) {
// Compute the code metrics for the function.
SmallPtrSet<const Value *, 32> EphValues;
CodeMetrics::collectEphemeralValues(F, &(GetAC)(*F), EphValues);
CodeMetrics Metrics;
for (BasicBlock &BB : *F)
Metrics.analyzeBasicBlock(&BB, (GetTTI)(*F), EphValues);
// If the code metrics reveal that we shouldn't duplicate the function, we
// shouldn't specialize it. Set the specialization cost to Invalid.
if (Metrics.notDuplicatable) {
InstructionCost C{};
C.setInvalid();
return C;
}
// Otherwise, set the specialization cost to be the cost of all the
// instructions in the function and penalty for specializing more functions.
unsigned Penalty = NbFunctionsSpecialized + 1;
return Metrics.NumInsts * InlineConstants::InstrCost * Penalty;
}
InstructionCost getUserBonus(User *U, llvm::TargetTransformInfo &TTI,
LoopInfo &LI) {
auto *I = dyn_cast_or_null<Instruction>(U);
// If not an instruction we do not know how to evaluate.
// Keep minimum possible cost for now so that it doesnt affect
// specialization.
if (!I)
return std::numeric_limits<unsigned>::min();
auto Cost = TTI.getUserCost(U, TargetTransformInfo::TCK_SizeAndLatency);
// Traverse recursively if there are more uses.
// TODO: Any other instructions to be added here?
if (I->mayReadFromMemory() || I->isCast())
for (auto *User : I->users())
Cost += getUserBonus(User, TTI, LI);
// Increase the cost if it is inside the loop.
auto LoopDepth = LI.getLoopDepth(I->getParent());
Cost *= std::pow((double)AvgLoopIterationCount, LoopDepth);
return Cost;
}
/// Compute a bonus for replacing argument \p A with constant \p C.
InstructionCost getSpecializationBonus(Argument *A, Constant *C) {
Function *F = A->getParent();
DominatorTree DT(*F);
LoopInfo LI(DT);
auto &TTI = (GetTTI)(*F);
LLVM_DEBUG(dbgs() << "FnSpecialization: Analysing bonus for: " << *A
<< "\n");
InstructionCost TotalCost = 0;
for (auto *U : A->users()) {
TotalCost += getUserBonus(U, TTI, LI);
LLVM_DEBUG(dbgs() << "FnSpecialization: User cost ";
TotalCost.print(dbgs()); dbgs() << " for: " << *U << "\n");
}
// The below heuristic is only concerned with exposing inlining
// opportunities via indirect call promotion. If the argument is not a
// function pointer, give up.
if (!isa<PointerType>(A->getType()) ||
!isa<FunctionType>(A->getType()->getPointerElementType()))
return TotalCost;
// Since the argument is a function pointer, its incoming constant values
// should be functions or constant expressions. The code below attempts to
// look through cast expressions to find the function that will be called.
Value *CalledValue = C;
while (isa<ConstantExpr>(CalledValue) &&
cast<ConstantExpr>(CalledValue)->isCast())
CalledValue = cast<User>(CalledValue)->getOperand(0);
Function *CalledFunction = dyn_cast<Function>(CalledValue);
if (!CalledFunction)
return TotalCost;
// Get TTI for the called function (used for the inline cost).
auto &CalleeTTI = (GetTTI)(*CalledFunction);
// Look at all the call sites whose called value is the argument.
// Specializing the function on the argument would allow these indirect
// calls to be promoted to direct calls. If the indirect call promotion
// would likely enable the called function to be inlined, specializing is a
// good idea.
int Bonus = 0;
for (User *U : A->users()) {
if (!isa<CallInst>(U) && !isa<InvokeInst>(U))
continue;
auto *CS = cast<CallBase>(U);
if (CS->getCalledOperand() != A)
continue;
// Get the cost of inlining the called function at this call site. Note
// that this is only an estimate. The called function may eventually
// change in a way that leads to it not being inlined here, even though
// inlining looks profitable now. For example, one of its called
// functions may be inlined into it, making the called function too large
// to be inlined into this call site.
//
// We apply a boost for performing indirect call promotion by increasing
// the default threshold by the threshold for indirect calls.
auto Params = getInlineParams();
Params.DefaultThreshold += InlineConstants::IndirectCallThreshold;
InlineCost IC =
getInlineCost(*CS, CalledFunction, Params, CalleeTTI, GetAC, GetTLI);
// We clamp the bonus for this call to be between zero and the default
// threshold.
if (IC.isAlways())
Bonus += Params.DefaultThreshold;
else if (IC.isVariable() && IC.getCostDelta() > 0)
Bonus += IC.getCostDelta();
}
return TotalCost + Bonus;
}
/// Determine if we should specialize a function based on the incoming values
/// of the given argument.
///
/// This function implements the goal-directed heuristic. It determines if
/// specializing the function based on the incoming values of argument \p A
/// would result in any significant optimization opportunities. If
/// optimization opportunities exist, the constant values of \p A on which to
/// specialize the function are collected in \p Constants. If the values in
/// \p Constants represent the complete set of values that \p A can take on,
/// the function will be completely specialized, and the \p IsPartial flag is
/// set to false.
///
/// \returns true if the function should be specialized on the given
/// argument.
bool isArgumentInteresting(Argument *A,
SmallVectorImpl<Constant *> &Constants,
bool &IsPartial) {
Function *F = A->getParent();
// For now, don't attempt to specialize functions based on the values of
// composite types.
if (!A->getType()->isSingleValueType() || A->user_empty())
return false;
// If the argument isn't overdefined, there's nothing to do. It should
// already be constant.
if (!Solver.getLatticeValueFor(A).isOverdefined()) {
LLVM_DEBUG(dbgs() << "FnSpecialization: nothing to do, arg is already "
<< "constant?\n");
return false;
}
// Collect the constant values that the argument can take on. If the
// argument can't take on any constant values, we aren't going to
// specialize the function. While it's possible to specialize the function
// based on non-constant arguments, there's likely not much benefit to
// constant propagation in doing so.
//
// TODO 1: currently it won't specialize if there are over the threshold of
// calls using the same argument, e.g foo(a) x 4 and foo(b) x 1, but it
// might be beneficial to take the occurrences into account in the cost
// model, so we would need to find the unique constants.
//
// TODO 2: this currently does not support constants, i.e. integer ranges.
//
SmallVector<Constant *, 4> PossibleConstants;
bool AllConstant = getPossibleConstants(A, PossibleConstants);
if (PossibleConstants.empty()) {
LLVM_DEBUG(dbgs() << "FnSpecialization: no possible constants found\n");
return false;
}
if (PossibleConstants.size() > MaxConstantsThreshold) {
LLVM_DEBUG(dbgs() << "FnSpecialization: number of constants found exceed "
<< "the maximum number of constants threshold.\n");
return false;
}
// Determine if it would be profitable to create a specialization of the
// function where the argument takes on the given constant value. If so,
// add the constant to Constants.
auto FnSpecCost = getSpecializationCost(F);
if (!FnSpecCost.isValid()) {
LLVM_DEBUG(dbgs() << "FnSpecialization: Invalid specialisation cost.\n");
return false;
}
LLVM_DEBUG(dbgs() << "FnSpecialization: func specialisation cost: ";
FnSpecCost.print(dbgs()); dbgs() << "\n");
for (auto *C : PossibleConstants) {
LLVM_DEBUG(dbgs() << "FnSpecialization: Constant: " << *C << "\n");
if (ForceFunctionSpecialization) {
LLVM_DEBUG(dbgs() << "FnSpecialization: Forced!\n");
Constants.push_back(C);
continue;
}
if (getSpecializationBonus(A, C) > FnSpecCost) {
LLVM_DEBUG(dbgs() << "FnSpecialization: profitable!\n");
Constants.push_back(C);
} else {
LLVM_DEBUG(dbgs() << "FnSpecialization: not profitable\n");
}
}
// None of the constant values the argument can take on were deemed good
// candidates on which to specialize the function.
if (Constants.empty())
return false;
// This will be a partial specialization if some of the constants were
// rejected due to their profitability.
IsPartial = !AllConstant || PossibleConstants.size() != Constants.size();
return true;
}
/// Collect in \p Constants all the constant values that argument \p A can
/// take on.
///
/// \returns true if all of the values the argument can take on are constant
/// (e.g., the argument's parent function cannot be called with an
/// overdefined value).
bool getPossibleConstants(Argument *A,
SmallVectorImpl<Constant *> &Constants) {
Function *F = A->getParent();
bool AllConstant = true;
// Iterate over all the call sites of the argument's parent function.
for (User *U : F->users()) {
if (!isa<CallInst>(U) && !isa<InvokeInst>(U))
continue;
auto &CS = *cast<CallBase>(U);
// If the parent of the call site will never be executed, we don't need
// to worry about the passed value.
if (!Solver.isBlockExecutable(CS.getParent()))
continue;
auto *V = CS.getArgOperand(A->getArgNo());
// TrackValueOfGlobalVariable only tracks scalar global variables.
if (auto *GV = dyn_cast<GlobalVariable>(V)) {
if (!GV->getValueType()->isSingleValueType()) {
return false;
}
}
if (isa<Constant>(V) && (Solver.getLatticeValueFor(V).isConstant() ||
EnableSpecializationForLiteralConstant))
Constants.push_back(cast<Constant>(V));
else
AllConstant = false;
}
// If the argument can only take on constant values, AllConstant will be
// true.
return AllConstant;
}
/// Rewrite calls to function \p F to call function \p Clone instead.
///
/// This function modifies calls to function \p F whose argument at index \p
/// ArgNo is equal to constant \p C. The calls are rewritten to call function
/// \p Clone instead.
void rewriteCallSites(Function *F, Function *Clone, Argument &Arg,
Constant *C) {
unsigned ArgNo = Arg.getArgNo();
SmallVector<CallBase *, 4> CallSitesToRewrite;
for (auto *U : F->users()) {
if (!isa<CallInst>(U) && !isa<InvokeInst>(U))
continue;
auto &CS = *cast<CallBase>(U);
if (!CS.getCalledFunction() || CS.getCalledFunction() != F)
continue;
CallSitesToRewrite.push_back(&CS);
}
for (auto *CS : CallSitesToRewrite) {
if ((CS->getFunction() == Clone && CS->getArgOperand(ArgNo) == &Arg) ||
CS->getArgOperand(ArgNo) == C) {
CS->setCalledFunction(Clone);
Solver.markOverdefined(CS);
}
}
}
};
/// Function to clean up the left over intrinsics from SCCP util.
static void cleanup(Module &M) {
for (Function &F : M) {
for (BasicBlock &BB : F) {
for (BasicBlock::iterator BI = BB.begin(), E = BB.end(); BI != E;) {
Instruction *Inst = &*BI++;
if (auto *II = dyn_cast<IntrinsicInst>(Inst)) {
if (II->getIntrinsicID() == Intrinsic::ssa_copy) {
Value *Op = II->getOperand(0);
Inst->replaceAllUsesWith(Op);
Inst->eraseFromParent();
}
}
}
}
}
}
bool llvm::runFunctionSpecialization(
Module &M, const DataLayout &DL,
std::function<TargetLibraryInfo &(Function &)> GetTLI,
std::function<TargetTransformInfo &(Function &)> GetTTI,
std::function<AssumptionCache &(Function &)> GetAC,
function_ref<AnalysisResultsForFn(Function &)> GetAnalysis) {
SCCPSolver Solver(DL, GetTLI, M.getContext());
FunctionSpecializer FS(Solver, GetAC, GetTTI, GetTLI);
bool Changed = false;
// Loop over all functions, marking arguments to those with their addresses
// taken or that are external as overdefined.
for (Function &F : M) {
if (F.isDeclaration())
continue;
if (F.hasFnAttribute(Attribute::NoDuplicate))
continue;
LLVM_DEBUG(dbgs() << "\nFnSpecialization: Analysing decl: " << F.getName()
<< "\n");
Solver.addAnalysis(F, GetAnalysis(F));
// Determine if we can track the function's arguments. If so, add the
// function to the solver's set of argument-tracked functions.
if (canTrackArgumentsInterprocedurally(&F)) {
LLVM_DEBUG(dbgs() << "FnSpecialization: Can track arguments\n");
Solver.addArgumentTrackedFunction(&F);
continue;
} else {
LLVM_DEBUG(dbgs() << "FnSpecialization: Can't track arguments!\n"
<< "FnSpecialization: Doesn't have local linkage, or "
<< "has its address taken\n");
}
// Assume the function is called.
Solver.markBlockExecutable(&F.front());
// Assume nothing about the incoming arguments.
for (Argument &AI : F.args())
Solver.markOverdefined(&AI);
}
// Determine if we can track any of the module's global variables. If so, add
// the global variables we can track to the solver's set of tracked global
// variables.
for (GlobalVariable &G : M.globals()) {
G.removeDeadConstantUsers();
if (canTrackGlobalVariableInterprocedurally(&G))
Solver.trackValueOfGlobalVariable(&G);
}
// Solve for constants.
auto RunSCCPSolver = [&](auto &WorkList) {
bool ResolvedUndefs = true;
while (ResolvedUndefs) {
LLVM_DEBUG(dbgs() << "FnSpecialization: Running solver\n");
Solver.solve();
LLVM_DEBUG(dbgs() << "FnSpecialization: Resolving undefs\n");
ResolvedUndefs = false;
for (Function *F : WorkList)
if (Solver.resolvedUndefsIn(*F))
ResolvedUndefs = true;
}
for (auto *F : WorkList) {
for (BasicBlock &BB : *F) {
if (!Solver.isBlockExecutable(&BB))
continue;
for (auto &I : make_early_inc_range(BB))
FS.tryToReplaceWithConstant(&I);
}
}
};
auto &TrackedFuncs = Solver.getArgumentTrackedFunctions();
SmallVector<Function *, 16> FuncDecls(TrackedFuncs.begin(),
TrackedFuncs.end());
#ifndef NDEBUG
LLVM_DEBUG(dbgs() << "FnSpecialization: Worklist fn decls:\n");
for (auto *F : FuncDecls)
LLVM_DEBUG(dbgs() << "FnSpecialization: *) " << F->getName() << "\n");
#endif
// Initially resolve the constants in all the argument tracked functions.
RunSCCPSolver(FuncDecls);
SmallVector<Function *, 2> CurrentSpecializations;
unsigned I = 0;
while (FuncSpecializationMaxIters != I++ &&
FS.specializeFunctions(FuncDecls, CurrentSpecializations)) {
// TODO: run the solver here for the specialized functions only if we want
// to specialize recursively.
CurrentSpecializations.clear();
Changed = true;
}
// Clean up the IR by removing ssa_copy intrinsics.
cleanup(M);
return Changed;
}