mirror of
https://github.com/RPCS3/llvm-mirror.git
synced 2024-11-22 02:33:06 +01:00
47e63cb60e
(cherry picked from commit 71052ea1e3c63b7209731fdc1726d10640d97480)
4423 lines
162 KiB
C++
4423 lines
162 KiB
C++
//===-- IPO/OpenMPOpt.cpp - Collection of OpenMP specific optimizations ---===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// OpenMP specific optimizations:
|
|
//
|
|
// - Deduplication of runtime calls, e.g., omp_get_thread_num.
|
|
// - Replacing globalized device memory with stack memory.
|
|
// - Replacing globalized device memory with shared memory.
|
|
// - Parallel region merging.
|
|
// - Transforming generic-mode device kernels to SPMD mode.
|
|
// - Specializing the state machine for generic-mode device kernels.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "llvm/Transforms/IPO/OpenMPOpt.h"
|
|
|
|
#include "llvm/ADT/EnumeratedArray.h"
|
|
#include "llvm/ADT/PostOrderIterator.h"
|
|
#include "llvm/ADT/Statistic.h"
|
|
#include "llvm/Analysis/CallGraph.h"
|
|
#include "llvm/Analysis/CallGraphSCCPass.h"
|
|
#include "llvm/Analysis/OptimizationRemarkEmitter.h"
|
|
#include "llvm/Analysis/ValueTracking.h"
|
|
#include "llvm/Frontend/OpenMP/OMPConstants.h"
|
|
#include "llvm/Frontend/OpenMP/OMPIRBuilder.h"
|
|
#include "llvm/IR/Assumptions.h"
|
|
#include "llvm/IR/DiagnosticInfo.h"
|
|
#include "llvm/IR/GlobalValue.h"
|
|
#include "llvm/IR/Instruction.h"
|
|
#include "llvm/IR/IntrinsicInst.h"
|
|
#include "llvm/InitializePasses.h"
|
|
#include "llvm/Support/CommandLine.h"
|
|
#include "llvm/Transforms/IPO.h"
|
|
#include "llvm/Transforms/IPO/Attributor.h"
|
|
#include "llvm/Transforms/Utils/BasicBlockUtils.h"
|
|
#include "llvm/Transforms/Utils/CallGraphUpdater.h"
|
|
#include "llvm/Transforms/Utils/CodeExtractor.h"
|
|
|
|
using namespace llvm;
|
|
using namespace omp;
|
|
|
|
#define DEBUG_TYPE "openmp-opt"
|
|
|
|
static cl::opt<bool> DisableOpenMPOptimizations(
|
|
"openmp-opt-disable", cl::ZeroOrMore,
|
|
cl::desc("Disable OpenMP specific optimizations."), cl::Hidden,
|
|
cl::init(false));
|
|
|
|
static cl::opt<bool> EnableParallelRegionMerging(
|
|
"openmp-opt-enable-merging", cl::ZeroOrMore,
|
|
cl::desc("Enable the OpenMP region merging optimization."), cl::Hidden,
|
|
cl::init(false));
|
|
|
|
static cl::opt<bool>
|
|
DisableInternalization("openmp-opt-disable-internalization", cl::ZeroOrMore,
|
|
cl::desc("Disable function internalization."),
|
|
cl::Hidden, cl::init(false));
|
|
|
|
static cl::opt<bool> PrintICVValues("openmp-print-icv-values", cl::init(false),
|
|
cl::Hidden);
|
|
static cl::opt<bool> PrintOpenMPKernels("openmp-print-gpu-kernels",
|
|
cl::init(false), cl::Hidden);
|
|
|
|
static cl::opt<bool> HideMemoryTransferLatency(
|
|
"openmp-hide-memory-transfer-latency",
|
|
cl::desc("[WIP] Tries to hide the latency of host to device memory"
|
|
" transfers"),
|
|
cl::Hidden, cl::init(false));
|
|
|
|
STATISTIC(NumOpenMPRuntimeCallsDeduplicated,
|
|
"Number of OpenMP runtime calls deduplicated");
|
|
STATISTIC(NumOpenMPParallelRegionsDeleted,
|
|
"Number of OpenMP parallel regions deleted");
|
|
STATISTIC(NumOpenMPRuntimeFunctionsIdentified,
|
|
"Number of OpenMP runtime functions identified");
|
|
STATISTIC(NumOpenMPRuntimeFunctionUsesIdentified,
|
|
"Number of OpenMP runtime function uses identified");
|
|
STATISTIC(NumOpenMPTargetRegionKernels,
|
|
"Number of OpenMP target region entry points (=kernels) identified");
|
|
STATISTIC(NumOpenMPTargetRegionKernelsSPMD,
|
|
"Number of OpenMP target region entry points (=kernels) executed in "
|
|
"SPMD-mode instead of generic-mode");
|
|
STATISTIC(NumOpenMPTargetRegionKernelsWithoutStateMachine,
|
|
"Number of OpenMP target region entry points (=kernels) executed in "
|
|
"generic-mode without a state machines");
|
|
STATISTIC(NumOpenMPTargetRegionKernelsCustomStateMachineWithFallback,
|
|
"Number of OpenMP target region entry points (=kernels) executed in "
|
|
"generic-mode with customized state machines with fallback");
|
|
STATISTIC(NumOpenMPTargetRegionKernelsCustomStateMachineWithoutFallback,
|
|
"Number of OpenMP target region entry points (=kernels) executed in "
|
|
"generic-mode with customized state machines without fallback");
|
|
STATISTIC(
|
|
NumOpenMPParallelRegionsReplacedInGPUStateMachine,
|
|
"Number of OpenMP parallel regions replaced with ID in GPU state machines");
|
|
STATISTIC(NumOpenMPParallelRegionsMerged,
|
|
"Number of OpenMP parallel regions merged");
|
|
STATISTIC(NumBytesMovedToSharedMemory,
|
|
"Amount of memory pushed to shared memory");
|
|
|
|
#if !defined(NDEBUG)
|
|
static constexpr auto TAG = "[" DEBUG_TYPE "]";
|
|
#endif
|
|
|
|
namespace {
|
|
|
|
enum class AddressSpace : unsigned {
|
|
Generic = 0,
|
|
Global = 1,
|
|
Shared = 3,
|
|
Constant = 4,
|
|
Local = 5,
|
|
};
|
|
|
|
struct AAHeapToShared;
|
|
|
|
struct AAICVTracker;
|
|
|
|
/// OpenMP specific information. For now, stores RFIs and ICVs also needed for
|
|
/// Attributor runs.
|
|
struct OMPInformationCache : public InformationCache {
|
|
OMPInformationCache(Module &M, AnalysisGetter &AG,
|
|
BumpPtrAllocator &Allocator, SetVector<Function *> &CGSCC,
|
|
SmallPtrSetImpl<Kernel> &Kernels)
|
|
: InformationCache(M, AG, Allocator, &CGSCC), OMPBuilder(M),
|
|
Kernels(Kernels) {
|
|
|
|
OMPBuilder.initialize();
|
|
initializeRuntimeFunctions();
|
|
initializeInternalControlVars();
|
|
}
|
|
|
|
/// Generic information that describes an internal control variable.
|
|
struct InternalControlVarInfo {
|
|
/// The kind, as described by InternalControlVar enum.
|
|
InternalControlVar Kind;
|
|
|
|
/// The name of the ICV.
|
|
StringRef Name;
|
|
|
|
/// Environment variable associated with this ICV.
|
|
StringRef EnvVarName;
|
|
|
|
/// Initial value kind.
|
|
ICVInitValue InitKind;
|
|
|
|
/// Initial value.
|
|
ConstantInt *InitValue;
|
|
|
|
/// Setter RTL function associated with this ICV.
|
|
RuntimeFunction Setter;
|
|
|
|
/// Getter RTL function associated with this ICV.
|
|
RuntimeFunction Getter;
|
|
|
|
/// RTL Function corresponding to the override clause of this ICV
|
|
RuntimeFunction Clause;
|
|
};
|
|
|
|
/// Generic information that describes a runtime function
|
|
struct RuntimeFunctionInfo {
|
|
|
|
/// The kind, as described by the RuntimeFunction enum.
|
|
RuntimeFunction Kind;
|
|
|
|
/// The name of the function.
|
|
StringRef Name;
|
|
|
|
/// Flag to indicate a variadic function.
|
|
bool IsVarArg;
|
|
|
|
/// The return type of the function.
|
|
Type *ReturnType;
|
|
|
|
/// The argument types of the function.
|
|
SmallVector<Type *, 8> ArgumentTypes;
|
|
|
|
/// The declaration if available.
|
|
Function *Declaration = nullptr;
|
|
|
|
/// Uses of this runtime function per function containing the use.
|
|
using UseVector = SmallVector<Use *, 16>;
|
|
|
|
/// Clear UsesMap for runtime function.
|
|
void clearUsesMap() { UsesMap.clear(); }
|
|
|
|
/// Boolean conversion that is true if the runtime function was found.
|
|
operator bool() const { return Declaration; }
|
|
|
|
/// Return the vector of uses in function \p F.
|
|
UseVector &getOrCreateUseVector(Function *F) {
|
|
std::shared_ptr<UseVector> &UV = UsesMap[F];
|
|
if (!UV)
|
|
UV = std::make_shared<UseVector>();
|
|
return *UV;
|
|
}
|
|
|
|
/// Return the vector of uses in function \p F or `nullptr` if there are
|
|
/// none.
|
|
const UseVector *getUseVector(Function &F) const {
|
|
auto I = UsesMap.find(&F);
|
|
if (I != UsesMap.end())
|
|
return I->second.get();
|
|
return nullptr;
|
|
}
|
|
|
|
/// Return how many functions contain uses of this runtime function.
|
|
size_t getNumFunctionsWithUses() const { return UsesMap.size(); }
|
|
|
|
/// Return the number of arguments (or the minimal number for variadic
|
|
/// functions).
|
|
size_t getNumArgs() const { return ArgumentTypes.size(); }
|
|
|
|
/// Run the callback \p CB on each use and forget the use if the result is
|
|
/// true. The callback will be fed the function in which the use was
|
|
/// encountered as second argument.
|
|
void foreachUse(SmallVectorImpl<Function *> &SCC,
|
|
function_ref<bool(Use &, Function &)> CB) {
|
|
for (Function *F : SCC)
|
|
foreachUse(CB, F);
|
|
}
|
|
|
|
/// Run the callback \p CB on each use within the function \p F and forget
|
|
/// the use if the result is true.
|
|
void foreachUse(function_ref<bool(Use &, Function &)> CB, Function *F) {
|
|
SmallVector<unsigned, 8> ToBeDeleted;
|
|
ToBeDeleted.clear();
|
|
|
|
unsigned Idx = 0;
|
|
UseVector &UV = getOrCreateUseVector(F);
|
|
|
|
for (Use *U : UV) {
|
|
if (CB(*U, *F))
|
|
ToBeDeleted.push_back(Idx);
|
|
++Idx;
|
|
}
|
|
|
|
// Remove the to-be-deleted indices in reverse order as prior
|
|
// modifications will not modify the smaller indices.
|
|
while (!ToBeDeleted.empty()) {
|
|
unsigned Idx = ToBeDeleted.pop_back_val();
|
|
UV[Idx] = UV.back();
|
|
UV.pop_back();
|
|
}
|
|
}
|
|
|
|
private:
|
|
/// Map from functions to all uses of this runtime function contained in
|
|
/// them.
|
|
DenseMap<Function *, std::shared_ptr<UseVector>> UsesMap;
|
|
|
|
public:
|
|
/// Iterators for the uses of this runtime function.
|
|
decltype(UsesMap)::iterator begin() { return UsesMap.begin(); }
|
|
decltype(UsesMap)::iterator end() { return UsesMap.end(); }
|
|
};
|
|
|
|
/// An OpenMP-IR-Builder instance
|
|
OpenMPIRBuilder OMPBuilder;
|
|
|
|
/// Map from runtime function kind to the runtime function description.
|
|
EnumeratedArray<RuntimeFunctionInfo, RuntimeFunction,
|
|
RuntimeFunction::OMPRTL___last>
|
|
RFIs;
|
|
|
|
/// Map from function declarations/definitions to their runtime enum type.
|
|
DenseMap<Function *, RuntimeFunction> RuntimeFunctionIDMap;
|
|
|
|
/// Map from ICV kind to the ICV description.
|
|
EnumeratedArray<InternalControlVarInfo, InternalControlVar,
|
|
InternalControlVar::ICV___last>
|
|
ICVs;
|
|
|
|
/// Helper to initialize all internal control variable information for those
|
|
/// defined in OMPKinds.def.
|
|
void initializeInternalControlVars() {
|
|
#define ICV_RT_SET(_Name, RTL) \
|
|
{ \
|
|
auto &ICV = ICVs[_Name]; \
|
|
ICV.Setter = RTL; \
|
|
}
|
|
#define ICV_RT_GET(Name, RTL) \
|
|
{ \
|
|
auto &ICV = ICVs[Name]; \
|
|
ICV.Getter = RTL; \
|
|
}
|
|
#define ICV_DATA_ENV(Enum, _Name, _EnvVarName, Init) \
|
|
{ \
|
|
auto &ICV = ICVs[Enum]; \
|
|
ICV.Name = _Name; \
|
|
ICV.Kind = Enum; \
|
|
ICV.InitKind = Init; \
|
|
ICV.EnvVarName = _EnvVarName; \
|
|
switch (ICV.InitKind) { \
|
|
case ICV_IMPLEMENTATION_DEFINED: \
|
|
ICV.InitValue = nullptr; \
|
|
break; \
|
|
case ICV_ZERO: \
|
|
ICV.InitValue = ConstantInt::get( \
|
|
Type::getInt32Ty(OMPBuilder.Int32->getContext()), 0); \
|
|
break; \
|
|
case ICV_FALSE: \
|
|
ICV.InitValue = ConstantInt::getFalse(OMPBuilder.Int1->getContext()); \
|
|
break; \
|
|
case ICV_LAST: \
|
|
break; \
|
|
} \
|
|
}
|
|
#include "llvm/Frontend/OpenMP/OMPKinds.def"
|
|
}
|
|
|
|
/// Returns true if the function declaration \p F matches the runtime
|
|
/// function types, that is, return type \p RTFRetType, and argument types
|
|
/// \p RTFArgTypes.
|
|
static bool declMatchesRTFTypes(Function *F, Type *RTFRetType,
|
|
SmallVector<Type *, 8> &RTFArgTypes) {
|
|
// TODO: We should output information to the user (under debug output
|
|
// and via remarks).
|
|
|
|
if (!F)
|
|
return false;
|
|
if (F->getReturnType() != RTFRetType)
|
|
return false;
|
|
if (F->arg_size() != RTFArgTypes.size())
|
|
return false;
|
|
|
|
auto RTFTyIt = RTFArgTypes.begin();
|
|
for (Argument &Arg : F->args()) {
|
|
if (Arg.getType() != *RTFTyIt)
|
|
return false;
|
|
|
|
++RTFTyIt;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
// Helper to collect all uses of the declaration in the UsesMap.
|
|
unsigned collectUses(RuntimeFunctionInfo &RFI, bool CollectStats = true) {
|
|
unsigned NumUses = 0;
|
|
if (!RFI.Declaration)
|
|
return NumUses;
|
|
OMPBuilder.addAttributes(RFI.Kind, *RFI.Declaration);
|
|
|
|
if (CollectStats) {
|
|
NumOpenMPRuntimeFunctionsIdentified += 1;
|
|
NumOpenMPRuntimeFunctionUsesIdentified += RFI.Declaration->getNumUses();
|
|
}
|
|
|
|
// TODO: We directly convert uses into proper calls and unknown uses.
|
|
for (Use &U : RFI.Declaration->uses()) {
|
|
if (Instruction *UserI = dyn_cast<Instruction>(U.getUser())) {
|
|
if (ModuleSlice.count(UserI->getFunction())) {
|
|
RFI.getOrCreateUseVector(UserI->getFunction()).push_back(&U);
|
|
++NumUses;
|
|
}
|
|
} else {
|
|
RFI.getOrCreateUseVector(nullptr).push_back(&U);
|
|
++NumUses;
|
|
}
|
|
}
|
|
return NumUses;
|
|
}
|
|
|
|
// Helper function to recollect uses of a runtime function.
|
|
void recollectUsesForFunction(RuntimeFunction RTF) {
|
|
auto &RFI = RFIs[RTF];
|
|
RFI.clearUsesMap();
|
|
collectUses(RFI, /*CollectStats*/ false);
|
|
}
|
|
|
|
// Helper function to recollect uses of all runtime functions.
|
|
void recollectUses() {
|
|
for (int Idx = 0; Idx < RFIs.size(); ++Idx)
|
|
recollectUsesForFunction(static_cast<RuntimeFunction>(Idx));
|
|
}
|
|
|
|
/// Helper to initialize all runtime function information for those defined
|
|
/// in OpenMPKinds.def.
|
|
void initializeRuntimeFunctions() {
|
|
Module &M = *((*ModuleSlice.begin())->getParent());
|
|
|
|
// Helper macros for handling __VA_ARGS__ in OMP_RTL
|
|
#define OMP_TYPE(VarName, ...) \
|
|
Type *VarName = OMPBuilder.VarName; \
|
|
(void)VarName;
|
|
|
|
#define OMP_ARRAY_TYPE(VarName, ...) \
|
|
ArrayType *VarName##Ty = OMPBuilder.VarName##Ty; \
|
|
(void)VarName##Ty; \
|
|
PointerType *VarName##PtrTy = OMPBuilder.VarName##PtrTy; \
|
|
(void)VarName##PtrTy;
|
|
|
|
#define OMP_FUNCTION_TYPE(VarName, ...) \
|
|
FunctionType *VarName = OMPBuilder.VarName; \
|
|
(void)VarName; \
|
|
PointerType *VarName##Ptr = OMPBuilder.VarName##Ptr; \
|
|
(void)VarName##Ptr;
|
|
|
|
#define OMP_STRUCT_TYPE(VarName, ...) \
|
|
StructType *VarName = OMPBuilder.VarName; \
|
|
(void)VarName; \
|
|
PointerType *VarName##Ptr = OMPBuilder.VarName##Ptr; \
|
|
(void)VarName##Ptr;
|
|
|
|
#define OMP_RTL(_Enum, _Name, _IsVarArg, _ReturnType, ...) \
|
|
{ \
|
|
SmallVector<Type *, 8> ArgsTypes({__VA_ARGS__}); \
|
|
Function *F = M.getFunction(_Name); \
|
|
RTLFunctions.insert(F); \
|
|
if (declMatchesRTFTypes(F, OMPBuilder._ReturnType, ArgsTypes)) { \
|
|
RuntimeFunctionIDMap[F] = _Enum; \
|
|
F->removeFnAttr(Attribute::NoInline); \
|
|
auto &RFI = RFIs[_Enum]; \
|
|
RFI.Kind = _Enum; \
|
|
RFI.Name = _Name; \
|
|
RFI.IsVarArg = _IsVarArg; \
|
|
RFI.ReturnType = OMPBuilder._ReturnType; \
|
|
RFI.ArgumentTypes = std::move(ArgsTypes); \
|
|
RFI.Declaration = F; \
|
|
unsigned NumUses = collectUses(RFI); \
|
|
(void)NumUses; \
|
|
LLVM_DEBUG({ \
|
|
dbgs() << TAG << RFI.Name << (RFI.Declaration ? "" : " not") \
|
|
<< " found\n"; \
|
|
if (RFI.Declaration) \
|
|
dbgs() << TAG << "-> got " << NumUses << " uses in " \
|
|
<< RFI.getNumFunctionsWithUses() \
|
|
<< " different functions.\n"; \
|
|
}); \
|
|
} \
|
|
}
|
|
#include "llvm/Frontend/OpenMP/OMPKinds.def"
|
|
|
|
// TODO: We should attach the attributes defined in OMPKinds.def.
|
|
}
|
|
|
|
/// Collection of known kernels (\see Kernel) in the module.
|
|
SmallPtrSetImpl<Kernel> &Kernels;
|
|
|
|
/// Collection of known OpenMP runtime functions..
|
|
DenseSet<const Function *> RTLFunctions;
|
|
};
|
|
|
|
template <typename Ty, bool InsertInvalidates = true>
|
|
struct BooleanStateWithSetVector : public BooleanState {
|
|
bool contains(const Ty &Elem) const { return Set.contains(Elem); }
|
|
bool insert(const Ty &Elem) {
|
|
if (InsertInvalidates)
|
|
BooleanState::indicatePessimisticFixpoint();
|
|
return Set.insert(Elem);
|
|
}
|
|
|
|
const Ty &operator[](int Idx) const { return Set[Idx]; }
|
|
bool operator==(const BooleanStateWithSetVector &RHS) const {
|
|
return BooleanState::operator==(RHS) && Set == RHS.Set;
|
|
}
|
|
bool operator!=(const BooleanStateWithSetVector &RHS) const {
|
|
return !(*this == RHS);
|
|
}
|
|
|
|
bool empty() const { return Set.empty(); }
|
|
size_t size() const { return Set.size(); }
|
|
|
|
/// "Clamp" this state with \p RHS.
|
|
BooleanStateWithSetVector &operator^=(const BooleanStateWithSetVector &RHS) {
|
|
BooleanState::operator^=(RHS);
|
|
Set.insert(RHS.Set.begin(), RHS.Set.end());
|
|
return *this;
|
|
}
|
|
|
|
private:
|
|
/// A set to keep track of elements.
|
|
SetVector<Ty> Set;
|
|
|
|
public:
|
|
typename decltype(Set)::iterator begin() { return Set.begin(); }
|
|
typename decltype(Set)::iterator end() { return Set.end(); }
|
|
typename decltype(Set)::const_iterator begin() const { return Set.begin(); }
|
|
typename decltype(Set)::const_iterator end() const { return Set.end(); }
|
|
};
|
|
|
|
template <typename Ty, bool InsertInvalidates = true>
|
|
using BooleanStateWithPtrSetVector =
|
|
BooleanStateWithSetVector<Ty *, InsertInvalidates>;
|
|
|
|
struct KernelInfoState : AbstractState {
|
|
/// Flag to track if we reached a fixpoint.
|
|
bool IsAtFixpoint = false;
|
|
|
|
/// The parallel regions (identified by the outlined parallel functions) that
|
|
/// can be reached from the associated function.
|
|
BooleanStateWithPtrSetVector<Function, /* InsertInvalidates */ false>
|
|
ReachedKnownParallelRegions;
|
|
|
|
/// State to track what parallel region we might reach.
|
|
BooleanStateWithPtrSetVector<CallBase> ReachedUnknownParallelRegions;
|
|
|
|
/// State to track if we are in SPMD-mode, assumed or know, and why we decided
|
|
/// we cannot be. If it is assumed, then RequiresFullRuntime should also be
|
|
/// false.
|
|
BooleanStateWithPtrSetVector<Instruction> SPMDCompatibilityTracker;
|
|
|
|
/// The __kmpc_target_init call in this kernel, if any. If we find more than
|
|
/// one we abort as the kernel is malformed.
|
|
CallBase *KernelInitCB = nullptr;
|
|
|
|
/// The __kmpc_target_deinit call in this kernel, if any. If we find more than
|
|
/// one we abort as the kernel is malformed.
|
|
CallBase *KernelDeinitCB = nullptr;
|
|
|
|
/// Flag to indicate if the associated function is a kernel entry.
|
|
bool IsKernelEntry = false;
|
|
|
|
/// State to track what kernel entries can reach the associated function.
|
|
BooleanStateWithPtrSetVector<Function, false> ReachingKernelEntries;
|
|
|
|
/// State to indicate if we can track parallel level of the associated
|
|
/// function. We will give up tracking if we encounter unknown caller or the
|
|
/// caller is __kmpc_parallel_51.
|
|
BooleanStateWithSetVector<uint8_t> ParallelLevels;
|
|
|
|
/// Abstract State interface
|
|
///{
|
|
|
|
KernelInfoState() {}
|
|
KernelInfoState(bool BestState) {
|
|
if (!BestState)
|
|
indicatePessimisticFixpoint();
|
|
}
|
|
|
|
/// See AbstractState::isValidState(...)
|
|
bool isValidState() const override { return true; }
|
|
|
|
/// See AbstractState::isAtFixpoint(...)
|
|
bool isAtFixpoint() const override { return IsAtFixpoint; }
|
|
|
|
/// See AbstractState::indicatePessimisticFixpoint(...)
|
|
ChangeStatus indicatePessimisticFixpoint() override {
|
|
IsAtFixpoint = true;
|
|
SPMDCompatibilityTracker.indicatePessimisticFixpoint();
|
|
ReachedUnknownParallelRegions.indicatePessimisticFixpoint();
|
|
return ChangeStatus::CHANGED;
|
|
}
|
|
|
|
/// See AbstractState::indicateOptimisticFixpoint(...)
|
|
ChangeStatus indicateOptimisticFixpoint() override {
|
|
IsAtFixpoint = true;
|
|
return ChangeStatus::UNCHANGED;
|
|
}
|
|
|
|
/// Return the assumed state
|
|
KernelInfoState &getAssumed() { return *this; }
|
|
const KernelInfoState &getAssumed() const { return *this; }
|
|
|
|
bool operator==(const KernelInfoState &RHS) const {
|
|
if (SPMDCompatibilityTracker != RHS.SPMDCompatibilityTracker)
|
|
return false;
|
|
if (ReachedKnownParallelRegions != RHS.ReachedKnownParallelRegions)
|
|
return false;
|
|
if (ReachedUnknownParallelRegions != RHS.ReachedUnknownParallelRegions)
|
|
return false;
|
|
if (ReachingKernelEntries != RHS.ReachingKernelEntries)
|
|
return false;
|
|
return true;
|
|
}
|
|
|
|
/// Return empty set as the best state of potential values.
|
|
static KernelInfoState getBestState() { return KernelInfoState(true); }
|
|
|
|
static KernelInfoState getBestState(KernelInfoState &KIS) {
|
|
return getBestState();
|
|
}
|
|
|
|
/// Return full set as the worst state of potential values.
|
|
static KernelInfoState getWorstState() { return KernelInfoState(false); }
|
|
|
|
/// "Clamp" this state with \p KIS.
|
|
KernelInfoState operator^=(const KernelInfoState &KIS) {
|
|
// Do not merge two different _init and _deinit call sites.
|
|
if (KIS.KernelInitCB) {
|
|
if (KernelInitCB && KernelInitCB != KIS.KernelInitCB)
|
|
indicatePessimisticFixpoint();
|
|
KernelInitCB = KIS.KernelInitCB;
|
|
}
|
|
if (KIS.KernelDeinitCB) {
|
|
if (KernelDeinitCB && KernelDeinitCB != KIS.KernelDeinitCB)
|
|
indicatePessimisticFixpoint();
|
|
KernelDeinitCB = KIS.KernelDeinitCB;
|
|
}
|
|
SPMDCompatibilityTracker ^= KIS.SPMDCompatibilityTracker;
|
|
ReachedKnownParallelRegions ^= KIS.ReachedKnownParallelRegions;
|
|
ReachedUnknownParallelRegions ^= KIS.ReachedUnknownParallelRegions;
|
|
return *this;
|
|
}
|
|
|
|
KernelInfoState operator&=(const KernelInfoState &KIS) {
|
|
return (*this ^= KIS);
|
|
}
|
|
|
|
///}
|
|
};
|
|
|
|
/// Used to map the values physically (in the IR) stored in an offload
|
|
/// array, to a vector in memory.
|
|
struct OffloadArray {
|
|
/// Physical array (in the IR).
|
|
AllocaInst *Array = nullptr;
|
|
/// Mapped values.
|
|
SmallVector<Value *, 8> StoredValues;
|
|
/// Last stores made in the offload array.
|
|
SmallVector<StoreInst *, 8> LastAccesses;
|
|
|
|
OffloadArray() = default;
|
|
|
|
/// Initializes the OffloadArray with the values stored in \p Array before
|
|
/// instruction \p Before is reached. Returns false if the initialization
|
|
/// fails.
|
|
/// This MUST be used immediately after the construction of the object.
|
|
bool initialize(AllocaInst &Array, Instruction &Before) {
|
|
if (!Array.getAllocatedType()->isArrayTy())
|
|
return false;
|
|
|
|
if (!getValues(Array, Before))
|
|
return false;
|
|
|
|
this->Array = &Array;
|
|
return true;
|
|
}
|
|
|
|
static const unsigned DeviceIDArgNum = 1;
|
|
static const unsigned BasePtrsArgNum = 3;
|
|
static const unsigned PtrsArgNum = 4;
|
|
static const unsigned SizesArgNum = 5;
|
|
|
|
private:
|
|
/// Traverses the BasicBlock where \p Array is, collecting the stores made to
|
|
/// \p Array, leaving StoredValues with the values stored before the
|
|
/// instruction \p Before is reached.
|
|
bool getValues(AllocaInst &Array, Instruction &Before) {
|
|
// Initialize container.
|
|
const uint64_t NumValues = Array.getAllocatedType()->getArrayNumElements();
|
|
StoredValues.assign(NumValues, nullptr);
|
|
LastAccesses.assign(NumValues, nullptr);
|
|
|
|
// TODO: This assumes the instruction \p Before is in the same
|
|
// BasicBlock as Array. Make it general, for any control flow graph.
|
|
BasicBlock *BB = Array.getParent();
|
|
if (BB != Before.getParent())
|
|
return false;
|
|
|
|
const DataLayout &DL = Array.getModule()->getDataLayout();
|
|
const unsigned int PointerSize = DL.getPointerSize();
|
|
|
|
for (Instruction &I : *BB) {
|
|
if (&I == &Before)
|
|
break;
|
|
|
|
if (!isa<StoreInst>(&I))
|
|
continue;
|
|
|
|
auto *S = cast<StoreInst>(&I);
|
|
int64_t Offset = -1;
|
|
auto *Dst =
|
|
GetPointerBaseWithConstantOffset(S->getPointerOperand(), Offset, DL);
|
|
if (Dst == &Array) {
|
|
int64_t Idx = Offset / PointerSize;
|
|
StoredValues[Idx] = getUnderlyingObject(S->getValueOperand());
|
|
LastAccesses[Idx] = S;
|
|
}
|
|
}
|
|
|
|
return isFilled();
|
|
}
|
|
|
|
/// Returns true if all values in StoredValues and
|
|
/// LastAccesses are not nullptrs.
|
|
bool isFilled() {
|
|
const unsigned NumValues = StoredValues.size();
|
|
for (unsigned I = 0; I < NumValues; ++I) {
|
|
if (!StoredValues[I] || !LastAccesses[I])
|
|
return false;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
};
|
|
|
|
struct OpenMPOpt {
|
|
|
|
using OptimizationRemarkGetter =
|
|
function_ref<OptimizationRemarkEmitter &(Function *)>;
|
|
|
|
OpenMPOpt(SmallVectorImpl<Function *> &SCC, CallGraphUpdater &CGUpdater,
|
|
OptimizationRemarkGetter OREGetter,
|
|
OMPInformationCache &OMPInfoCache, Attributor &A)
|
|
: M(*(*SCC.begin())->getParent()), SCC(SCC), CGUpdater(CGUpdater),
|
|
OREGetter(OREGetter), OMPInfoCache(OMPInfoCache), A(A) {}
|
|
|
|
/// Check if any remarks are enabled for openmp-opt
|
|
bool remarksEnabled() {
|
|
auto &Ctx = M.getContext();
|
|
return Ctx.getDiagHandlerPtr()->isAnyRemarkEnabled(DEBUG_TYPE);
|
|
}
|
|
|
|
/// Run all OpenMP optimizations on the underlying SCC/ModuleSlice.
|
|
bool run(bool IsModulePass) {
|
|
if (SCC.empty())
|
|
return false;
|
|
|
|
bool Changed = false;
|
|
|
|
LLVM_DEBUG(dbgs() << TAG << "Run on SCC with " << SCC.size()
|
|
<< " functions in a slice with "
|
|
<< OMPInfoCache.ModuleSlice.size() << " functions\n");
|
|
|
|
if (IsModulePass) {
|
|
Changed |= runAttributor(IsModulePass);
|
|
|
|
// Recollect uses, in case Attributor deleted any.
|
|
OMPInfoCache.recollectUses();
|
|
|
|
// TODO: This should be folded into buildCustomStateMachine.
|
|
Changed |= rewriteDeviceCodeStateMachine();
|
|
|
|
if (remarksEnabled())
|
|
analysisGlobalization();
|
|
} else {
|
|
if (PrintICVValues)
|
|
printICVs();
|
|
if (PrintOpenMPKernels)
|
|
printKernels();
|
|
|
|
Changed |= runAttributor(IsModulePass);
|
|
|
|
// Recollect uses, in case Attributor deleted any.
|
|
OMPInfoCache.recollectUses();
|
|
|
|
Changed |= deleteParallelRegions();
|
|
|
|
if (HideMemoryTransferLatency)
|
|
Changed |= hideMemTransfersLatency();
|
|
Changed |= deduplicateRuntimeCalls();
|
|
if (EnableParallelRegionMerging) {
|
|
if (mergeParallelRegions()) {
|
|
deduplicateRuntimeCalls();
|
|
Changed = true;
|
|
}
|
|
}
|
|
}
|
|
|
|
return Changed;
|
|
}
|
|
|
|
/// Print initial ICV values for testing.
|
|
/// FIXME: This should be done from the Attributor once it is added.
|
|
void printICVs() const {
|
|
InternalControlVar ICVs[] = {ICV_nthreads, ICV_active_levels, ICV_cancel,
|
|
ICV_proc_bind};
|
|
|
|
for (Function *F : OMPInfoCache.ModuleSlice) {
|
|
for (auto ICV : ICVs) {
|
|
auto ICVInfo = OMPInfoCache.ICVs[ICV];
|
|
auto Remark = [&](OptimizationRemarkAnalysis ORA) {
|
|
return ORA << "OpenMP ICV " << ore::NV("OpenMPICV", ICVInfo.Name)
|
|
<< " Value: "
|
|
<< (ICVInfo.InitValue
|
|
? toString(ICVInfo.InitValue->getValue(), 10, true)
|
|
: "IMPLEMENTATION_DEFINED");
|
|
};
|
|
|
|
emitRemark<OptimizationRemarkAnalysis>(F, "OpenMPICVTracker", Remark);
|
|
}
|
|
}
|
|
}
|
|
|
|
/// Print OpenMP GPU kernels for testing.
|
|
void printKernels() const {
|
|
for (Function *F : SCC) {
|
|
if (!OMPInfoCache.Kernels.count(F))
|
|
continue;
|
|
|
|
auto Remark = [&](OptimizationRemarkAnalysis ORA) {
|
|
return ORA << "OpenMP GPU kernel "
|
|
<< ore::NV("OpenMPGPUKernel", F->getName()) << "\n";
|
|
};
|
|
|
|
emitRemark<OptimizationRemarkAnalysis>(F, "OpenMPGPU", Remark);
|
|
}
|
|
}
|
|
|
|
/// Return the call if \p U is a callee use in a regular call. If \p RFI is
|
|
/// given it has to be the callee or a nullptr is returned.
|
|
static CallInst *getCallIfRegularCall(
|
|
Use &U, OMPInformationCache::RuntimeFunctionInfo *RFI = nullptr) {
|
|
CallInst *CI = dyn_cast<CallInst>(U.getUser());
|
|
if (CI && CI->isCallee(&U) && !CI->hasOperandBundles() &&
|
|
(!RFI ||
|
|
(RFI->Declaration && CI->getCalledFunction() == RFI->Declaration)))
|
|
return CI;
|
|
return nullptr;
|
|
}
|
|
|
|
/// Return the call if \p V is a regular call. If \p RFI is given it has to be
|
|
/// the callee or a nullptr is returned.
|
|
static CallInst *getCallIfRegularCall(
|
|
Value &V, OMPInformationCache::RuntimeFunctionInfo *RFI = nullptr) {
|
|
CallInst *CI = dyn_cast<CallInst>(&V);
|
|
if (CI && !CI->hasOperandBundles() &&
|
|
(!RFI ||
|
|
(RFI->Declaration && CI->getCalledFunction() == RFI->Declaration)))
|
|
return CI;
|
|
return nullptr;
|
|
}
|
|
|
|
private:
|
|
/// Merge parallel regions when it is safe.
|
|
bool mergeParallelRegions() {
|
|
const unsigned CallbackCalleeOperand = 2;
|
|
const unsigned CallbackFirstArgOperand = 3;
|
|
using InsertPointTy = OpenMPIRBuilder::InsertPointTy;
|
|
|
|
// Check if there are any __kmpc_fork_call calls to merge.
|
|
OMPInformationCache::RuntimeFunctionInfo &RFI =
|
|
OMPInfoCache.RFIs[OMPRTL___kmpc_fork_call];
|
|
|
|
if (!RFI.Declaration)
|
|
return false;
|
|
|
|
// Unmergable calls that prevent merging a parallel region.
|
|
OMPInformationCache::RuntimeFunctionInfo UnmergableCallsInfo[] = {
|
|
OMPInfoCache.RFIs[OMPRTL___kmpc_push_proc_bind],
|
|
OMPInfoCache.RFIs[OMPRTL___kmpc_push_num_threads],
|
|
};
|
|
|
|
bool Changed = false;
|
|
LoopInfo *LI = nullptr;
|
|
DominatorTree *DT = nullptr;
|
|
|
|
SmallDenseMap<BasicBlock *, SmallPtrSet<Instruction *, 4>> BB2PRMap;
|
|
|
|
BasicBlock *StartBB = nullptr, *EndBB = nullptr;
|
|
auto BodyGenCB = [&](InsertPointTy AllocaIP, InsertPointTy CodeGenIP,
|
|
BasicBlock &ContinuationIP) {
|
|
BasicBlock *CGStartBB = CodeGenIP.getBlock();
|
|
BasicBlock *CGEndBB =
|
|
SplitBlock(CGStartBB, &*CodeGenIP.getPoint(), DT, LI);
|
|
assert(StartBB != nullptr && "StartBB should not be null");
|
|
CGStartBB->getTerminator()->setSuccessor(0, StartBB);
|
|
assert(EndBB != nullptr && "EndBB should not be null");
|
|
EndBB->getTerminator()->setSuccessor(0, CGEndBB);
|
|
};
|
|
|
|
auto PrivCB = [&](InsertPointTy AllocaIP, InsertPointTy CodeGenIP, Value &,
|
|
Value &Inner, Value *&ReplacementValue) -> InsertPointTy {
|
|
ReplacementValue = &Inner;
|
|
return CodeGenIP;
|
|
};
|
|
|
|
auto FiniCB = [&](InsertPointTy CodeGenIP) {};
|
|
|
|
/// Create a sequential execution region within a merged parallel region,
|
|
/// encapsulated in a master construct with a barrier for synchronization.
|
|
auto CreateSequentialRegion = [&](Function *OuterFn,
|
|
BasicBlock *OuterPredBB,
|
|
Instruction *SeqStartI,
|
|
Instruction *SeqEndI) {
|
|
// Isolate the instructions of the sequential region to a separate
|
|
// block.
|
|
BasicBlock *ParentBB = SeqStartI->getParent();
|
|
BasicBlock *SeqEndBB =
|
|
SplitBlock(ParentBB, SeqEndI->getNextNode(), DT, LI);
|
|
BasicBlock *SeqAfterBB =
|
|
SplitBlock(SeqEndBB, &*SeqEndBB->getFirstInsertionPt(), DT, LI);
|
|
BasicBlock *SeqStartBB =
|
|
SplitBlock(ParentBB, SeqStartI, DT, LI, nullptr, "seq.par.merged");
|
|
|
|
assert(ParentBB->getUniqueSuccessor() == SeqStartBB &&
|
|
"Expected a different CFG");
|
|
const DebugLoc DL = ParentBB->getTerminator()->getDebugLoc();
|
|
ParentBB->getTerminator()->eraseFromParent();
|
|
|
|
auto BodyGenCB = [&](InsertPointTy AllocaIP, InsertPointTy CodeGenIP,
|
|
BasicBlock &ContinuationIP) {
|
|
BasicBlock *CGStartBB = CodeGenIP.getBlock();
|
|
BasicBlock *CGEndBB =
|
|
SplitBlock(CGStartBB, &*CodeGenIP.getPoint(), DT, LI);
|
|
assert(SeqStartBB != nullptr && "SeqStartBB should not be null");
|
|
CGStartBB->getTerminator()->setSuccessor(0, SeqStartBB);
|
|
assert(SeqEndBB != nullptr && "SeqEndBB should not be null");
|
|
SeqEndBB->getTerminator()->setSuccessor(0, CGEndBB);
|
|
};
|
|
auto FiniCB = [&](InsertPointTy CodeGenIP) {};
|
|
|
|
// Find outputs from the sequential region to outside users and
|
|
// broadcast their values to them.
|
|
for (Instruction &I : *SeqStartBB) {
|
|
SmallPtrSet<Instruction *, 4> OutsideUsers;
|
|
for (User *Usr : I.users()) {
|
|
Instruction &UsrI = *cast<Instruction>(Usr);
|
|
// Ignore outputs to LT intrinsics, code extraction for the merged
|
|
// parallel region will fix them.
|
|
if (UsrI.isLifetimeStartOrEnd())
|
|
continue;
|
|
|
|
if (UsrI.getParent() != SeqStartBB)
|
|
OutsideUsers.insert(&UsrI);
|
|
}
|
|
|
|
if (OutsideUsers.empty())
|
|
continue;
|
|
|
|
// Emit an alloca in the outer region to store the broadcasted
|
|
// value.
|
|
const DataLayout &DL = M.getDataLayout();
|
|
AllocaInst *AllocaI = new AllocaInst(
|
|
I.getType(), DL.getAllocaAddrSpace(), nullptr,
|
|
I.getName() + ".seq.output.alloc", &OuterFn->front().front());
|
|
|
|
// Emit a store instruction in the sequential BB to update the
|
|
// value.
|
|
new StoreInst(&I, AllocaI, SeqStartBB->getTerminator());
|
|
|
|
// Emit a load instruction and replace the use of the output value
|
|
// with it.
|
|
for (Instruction *UsrI : OutsideUsers) {
|
|
LoadInst *LoadI = new LoadInst(
|
|
I.getType(), AllocaI, I.getName() + ".seq.output.load", UsrI);
|
|
UsrI->replaceUsesOfWith(&I, LoadI);
|
|
}
|
|
}
|
|
|
|
OpenMPIRBuilder::LocationDescription Loc(
|
|
InsertPointTy(ParentBB, ParentBB->end()), DL);
|
|
InsertPointTy SeqAfterIP =
|
|
OMPInfoCache.OMPBuilder.createMaster(Loc, BodyGenCB, FiniCB);
|
|
|
|
OMPInfoCache.OMPBuilder.createBarrier(SeqAfterIP, OMPD_parallel);
|
|
|
|
BranchInst::Create(SeqAfterBB, SeqAfterIP.getBlock());
|
|
|
|
LLVM_DEBUG(dbgs() << TAG << "After sequential inlining " << *OuterFn
|
|
<< "\n");
|
|
};
|
|
|
|
// Helper to merge the __kmpc_fork_call calls in MergableCIs. They are all
|
|
// contained in BB and only separated by instructions that can be
|
|
// redundantly executed in parallel. The block BB is split before the first
|
|
// call (in MergableCIs) and after the last so the entire region we merge
|
|
// into a single parallel region is contained in a single basic block
|
|
// without any other instructions. We use the OpenMPIRBuilder to outline
|
|
// that block and call the resulting function via __kmpc_fork_call.
|
|
auto Merge = [&](SmallVectorImpl<CallInst *> &MergableCIs, BasicBlock *BB) {
|
|
// TODO: Change the interface to allow single CIs expanded, e.g, to
|
|
// include an outer loop.
|
|
assert(MergableCIs.size() > 1 && "Assumed multiple mergable CIs");
|
|
|
|
auto Remark = [&](OptimizationRemark OR) {
|
|
OR << "Parallel region merged with parallel region"
|
|
<< (MergableCIs.size() > 2 ? "s" : "") << " at ";
|
|
for (auto *CI : llvm::drop_begin(MergableCIs)) {
|
|
OR << ore::NV("OpenMPParallelMerge", CI->getDebugLoc());
|
|
if (CI != MergableCIs.back())
|
|
OR << ", ";
|
|
}
|
|
return OR << ".";
|
|
};
|
|
|
|
emitRemark<OptimizationRemark>(MergableCIs.front(), "OMP150", Remark);
|
|
|
|
Function *OriginalFn = BB->getParent();
|
|
LLVM_DEBUG(dbgs() << TAG << "Merge " << MergableCIs.size()
|
|
<< " parallel regions in " << OriginalFn->getName()
|
|
<< "\n");
|
|
|
|
// Isolate the calls to merge in a separate block.
|
|
EndBB = SplitBlock(BB, MergableCIs.back()->getNextNode(), DT, LI);
|
|
BasicBlock *AfterBB =
|
|
SplitBlock(EndBB, &*EndBB->getFirstInsertionPt(), DT, LI);
|
|
StartBB = SplitBlock(BB, MergableCIs.front(), DT, LI, nullptr,
|
|
"omp.par.merged");
|
|
|
|
assert(BB->getUniqueSuccessor() == StartBB && "Expected a different CFG");
|
|
const DebugLoc DL = BB->getTerminator()->getDebugLoc();
|
|
BB->getTerminator()->eraseFromParent();
|
|
|
|
// Create sequential regions for sequential instructions that are
|
|
// in-between mergable parallel regions.
|
|
for (auto *It = MergableCIs.begin(), *End = MergableCIs.end() - 1;
|
|
It != End; ++It) {
|
|
Instruction *ForkCI = *It;
|
|
Instruction *NextForkCI = *(It + 1);
|
|
|
|
// Continue if there are not in-between instructions.
|
|
if (ForkCI->getNextNode() == NextForkCI)
|
|
continue;
|
|
|
|
CreateSequentialRegion(OriginalFn, BB, ForkCI->getNextNode(),
|
|
NextForkCI->getPrevNode());
|
|
}
|
|
|
|
OpenMPIRBuilder::LocationDescription Loc(InsertPointTy(BB, BB->end()),
|
|
DL);
|
|
IRBuilder<>::InsertPoint AllocaIP(
|
|
&OriginalFn->getEntryBlock(),
|
|
OriginalFn->getEntryBlock().getFirstInsertionPt());
|
|
// Create the merged parallel region with default proc binding, to
|
|
// avoid overriding binding settings, and without explicit cancellation.
|
|
InsertPointTy AfterIP = OMPInfoCache.OMPBuilder.createParallel(
|
|
Loc, AllocaIP, BodyGenCB, PrivCB, FiniCB, nullptr, nullptr,
|
|
OMP_PROC_BIND_default, /* IsCancellable */ false);
|
|
BranchInst::Create(AfterBB, AfterIP.getBlock());
|
|
|
|
// Perform the actual outlining.
|
|
OMPInfoCache.OMPBuilder.finalize(OriginalFn,
|
|
/* AllowExtractorSinking */ true);
|
|
|
|
Function *OutlinedFn = MergableCIs.front()->getCaller();
|
|
|
|
// Replace the __kmpc_fork_call calls with direct calls to the outlined
|
|
// callbacks.
|
|
SmallVector<Value *, 8> Args;
|
|
for (auto *CI : MergableCIs) {
|
|
Value *Callee =
|
|
CI->getArgOperand(CallbackCalleeOperand)->stripPointerCasts();
|
|
FunctionType *FT =
|
|
cast<FunctionType>(Callee->getType()->getPointerElementType());
|
|
Args.clear();
|
|
Args.push_back(OutlinedFn->getArg(0));
|
|
Args.push_back(OutlinedFn->getArg(1));
|
|
for (unsigned U = CallbackFirstArgOperand, E = CI->getNumArgOperands();
|
|
U < E; ++U)
|
|
Args.push_back(CI->getArgOperand(U));
|
|
|
|
CallInst *NewCI = CallInst::Create(FT, Callee, Args, "", CI);
|
|
if (CI->getDebugLoc())
|
|
NewCI->setDebugLoc(CI->getDebugLoc());
|
|
|
|
// Forward parameter attributes from the callback to the callee.
|
|
for (unsigned U = CallbackFirstArgOperand, E = CI->getNumArgOperands();
|
|
U < E; ++U)
|
|
for (const Attribute &A : CI->getAttributes().getParamAttributes(U))
|
|
NewCI->addParamAttr(
|
|
U - (CallbackFirstArgOperand - CallbackCalleeOperand), A);
|
|
|
|
// Emit an explicit barrier to replace the implicit fork-join barrier.
|
|
if (CI != MergableCIs.back()) {
|
|
// TODO: Remove barrier if the merged parallel region includes the
|
|
// 'nowait' clause.
|
|
OMPInfoCache.OMPBuilder.createBarrier(
|
|
InsertPointTy(NewCI->getParent(),
|
|
NewCI->getNextNode()->getIterator()),
|
|
OMPD_parallel);
|
|
}
|
|
|
|
CI->eraseFromParent();
|
|
}
|
|
|
|
assert(OutlinedFn != OriginalFn && "Outlining failed");
|
|
CGUpdater.registerOutlinedFunction(*OriginalFn, *OutlinedFn);
|
|
CGUpdater.reanalyzeFunction(*OriginalFn);
|
|
|
|
NumOpenMPParallelRegionsMerged += MergableCIs.size();
|
|
|
|
return true;
|
|
};
|
|
|
|
// Helper function that identifes sequences of
|
|
// __kmpc_fork_call uses in a basic block.
|
|
auto DetectPRsCB = [&](Use &U, Function &F) {
|
|
CallInst *CI = getCallIfRegularCall(U, &RFI);
|
|
BB2PRMap[CI->getParent()].insert(CI);
|
|
|
|
return false;
|
|
};
|
|
|
|
BB2PRMap.clear();
|
|
RFI.foreachUse(SCC, DetectPRsCB);
|
|
SmallVector<SmallVector<CallInst *, 4>, 4> MergableCIsVector;
|
|
// Find mergable parallel regions within a basic block that are
|
|
// safe to merge, that is any in-between instructions can safely
|
|
// execute in parallel after merging.
|
|
// TODO: support merging across basic-blocks.
|
|
for (auto &It : BB2PRMap) {
|
|
auto &CIs = It.getSecond();
|
|
if (CIs.size() < 2)
|
|
continue;
|
|
|
|
BasicBlock *BB = It.getFirst();
|
|
SmallVector<CallInst *, 4> MergableCIs;
|
|
|
|
/// Returns true if the instruction is mergable, false otherwise.
|
|
/// A terminator instruction is unmergable by definition since merging
|
|
/// works within a BB. Instructions before the mergable region are
|
|
/// mergable if they are not calls to OpenMP runtime functions that may
|
|
/// set different execution parameters for subsequent parallel regions.
|
|
/// Instructions in-between parallel regions are mergable if they are not
|
|
/// calls to any non-intrinsic function since that may call a non-mergable
|
|
/// OpenMP runtime function.
|
|
auto IsMergable = [&](Instruction &I, bool IsBeforeMergableRegion) {
|
|
// We do not merge across BBs, hence return false (unmergable) if the
|
|
// instruction is a terminator.
|
|
if (I.isTerminator())
|
|
return false;
|
|
|
|
if (!isa<CallInst>(&I))
|
|
return true;
|
|
|
|
CallInst *CI = cast<CallInst>(&I);
|
|
if (IsBeforeMergableRegion) {
|
|
Function *CalledFunction = CI->getCalledFunction();
|
|
if (!CalledFunction)
|
|
return false;
|
|
// Return false (unmergable) if the call before the parallel
|
|
// region calls an explicit affinity (proc_bind) or number of
|
|
// threads (num_threads) compiler-generated function. Those settings
|
|
// may be incompatible with following parallel regions.
|
|
// TODO: ICV tracking to detect compatibility.
|
|
for (const auto &RFI : UnmergableCallsInfo) {
|
|
if (CalledFunction == RFI.Declaration)
|
|
return false;
|
|
}
|
|
} else {
|
|
// Return false (unmergable) if there is a call instruction
|
|
// in-between parallel regions when it is not an intrinsic. It
|
|
// may call an unmergable OpenMP runtime function in its callpath.
|
|
// TODO: Keep track of possible OpenMP calls in the callpath.
|
|
if (!isa<IntrinsicInst>(CI))
|
|
return false;
|
|
}
|
|
|
|
return true;
|
|
};
|
|
// Find maximal number of parallel region CIs that are safe to merge.
|
|
for (auto It = BB->begin(), End = BB->end(); It != End;) {
|
|
Instruction &I = *It;
|
|
++It;
|
|
|
|
if (CIs.count(&I)) {
|
|
MergableCIs.push_back(cast<CallInst>(&I));
|
|
continue;
|
|
}
|
|
|
|
// Continue expanding if the instruction is mergable.
|
|
if (IsMergable(I, MergableCIs.empty()))
|
|
continue;
|
|
|
|
// Forward the instruction iterator to skip the next parallel region
|
|
// since there is an unmergable instruction which can affect it.
|
|
for (; It != End; ++It) {
|
|
Instruction &SkipI = *It;
|
|
if (CIs.count(&SkipI)) {
|
|
LLVM_DEBUG(dbgs() << TAG << "Skip parallel region " << SkipI
|
|
<< " due to " << I << "\n");
|
|
++It;
|
|
break;
|
|
}
|
|
}
|
|
|
|
// Store mergable regions found.
|
|
if (MergableCIs.size() > 1) {
|
|
MergableCIsVector.push_back(MergableCIs);
|
|
LLVM_DEBUG(dbgs() << TAG << "Found " << MergableCIs.size()
|
|
<< " parallel regions in block " << BB->getName()
|
|
<< " of function " << BB->getParent()->getName()
|
|
<< "\n";);
|
|
}
|
|
|
|
MergableCIs.clear();
|
|
}
|
|
|
|
if (!MergableCIsVector.empty()) {
|
|
Changed = true;
|
|
|
|
for (auto &MergableCIs : MergableCIsVector)
|
|
Merge(MergableCIs, BB);
|
|
MergableCIsVector.clear();
|
|
}
|
|
}
|
|
|
|
if (Changed) {
|
|
/// Re-collect use for fork calls, emitted barrier calls, and
|
|
/// any emitted master/end_master calls.
|
|
OMPInfoCache.recollectUsesForFunction(OMPRTL___kmpc_fork_call);
|
|
OMPInfoCache.recollectUsesForFunction(OMPRTL___kmpc_barrier);
|
|
OMPInfoCache.recollectUsesForFunction(OMPRTL___kmpc_master);
|
|
OMPInfoCache.recollectUsesForFunction(OMPRTL___kmpc_end_master);
|
|
}
|
|
|
|
return Changed;
|
|
}
|
|
|
|
/// Try to delete parallel regions if possible.
|
|
bool deleteParallelRegions() {
|
|
const unsigned CallbackCalleeOperand = 2;
|
|
|
|
OMPInformationCache::RuntimeFunctionInfo &RFI =
|
|
OMPInfoCache.RFIs[OMPRTL___kmpc_fork_call];
|
|
|
|
if (!RFI.Declaration)
|
|
return false;
|
|
|
|
bool Changed = false;
|
|
auto DeleteCallCB = [&](Use &U, Function &) {
|
|
CallInst *CI = getCallIfRegularCall(U);
|
|
if (!CI)
|
|
return false;
|
|
auto *Fn = dyn_cast<Function>(
|
|
CI->getArgOperand(CallbackCalleeOperand)->stripPointerCasts());
|
|
if (!Fn)
|
|
return false;
|
|
if (!Fn->onlyReadsMemory())
|
|
return false;
|
|
if (!Fn->hasFnAttribute(Attribute::WillReturn))
|
|
return false;
|
|
|
|
LLVM_DEBUG(dbgs() << TAG << "Delete read-only parallel region in "
|
|
<< CI->getCaller()->getName() << "\n");
|
|
|
|
auto Remark = [&](OptimizationRemark OR) {
|
|
return OR << "Removing parallel region with no side-effects.";
|
|
};
|
|
emitRemark<OptimizationRemark>(CI, "OMP160", Remark);
|
|
|
|
CGUpdater.removeCallSite(*CI);
|
|
CI->eraseFromParent();
|
|
Changed = true;
|
|
++NumOpenMPParallelRegionsDeleted;
|
|
return true;
|
|
};
|
|
|
|
RFI.foreachUse(SCC, DeleteCallCB);
|
|
|
|
return Changed;
|
|
}
|
|
|
|
/// Try to eliminate runtime calls by reusing existing ones.
|
|
bool deduplicateRuntimeCalls() {
|
|
bool Changed = false;
|
|
|
|
RuntimeFunction DeduplicableRuntimeCallIDs[] = {
|
|
OMPRTL_omp_get_num_threads,
|
|
OMPRTL_omp_in_parallel,
|
|
OMPRTL_omp_get_cancellation,
|
|
OMPRTL_omp_get_thread_limit,
|
|
OMPRTL_omp_get_supported_active_levels,
|
|
OMPRTL_omp_get_level,
|
|
OMPRTL_omp_get_ancestor_thread_num,
|
|
OMPRTL_omp_get_team_size,
|
|
OMPRTL_omp_get_active_level,
|
|
OMPRTL_omp_in_final,
|
|
OMPRTL_omp_get_proc_bind,
|
|
OMPRTL_omp_get_num_places,
|
|
OMPRTL_omp_get_num_procs,
|
|
OMPRTL_omp_get_place_num,
|
|
OMPRTL_omp_get_partition_num_places,
|
|
OMPRTL_omp_get_partition_place_nums};
|
|
|
|
// Global-tid is handled separately.
|
|
SmallSetVector<Value *, 16> GTIdArgs;
|
|
collectGlobalThreadIdArguments(GTIdArgs);
|
|
LLVM_DEBUG(dbgs() << TAG << "Found " << GTIdArgs.size()
|
|
<< " global thread ID arguments\n");
|
|
|
|
for (Function *F : SCC) {
|
|
for (auto DeduplicableRuntimeCallID : DeduplicableRuntimeCallIDs)
|
|
Changed |= deduplicateRuntimeCalls(
|
|
*F, OMPInfoCache.RFIs[DeduplicableRuntimeCallID]);
|
|
|
|
// __kmpc_global_thread_num is special as we can replace it with an
|
|
// argument in enough cases to make it worth trying.
|
|
Value *GTIdArg = nullptr;
|
|
for (Argument &Arg : F->args())
|
|
if (GTIdArgs.count(&Arg)) {
|
|
GTIdArg = &Arg;
|
|
break;
|
|
}
|
|
Changed |= deduplicateRuntimeCalls(
|
|
*F, OMPInfoCache.RFIs[OMPRTL___kmpc_global_thread_num], GTIdArg);
|
|
}
|
|
|
|
return Changed;
|
|
}
|
|
|
|
/// Tries to hide the latency of runtime calls that involve host to
|
|
/// device memory transfers by splitting them into their "issue" and "wait"
|
|
/// versions. The "issue" is moved upwards as much as possible. The "wait" is
|
|
/// moved downards as much as possible. The "issue" issues the memory transfer
|
|
/// asynchronously, returning a handle. The "wait" waits in the returned
|
|
/// handle for the memory transfer to finish.
|
|
bool hideMemTransfersLatency() {
|
|
auto &RFI = OMPInfoCache.RFIs[OMPRTL___tgt_target_data_begin_mapper];
|
|
bool Changed = false;
|
|
auto SplitMemTransfers = [&](Use &U, Function &Decl) {
|
|
auto *RTCall = getCallIfRegularCall(U, &RFI);
|
|
if (!RTCall)
|
|
return false;
|
|
|
|
OffloadArray OffloadArrays[3];
|
|
if (!getValuesInOffloadArrays(*RTCall, OffloadArrays))
|
|
return false;
|
|
|
|
LLVM_DEBUG(dumpValuesInOffloadArrays(OffloadArrays));
|
|
|
|
// TODO: Check if can be moved upwards.
|
|
bool WasSplit = false;
|
|
Instruction *WaitMovementPoint = canBeMovedDownwards(*RTCall);
|
|
if (WaitMovementPoint)
|
|
WasSplit = splitTargetDataBeginRTC(*RTCall, *WaitMovementPoint);
|
|
|
|
Changed |= WasSplit;
|
|
return WasSplit;
|
|
};
|
|
RFI.foreachUse(SCC, SplitMemTransfers);
|
|
|
|
return Changed;
|
|
}
|
|
|
|
void analysisGlobalization() {
|
|
auto &RFI = OMPInfoCache.RFIs[OMPRTL___kmpc_alloc_shared];
|
|
|
|
auto CheckGlobalization = [&](Use &U, Function &Decl) {
|
|
if (CallInst *CI = getCallIfRegularCall(U, &RFI)) {
|
|
auto Remark = [&](OptimizationRemarkMissed ORM) {
|
|
return ORM
|
|
<< "Found thread data sharing on the GPU. "
|
|
<< "Expect degraded performance due to data globalization.";
|
|
};
|
|
emitRemark<OptimizationRemarkMissed>(CI, "OMP112", Remark);
|
|
}
|
|
|
|
return false;
|
|
};
|
|
|
|
RFI.foreachUse(SCC, CheckGlobalization);
|
|
}
|
|
|
|
/// Maps the values stored in the offload arrays passed as arguments to
|
|
/// \p RuntimeCall into the offload arrays in \p OAs.
|
|
bool getValuesInOffloadArrays(CallInst &RuntimeCall,
|
|
MutableArrayRef<OffloadArray> OAs) {
|
|
assert(OAs.size() == 3 && "Need space for three offload arrays!");
|
|
|
|
// A runtime call that involves memory offloading looks something like:
|
|
// call void @__tgt_target_data_begin_mapper(arg0, arg1,
|
|
// i8** %offload_baseptrs, i8** %offload_ptrs, i64* %offload_sizes,
|
|
// ...)
|
|
// So, the idea is to access the allocas that allocate space for these
|
|
// offload arrays, offload_baseptrs, offload_ptrs, offload_sizes.
|
|
// Therefore:
|
|
// i8** %offload_baseptrs.
|
|
Value *BasePtrsArg =
|
|
RuntimeCall.getArgOperand(OffloadArray::BasePtrsArgNum);
|
|
// i8** %offload_ptrs.
|
|
Value *PtrsArg = RuntimeCall.getArgOperand(OffloadArray::PtrsArgNum);
|
|
// i8** %offload_sizes.
|
|
Value *SizesArg = RuntimeCall.getArgOperand(OffloadArray::SizesArgNum);
|
|
|
|
// Get values stored in **offload_baseptrs.
|
|
auto *V = getUnderlyingObject(BasePtrsArg);
|
|
if (!isa<AllocaInst>(V))
|
|
return false;
|
|
auto *BasePtrsArray = cast<AllocaInst>(V);
|
|
if (!OAs[0].initialize(*BasePtrsArray, RuntimeCall))
|
|
return false;
|
|
|
|
// Get values stored in **offload_baseptrs.
|
|
V = getUnderlyingObject(PtrsArg);
|
|
if (!isa<AllocaInst>(V))
|
|
return false;
|
|
auto *PtrsArray = cast<AllocaInst>(V);
|
|
if (!OAs[1].initialize(*PtrsArray, RuntimeCall))
|
|
return false;
|
|
|
|
// Get values stored in **offload_sizes.
|
|
V = getUnderlyingObject(SizesArg);
|
|
// If it's a [constant] global array don't analyze it.
|
|
if (isa<GlobalValue>(V))
|
|
return isa<Constant>(V);
|
|
if (!isa<AllocaInst>(V))
|
|
return false;
|
|
|
|
auto *SizesArray = cast<AllocaInst>(V);
|
|
if (!OAs[2].initialize(*SizesArray, RuntimeCall))
|
|
return false;
|
|
|
|
return true;
|
|
}
|
|
|
|
/// Prints the values in the OffloadArrays \p OAs using LLVM_DEBUG.
|
|
/// For now this is a way to test that the function getValuesInOffloadArrays
|
|
/// is working properly.
|
|
/// TODO: Move this to a unittest when unittests are available for OpenMPOpt.
|
|
void dumpValuesInOffloadArrays(ArrayRef<OffloadArray> OAs) {
|
|
assert(OAs.size() == 3 && "There are three offload arrays to debug!");
|
|
|
|
LLVM_DEBUG(dbgs() << TAG << " Successfully got offload values:\n");
|
|
std::string ValuesStr;
|
|
raw_string_ostream Printer(ValuesStr);
|
|
std::string Separator = " --- ";
|
|
|
|
for (auto *BP : OAs[0].StoredValues) {
|
|
BP->print(Printer);
|
|
Printer << Separator;
|
|
}
|
|
LLVM_DEBUG(dbgs() << "\t\toffload_baseptrs: " << Printer.str() << "\n");
|
|
ValuesStr.clear();
|
|
|
|
for (auto *P : OAs[1].StoredValues) {
|
|
P->print(Printer);
|
|
Printer << Separator;
|
|
}
|
|
LLVM_DEBUG(dbgs() << "\t\toffload_ptrs: " << Printer.str() << "\n");
|
|
ValuesStr.clear();
|
|
|
|
for (auto *S : OAs[2].StoredValues) {
|
|
S->print(Printer);
|
|
Printer << Separator;
|
|
}
|
|
LLVM_DEBUG(dbgs() << "\t\toffload_sizes: " << Printer.str() << "\n");
|
|
}
|
|
|
|
/// Returns the instruction where the "wait" counterpart \p RuntimeCall can be
|
|
/// moved. Returns nullptr if the movement is not possible, or not worth it.
|
|
Instruction *canBeMovedDownwards(CallInst &RuntimeCall) {
|
|
// FIXME: This traverses only the BasicBlock where RuntimeCall is.
|
|
// Make it traverse the CFG.
|
|
|
|
Instruction *CurrentI = &RuntimeCall;
|
|
bool IsWorthIt = false;
|
|
while ((CurrentI = CurrentI->getNextNode())) {
|
|
|
|
// TODO: Once we detect the regions to be offloaded we should use the
|
|
// alias analysis manager to check if CurrentI may modify one of
|
|
// the offloaded regions.
|
|
if (CurrentI->mayHaveSideEffects() || CurrentI->mayReadFromMemory()) {
|
|
if (IsWorthIt)
|
|
return CurrentI;
|
|
|
|
return nullptr;
|
|
}
|
|
|
|
// FIXME: For now if we move it over anything without side effect
|
|
// is worth it.
|
|
IsWorthIt = true;
|
|
}
|
|
|
|
// Return end of BasicBlock.
|
|
return RuntimeCall.getParent()->getTerminator();
|
|
}
|
|
|
|
/// Splits \p RuntimeCall into its "issue" and "wait" counterparts.
|
|
bool splitTargetDataBeginRTC(CallInst &RuntimeCall,
|
|
Instruction &WaitMovementPoint) {
|
|
// Create stack allocated handle (__tgt_async_info) at the beginning of the
|
|
// function. Used for storing information of the async transfer, allowing to
|
|
// wait on it later.
|
|
auto &IRBuilder = OMPInfoCache.OMPBuilder;
|
|
auto *F = RuntimeCall.getCaller();
|
|
Instruction *FirstInst = &(F->getEntryBlock().front());
|
|
AllocaInst *Handle = new AllocaInst(
|
|
IRBuilder.AsyncInfo, F->getAddressSpace(), "handle", FirstInst);
|
|
|
|
// Add "issue" runtime call declaration:
|
|
// declare %struct.tgt_async_info @__tgt_target_data_begin_issue(i64, i32,
|
|
// i8**, i8**, i64*, i64*)
|
|
FunctionCallee IssueDecl = IRBuilder.getOrCreateRuntimeFunction(
|
|
M, OMPRTL___tgt_target_data_begin_mapper_issue);
|
|
|
|
// Change RuntimeCall call site for its asynchronous version.
|
|
SmallVector<Value *, 16> Args;
|
|
for (auto &Arg : RuntimeCall.args())
|
|
Args.push_back(Arg.get());
|
|
Args.push_back(Handle);
|
|
|
|
CallInst *IssueCallsite =
|
|
CallInst::Create(IssueDecl, Args, /*NameStr=*/"", &RuntimeCall);
|
|
RuntimeCall.eraseFromParent();
|
|
|
|
// Add "wait" runtime call declaration:
|
|
// declare void @__tgt_target_data_begin_wait(i64, %struct.__tgt_async_info)
|
|
FunctionCallee WaitDecl = IRBuilder.getOrCreateRuntimeFunction(
|
|
M, OMPRTL___tgt_target_data_begin_mapper_wait);
|
|
|
|
Value *WaitParams[2] = {
|
|
IssueCallsite->getArgOperand(
|
|
OffloadArray::DeviceIDArgNum), // device_id.
|
|
Handle // handle to wait on.
|
|
};
|
|
CallInst::Create(WaitDecl, WaitParams, /*NameStr=*/"", &WaitMovementPoint);
|
|
|
|
return true;
|
|
}
|
|
|
|
static Value *combinedIdentStruct(Value *CurrentIdent, Value *NextIdent,
|
|
bool GlobalOnly, bool &SingleChoice) {
|
|
if (CurrentIdent == NextIdent)
|
|
return CurrentIdent;
|
|
|
|
// TODO: Figure out how to actually combine multiple debug locations. For
|
|
// now we just keep an existing one if there is a single choice.
|
|
if (!GlobalOnly || isa<GlobalValue>(NextIdent)) {
|
|
SingleChoice = !CurrentIdent;
|
|
return NextIdent;
|
|
}
|
|
return nullptr;
|
|
}
|
|
|
|
/// Return an `struct ident_t*` value that represents the ones used in the
|
|
/// calls of \p RFI inside of \p F. If \p GlobalOnly is true, we will not
|
|
/// return a local `struct ident_t*`. For now, if we cannot find a suitable
|
|
/// return value we create one from scratch. We also do not yet combine
|
|
/// information, e.g., the source locations, see combinedIdentStruct.
|
|
Value *
|
|
getCombinedIdentFromCallUsesIn(OMPInformationCache::RuntimeFunctionInfo &RFI,
|
|
Function &F, bool GlobalOnly) {
|
|
bool SingleChoice = true;
|
|
Value *Ident = nullptr;
|
|
auto CombineIdentStruct = [&](Use &U, Function &Caller) {
|
|
CallInst *CI = getCallIfRegularCall(U, &RFI);
|
|
if (!CI || &F != &Caller)
|
|
return false;
|
|
Ident = combinedIdentStruct(Ident, CI->getArgOperand(0),
|
|
/* GlobalOnly */ true, SingleChoice);
|
|
return false;
|
|
};
|
|
RFI.foreachUse(SCC, CombineIdentStruct);
|
|
|
|
if (!Ident || !SingleChoice) {
|
|
// The IRBuilder uses the insertion block to get to the module, this is
|
|
// unfortunate but we work around it for now.
|
|
if (!OMPInfoCache.OMPBuilder.getInsertionPoint().getBlock())
|
|
OMPInfoCache.OMPBuilder.updateToLocation(OpenMPIRBuilder::InsertPointTy(
|
|
&F.getEntryBlock(), F.getEntryBlock().begin()));
|
|
// Create a fallback location if non was found.
|
|
// TODO: Use the debug locations of the calls instead.
|
|
Constant *Loc = OMPInfoCache.OMPBuilder.getOrCreateDefaultSrcLocStr();
|
|
Ident = OMPInfoCache.OMPBuilder.getOrCreateIdent(Loc);
|
|
}
|
|
return Ident;
|
|
}
|
|
|
|
/// Try to eliminate calls of \p RFI in \p F by reusing an existing one or
|
|
/// \p ReplVal if given.
|
|
bool deduplicateRuntimeCalls(Function &F,
|
|
OMPInformationCache::RuntimeFunctionInfo &RFI,
|
|
Value *ReplVal = nullptr) {
|
|
auto *UV = RFI.getUseVector(F);
|
|
if (!UV || UV->size() + (ReplVal != nullptr) < 2)
|
|
return false;
|
|
|
|
LLVM_DEBUG(
|
|
dbgs() << TAG << "Deduplicate " << UV->size() << " uses of " << RFI.Name
|
|
<< (ReplVal ? " with an existing value\n" : "\n") << "\n");
|
|
|
|
assert((!ReplVal || (isa<Argument>(ReplVal) &&
|
|
cast<Argument>(ReplVal)->getParent() == &F)) &&
|
|
"Unexpected replacement value!");
|
|
|
|
// TODO: Use dominance to find a good position instead.
|
|
auto CanBeMoved = [this](CallBase &CB) {
|
|
unsigned NumArgs = CB.getNumArgOperands();
|
|
if (NumArgs == 0)
|
|
return true;
|
|
if (CB.getArgOperand(0)->getType() != OMPInfoCache.OMPBuilder.IdentPtr)
|
|
return false;
|
|
for (unsigned u = 1; u < NumArgs; ++u)
|
|
if (isa<Instruction>(CB.getArgOperand(u)))
|
|
return false;
|
|
return true;
|
|
};
|
|
|
|
if (!ReplVal) {
|
|
for (Use *U : *UV)
|
|
if (CallInst *CI = getCallIfRegularCall(*U, &RFI)) {
|
|
if (!CanBeMoved(*CI))
|
|
continue;
|
|
|
|
// If the function is a kernel, dedup will move
|
|
// the runtime call right after the kernel init callsite. Otherwise,
|
|
// it will move it to the beginning of the caller function.
|
|
if (isKernel(F)) {
|
|
auto &KernelInitRFI = OMPInfoCache.RFIs[OMPRTL___kmpc_target_init];
|
|
auto *KernelInitUV = KernelInitRFI.getUseVector(F);
|
|
|
|
if (KernelInitUV->empty())
|
|
continue;
|
|
|
|
assert(KernelInitUV->size() == 1 &&
|
|
"Expected a single __kmpc_target_init in kernel\n");
|
|
|
|
CallInst *KernelInitCI =
|
|
getCallIfRegularCall(*KernelInitUV->front(), &KernelInitRFI);
|
|
assert(KernelInitCI &&
|
|
"Expected a call to __kmpc_target_init in kernel\n");
|
|
|
|
CI->moveAfter(KernelInitCI);
|
|
} else
|
|
CI->moveBefore(&*F.getEntryBlock().getFirstInsertionPt());
|
|
ReplVal = CI;
|
|
break;
|
|
}
|
|
if (!ReplVal)
|
|
return false;
|
|
}
|
|
|
|
// If we use a call as a replacement value we need to make sure the ident is
|
|
// valid at the new location. For now we just pick a global one, either
|
|
// existing and used by one of the calls, or created from scratch.
|
|
if (CallBase *CI = dyn_cast<CallBase>(ReplVal)) {
|
|
if (CI->getNumArgOperands() > 0 &&
|
|
CI->getArgOperand(0)->getType() == OMPInfoCache.OMPBuilder.IdentPtr) {
|
|
Value *Ident = getCombinedIdentFromCallUsesIn(RFI, F,
|
|
/* GlobalOnly */ true);
|
|
CI->setArgOperand(0, Ident);
|
|
}
|
|
}
|
|
|
|
bool Changed = false;
|
|
auto ReplaceAndDeleteCB = [&](Use &U, Function &Caller) {
|
|
CallInst *CI = getCallIfRegularCall(U, &RFI);
|
|
if (!CI || CI == ReplVal || &F != &Caller)
|
|
return false;
|
|
assert(CI->getCaller() == &F && "Unexpected call!");
|
|
|
|
auto Remark = [&](OptimizationRemark OR) {
|
|
return OR << "OpenMP runtime call "
|
|
<< ore::NV("OpenMPOptRuntime", RFI.Name) << " deduplicated.";
|
|
};
|
|
if (CI->getDebugLoc())
|
|
emitRemark<OptimizationRemark>(CI, "OMP170", Remark);
|
|
else
|
|
emitRemark<OptimizationRemark>(&F, "OMP170", Remark);
|
|
|
|
CGUpdater.removeCallSite(*CI);
|
|
CI->replaceAllUsesWith(ReplVal);
|
|
CI->eraseFromParent();
|
|
++NumOpenMPRuntimeCallsDeduplicated;
|
|
Changed = true;
|
|
return true;
|
|
};
|
|
RFI.foreachUse(SCC, ReplaceAndDeleteCB);
|
|
|
|
return Changed;
|
|
}
|
|
|
|
/// Collect arguments that represent the global thread id in \p GTIdArgs.
|
|
void collectGlobalThreadIdArguments(SmallSetVector<Value *, 16> >IdArgs) {
|
|
// TODO: Below we basically perform a fixpoint iteration with a pessimistic
|
|
// initialization. We could define an AbstractAttribute instead and
|
|
// run the Attributor here once it can be run as an SCC pass.
|
|
|
|
// Helper to check the argument \p ArgNo at all call sites of \p F for
|
|
// a GTId.
|
|
auto CallArgOpIsGTId = [&](Function &F, unsigned ArgNo, CallInst &RefCI) {
|
|
if (!F.hasLocalLinkage())
|
|
return false;
|
|
for (Use &U : F.uses()) {
|
|
if (CallInst *CI = getCallIfRegularCall(U)) {
|
|
Value *ArgOp = CI->getArgOperand(ArgNo);
|
|
if (CI == &RefCI || GTIdArgs.count(ArgOp) ||
|
|
getCallIfRegularCall(
|
|
*ArgOp, &OMPInfoCache.RFIs[OMPRTL___kmpc_global_thread_num]))
|
|
continue;
|
|
}
|
|
return false;
|
|
}
|
|
return true;
|
|
};
|
|
|
|
// Helper to identify uses of a GTId as GTId arguments.
|
|
auto AddUserArgs = [&](Value >Id) {
|
|
for (Use &U : GTId.uses())
|
|
if (CallInst *CI = dyn_cast<CallInst>(U.getUser()))
|
|
if (CI->isArgOperand(&U))
|
|
if (Function *Callee = CI->getCalledFunction())
|
|
if (CallArgOpIsGTId(*Callee, U.getOperandNo(), *CI))
|
|
GTIdArgs.insert(Callee->getArg(U.getOperandNo()));
|
|
};
|
|
|
|
// The argument users of __kmpc_global_thread_num calls are GTIds.
|
|
OMPInformationCache::RuntimeFunctionInfo &GlobThreadNumRFI =
|
|
OMPInfoCache.RFIs[OMPRTL___kmpc_global_thread_num];
|
|
|
|
GlobThreadNumRFI.foreachUse(SCC, [&](Use &U, Function &F) {
|
|
if (CallInst *CI = getCallIfRegularCall(U, &GlobThreadNumRFI))
|
|
AddUserArgs(*CI);
|
|
return false;
|
|
});
|
|
|
|
// Transitively search for more arguments by looking at the users of the
|
|
// ones we know already. During the search the GTIdArgs vector is extended
|
|
// so we cannot cache the size nor can we use a range based for.
|
|
for (unsigned u = 0; u < GTIdArgs.size(); ++u)
|
|
AddUserArgs(*GTIdArgs[u]);
|
|
}
|
|
|
|
/// Kernel (=GPU) optimizations and utility functions
|
|
///
|
|
///{{
|
|
|
|
/// Check if \p F is a kernel, hence entry point for target offloading.
|
|
bool isKernel(Function &F) { return OMPInfoCache.Kernels.count(&F); }
|
|
|
|
/// Cache to remember the unique kernel for a function.
|
|
DenseMap<Function *, Optional<Kernel>> UniqueKernelMap;
|
|
|
|
/// Find the unique kernel that will execute \p F, if any.
|
|
Kernel getUniqueKernelFor(Function &F);
|
|
|
|
/// Find the unique kernel that will execute \p I, if any.
|
|
Kernel getUniqueKernelFor(Instruction &I) {
|
|
return getUniqueKernelFor(*I.getFunction());
|
|
}
|
|
|
|
/// Rewrite the device (=GPU) code state machine create in non-SPMD mode in
|
|
/// the cases we can avoid taking the address of a function.
|
|
bool rewriteDeviceCodeStateMachine();
|
|
|
|
///
|
|
///}}
|
|
|
|
/// Emit a remark generically
|
|
///
|
|
/// This template function can be used to generically emit a remark. The
|
|
/// RemarkKind should be one of the following:
|
|
/// - OptimizationRemark to indicate a successful optimization attempt
|
|
/// - OptimizationRemarkMissed to report a failed optimization attempt
|
|
/// - OptimizationRemarkAnalysis to provide additional information about an
|
|
/// optimization attempt
|
|
///
|
|
/// The remark is built using a callback function provided by the caller that
|
|
/// takes a RemarkKind as input and returns a RemarkKind.
|
|
template <typename RemarkKind, typename RemarkCallBack>
|
|
void emitRemark(Instruction *I, StringRef RemarkName,
|
|
RemarkCallBack &&RemarkCB) const {
|
|
Function *F = I->getParent()->getParent();
|
|
auto &ORE = OREGetter(F);
|
|
|
|
if (RemarkName.startswith("OMP"))
|
|
ORE.emit([&]() {
|
|
return RemarkCB(RemarkKind(DEBUG_TYPE, RemarkName, I))
|
|
<< " [" << RemarkName << "]";
|
|
});
|
|
else
|
|
ORE.emit(
|
|
[&]() { return RemarkCB(RemarkKind(DEBUG_TYPE, RemarkName, I)); });
|
|
}
|
|
|
|
/// Emit a remark on a function.
|
|
template <typename RemarkKind, typename RemarkCallBack>
|
|
void emitRemark(Function *F, StringRef RemarkName,
|
|
RemarkCallBack &&RemarkCB) const {
|
|
auto &ORE = OREGetter(F);
|
|
|
|
if (RemarkName.startswith("OMP"))
|
|
ORE.emit([&]() {
|
|
return RemarkCB(RemarkKind(DEBUG_TYPE, RemarkName, F))
|
|
<< " [" << RemarkName << "]";
|
|
});
|
|
else
|
|
ORE.emit(
|
|
[&]() { return RemarkCB(RemarkKind(DEBUG_TYPE, RemarkName, F)); });
|
|
}
|
|
|
|
/// RAII struct to temporarily change an RTL function's linkage to external.
|
|
/// This prevents it from being mistakenly removed by other optimizations.
|
|
struct ExternalizationRAII {
|
|
ExternalizationRAII(OMPInformationCache &OMPInfoCache,
|
|
RuntimeFunction RFKind)
|
|
: Declaration(OMPInfoCache.RFIs[RFKind].Declaration) {
|
|
if (!Declaration)
|
|
return;
|
|
|
|
LinkageType = Declaration->getLinkage();
|
|
Declaration->setLinkage(GlobalValue::ExternalLinkage);
|
|
}
|
|
|
|
~ExternalizationRAII() {
|
|
if (!Declaration)
|
|
return;
|
|
|
|
Declaration->setLinkage(LinkageType);
|
|
}
|
|
|
|
Function *Declaration;
|
|
GlobalValue::LinkageTypes LinkageType;
|
|
};
|
|
|
|
/// The underlying module.
|
|
Module &M;
|
|
|
|
/// The SCC we are operating on.
|
|
SmallVectorImpl<Function *> &SCC;
|
|
|
|
/// Callback to update the call graph, the first argument is a removed call,
|
|
/// the second an optional replacement call.
|
|
CallGraphUpdater &CGUpdater;
|
|
|
|
/// Callback to get an OptimizationRemarkEmitter from a Function *
|
|
OptimizationRemarkGetter OREGetter;
|
|
|
|
/// OpenMP-specific information cache. Also Used for Attributor runs.
|
|
OMPInformationCache &OMPInfoCache;
|
|
|
|
/// Attributor instance.
|
|
Attributor &A;
|
|
|
|
/// Helper function to run Attributor on SCC.
|
|
bool runAttributor(bool IsModulePass) {
|
|
if (SCC.empty())
|
|
return false;
|
|
|
|
// Temporarily make these function have external linkage so the Attributor
|
|
// doesn't remove them when we try to look them up later.
|
|
ExternalizationRAII Parallel(OMPInfoCache, OMPRTL___kmpc_kernel_parallel);
|
|
ExternalizationRAII EndParallel(OMPInfoCache,
|
|
OMPRTL___kmpc_kernel_end_parallel);
|
|
ExternalizationRAII BarrierSPMD(OMPInfoCache,
|
|
OMPRTL___kmpc_barrier_simple_spmd);
|
|
|
|
registerAAs(IsModulePass);
|
|
|
|
ChangeStatus Changed = A.run();
|
|
|
|
LLVM_DEBUG(dbgs() << "[Attributor] Done with " << SCC.size()
|
|
<< " functions, result: " << Changed << ".\n");
|
|
|
|
return Changed == ChangeStatus::CHANGED;
|
|
}
|
|
|
|
void registerFoldRuntimeCall(RuntimeFunction RF);
|
|
|
|
/// Populate the Attributor with abstract attribute opportunities in the
|
|
/// function.
|
|
void registerAAs(bool IsModulePass);
|
|
};
|
|
|
|
Kernel OpenMPOpt::getUniqueKernelFor(Function &F) {
|
|
if (!OMPInfoCache.ModuleSlice.count(&F))
|
|
return nullptr;
|
|
|
|
// Use a scope to keep the lifetime of the CachedKernel short.
|
|
{
|
|
Optional<Kernel> &CachedKernel = UniqueKernelMap[&F];
|
|
if (CachedKernel)
|
|
return *CachedKernel;
|
|
|
|
// TODO: We should use an AA to create an (optimistic and callback
|
|
// call-aware) call graph. For now we stick to simple patterns that
|
|
// are less powerful, basically the worst fixpoint.
|
|
if (isKernel(F)) {
|
|
CachedKernel = Kernel(&F);
|
|
return *CachedKernel;
|
|
}
|
|
|
|
CachedKernel = nullptr;
|
|
if (!F.hasLocalLinkage()) {
|
|
|
|
// See https://openmp.llvm.org/remarks/OptimizationRemarks.html
|
|
auto Remark = [&](OptimizationRemarkAnalysis ORA) {
|
|
return ORA << "Potentially unknown OpenMP target region caller.";
|
|
};
|
|
emitRemark<OptimizationRemarkAnalysis>(&F, "OMP100", Remark);
|
|
|
|
return nullptr;
|
|
}
|
|
}
|
|
|
|
auto GetUniqueKernelForUse = [&](const Use &U) -> Kernel {
|
|
if (auto *Cmp = dyn_cast<ICmpInst>(U.getUser())) {
|
|
// Allow use in equality comparisons.
|
|
if (Cmp->isEquality())
|
|
return getUniqueKernelFor(*Cmp);
|
|
return nullptr;
|
|
}
|
|
if (auto *CB = dyn_cast<CallBase>(U.getUser())) {
|
|
// Allow direct calls.
|
|
if (CB->isCallee(&U))
|
|
return getUniqueKernelFor(*CB);
|
|
|
|
OMPInformationCache::RuntimeFunctionInfo &KernelParallelRFI =
|
|
OMPInfoCache.RFIs[OMPRTL___kmpc_parallel_51];
|
|
// Allow the use in __kmpc_parallel_51 calls.
|
|
if (OpenMPOpt::getCallIfRegularCall(*U.getUser(), &KernelParallelRFI))
|
|
return getUniqueKernelFor(*CB);
|
|
return nullptr;
|
|
}
|
|
// Disallow every other use.
|
|
return nullptr;
|
|
};
|
|
|
|
// TODO: In the future we want to track more than just a unique kernel.
|
|
SmallPtrSet<Kernel, 2> PotentialKernels;
|
|
OMPInformationCache::foreachUse(F, [&](const Use &U) {
|
|
PotentialKernels.insert(GetUniqueKernelForUse(U));
|
|
});
|
|
|
|
Kernel K = nullptr;
|
|
if (PotentialKernels.size() == 1)
|
|
K = *PotentialKernels.begin();
|
|
|
|
// Cache the result.
|
|
UniqueKernelMap[&F] = K;
|
|
|
|
return K;
|
|
}
|
|
|
|
bool OpenMPOpt::rewriteDeviceCodeStateMachine() {
|
|
OMPInformationCache::RuntimeFunctionInfo &KernelParallelRFI =
|
|
OMPInfoCache.RFIs[OMPRTL___kmpc_parallel_51];
|
|
|
|
bool Changed = false;
|
|
if (!KernelParallelRFI)
|
|
return Changed;
|
|
|
|
for (Function *F : SCC) {
|
|
|
|
// Check if the function is a use in a __kmpc_parallel_51 call at
|
|
// all.
|
|
bool UnknownUse = false;
|
|
bool KernelParallelUse = false;
|
|
unsigned NumDirectCalls = 0;
|
|
|
|
SmallVector<Use *, 2> ToBeReplacedStateMachineUses;
|
|
OMPInformationCache::foreachUse(*F, [&](Use &U) {
|
|
if (auto *CB = dyn_cast<CallBase>(U.getUser()))
|
|
if (CB->isCallee(&U)) {
|
|
++NumDirectCalls;
|
|
return;
|
|
}
|
|
|
|
if (isa<ICmpInst>(U.getUser())) {
|
|
ToBeReplacedStateMachineUses.push_back(&U);
|
|
return;
|
|
}
|
|
|
|
// Find wrapper functions that represent parallel kernels.
|
|
CallInst *CI =
|
|
OpenMPOpt::getCallIfRegularCall(*U.getUser(), &KernelParallelRFI);
|
|
const unsigned int WrapperFunctionArgNo = 6;
|
|
if (!KernelParallelUse && CI &&
|
|
CI->getArgOperandNo(&U) == WrapperFunctionArgNo) {
|
|
KernelParallelUse = true;
|
|
ToBeReplacedStateMachineUses.push_back(&U);
|
|
return;
|
|
}
|
|
UnknownUse = true;
|
|
});
|
|
|
|
// Do not emit a remark if we haven't seen a __kmpc_parallel_51
|
|
// use.
|
|
if (!KernelParallelUse)
|
|
continue;
|
|
|
|
// If this ever hits, we should investigate.
|
|
// TODO: Checking the number of uses is not a necessary restriction and
|
|
// should be lifted.
|
|
if (UnknownUse || NumDirectCalls != 1 ||
|
|
ToBeReplacedStateMachineUses.size() > 2) {
|
|
auto Remark = [&](OptimizationRemarkAnalysis ORA) {
|
|
return ORA << "Parallel region is used in "
|
|
<< (UnknownUse ? "unknown" : "unexpected")
|
|
<< " ways. Will not attempt to rewrite the state machine.";
|
|
};
|
|
emitRemark<OptimizationRemarkAnalysis>(F, "OMP101", Remark);
|
|
continue;
|
|
}
|
|
|
|
// Even if we have __kmpc_parallel_51 calls, we (for now) give
|
|
// up if the function is not called from a unique kernel.
|
|
Kernel K = getUniqueKernelFor(*F);
|
|
if (!K) {
|
|
auto Remark = [&](OptimizationRemarkAnalysis ORA) {
|
|
return ORA << "Parallel region is not called from a unique kernel. "
|
|
"Will not attempt to rewrite the state machine.";
|
|
};
|
|
emitRemark<OptimizationRemarkAnalysis>(F, "OMP102", Remark);
|
|
continue;
|
|
}
|
|
|
|
// We now know F is a parallel body function called only from the kernel K.
|
|
// We also identified the state machine uses in which we replace the
|
|
// function pointer by a new global symbol for identification purposes. This
|
|
// ensures only direct calls to the function are left.
|
|
|
|
Module &M = *F->getParent();
|
|
Type *Int8Ty = Type::getInt8Ty(M.getContext());
|
|
|
|
auto *ID = new GlobalVariable(
|
|
M, Int8Ty, /* isConstant */ true, GlobalValue::PrivateLinkage,
|
|
UndefValue::get(Int8Ty), F->getName() + ".ID");
|
|
|
|
for (Use *U : ToBeReplacedStateMachineUses)
|
|
U->set(ConstantExpr::getPointerBitCastOrAddrSpaceCast(
|
|
ID, U->get()->getType()));
|
|
|
|
++NumOpenMPParallelRegionsReplacedInGPUStateMachine;
|
|
|
|
Changed = true;
|
|
}
|
|
|
|
return Changed;
|
|
}
|
|
|
|
/// Abstract Attribute for tracking ICV values.
|
|
struct AAICVTracker : public StateWrapper<BooleanState, AbstractAttribute> {
|
|
using Base = StateWrapper<BooleanState, AbstractAttribute>;
|
|
AAICVTracker(const IRPosition &IRP, Attributor &A) : Base(IRP) {}
|
|
|
|
void initialize(Attributor &A) override {
|
|
Function *F = getAnchorScope();
|
|
if (!F || !A.isFunctionIPOAmendable(*F))
|
|
indicatePessimisticFixpoint();
|
|
}
|
|
|
|
/// Returns true if value is assumed to be tracked.
|
|
bool isAssumedTracked() const { return getAssumed(); }
|
|
|
|
/// Returns true if value is known to be tracked.
|
|
bool isKnownTracked() const { return getAssumed(); }
|
|
|
|
/// Create an abstract attribute biew for the position \p IRP.
|
|
static AAICVTracker &createForPosition(const IRPosition &IRP, Attributor &A);
|
|
|
|
/// Return the value with which \p I can be replaced for specific \p ICV.
|
|
virtual Optional<Value *> getReplacementValue(InternalControlVar ICV,
|
|
const Instruction *I,
|
|
Attributor &A) const {
|
|
return None;
|
|
}
|
|
|
|
/// Return an assumed unique ICV value if a single candidate is found. If
|
|
/// there cannot be one, return a nullptr. If it is not clear yet, return the
|
|
/// Optional::NoneType.
|
|
virtual Optional<Value *>
|
|
getUniqueReplacementValue(InternalControlVar ICV) const = 0;
|
|
|
|
// Currently only nthreads is being tracked.
|
|
// this array will only grow with time.
|
|
InternalControlVar TrackableICVs[1] = {ICV_nthreads};
|
|
|
|
/// See AbstractAttribute::getName()
|
|
const std::string getName() const override { return "AAICVTracker"; }
|
|
|
|
/// See AbstractAttribute::getIdAddr()
|
|
const char *getIdAddr() const override { return &ID; }
|
|
|
|
/// This function should return true if the type of the \p AA is AAICVTracker
|
|
static bool classof(const AbstractAttribute *AA) {
|
|
return (AA->getIdAddr() == &ID);
|
|
}
|
|
|
|
static const char ID;
|
|
};
|
|
|
|
struct AAICVTrackerFunction : public AAICVTracker {
|
|
AAICVTrackerFunction(const IRPosition &IRP, Attributor &A)
|
|
: AAICVTracker(IRP, A) {}
|
|
|
|
// FIXME: come up with better string.
|
|
const std::string getAsStr() const override { return "ICVTrackerFunction"; }
|
|
|
|
// FIXME: come up with some stats.
|
|
void trackStatistics() const override {}
|
|
|
|
/// We don't manifest anything for this AA.
|
|
ChangeStatus manifest(Attributor &A) override {
|
|
return ChangeStatus::UNCHANGED;
|
|
}
|
|
|
|
// Map of ICV to their values at specific program point.
|
|
EnumeratedArray<DenseMap<Instruction *, Value *>, InternalControlVar,
|
|
InternalControlVar::ICV___last>
|
|
ICVReplacementValuesMap;
|
|
|
|
ChangeStatus updateImpl(Attributor &A) override {
|
|
ChangeStatus HasChanged = ChangeStatus::UNCHANGED;
|
|
|
|
Function *F = getAnchorScope();
|
|
|
|
auto &OMPInfoCache = static_cast<OMPInformationCache &>(A.getInfoCache());
|
|
|
|
for (InternalControlVar ICV : TrackableICVs) {
|
|
auto &SetterRFI = OMPInfoCache.RFIs[OMPInfoCache.ICVs[ICV].Setter];
|
|
|
|
auto &ValuesMap = ICVReplacementValuesMap[ICV];
|
|
auto TrackValues = [&](Use &U, Function &) {
|
|
CallInst *CI = OpenMPOpt::getCallIfRegularCall(U);
|
|
if (!CI)
|
|
return false;
|
|
|
|
// FIXME: handle setters with more that 1 arguments.
|
|
/// Track new value.
|
|
if (ValuesMap.insert(std::make_pair(CI, CI->getArgOperand(0))).second)
|
|
HasChanged = ChangeStatus::CHANGED;
|
|
|
|
return false;
|
|
};
|
|
|
|
auto CallCheck = [&](Instruction &I) {
|
|
Optional<Value *> ReplVal = getValueForCall(A, &I, ICV);
|
|
if (ReplVal.hasValue() &&
|
|
ValuesMap.insert(std::make_pair(&I, *ReplVal)).second)
|
|
HasChanged = ChangeStatus::CHANGED;
|
|
|
|
return true;
|
|
};
|
|
|
|
// Track all changes of an ICV.
|
|
SetterRFI.foreachUse(TrackValues, F);
|
|
|
|
bool UsedAssumedInformation = false;
|
|
A.checkForAllInstructions(CallCheck, *this, {Instruction::Call},
|
|
UsedAssumedInformation,
|
|
/* CheckBBLivenessOnly */ true);
|
|
|
|
/// TODO: Figure out a way to avoid adding entry in
|
|
/// ICVReplacementValuesMap
|
|
Instruction *Entry = &F->getEntryBlock().front();
|
|
if (HasChanged == ChangeStatus::CHANGED && !ValuesMap.count(Entry))
|
|
ValuesMap.insert(std::make_pair(Entry, nullptr));
|
|
}
|
|
|
|
return HasChanged;
|
|
}
|
|
|
|
/// Hepler to check if \p I is a call and get the value for it if it is
|
|
/// unique.
|
|
Optional<Value *> getValueForCall(Attributor &A, const Instruction *I,
|
|
InternalControlVar &ICV) const {
|
|
|
|
const auto *CB = dyn_cast<CallBase>(I);
|
|
if (!CB || CB->hasFnAttr("no_openmp") ||
|
|
CB->hasFnAttr("no_openmp_routines"))
|
|
return None;
|
|
|
|
auto &OMPInfoCache = static_cast<OMPInformationCache &>(A.getInfoCache());
|
|
auto &GetterRFI = OMPInfoCache.RFIs[OMPInfoCache.ICVs[ICV].Getter];
|
|
auto &SetterRFI = OMPInfoCache.RFIs[OMPInfoCache.ICVs[ICV].Setter];
|
|
Function *CalledFunction = CB->getCalledFunction();
|
|
|
|
// Indirect call, assume ICV changes.
|
|
if (CalledFunction == nullptr)
|
|
return nullptr;
|
|
if (CalledFunction == GetterRFI.Declaration)
|
|
return None;
|
|
if (CalledFunction == SetterRFI.Declaration) {
|
|
if (ICVReplacementValuesMap[ICV].count(I))
|
|
return ICVReplacementValuesMap[ICV].lookup(I);
|
|
|
|
return nullptr;
|
|
}
|
|
|
|
// Since we don't know, assume it changes the ICV.
|
|
if (CalledFunction->isDeclaration())
|
|
return nullptr;
|
|
|
|
const auto &ICVTrackingAA = A.getAAFor<AAICVTracker>(
|
|
*this, IRPosition::callsite_returned(*CB), DepClassTy::REQUIRED);
|
|
|
|
if (ICVTrackingAA.isAssumedTracked())
|
|
return ICVTrackingAA.getUniqueReplacementValue(ICV);
|
|
|
|
// If we don't know, assume it changes.
|
|
return nullptr;
|
|
}
|
|
|
|
// We don't check unique value for a function, so return None.
|
|
Optional<Value *>
|
|
getUniqueReplacementValue(InternalControlVar ICV) const override {
|
|
return None;
|
|
}
|
|
|
|
/// Return the value with which \p I can be replaced for specific \p ICV.
|
|
Optional<Value *> getReplacementValue(InternalControlVar ICV,
|
|
const Instruction *I,
|
|
Attributor &A) const override {
|
|
const auto &ValuesMap = ICVReplacementValuesMap[ICV];
|
|
if (ValuesMap.count(I))
|
|
return ValuesMap.lookup(I);
|
|
|
|
SmallVector<const Instruction *, 16> Worklist;
|
|
SmallPtrSet<const Instruction *, 16> Visited;
|
|
Worklist.push_back(I);
|
|
|
|
Optional<Value *> ReplVal;
|
|
|
|
while (!Worklist.empty()) {
|
|
const Instruction *CurrInst = Worklist.pop_back_val();
|
|
if (!Visited.insert(CurrInst).second)
|
|
continue;
|
|
|
|
const BasicBlock *CurrBB = CurrInst->getParent();
|
|
|
|
// Go up and look for all potential setters/calls that might change the
|
|
// ICV.
|
|
while ((CurrInst = CurrInst->getPrevNode())) {
|
|
if (ValuesMap.count(CurrInst)) {
|
|
Optional<Value *> NewReplVal = ValuesMap.lookup(CurrInst);
|
|
// Unknown value, track new.
|
|
if (!ReplVal.hasValue()) {
|
|
ReplVal = NewReplVal;
|
|
break;
|
|
}
|
|
|
|
// If we found a new value, we can't know the icv value anymore.
|
|
if (NewReplVal.hasValue())
|
|
if (ReplVal != NewReplVal)
|
|
return nullptr;
|
|
|
|
break;
|
|
}
|
|
|
|
Optional<Value *> NewReplVal = getValueForCall(A, CurrInst, ICV);
|
|
if (!NewReplVal.hasValue())
|
|
continue;
|
|
|
|
// Unknown value, track new.
|
|
if (!ReplVal.hasValue()) {
|
|
ReplVal = NewReplVal;
|
|
break;
|
|
}
|
|
|
|
// if (NewReplVal.hasValue())
|
|
// We found a new value, we can't know the icv value anymore.
|
|
if (ReplVal != NewReplVal)
|
|
return nullptr;
|
|
}
|
|
|
|
// If we are in the same BB and we have a value, we are done.
|
|
if (CurrBB == I->getParent() && ReplVal.hasValue())
|
|
return ReplVal;
|
|
|
|
// Go through all predecessors and add terminators for analysis.
|
|
for (const BasicBlock *Pred : predecessors(CurrBB))
|
|
if (const Instruction *Terminator = Pred->getTerminator())
|
|
Worklist.push_back(Terminator);
|
|
}
|
|
|
|
return ReplVal;
|
|
}
|
|
};
|
|
|
|
struct AAICVTrackerFunctionReturned : AAICVTracker {
|
|
AAICVTrackerFunctionReturned(const IRPosition &IRP, Attributor &A)
|
|
: AAICVTracker(IRP, A) {}
|
|
|
|
// FIXME: come up with better string.
|
|
const std::string getAsStr() const override {
|
|
return "ICVTrackerFunctionReturned";
|
|
}
|
|
|
|
// FIXME: come up with some stats.
|
|
void trackStatistics() const override {}
|
|
|
|
/// We don't manifest anything for this AA.
|
|
ChangeStatus manifest(Attributor &A) override {
|
|
return ChangeStatus::UNCHANGED;
|
|
}
|
|
|
|
// Map of ICV to their values at specific program point.
|
|
EnumeratedArray<Optional<Value *>, InternalControlVar,
|
|
InternalControlVar::ICV___last>
|
|
ICVReplacementValuesMap;
|
|
|
|
/// Return the value with which \p I can be replaced for specific \p ICV.
|
|
Optional<Value *>
|
|
getUniqueReplacementValue(InternalControlVar ICV) const override {
|
|
return ICVReplacementValuesMap[ICV];
|
|
}
|
|
|
|
ChangeStatus updateImpl(Attributor &A) override {
|
|
ChangeStatus Changed = ChangeStatus::UNCHANGED;
|
|
const auto &ICVTrackingAA = A.getAAFor<AAICVTracker>(
|
|
*this, IRPosition::function(*getAnchorScope()), DepClassTy::REQUIRED);
|
|
|
|
if (!ICVTrackingAA.isAssumedTracked())
|
|
return indicatePessimisticFixpoint();
|
|
|
|
for (InternalControlVar ICV : TrackableICVs) {
|
|
Optional<Value *> &ReplVal = ICVReplacementValuesMap[ICV];
|
|
Optional<Value *> UniqueICVValue;
|
|
|
|
auto CheckReturnInst = [&](Instruction &I) {
|
|
Optional<Value *> NewReplVal =
|
|
ICVTrackingAA.getReplacementValue(ICV, &I, A);
|
|
|
|
// If we found a second ICV value there is no unique returned value.
|
|
if (UniqueICVValue.hasValue() && UniqueICVValue != NewReplVal)
|
|
return false;
|
|
|
|
UniqueICVValue = NewReplVal;
|
|
|
|
return true;
|
|
};
|
|
|
|
bool UsedAssumedInformation = false;
|
|
if (!A.checkForAllInstructions(CheckReturnInst, *this, {Instruction::Ret},
|
|
UsedAssumedInformation,
|
|
/* CheckBBLivenessOnly */ true))
|
|
UniqueICVValue = nullptr;
|
|
|
|
if (UniqueICVValue == ReplVal)
|
|
continue;
|
|
|
|
ReplVal = UniqueICVValue;
|
|
Changed = ChangeStatus::CHANGED;
|
|
}
|
|
|
|
return Changed;
|
|
}
|
|
};
|
|
|
|
struct AAICVTrackerCallSite : AAICVTracker {
|
|
AAICVTrackerCallSite(const IRPosition &IRP, Attributor &A)
|
|
: AAICVTracker(IRP, A) {}
|
|
|
|
void initialize(Attributor &A) override {
|
|
Function *F = getAnchorScope();
|
|
if (!F || !A.isFunctionIPOAmendable(*F))
|
|
indicatePessimisticFixpoint();
|
|
|
|
// We only initialize this AA for getters, so we need to know which ICV it
|
|
// gets.
|
|
auto &OMPInfoCache = static_cast<OMPInformationCache &>(A.getInfoCache());
|
|
for (InternalControlVar ICV : TrackableICVs) {
|
|
auto ICVInfo = OMPInfoCache.ICVs[ICV];
|
|
auto &Getter = OMPInfoCache.RFIs[ICVInfo.Getter];
|
|
if (Getter.Declaration == getAssociatedFunction()) {
|
|
AssociatedICV = ICVInfo.Kind;
|
|
return;
|
|
}
|
|
}
|
|
|
|
/// Unknown ICV.
|
|
indicatePessimisticFixpoint();
|
|
}
|
|
|
|
ChangeStatus manifest(Attributor &A) override {
|
|
if (!ReplVal.hasValue() || !ReplVal.getValue())
|
|
return ChangeStatus::UNCHANGED;
|
|
|
|
A.changeValueAfterManifest(*getCtxI(), **ReplVal);
|
|
A.deleteAfterManifest(*getCtxI());
|
|
|
|
return ChangeStatus::CHANGED;
|
|
}
|
|
|
|
// FIXME: come up with better string.
|
|
const std::string getAsStr() const override { return "ICVTrackerCallSite"; }
|
|
|
|
// FIXME: come up with some stats.
|
|
void trackStatistics() const override {}
|
|
|
|
InternalControlVar AssociatedICV;
|
|
Optional<Value *> ReplVal;
|
|
|
|
ChangeStatus updateImpl(Attributor &A) override {
|
|
const auto &ICVTrackingAA = A.getAAFor<AAICVTracker>(
|
|
*this, IRPosition::function(*getAnchorScope()), DepClassTy::REQUIRED);
|
|
|
|
// We don't have any information, so we assume it changes the ICV.
|
|
if (!ICVTrackingAA.isAssumedTracked())
|
|
return indicatePessimisticFixpoint();
|
|
|
|
Optional<Value *> NewReplVal =
|
|
ICVTrackingAA.getReplacementValue(AssociatedICV, getCtxI(), A);
|
|
|
|
if (ReplVal == NewReplVal)
|
|
return ChangeStatus::UNCHANGED;
|
|
|
|
ReplVal = NewReplVal;
|
|
return ChangeStatus::CHANGED;
|
|
}
|
|
|
|
// Return the value with which associated value can be replaced for specific
|
|
// \p ICV.
|
|
Optional<Value *>
|
|
getUniqueReplacementValue(InternalControlVar ICV) const override {
|
|
return ReplVal;
|
|
}
|
|
};
|
|
|
|
struct AAICVTrackerCallSiteReturned : AAICVTracker {
|
|
AAICVTrackerCallSiteReturned(const IRPosition &IRP, Attributor &A)
|
|
: AAICVTracker(IRP, A) {}
|
|
|
|
// FIXME: come up with better string.
|
|
const std::string getAsStr() const override {
|
|
return "ICVTrackerCallSiteReturned";
|
|
}
|
|
|
|
// FIXME: come up with some stats.
|
|
void trackStatistics() const override {}
|
|
|
|
/// We don't manifest anything for this AA.
|
|
ChangeStatus manifest(Attributor &A) override {
|
|
return ChangeStatus::UNCHANGED;
|
|
}
|
|
|
|
// Map of ICV to their values at specific program point.
|
|
EnumeratedArray<Optional<Value *>, InternalControlVar,
|
|
InternalControlVar::ICV___last>
|
|
ICVReplacementValuesMap;
|
|
|
|
/// Return the value with which associated value can be replaced for specific
|
|
/// \p ICV.
|
|
Optional<Value *>
|
|
getUniqueReplacementValue(InternalControlVar ICV) const override {
|
|
return ICVReplacementValuesMap[ICV];
|
|
}
|
|
|
|
ChangeStatus updateImpl(Attributor &A) override {
|
|
ChangeStatus Changed = ChangeStatus::UNCHANGED;
|
|
const auto &ICVTrackingAA = A.getAAFor<AAICVTracker>(
|
|
*this, IRPosition::returned(*getAssociatedFunction()),
|
|
DepClassTy::REQUIRED);
|
|
|
|
// We don't have any information, so we assume it changes the ICV.
|
|
if (!ICVTrackingAA.isAssumedTracked())
|
|
return indicatePessimisticFixpoint();
|
|
|
|
for (InternalControlVar ICV : TrackableICVs) {
|
|
Optional<Value *> &ReplVal = ICVReplacementValuesMap[ICV];
|
|
Optional<Value *> NewReplVal =
|
|
ICVTrackingAA.getUniqueReplacementValue(ICV);
|
|
|
|
if (ReplVal == NewReplVal)
|
|
continue;
|
|
|
|
ReplVal = NewReplVal;
|
|
Changed = ChangeStatus::CHANGED;
|
|
}
|
|
return Changed;
|
|
}
|
|
};
|
|
|
|
struct AAExecutionDomainFunction : public AAExecutionDomain {
|
|
AAExecutionDomainFunction(const IRPosition &IRP, Attributor &A)
|
|
: AAExecutionDomain(IRP, A) {}
|
|
|
|
const std::string getAsStr() const override {
|
|
return "[AAExecutionDomain] " + std::to_string(SingleThreadedBBs.size()) +
|
|
"/" + std::to_string(NumBBs) + " BBs thread 0 only.";
|
|
}
|
|
|
|
/// See AbstractAttribute::trackStatistics().
|
|
void trackStatistics() const override {}
|
|
|
|
void initialize(Attributor &A) override {
|
|
Function *F = getAnchorScope();
|
|
for (const auto &BB : *F)
|
|
SingleThreadedBBs.insert(&BB);
|
|
NumBBs = SingleThreadedBBs.size();
|
|
}
|
|
|
|
ChangeStatus manifest(Attributor &A) override {
|
|
LLVM_DEBUG({
|
|
for (const BasicBlock *BB : SingleThreadedBBs)
|
|
dbgs() << TAG << " Basic block @" << getAnchorScope()->getName() << " "
|
|
<< BB->getName() << " is executed by a single thread.\n";
|
|
});
|
|
return ChangeStatus::UNCHANGED;
|
|
}
|
|
|
|
ChangeStatus updateImpl(Attributor &A) override;
|
|
|
|
/// Check if an instruction is executed by a single thread.
|
|
bool isExecutedByInitialThreadOnly(const Instruction &I) const override {
|
|
return isExecutedByInitialThreadOnly(*I.getParent());
|
|
}
|
|
|
|
bool isExecutedByInitialThreadOnly(const BasicBlock &BB) const override {
|
|
return isValidState() && SingleThreadedBBs.contains(&BB);
|
|
}
|
|
|
|
/// Set of basic blocks that are executed by a single thread.
|
|
DenseSet<const BasicBlock *> SingleThreadedBBs;
|
|
|
|
/// Total number of basic blocks in this function.
|
|
long unsigned NumBBs;
|
|
};
|
|
|
|
ChangeStatus AAExecutionDomainFunction::updateImpl(Attributor &A) {
|
|
Function *F = getAnchorScope();
|
|
ReversePostOrderTraversal<Function *> RPOT(F);
|
|
auto NumSingleThreadedBBs = SingleThreadedBBs.size();
|
|
|
|
bool AllCallSitesKnown;
|
|
auto PredForCallSite = [&](AbstractCallSite ACS) {
|
|
const auto &ExecutionDomainAA = A.getAAFor<AAExecutionDomain>(
|
|
*this, IRPosition::function(*ACS.getInstruction()->getFunction()),
|
|
DepClassTy::REQUIRED);
|
|
return ACS.isDirectCall() &&
|
|
ExecutionDomainAA.isExecutedByInitialThreadOnly(
|
|
*ACS.getInstruction());
|
|
};
|
|
|
|
if (!A.checkForAllCallSites(PredForCallSite, *this,
|
|
/* RequiresAllCallSites */ true,
|
|
AllCallSitesKnown))
|
|
SingleThreadedBBs.erase(&F->getEntryBlock());
|
|
|
|
auto &OMPInfoCache = static_cast<OMPInformationCache &>(A.getInfoCache());
|
|
auto &RFI = OMPInfoCache.RFIs[OMPRTL___kmpc_target_init];
|
|
|
|
// Check if the edge into the successor block compares the __kmpc_target_init
|
|
// result with -1. If we are in non-SPMD-mode that signals only the main
|
|
// thread will execute the edge.
|
|
auto IsInitialThreadOnly = [&](BranchInst *Edge, BasicBlock *SuccessorBB) {
|
|
if (!Edge || !Edge->isConditional())
|
|
return false;
|
|
if (Edge->getSuccessor(0) != SuccessorBB)
|
|
return false;
|
|
|
|
auto *Cmp = dyn_cast<CmpInst>(Edge->getCondition());
|
|
if (!Cmp || !Cmp->isTrueWhenEqual() || !Cmp->isEquality())
|
|
return false;
|
|
|
|
ConstantInt *C = dyn_cast<ConstantInt>(Cmp->getOperand(1));
|
|
if (!C)
|
|
return false;
|
|
|
|
// Match: -1 == __kmpc_target_init (for non-SPMD kernels only!)
|
|
if (C->isAllOnesValue()) {
|
|
auto *CB = dyn_cast<CallBase>(Cmp->getOperand(0));
|
|
CB = CB ? OpenMPOpt::getCallIfRegularCall(*CB, &RFI) : nullptr;
|
|
if (!CB)
|
|
return false;
|
|
const int InitIsSPMDArgNo = 1;
|
|
auto *IsSPMDModeCI =
|
|
dyn_cast<ConstantInt>(CB->getOperand(InitIsSPMDArgNo));
|
|
return IsSPMDModeCI && IsSPMDModeCI->isZero();
|
|
}
|
|
|
|
return false;
|
|
};
|
|
|
|
// Merge all the predecessor states into the current basic block. A basic
|
|
// block is executed by a single thread if all of its predecessors are.
|
|
auto MergePredecessorStates = [&](BasicBlock *BB) {
|
|
if (pred_begin(BB) == pred_end(BB))
|
|
return SingleThreadedBBs.contains(BB);
|
|
|
|
bool IsInitialThread = true;
|
|
for (auto PredBB = pred_begin(BB), PredEndBB = pred_end(BB);
|
|
PredBB != PredEndBB; ++PredBB) {
|
|
if (!IsInitialThreadOnly(dyn_cast<BranchInst>((*PredBB)->getTerminator()),
|
|
BB))
|
|
IsInitialThread &= SingleThreadedBBs.contains(*PredBB);
|
|
}
|
|
|
|
return IsInitialThread;
|
|
};
|
|
|
|
for (auto *BB : RPOT) {
|
|
if (!MergePredecessorStates(BB))
|
|
SingleThreadedBBs.erase(BB);
|
|
}
|
|
|
|
return (NumSingleThreadedBBs == SingleThreadedBBs.size())
|
|
? ChangeStatus::UNCHANGED
|
|
: ChangeStatus::CHANGED;
|
|
}
|
|
|
|
/// Try to replace memory allocation calls called by a single thread with a
|
|
/// static buffer of shared memory.
|
|
struct AAHeapToShared : public StateWrapper<BooleanState, AbstractAttribute> {
|
|
using Base = StateWrapper<BooleanState, AbstractAttribute>;
|
|
AAHeapToShared(const IRPosition &IRP, Attributor &A) : Base(IRP) {}
|
|
|
|
/// Create an abstract attribute view for the position \p IRP.
|
|
static AAHeapToShared &createForPosition(const IRPosition &IRP,
|
|
Attributor &A);
|
|
|
|
/// Returns true if HeapToShared conversion is assumed to be possible.
|
|
virtual bool isAssumedHeapToShared(CallBase &CB) const = 0;
|
|
|
|
/// Returns true if HeapToShared conversion is assumed and the CB is a
|
|
/// callsite to a free operation to be removed.
|
|
virtual bool isAssumedHeapToSharedRemovedFree(CallBase &CB) const = 0;
|
|
|
|
/// See AbstractAttribute::getName().
|
|
const std::string getName() const override { return "AAHeapToShared"; }
|
|
|
|
/// See AbstractAttribute::getIdAddr().
|
|
const char *getIdAddr() const override { return &ID; }
|
|
|
|
/// This function should return true if the type of the \p AA is
|
|
/// AAHeapToShared.
|
|
static bool classof(const AbstractAttribute *AA) {
|
|
return (AA->getIdAddr() == &ID);
|
|
}
|
|
|
|
/// Unique ID (due to the unique address)
|
|
static const char ID;
|
|
};
|
|
|
|
struct AAHeapToSharedFunction : public AAHeapToShared {
|
|
AAHeapToSharedFunction(const IRPosition &IRP, Attributor &A)
|
|
: AAHeapToShared(IRP, A) {}
|
|
|
|
const std::string getAsStr() const override {
|
|
return "[AAHeapToShared] " + std::to_string(MallocCalls.size()) +
|
|
" malloc calls eligible.";
|
|
}
|
|
|
|
/// See AbstractAttribute::trackStatistics().
|
|
void trackStatistics() const override {}
|
|
|
|
/// This functions finds free calls that will be removed by the
|
|
/// HeapToShared transformation.
|
|
void findPotentialRemovedFreeCalls(Attributor &A) {
|
|
auto &OMPInfoCache = static_cast<OMPInformationCache &>(A.getInfoCache());
|
|
auto &FreeRFI = OMPInfoCache.RFIs[OMPRTL___kmpc_free_shared];
|
|
|
|
PotentialRemovedFreeCalls.clear();
|
|
// Update free call users of found malloc calls.
|
|
for (CallBase *CB : MallocCalls) {
|
|
SmallVector<CallBase *, 4> FreeCalls;
|
|
for (auto *U : CB->users()) {
|
|
CallBase *C = dyn_cast<CallBase>(U);
|
|
if (C && C->getCalledFunction() == FreeRFI.Declaration)
|
|
FreeCalls.push_back(C);
|
|
}
|
|
|
|
if (FreeCalls.size() != 1)
|
|
continue;
|
|
|
|
PotentialRemovedFreeCalls.insert(FreeCalls.front());
|
|
}
|
|
}
|
|
|
|
void initialize(Attributor &A) override {
|
|
auto &OMPInfoCache = static_cast<OMPInformationCache &>(A.getInfoCache());
|
|
auto &RFI = OMPInfoCache.RFIs[OMPRTL___kmpc_alloc_shared];
|
|
|
|
for (User *U : RFI.Declaration->users())
|
|
if (CallBase *CB = dyn_cast<CallBase>(U))
|
|
MallocCalls.insert(CB);
|
|
|
|
findPotentialRemovedFreeCalls(A);
|
|
}
|
|
|
|
bool isAssumedHeapToShared(CallBase &CB) const override {
|
|
return isValidState() && MallocCalls.count(&CB);
|
|
}
|
|
|
|
bool isAssumedHeapToSharedRemovedFree(CallBase &CB) const override {
|
|
return isValidState() && PotentialRemovedFreeCalls.count(&CB);
|
|
}
|
|
|
|
ChangeStatus manifest(Attributor &A) override {
|
|
if (MallocCalls.empty())
|
|
return ChangeStatus::UNCHANGED;
|
|
|
|
auto &OMPInfoCache = static_cast<OMPInformationCache &>(A.getInfoCache());
|
|
auto &FreeCall = OMPInfoCache.RFIs[OMPRTL___kmpc_free_shared];
|
|
|
|
Function *F = getAnchorScope();
|
|
auto *HS = A.lookupAAFor<AAHeapToStack>(IRPosition::function(*F), this,
|
|
DepClassTy::OPTIONAL);
|
|
|
|
ChangeStatus Changed = ChangeStatus::UNCHANGED;
|
|
for (CallBase *CB : MallocCalls) {
|
|
// Skip replacing this if HeapToStack has already claimed it.
|
|
if (HS && HS->isAssumedHeapToStack(*CB))
|
|
continue;
|
|
|
|
// Find the unique free call to remove it.
|
|
SmallVector<CallBase *, 4> FreeCalls;
|
|
for (auto *U : CB->users()) {
|
|
CallBase *C = dyn_cast<CallBase>(U);
|
|
if (C && C->getCalledFunction() == FreeCall.Declaration)
|
|
FreeCalls.push_back(C);
|
|
}
|
|
if (FreeCalls.size() != 1)
|
|
continue;
|
|
|
|
ConstantInt *AllocSize = dyn_cast<ConstantInt>(CB->getArgOperand(0));
|
|
|
|
LLVM_DEBUG(dbgs() << TAG << "Replace globalization call in "
|
|
<< CB->getCaller()->getName() << " with "
|
|
<< AllocSize->getZExtValue()
|
|
<< " bytes of shared memory\n");
|
|
|
|
// Create a new shared memory buffer of the same size as the allocation
|
|
// and replace all the uses of the original allocation with it.
|
|
Module *M = CB->getModule();
|
|
Type *Int8Ty = Type::getInt8Ty(M->getContext());
|
|
Type *Int8ArrTy = ArrayType::get(Int8Ty, AllocSize->getZExtValue());
|
|
auto *SharedMem = new GlobalVariable(
|
|
*M, Int8ArrTy, /* IsConstant */ false, GlobalValue::InternalLinkage,
|
|
UndefValue::get(Int8ArrTy), CB->getName(), nullptr,
|
|
GlobalValue::NotThreadLocal,
|
|
static_cast<unsigned>(AddressSpace::Shared));
|
|
auto *NewBuffer =
|
|
ConstantExpr::getPointerCast(SharedMem, Int8Ty->getPointerTo());
|
|
|
|
auto Remark = [&](OptimizationRemark OR) {
|
|
return OR << "Replaced globalized variable with "
|
|
<< ore::NV("SharedMemory", AllocSize->getZExtValue())
|
|
<< ((AllocSize->getZExtValue() != 1) ? " bytes " : " byte ")
|
|
<< "of shared memory.";
|
|
};
|
|
A.emitRemark<OptimizationRemark>(CB, "OMP111", Remark);
|
|
|
|
SharedMem->setAlignment(MaybeAlign(32));
|
|
|
|
A.changeValueAfterManifest(*CB, *NewBuffer);
|
|
A.deleteAfterManifest(*CB);
|
|
A.deleteAfterManifest(*FreeCalls.front());
|
|
|
|
NumBytesMovedToSharedMemory += AllocSize->getZExtValue();
|
|
Changed = ChangeStatus::CHANGED;
|
|
}
|
|
|
|
return Changed;
|
|
}
|
|
|
|
ChangeStatus updateImpl(Attributor &A) override {
|
|
auto &OMPInfoCache = static_cast<OMPInformationCache &>(A.getInfoCache());
|
|
auto &RFI = OMPInfoCache.RFIs[OMPRTL___kmpc_alloc_shared];
|
|
Function *F = getAnchorScope();
|
|
|
|
auto NumMallocCalls = MallocCalls.size();
|
|
|
|
// Only consider malloc calls executed by a single thread with a constant.
|
|
for (User *U : RFI.Declaration->users()) {
|
|
const auto &ED = A.getAAFor<AAExecutionDomain>(
|
|
*this, IRPosition::function(*F), DepClassTy::REQUIRED);
|
|
if (CallBase *CB = dyn_cast<CallBase>(U))
|
|
if (!dyn_cast<ConstantInt>(CB->getArgOperand(0)) ||
|
|
!ED.isExecutedByInitialThreadOnly(*CB))
|
|
MallocCalls.erase(CB);
|
|
}
|
|
|
|
findPotentialRemovedFreeCalls(A);
|
|
|
|
if (NumMallocCalls != MallocCalls.size())
|
|
return ChangeStatus::CHANGED;
|
|
|
|
return ChangeStatus::UNCHANGED;
|
|
}
|
|
|
|
/// Collection of all malloc calls in a function.
|
|
SmallPtrSet<CallBase *, 4> MallocCalls;
|
|
/// Collection of potentially removed free calls in a function.
|
|
SmallPtrSet<CallBase *, 4> PotentialRemovedFreeCalls;
|
|
};
|
|
|
|
struct AAKernelInfo : public StateWrapper<KernelInfoState, AbstractAttribute> {
|
|
using Base = StateWrapper<KernelInfoState, AbstractAttribute>;
|
|
AAKernelInfo(const IRPosition &IRP, Attributor &A) : Base(IRP) {}
|
|
|
|
/// Statistics are tracked as part of manifest for now.
|
|
void trackStatistics() const override {}
|
|
|
|
/// See AbstractAttribute::getAsStr()
|
|
const std::string getAsStr() const override {
|
|
if (!isValidState())
|
|
return "<invalid>";
|
|
return std::string(SPMDCompatibilityTracker.isAssumed() ? "SPMD"
|
|
: "generic") +
|
|
std::string(SPMDCompatibilityTracker.isAtFixpoint() ? " [FIX]"
|
|
: "") +
|
|
std::string(" #PRs: ") +
|
|
std::to_string(ReachedKnownParallelRegions.size()) +
|
|
", #Unknown PRs: " +
|
|
std::to_string(ReachedUnknownParallelRegions.size());
|
|
}
|
|
|
|
/// Create an abstract attribute biew for the position \p IRP.
|
|
static AAKernelInfo &createForPosition(const IRPosition &IRP, Attributor &A);
|
|
|
|
/// See AbstractAttribute::getName()
|
|
const std::string getName() const override { return "AAKernelInfo"; }
|
|
|
|
/// See AbstractAttribute::getIdAddr()
|
|
const char *getIdAddr() const override { return &ID; }
|
|
|
|
/// This function should return true if the type of the \p AA is AAKernelInfo
|
|
static bool classof(const AbstractAttribute *AA) {
|
|
return (AA->getIdAddr() == &ID);
|
|
}
|
|
|
|
static const char ID;
|
|
};
|
|
|
|
/// The function kernel info abstract attribute, basically, what can we say
|
|
/// about a function with regards to the KernelInfoState.
|
|
struct AAKernelInfoFunction : AAKernelInfo {
|
|
AAKernelInfoFunction(const IRPosition &IRP, Attributor &A)
|
|
: AAKernelInfo(IRP, A) {}
|
|
|
|
/// See AbstractAttribute::initialize(...).
|
|
void initialize(Attributor &A) override {
|
|
// This is a high-level transform that might change the constant arguments
|
|
// of the init and dinit calls. We need to tell the Attributor about this
|
|
// to avoid other parts using the current constant value for simpliication.
|
|
auto &OMPInfoCache = static_cast<OMPInformationCache &>(A.getInfoCache());
|
|
|
|
Function *Fn = getAnchorScope();
|
|
if (!OMPInfoCache.Kernels.count(Fn))
|
|
return;
|
|
|
|
// Add itself to the reaching kernel and set IsKernelEntry.
|
|
ReachingKernelEntries.insert(Fn);
|
|
IsKernelEntry = true;
|
|
|
|
OMPInformationCache::RuntimeFunctionInfo &InitRFI =
|
|
OMPInfoCache.RFIs[OMPRTL___kmpc_target_init];
|
|
OMPInformationCache::RuntimeFunctionInfo &DeinitRFI =
|
|
OMPInfoCache.RFIs[OMPRTL___kmpc_target_deinit];
|
|
|
|
// For kernels we perform more initialization work, first we find the init
|
|
// and deinit calls.
|
|
auto StoreCallBase = [](Use &U,
|
|
OMPInformationCache::RuntimeFunctionInfo &RFI,
|
|
CallBase *&Storage) {
|
|
CallBase *CB = OpenMPOpt::getCallIfRegularCall(U, &RFI);
|
|
assert(CB &&
|
|
"Unexpected use of __kmpc_target_init or __kmpc_target_deinit!");
|
|
assert(!Storage &&
|
|
"Multiple uses of __kmpc_target_init or __kmpc_target_deinit!");
|
|
Storage = CB;
|
|
return false;
|
|
};
|
|
InitRFI.foreachUse(
|
|
[&](Use &U, Function &) {
|
|
StoreCallBase(U, InitRFI, KernelInitCB);
|
|
return false;
|
|
},
|
|
Fn);
|
|
DeinitRFI.foreachUse(
|
|
[&](Use &U, Function &) {
|
|
StoreCallBase(U, DeinitRFI, KernelDeinitCB);
|
|
return false;
|
|
},
|
|
Fn);
|
|
|
|
assert((KernelInitCB && KernelDeinitCB) &&
|
|
"Kernel without __kmpc_target_init or __kmpc_target_deinit!");
|
|
|
|
// For kernels we might need to initialize/finalize the IsSPMD state and
|
|
// we need to register a simplification callback so that the Attributor
|
|
// knows the constant arguments to __kmpc_target_init and
|
|
// __kmpc_target_deinit might actually change.
|
|
|
|
Attributor::SimplifictionCallbackTy StateMachineSimplifyCB =
|
|
[&](const IRPosition &IRP, const AbstractAttribute *AA,
|
|
bool &UsedAssumedInformation) -> Optional<Value *> {
|
|
// IRP represents the "use generic state machine" argument of an
|
|
// __kmpc_target_init call. We will answer this one with the internal
|
|
// state. As long as we are not in an invalid state, we will create a
|
|
// custom state machine so the value should be a `i1 false`. If we are
|
|
// in an invalid state, we won't change the value that is in the IR.
|
|
if (!isValidState())
|
|
return nullptr;
|
|
if (AA)
|
|
A.recordDependence(*this, *AA, DepClassTy::OPTIONAL);
|
|
UsedAssumedInformation = !isAtFixpoint();
|
|
auto *FalseVal =
|
|
ConstantInt::getBool(IRP.getAnchorValue().getContext(), 0);
|
|
return FalseVal;
|
|
};
|
|
|
|
Attributor::SimplifictionCallbackTy IsSPMDModeSimplifyCB =
|
|
[&](const IRPosition &IRP, const AbstractAttribute *AA,
|
|
bool &UsedAssumedInformation) -> Optional<Value *> {
|
|
// IRP represents the "SPMDCompatibilityTracker" argument of an
|
|
// __kmpc_target_init or
|
|
// __kmpc_target_deinit call. We will answer this one with the internal
|
|
// state.
|
|
if (!SPMDCompatibilityTracker.isValidState())
|
|
return nullptr;
|
|
if (!SPMDCompatibilityTracker.isAtFixpoint()) {
|
|
if (AA)
|
|
A.recordDependence(*this, *AA, DepClassTy::OPTIONAL);
|
|
UsedAssumedInformation = true;
|
|
} else {
|
|
UsedAssumedInformation = false;
|
|
}
|
|
auto *Val = ConstantInt::getBool(IRP.getAnchorValue().getContext(),
|
|
SPMDCompatibilityTracker.isAssumed());
|
|
return Val;
|
|
};
|
|
|
|
Attributor::SimplifictionCallbackTy IsGenericModeSimplifyCB =
|
|
[&](const IRPosition &IRP, const AbstractAttribute *AA,
|
|
bool &UsedAssumedInformation) -> Optional<Value *> {
|
|
// IRP represents the "RequiresFullRuntime" argument of an
|
|
// __kmpc_target_init or __kmpc_target_deinit call. We will answer this
|
|
// one with the internal state of the SPMDCompatibilityTracker, so if
|
|
// generic then true, if SPMD then false.
|
|
if (!SPMDCompatibilityTracker.isValidState())
|
|
return nullptr;
|
|
if (!SPMDCompatibilityTracker.isAtFixpoint()) {
|
|
if (AA)
|
|
A.recordDependence(*this, *AA, DepClassTy::OPTIONAL);
|
|
UsedAssumedInformation = true;
|
|
} else {
|
|
UsedAssumedInformation = false;
|
|
}
|
|
auto *Val = ConstantInt::getBool(IRP.getAnchorValue().getContext(),
|
|
!SPMDCompatibilityTracker.isAssumed());
|
|
return Val;
|
|
};
|
|
|
|
constexpr const int InitIsSPMDArgNo = 1;
|
|
constexpr const int DeinitIsSPMDArgNo = 1;
|
|
constexpr const int InitUseStateMachineArgNo = 2;
|
|
constexpr const int InitRequiresFullRuntimeArgNo = 3;
|
|
constexpr const int DeinitRequiresFullRuntimeArgNo = 2;
|
|
A.registerSimplificationCallback(
|
|
IRPosition::callsite_argument(*KernelInitCB, InitUseStateMachineArgNo),
|
|
StateMachineSimplifyCB);
|
|
A.registerSimplificationCallback(
|
|
IRPosition::callsite_argument(*KernelInitCB, InitIsSPMDArgNo),
|
|
IsSPMDModeSimplifyCB);
|
|
A.registerSimplificationCallback(
|
|
IRPosition::callsite_argument(*KernelDeinitCB, DeinitIsSPMDArgNo),
|
|
IsSPMDModeSimplifyCB);
|
|
A.registerSimplificationCallback(
|
|
IRPosition::callsite_argument(*KernelInitCB,
|
|
InitRequiresFullRuntimeArgNo),
|
|
IsGenericModeSimplifyCB);
|
|
A.registerSimplificationCallback(
|
|
IRPosition::callsite_argument(*KernelDeinitCB,
|
|
DeinitRequiresFullRuntimeArgNo),
|
|
IsGenericModeSimplifyCB);
|
|
|
|
// Check if we know we are in SPMD-mode already.
|
|
ConstantInt *IsSPMDArg =
|
|
dyn_cast<ConstantInt>(KernelInitCB->getArgOperand(InitIsSPMDArgNo));
|
|
if (IsSPMDArg && !IsSPMDArg->isZero())
|
|
SPMDCompatibilityTracker.indicateOptimisticFixpoint();
|
|
}
|
|
|
|
/// Modify the IR based on the KernelInfoState as the fixpoint iteration is
|
|
/// finished now.
|
|
ChangeStatus manifest(Attributor &A) override {
|
|
// If we are not looking at a kernel with __kmpc_target_init and
|
|
// __kmpc_target_deinit call we cannot actually manifest the information.
|
|
if (!KernelInitCB || !KernelDeinitCB)
|
|
return ChangeStatus::UNCHANGED;
|
|
|
|
// Known SPMD-mode kernels need no manifest changes.
|
|
if (SPMDCompatibilityTracker.isKnown())
|
|
return ChangeStatus::UNCHANGED;
|
|
|
|
// If we can we change the execution mode to SPMD-mode otherwise we build a
|
|
// custom state machine.
|
|
if (!changeToSPMDMode(A))
|
|
buildCustomStateMachine(A);
|
|
|
|
return ChangeStatus::CHANGED;
|
|
}
|
|
|
|
bool changeToSPMDMode(Attributor &A) {
|
|
auto &OMPInfoCache = static_cast<OMPInformationCache &>(A.getInfoCache());
|
|
|
|
if (!SPMDCompatibilityTracker.isAssumed()) {
|
|
for (Instruction *NonCompatibleI : SPMDCompatibilityTracker) {
|
|
if (!NonCompatibleI)
|
|
continue;
|
|
|
|
// Skip diagnostics on calls to known OpenMP runtime functions for now.
|
|
if (auto *CB = dyn_cast<CallBase>(NonCompatibleI))
|
|
if (OMPInfoCache.RTLFunctions.contains(CB->getCalledFunction()))
|
|
continue;
|
|
|
|
auto Remark = [&](OptimizationRemarkAnalysis ORA) {
|
|
ORA << "Value has potential side effects preventing SPMD-mode "
|
|
"execution";
|
|
if (isa<CallBase>(NonCompatibleI)) {
|
|
ORA << ". Add `__attribute__((assume(\"ompx_spmd_amenable\")))` to "
|
|
"the called function to override";
|
|
}
|
|
return ORA << ".";
|
|
};
|
|
A.emitRemark<OptimizationRemarkAnalysis>(NonCompatibleI, "OMP121",
|
|
Remark);
|
|
|
|
LLVM_DEBUG(dbgs() << TAG << "SPMD-incompatible side-effect: "
|
|
<< *NonCompatibleI << "\n");
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
// Adjust the global exec mode flag that tells the runtime what mode this
|
|
// kernel is executed in.
|
|
Function *Kernel = getAnchorScope();
|
|
GlobalVariable *ExecMode = Kernel->getParent()->getGlobalVariable(
|
|
(Kernel->getName() + "_exec_mode").str());
|
|
assert(ExecMode && "Kernel without exec mode?");
|
|
assert(ExecMode->getInitializer() &&
|
|
ExecMode->getInitializer()->isOneValue() &&
|
|
"Initially non-SPMD kernel has SPMD exec mode!");
|
|
|
|
// Set the global exec mode flag to indicate SPMD-Generic mode.
|
|
constexpr int SPMDGeneric = 2;
|
|
if (!ExecMode->getInitializer()->isZeroValue())
|
|
ExecMode->setInitializer(
|
|
ConstantInt::get(ExecMode->getInitializer()->getType(), SPMDGeneric));
|
|
|
|
// Next rewrite the init and deinit calls to indicate we use SPMD-mode now.
|
|
const int InitIsSPMDArgNo = 1;
|
|
const int DeinitIsSPMDArgNo = 1;
|
|
const int InitUseStateMachineArgNo = 2;
|
|
const int InitRequiresFullRuntimeArgNo = 3;
|
|
const int DeinitRequiresFullRuntimeArgNo = 2;
|
|
|
|
auto &Ctx = getAnchorValue().getContext();
|
|
A.changeUseAfterManifest(KernelInitCB->getArgOperandUse(InitIsSPMDArgNo),
|
|
*ConstantInt::getBool(Ctx, 1));
|
|
A.changeUseAfterManifest(
|
|
KernelInitCB->getArgOperandUse(InitUseStateMachineArgNo),
|
|
*ConstantInt::getBool(Ctx, 0));
|
|
A.changeUseAfterManifest(
|
|
KernelDeinitCB->getArgOperandUse(DeinitIsSPMDArgNo),
|
|
*ConstantInt::getBool(Ctx, 1));
|
|
A.changeUseAfterManifest(
|
|
KernelInitCB->getArgOperandUse(InitRequiresFullRuntimeArgNo),
|
|
*ConstantInt::getBool(Ctx, 0));
|
|
A.changeUseAfterManifest(
|
|
KernelDeinitCB->getArgOperandUse(DeinitRequiresFullRuntimeArgNo),
|
|
*ConstantInt::getBool(Ctx, 0));
|
|
|
|
++NumOpenMPTargetRegionKernelsSPMD;
|
|
|
|
auto Remark = [&](OptimizationRemark OR) {
|
|
return OR << "Transformed generic-mode kernel to SPMD-mode.";
|
|
};
|
|
A.emitRemark<OptimizationRemark>(KernelInitCB, "OMP120", Remark);
|
|
return true;
|
|
};
|
|
|
|
ChangeStatus buildCustomStateMachine(Attributor &A) {
|
|
assert(ReachedKnownParallelRegions.isValidState() &&
|
|
"Custom state machine with invalid parallel region states?");
|
|
|
|
const int InitIsSPMDArgNo = 1;
|
|
const int InitUseStateMachineArgNo = 2;
|
|
|
|
// Check if the current configuration is non-SPMD and generic state machine.
|
|
// If we already have SPMD mode or a custom state machine we do not need to
|
|
// go any further. If it is anything but a constant something is weird and
|
|
// we give up.
|
|
ConstantInt *UseStateMachine = dyn_cast<ConstantInt>(
|
|
KernelInitCB->getArgOperand(InitUseStateMachineArgNo));
|
|
ConstantInt *IsSPMD =
|
|
dyn_cast<ConstantInt>(KernelInitCB->getArgOperand(InitIsSPMDArgNo));
|
|
|
|
// If we are stuck with generic mode, try to create a custom device (=GPU)
|
|
// state machine which is specialized for the parallel regions that are
|
|
// reachable by the kernel.
|
|
if (!UseStateMachine || UseStateMachine->isZero() || !IsSPMD ||
|
|
!IsSPMD->isZero())
|
|
return ChangeStatus::UNCHANGED;
|
|
|
|
// If not SPMD mode, indicate we use a custom state machine now.
|
|
auto &Ctx = getAnchorValue().getContext();
|
|
auto *FalseVal = ConstantInt::getBool(Ctx, 0);
|
|
A.changeUseAfterManifest(
|
|
KernelInitCB->getArgOperandUse(InitUseStateMachineArgNo), *FalseVal);
|
|
|
|
// If we don't actually need a state machine we are done here. This can
|
|
// happen if there simply are no parallel regions. In the resulting kernel
|
|
// all worker threads will simply exit right away, leaving the main thread
|
|
// to do the work alone.
|
|
if (ReachedKnownParallelRegions.empty() &&
|
|
ReachedUnknownParallelRegions.empty()) {
|
|
++NumOpenMPTargetRegionKernelsWithoutStateMachine;
|
|
|
|
auto Remark = [&](OptimizationRemark OR) {
|
|
return OR << "Removing unused state machine from generic-mode kernel.";
|
|
};
|
|
A.emitRemark<OptimizationRemark>(KernelInitCB, "OMP130", Remark);
|
|
|
|
return ChangeStatus::CHANGED;
|
|
}
|
|
|
|
// Keep track in the statistics of our new shiny custom state machine.
|
|
if (ReachedUnknownParallelRegions.empty()) {
|
|
++NumOpenMPTargetRegionKernelsCustomStateMachineWithoutFallback;
|
|
|
|
auto Remark = [&](OptimizationRemark OR) {
|
|
return OR << "Rewriting generic-mode kernel with a customized state "
|
|
"machine.";
|
|
};
|
|
A.emitRemark<OptimizationRemark>(KernelInitCB, "OMP131", Remark);
|
|
} else {
|
|
++NumOpenMPTargetRegionKernelsCustomStateMachineWithFallback;
|
|
|
|
auto Remark = [&](OptimizationRemarkAnalysis OR) {
|
|
return OR << "Generic-mode kernel is executed with a customized state "
|
|
"machine that requires a fallback.";
|
|
};
|
|
A.emitRemark<OptimizationRemarkAnalysis>(KernelInitCB, "OMP132", Remark);
|
|
|
|
// Tell the user why we ended up with a fallback.
|
|
for (CallBase *UnknownParallelRegionCB : ReachedUnknownParallelRegions) {
|
|
if (!UnknownParallelRegionCB)
|
|
continue;
|
|
auto Remark = [&](OptimizationRemarkAnalysis ORA) {
|
|
return ORA << "Call may contain unknown parallel regions. Use "
|
|
<< "`__attribute__((assume(\"omp_no_parallelism\")))` to "
|
|
"override.";
|
|
};
|
|
A.emitRemark<OptimizationRemarkAnalysis>(UnknownParallelRegionCB,
|
|
"OMP133", Remark);
|
|
}
|
|
}
|
|
|
|
// Create all the blocks:
|
|
//
|
|
// InitCB = __kmpc_target_init(...)
|
|
// bool IsWorker = InitCB >= 0;
|
|
// if (IsWorker) {
|
|
// SMBeginBB: __kmpc_barrier_simple_spmd(...);
|
|
// void *WorkFn;
|
|
// bool Active = __kmpc_kernel_parallel(&WorkFn);
|
|
// if (!WorkFn) return;
|
|
// SMIsActiveCheckBB: if (Active) {
|
|
// SMIfCascadeCurrentBB: if (WorkFn == <ParFn0>)
|
|
// ParFn0(...);
|
|
// SMIfCascadeCurrentBB: else if (WorkFn == <ParFn1>)
|
|
// ParFn1(...);
|
|
// ...
|
|
// SMIfCascadeCurrentBB: else
|
|
// ((WorkFnTy*)WorkFn)(...);
|
|
// SMEndParallelBB: __kmpc_kernel_end_parallel(...);
|
|
// }
|
|
// SMDoneBB: __kmpc_barrier_simple_spmd(...);
|
|
// goto SMBeginBB;
|
|
// }
|
|
// UserCodeEntryBB: // user code
|
|
// __kmpc_target_deinit(...)
|
|
//
|
|
Function *Kernel = getAssociatedFunction();
|
|
assert(Kernel && "Expected an associated function!");
|
|
|
|
BasicBlock *InitBB = KernelInitCB->getParent();
|
|
BasicBlock *UserCodeEntryBB = InitBB->splitBasicBlock(
|
|
KernelInitCB->getNextNode(), "thread.user_code.check");
|
|
BasicBlock *StateMachineBeginBB = BasicBlock::Create(
|
|
Ctx, "worker_state_machine.begin", Kernel, UserCodeEntryBB);
|
|
BasicBlock *StateMachineFinishedBB = BasicBlock::Create(
|
|
Ctx, "worker_state_machine.finished", Kernel, UserCodeEntryBB);
|
|
BasicBlock *StateMachineIsActiveCheckBB = BasicBlock::Create(
|
|
Ctx, "worker_state_machine.is_active.check", Kernel, UserCodeEntryBB);
|
|
BasicBlock *StateMachineIfCascadeCurrentBB =
|
|
BasicBlock::Create(Ctx, "worker_state_machine.parallel_region.check",
|
|
Kernel, UserCodeEntryBB);
|
|
BasicBlock *StateMachineEndParallelBB =
|
|
BasicBlock::Create(Ctx, "worker_state_machine.parallel_region.end",
|
|
Kernel, UserCodeEntryBB);
|
|
BasicBlock *StateMachineDoneBarrierBB = BasicBlock::Create(
|
|
Ctx, "worker_state_machine.done.barrier", Kernel, UserCodeEntryBB);
|
|
A.registerManifestAddedBasicBlock(*InitBB);
|
|
A.registerManifestAddedBasicBlock(*UserCodeEntryBB);
|
|
A.registerManifestAddedBasicBlock(*StateMachineBeginBB);
|
|
A.registerManifestAddedBasicBlock(*StateMachineFinishedBB);
|
|
A.registerManifestAddedBasicBlock(*StateMachineIsActiveCheckBB);
|
|
A.registerManifestAddedBasicBlock(*StateMachineIfCascadeCurrentBB);
|
|
A.registerManifestAddedBasicBlock(*StateMachineEndParallelBB);
|
|
A.registerManifestAddedBasicBlock(*StateMachineDoneBarrierBB);
|
|
|
|
const DebugLoc &DLoc = KernelInitCB->getDebugLoc();
|
|
ReturnInst::Create(Ctx, StateMachineFinishedBB)->setDebugLoc(DLoc);
|
|
|
|
InitBB->getTerminator()->eraseFromParent();
|
|
Instruction *IsWorker =
|
|
ICmpInst::Create(ICmpInst::ICmp, llvm::CmpInst::ICMP_NE, KernelInitCB,
|
|
ConstantInt::get(KernelInitCB->getType(), -1),
|
|
"thread.is_worker", InitBB);
|
|
IsWorker->setDebugLoc(DLoc);
|
|
BranchInst::Create(StateMachineBeginBB, UserCodeEntryBB, IsWorker, InitBB);
|
|
|
|
Module &M = *Kernel->getParent();
|
|
|
|
// Create local storage for the work function pointer.
|
|
const DataLayout &DL = M.getDataLayout();
|
|
Type *VoidPtrTy = Type::getInt8PtrTy(Ctx);
|
|
Instruction *WorkFnAI =
|
|
new AllocaInst(VoidPtrTy, DL.getAllocaAddrSpace(), nullptr,
|
|
"worker.work_fn.addr", &Kernel->getEntryBlock().front());
|
|
WorkFnAI->setDebugLoc(DLoc);
|
|
|
|
auto &OMPInfoCache = static_cast<OMPInformationCache &>(A.getInfoCache());
|
|
OMPInfoCache.OMPBuilder.updateToLocation(
|
|
OpenMPIRBuilder::LocationDescription(
|
|
IRBuilder<>::InsertPoint(StateMachineBeginBB,
|
|
StateMachineBeginBB->end()),
|
|
DLoc));
|
|
|
|
Value *Ident = KernelInitCB->getArgOperand(0);
|
|
Value *GTid = KernelInitCB;
|
|
|
|
FunctionCallee BarrierFn =
|
|
OMPInfoCache.OMPBuilder.getOrCreateRuntimeFunction(
|
|
M, OMPRTL___kmpc_barrier_simple_spmd);
|
|
CallInst::Create(BarrierFn, {Ident, GTid}, "", StateMachineBeginBB)
|
|
->setDebugLoc(DLoc);
|
|
|
|
if (WorkFnAI->getType()->getPointerAddressSpace() !=
|
|
(unsigned int)AddressSpace::Generic) {
|
|
WorkFnAI = new AddrSpaceCastInst(
|
|
WorkFnAI,
|
|
PointerType::getWithSamePointeeType(
|
|
cast<PointerType>(WorkFnAI->getType()),
|
|
(unsigned int)AddressSpace::Generic),
|
|
WorkFnAI->getName() + ".generic", StateMachineBeginBB);
|
|
WorkFnAI->setDebugLoc(DLoc);
|
|
}
|
|
|
|
FunctionCallee KernelParallelFn =
|
|
OMPInfoCache.OMPBuilder.getOrCreateRuntimeFunction(
|
|
M, OMPRTL___kmpc_kernel_parallel);
|
|
Instruction *IsActiveWorker = CallInst::Create(
|
|
KernelParallelFn, {WorkFnAI}, "worker.is_active", StateMachineBeginBB);
|
|
IsActiveWorker->setDebugLoc(DLoc);
|
|
Instruction *WorkFn = new LoadInst(VoidPtrTy, WorkFnAI, "worker.work_fn",
|
|
StateMachineBeginBB);
|
|
WorkFn->setDebugLoc(DLoc);
|
|
|
|
FunctionType *ParallelRegionFnTy = FunctionType::get(
|
|
Type::getVoidTy(Ctx), {Type::getInt16Ty(Ctx), Type::getInt32Ty(Ctx)},
|
|
false);
|
|
Value *WorkFnCast = BitCastInst::CreatePointerBitCastOrAddrSpaceCast(
|
|
WorkFn, ParallelRegionFnTy->getPointerTo(), "worker.work_fn.addr_cast",
|
|
StateMachineBeginBB);
|
|
|
|
Instruction *IsDone =
|
|
ICmpInst::Create(ICmpInst::ICmp, llvm::CmpInst::ICMP_EQ, WorkFn,
|
|
Constant::getNullValue(VoidPtrTy), "worker.is_done",
|
|
StateMachineBeginBB);
|
|
IsDone->setDebugLoc(DLoc);
|
|
BranchInst::Create(StateMachineFinishedBB, StateMachineIsActiveCheckBB,
|
|
IsDone, StateMachineBeginBB)
|
|
->setDebugLoc(DLoc);
|
|
|
|
BranchInst::Create(StateMachineIfCascadeCurrentBB,
|
|
StateMachineDoneBarrierBB, IsActiveWorker,
|
|
StateMachineIsActiveCheckBB)
|
|
->setDebugLoc(DLoc);
|
|
|
|
Value *ZeroArg =
|
|
Constant::getNullValue(ParallelRegionFnTy->getParamType(0));
|
|
|
|
// Now that we have most of the CFG skeleton it is time for the if-cascade
|
|
// that checks the function pointer we got from the runtime against the
|
|
// parallel regions we expect, if there are any.
|
|
for (int i = 0, e = ReachedKnownParallelRegions.size(); i < e; ++i) {
|
|
auto *ParallelRegion = ReachedKnownParallelRegions[i];
|
|
BasicBlock *PRExecuteBB = BasicBlock::Create(
|
|
Ctx, "worker_state_machine.parallel_region.execute", Kernel,
|
|
StateMachineEndParallelBB);
|
|
CallInst::Create(ParallelRegion, {ZeroArg, GTid}, "", PRExecuteBB)
|
|
->setDebugLoc(DLoc);
|
|
BranchInst::Create(StateMachineEndParallelBB, PRExecuteBB)
|
|
->setDebugLoc(DLoc);
|
|
|
|
BasicBlock *PRNextBB =
|
|
BasicBlock::Create(Ctx, "worker_state_machine.parallel_region.check",
|
|
Kernel, StateMachineEndParallelBB);
|
|
|
|
// Check if we need to compare the pointer at all or if we can just
|
|
// call the parallel region function.
|
|
Value *IsPR;
|
|
if (i + 1 < e || !ReachedUnknownParallelRegions.empty()) {
|
|
Instruction *CmpI = ICmpInst::Create(
|
|
ICmpInst::ICmp, llvm::CmpInst::ICMP_EQ, WorkFnCast, ParallelRegion,
|
|
"worker.check_parallel_region", StateMachineIfCascadeCurrentBB);
|
|
CmpI->setDebugLoc(DLoc);
|
|
IsPR = CmpI;
|
|
} else {
|
|
IsPR = ConstantInt::getTrue(Ctx);
|
|
}
|
|
|
|
BranchInst::Create(PRExecuteBB, PRNextBB, IsPR,
|
|
StateMachineIfCascadeCurrentBB)
|
|
->setDebugLoc(DLoc);
|
|
StateMachineIfCascadeCurrentBB = PRNextBB;
|
|
}
|
|
|
|
// At the end of the if-cascade we place the indirect function pointer call
|
|
// in case we might need it, that is if there can be parallel regions we
|
|
// have not handled in the if-cascade above.
|
|
if (!ReachedUnknownParallelRegions.empty()) {
|
|
StateMachineIfCascadeCurrentBB->setName(
|
|
"worker_state_machine.parallel_region.fallback.execute");
|
|
CallInst::Create(ParallelRegionFnTy, WorkFnCast, {ZeroArg, GTid}, "",
|
|
StateMachineIfCascadeCurrentBB)
|
|
->setDebugLoc(DLoc);
|
|
}
|
|
BranchInst::Create(StateMachineEndParallelBB,
|
|
StateMachineIfCascadeCurrentBB)
|
|
->setDebugLoc(DLoc);
|
|
|
|
CallInst::Create(OMPInfoCache.OMPBuilder.getOrCreateRuntimeFunction(
|
|
M, OMPRTL___kmpc_kernel_end_parallel),
|
|
{}, "", StateMachineEndParallelBB)
|
|
->setDebugLoc(DLoc);
|
|
BranchInst::Create(StateMachineDoneBarrierBB, StateMachineEndParallelBB)
|
|
->setDebugLoc(DLoc);
|
|
|
|
CallInst::Create(BarrierFn, {Ident, GTid}, "", StateMachineDoneBarrierBB)
|
|
->setDebugLoc(DLoc);
|
|
BranchInst::Create(StateMachineBeginBB, StateMachineDoneBarrierBB)
|
|
->setDebugLoc(DLoc);
|
|
|
|
return ChangeStatus::CHANGED;
|
|
}
|
|
|
|
/// Fixpoint iteration update function. Will be called every time a dependence
|
|
/// changed its state (and in the beginning).
|
|
ChangeStatus updateImpl(Attributor &A) override {
|
|
KernelInfoState StateBefore = getState();
|
|
|
|
// Callback to check a read/write instruction.
|
|
auto CheckRWInst = [&](Instruction &I) {
|
|
// We handle calls later.
|
|
if (isa<CallBase>(I))
|
|
return true;
|
|
// We only care about write effects.
|
|
if (!I.mayWriteToMemory())
|
|
return true;
|
|
if (auto *SI = dyn_cast<StoreInst>(&I)) {
|
|
SmallVector<const Value *> Objects;
|
|
getUnderlyingObjects(SI->getPointerOperand(), Objects);
|
|
if (llvm::all_of(Objects,
|
|
[](const Value *Obj) { return isa<AllocaInst>(Obj); }))
|
|
return true;
|
|
}
|
|
// For now we give up on everything but stores.
|
|
SPMDCompatibilityTracker.insert(&I);
|
|
return true;
|
|
};
|
|
|
|
bool UsedAssumedInformationInCheckRWInst = false;
|
|
if (!SPMDCompatibilityTracker.isAtFixpoint())
|
|
if (!A.checkForAllReadWriteInstructions(
|
|
CheckRWInst, *this, UsedAssumedInformationInCheckRWInst))
|
|
SPMDCompatibilityTracker.indicatePessimisticFixpoint();
|
|
|
|
if (!IsKernelEntry) {
|
|
updateReachingKernelEntries(A);
|
|
updateParallelLevels(A);
|
|
}
|
|
|
|
// Callback to check a call instruction.
|
|
bool AllSPMDStatesWereFixed = true;
|
|
auto CheckCallInst = [&](Instruction &I) {
|
|
auto &CB = cast<CallBase>(I);
|
|
auto &CBAA = A.getAAFor<AAKernelInfo>(
|
|
*this, IRPosition::callsite_function(CB), DepClassTy::OPTIONAL);
|
|
getState() ^= CBAA.getState();
|
|
AllSPMDStatesWereFixed &= CBAA.SPMDCompatibilityTracker.isAtFixpoint();
|
|
return true;
|
|
};
|
|
|
|
bool UsedAssumedInformationInCheckCallInst = false;
|
|
if (!A.checkForAllCallLikeInstructions(
|
|
CheckCallInst, *this, UsedAssumedInformationInCheckCallInst))
|
|
return indicatePessimisticFixpoint();
|
|
|
|
// If we haven't used any assumed information for the SPMD state we can fix
|
|
// it.
|
|
if (!UsedAssumedInformationInCheckRWInst &&
|
|
!UsedAssumedInformationInCheckCallInst && AllSPMDStatesWereFixed)
|
|
SPMDCompatibilityTracker.indicateOptimisticFixpoint();
|
|
|
|
return StateBefore == getState() ? ChangeStatus::UNCHANGED
|
|
: ChangeStatus::CHANGED;
|
|
}
|
|
|
|
private:
|
|
/// Update info regarding reaching kernels.
|
|
void updateReachingKernelEntries(Attributor &A) {
|
|
auto PredCallSite = [&](AbstractCallSite ACS) {
|
|
Function *Caller = ACS.getInstruction()->getFunction();
|
|
|
|
assert(Caller && "Caller is nullptr");
|
|
|
|
auto &CAA = A.getOrCreateAAFor<AAKernelInfo>(
|
|
IRPosition::function(*Caller), this, DepClassTy::REQUIRED);
|
|
if (CAA.ReachingKernelEntries.isValidState()) {
|
|
ReachingKernelEntries ^= CAA.ReachingKernelEntries;
|
|
return true;
|
|
}
|
|
|
|
// We lost track of the caller of the associated function, any kernel
|
|
// could reach now.
|
|
ReachingKernelEntries.indicatePessimisticFixpoint();
|
|
|
|
return true;
|
|
};
|
|
|
|
bool AllCallSitesKnown;
|
|
if (!A.checkForAllCallSites(PredCallSite, *this,
|
|
true /* RequireAllCallSites */,
|
|
AllCallSitesKnown))
|
|
ReachingKernelEntries.indicatePessimisticFixpoint();
|
|
}
|
|
|
|
/// Update info regarding parallel levels.
|
|
void updateParallelLevels(Attributor &A) {
|
|
auto &OMPInfoCache = static_cast<OMPInformationCache &>(A.getInfoCache());
|
|
OMPInformationCache::RuntimeFunctionInfo &Parallel51RFI =
|
|
OMPInfoCache.RFIs[OMPRTL___kmpc_parallel_51];
|
|
|
|
auto PredCallSite = [&](AbstractCallSite ACS) {
|
|
Function *Caller = ACS.getInstruction()->getFunction();
|
|
|
|
assert(Caller && "Caller is nullptr");
|
|
|
|
auto &CAA =
|
|
A.getOrCreateAAFor<AAKernelInfo>(IRPosition::function(*Caller));
|
|
if (CAA.ParallelLevels.isValidState()) {
|
|
// Any function that is called by `__kmpc_parallel_51` will not be
|
|
// folded as the parallel level in the function is updated. In order to
|
|
// get it right, all the analysis would depend on the implentation. That
|
|
// said, if in the future any change to the implementation, the analysis
|
|
// could be wrong. As a consequence, we are just conservative here.
|
|
if (Caller == Parallel51RFI.Declaration) {
|
|
ParallelLevels.indicatePessimisticFixpoint();
|
|
return true;
|
|
}
|
|
|
|
ParallelLevels ^= CAA.ParallelLevels;
|
|
|
|
return true;
|
|
}
|
|
|
|
// We lost track of the caller of the associated function, any kernel
|
|
// could reach now.
|
|
ParallelLevels.indicatePessimisticFixpoint();
|
|
|
|
return true;
|
|
};
|
|
|
|
bool AllCallSitesKnown = true;
|
|
if (!A.checkForAllCallSites(PredCallSite, *this,
|
|
true /* RequireAllCallSites */,
|
|
AllCallSitesKnown))
|
|
ParallelLevels.indicatePessimisticFixpoint();
|
|
}
|
|
};
|
|
|
|
/// The call site kernel info abstract attribute, basically, what can we say
|
|
/// about a call site with regards to the KernelInfoState. For now this simply
|
|
/// forwards the information from the callee.
|
|
struct AAKernelInfoCallSite : AAKernelInfo {
|
|
AAKernelInfoCallSite(const IRPosition &IRP, Attributor &A)
|
|
: AAKernelInfo(IRP, A) {}
|
|
|
|
/// See AbstractAttribute::initialize(...).
|
|
void initialize(Attributor &A) override {
|
|
AAKernelInfo::initialize(A);
|
|
|
|
CallBase &CB = cast<CallBase>(getAssociatedValue());
|
|
Function *Callee = getAssociatedFunction();
|
|
|
|
// Helper to lookup an assumption string.
|
|
auto HasAssumption = [](Function *Fn, StringRef AssumptionStr) {
|
|
return Fn && hasAssumption(*Fn, AssumptionStr);
|
|
};
|
|
|
|
// Check for SPMD-mode assumptions.
|
|
if (HasAssumption(Callee, "ompx_spmd_amenable"))
|
|
SPMDCompatibilityTracker.indicateOptimisticFixpoint();
|
|
|
|
// First weed out calls we do not care about, that is readonly/readnone
|
|
// calls, intrinsics, and "no_openmp" calls. Neither of these can reach a
|
|
// parallel region or anything else we are looking for.
|
|
if (!CB.mayWriteToMemory() || isa<IntrinsicInst>(CB)) {
|
|
indicateOptimisticFixpoint();
|
|
return;
|
|
}
|
|
|
|
// Next we check if we know the callee. If it is a known OpenMP function
|
|
// we will handle them explicitly in the switch below. If it is not, we
|
|
// will use an AAKernelInfo object on the callee to gather information and
|
|
// merge that into the current state. The latter happens in the updateImpl.
|
|
auto &OMPInfoCache = static_cast<OMPInformationCache &>(A.getInfoCache());
|
|
const auto &It = OMPInfoCache.RuntimeFunctionIDMap.find(Callee);
|
|
if (It == OMPInfoCache.RuntimeFunctionIDMap.end()) {
|
|
// Unknown caller or declarations are not analyzable, we give up.
|
|
if (!Callee || !A.isFunctionIPOAmendable(*Callee)) {
|
|
|
|
// Unknown callees might contain parallel regions, except if they have
|
|
// an appropriate assumption attached.
|
|
if (!(HasAssumption(Callee, "omp_no_openmp") ||
|
|
HasAssumption(Callee, "omp_no_parallelism")))
|
|
ReachedUnknownParallelRegions.insert(&CB);
|
|
|
|
// If SPMDCompatibilityTracker is not fixed, we need to give up on the
|
|
// idea we can run something unknown in SPMD-mode.
|
|
if (!SPMDCompatibilityTracker.isAtFixpoint())
|
|
SPMDCompatibilityTracker.insert(&CB);
|
|
|
|
// We have updated the state for this unknown call properly, there won't
|
|
// be any change so we indicate a fixpoint.
|
|
indicateOptimisticFixpoint();
|
|
}
|
|
// If the callee is known and can be used in IPO, we will update the state
|
|
// based on the callee state in updateImpl.
|
|
return;
|
|
}
|
|
|
|
const unsigned int WrapperFunctionArgNo = 6;
|
|
RuntimeFunction RF = It->getSecond();
|
|
switch (RF) {
|
|
// All the functions we know are compatible with SPMD mode.
|
|
case OMPRTL___kmpc_is_spmd_exec_mode:
|
|
case OMPRTL___kmpc_for_static_fini:
|
|
case OMPRTL___kmpc_global_thread_num:
|
|
case OMPRTL___kmpc_get_hardware_num_threads_in_block:
|
|
case OMPRTL___kmpc_get_hardware_num_blocks:
|
|
case OMPRTL___kmpc_single:
|
|
case OMPRTL___kmpc_end_single:
|
|
case OMPRTL___kmpc_master:
|
|
case OMPRTL___kmpc_end_master:
|
|
case OMPRTL___kmpc_barrier:
|
|
break;
|
|
case OMPRTL___kmpc_for_static_init_4:
|
|
case OMPRTL___kmpc_for_static_init_4u:
|
|
case OMPRTL___kmpc_for_static_init_8:
|
|
case OMPRTL___kmpc_for_static_init_8u: {
|
|
// Check the schedule and allow static schedule in SPMD mode.
|
|
unsigned ScheduleArgOpNo = 2;
|
|
auto *ScheduleTypeCI =
|
|
dyn_cast<ConstantInt>(CB.getArgOperand(ScheduleArgOpNo));
|
|
unsigned ScheduleTypeVal =
|
|
ScheduleTypeCI ? ScheduleTypeCI->getZExtValue() : 0;
|
|
switch (OMPScheduleType(ScheduleTypeVal)) {
|
|
case OMPScheduleType::Static:
|
|
case OMPScheduleType::StaticChunked:
|
|
case OMPScheduleType::Distribute:
|
|
case OMPScheduleType::DistributeChunked:
|
|
break;
|
|
default:
|
|
SPMDCompatibilityTracker.insert(&CB);
|
|
break;
|
|
};
|
|
} break;
|
|
case OMPRTL___kmpc_target_init:
|
|
KernelInitCB = &CB;
|
|
break;
|
|
case OMPRTL___kmpc_target_deinit:
|
|
KernelDeinitCB = &CB;
|
|
break;
|
|
case OMPRTL___kmpc_parallel_51:
|
|
if (auto *ParallelRegion = dyn_cast<Function>(
|
|
CB.getArgOperand(WrapperFunctionArgNo)->stripPointerCasts())) {
|
|
ReachedKnownParallelRegions.insert(ParallelRegion);
|
|
break;
|
|
}
|
|
// The condition above should usually get the parallel region function
|
|
// pointer and record it. In the off chance it doesn't we assume the
|
|
// worst.
|
|
ReachedUnknownParallelRegions.insert(&CB);
|
|
break;
|
|
case OMPRTL___kmpc_omp_task:
|
|
// We do not look into tasks right now, just give up.
|
|
SPMDCompatibilityTracker.insert(&CB);
|
|
ReachedUnknownParallelRegions.insert(&CB);
|
|
break;
|
|
case OMPRTL___kmpc_alloc_shared:
|
|
case OMPRTL___kmpc_free_shared:
|
|
// Return without setting a fixpoint, to be resolved in updateImpl.
|
|
return;
|
|
default:
|
|
// Unknown OpenMP runtime calls cannot be executed in SPMD-mode,
|
|
// generally.
|
|
SPMDCompatibilityTracker.insert(&CB);
|
|
break;
|
|
}
|
|
// All other OpenMP runtime calls will not reach parallel regions so they
|
|
// can be safely ignored for now. Since it is a known OpenMP runtime call we
|
|
// have now modeled all effects and there is no need for any update.
|
|
indicateOptimisticFixpoint();
|
|
}
|
|
|
|
ChangeStatus updateImpl(Attributor &A) override {
|
|
// TODO: Once we have call site specific value information we can provide
|
|
// call site specific liveness information and then it makes
|
|
// sense to specialize attributes for call sites arguments instead of
|
|
// redirecting requests to the callee argument.
|
|
Function *F = getAssociatedFunction();
|
|
|
|
auto &OMPInfoCache = static_cast<OMPInformationCache &>(A.getInfoCache());
|
|
const auto &It = OMPInfoCache.RuntimeFunctionIDMap.find(F);
|
|
|
|
// If F is not a runtime function, propagate the AAKernelInfo of the callee.
|
|
if (It == OMPInfoCache.RuntimeFunctionIDMap.end()) {
|
|
const IRPosition &FnPos = IRPosition::function(*F);
|
|
auto &FnAA = A.getAAFor<AAKernelInfo>(*this, FnPos, DepClassTy::REQUIRED);
|
|
if (getState() == FnAA.getState())
|
|
return ChangeStatus::UNCHANGED;
|
|
getState() = FnAA.getState();
|
|
return ChangeStatus::CHANGED;
|
|
}
|
|
|
|
// F is a runtime function that allocates or frees memory, check
|
|
// AAHeapToStack and AAHeapToShared.
|
|
KernelInfoState StateBefore = getState();
|
|
assert((It->getSecond() == OMPRTL___kmpc_alloc_shared ||
|
|
It->getSecond() == OMPRTL___kmpc_free_shared) &&
|
|
"Expected a __kmpc_alloc_shared or __kmpc_free_shared runtime call");
|
|
|
|
CallBase &CB = cast<CallBase>(getAssociatedValue());
|
|
|
|
auto &HeapToStackAA = A.getAAFor<AAHeapToStack>(
|
|
*this, IRPosition::function(*CB.getCaller()), DepClassTy::OPTIONAL);
|
|
auto &HeapToSharedAA = A.getAAFor<AAHeapToShared>(
|
|
*this, IRPosition::function(*CB.getCaller()), DepClassTy::OPTIONAL);
|
|
|
|
RuntimeFunction RF = It->getSecond();
|
|
|
|
switch (RF) {
|
|
// If neither HeapToStack nor HeapToShared assume the call is removed,
|
|
// assume SPMD incompatibility.
|
|
case OMPRTL___kmpc_alloc_shared:
|
|
if (!HeapToStackAA.isAssumedHeapToStack(CB) &&
|
|
!HeapToSharedAA.isAssumedHeapToShared(CB))
|
|
SPMDCompatibilityTracker.insert(&CB);
|
|
break;
|
|
case OMPRTL___kmpc_free_shared:
|
|
if (!HeapToStackAA.isAssumedHeapToStackRemovedFree(CB) &&
|
|
!HeapToSharedAA.isAssumedHeapToSharedRemovedFree(CB))
|
|
SPMDCompatibilityTracker.insert(&CB);
|
|
break;
|
|
default:
|
|
SPMDCompatibilityTracker.insert(&CB);
|
|
}
|
|
|
|
return StateBefore == getState() ? ChangeStatus::UNCHANGED
|
|
: ChangeStatus::CHANGED;
|
|
}
|
|
};
|
|
|
|
struct AAFoldRuntimeCall
|
|
: public StateWrapper<BooleanState, AbstractAttribute> {
|
|
using Base = StateWrapper<BooleanState, AbstractAttribute>;
|
|
|
|
AAFoldRuntimeCall(const IRPosition &IRP, Attributor &A) : Base(IRP) {}
|
|
|
|
/// Statistics are tracked as part of manifest for now.
|
|
void trackStatistics() const override {}
|
|
|
|
/// Create an abstract attribute biew for the position \p IRP.
|
|
static AAFoldRuntimeCall &createForPosition(const IRPosition &IRP,
|
|
Attributor &A);
|
|
|
|
/// See AbstractAttribute::getName()
|
|
const std::string getName() const override { return "AAFoldRuntimeCall"; }
|
|
|
|
/// See AbstractAttribute::getIdAddr()
|
|
const char *getIdAddr() const override { return &ID; }
|
|
|
|
/// This function should return true if the type of the \p AA is
|
|
/// AAFoldRuntimeCall
|
|
static bool classof(const AbstractAttribute *AA) {
|
|
return (AA->getIdAddr() == &ID);
|
|
}
|
|
|
|
static const char ID;
|
|
};
|
|
|
|
struct AAFoldRuntimeCallCallSiteReturned : AAFoldRuntimeCall {
|
|
AAFoldRuntimeCallCallSiteReturned(const IRPosition &IRP, Attributor &A)
|
|
: AAFoldRuntimeCall(IRP, A) {}
|
|
|
|
/// See AbstractAttribute::getAsStr()
|
|
const std::string getAsStr() const override {
|
|
if (!isValidState())
|
|
return "<invalid>";
|
|
|
|
std::string Str("simplified value: ");
|
|
|
|
if (!SimplifiedValue.hasValue())
|
|
return Str + std::string("none");
|
|
|
|
if (!SimplifiedValue.getValue())
|
|
return Str + std::string("nullptr");
|
|
|
|
if (ConstantInt *CI = dyn_cast<ConstantInt>(SimplifiedValue.getValue()))
|
|
return Str + std::to_string(CI->getSExtValue());
|
|
|
|
return Str + std::string("unknown");
|
|
}
|
|
|
|
void initialize(Attributor &A) override {
|
|
Function *Callee = getAssociatedFunction();
|
|
|
|
auto &OMPInfoCache = static_cast<OMPInformationCache &>(A.getInfoCache());
|
|
const auto &It = OMPInfoCache.RuntimeFunctionIDMap.find(Callee);
|
|
assert(It != OMPInfoCache.RuntimeFunctionIDMap.end() &&
|
|
"Expected a known OpenMP runtime function");
|
|
|
|
RFKind = It->getSecond();
|
|
|
|
CallBase &CB = cast<CallBase>(getAssociatedValue());
|
|
A.registerSimplificationCallback(
|
|
IRPosition::callsite_returned(CB),
|
|
[&](const IRPosition &IRP, const AbstractAttribute *AA,
|
|
bool &UsedAssumedInformation) -> Optional<Value *> {
|
|
assert((isValidState() || (SimplifiedValue.hasValue() &&
|
|
SimplifiedValue.getValue() == nullptr)) &&
|
|
"Unexpected invalid state!");
|
|
|
|
if (!isAtFixpoint()) {
|
|
UsedAssumedInformation = true;
|
|
if (AA)
|
|
A.recordDependence(*this, *AA, DepClassTy::OPTIONAL);
|
|
}
|
|
return SimplifiedValue;
|
|
});
|
|
}
|
|
|
|
ChangeStatus updateImpl(Attributor &A) override {
|
|
ChangeStatus Changed = ChangeStatus::UNCHANGED;
|
|
switch (RFKind) {
|
|
case OMPRTL___kmpc_is_spmd_exec_mode:
|
|
Changed |= foldIsSPMDExecMode(A);
|
|
break;
|
|
case OMPRTL___kmpc_is_generic_main_thread_id:
|
|
Changed |= foldIsGenericMainThread(A);
|
|
break;
|
|
case OMPRTL___kmpc_parallel_level:
|
|
Changed |= foldParallelLevel(A);
|
|
break;
|
|
case OMPRTL___kmpc_get_hardware_num_threads_in_block:
|
|
Changed = Changed | foldKernelFnAttribute(A, "omp_target_thread_limit");
|
|
break;
|
|
case OMPRTL___kmpc_get_hardware_num_blocks:
|
|
Changed = Changed | foldKernelFnAttribute(A, "omp_target_num_teams");
|
|
break;
|
|
default:
|
|
llvm_unreachable("Unhandled OpenMP runtime function!");
|
|
}
|
|
|
|
return Changed;
|
|
}
|
|
|
|
ChangeStatus manifest(Attributor &A) override {
|
|
ChangeStatus Changed = ChangeStatus::UNCHANGED;
|
|
|
|
if (SimplifiedValue.hasValue() && SimplifiedValue.getValue()) {
|
|
Instruction &CB = *getCtxI();
|
|
A.changeValueAfterManifest(CB, **SimplifiedValue);
|
|
A.deleteAfterManifest(CB);
|
|
|
|
LLVM_DEBUG(dbgs() << TAG << "Folding runtime call: " << CB << " with "
|
|
<< **SimplifiedValue << "\n");
|
|
|
|
Changed = ChangeStatus::CHANGED;
|
|
}
|
|
|
|
return Changed;
|
|
}
|
|
|
|
ChangeStatus indicatePessimisticFixpoint() override {
|
|
SimplifiedValue = nullptr;
|
|
return AAFoldRuntimeCall::indicatePessimisticFixpoint();
|
|
}
|
|
|
|
private:
|
|
/// Fold __kmpc_is_spmd_exec_mode into a constant if possible.
|
|
ChangeStatus foldIsSPMDExecMode(Attributor &A) {
|
|
Optional<Value *> SimplifiedValueBefore = SimplifiedValue;
|
|
|
|
unsigned AssumedSPMDCount = 0, KnownSPMDCount = 0;
|
|
unsigned AssumedNonSPMDCount = 0, KnownNonSPMDCount = 0;
|
|
auto &CallerKernelInfoAA = A.getAAFor<AAKernelInfo>(
|
|
*this, IRPosition::function(*getAnchorScope()), DepClassTy::REQUIRED);
|
|
|
|
if (!CallerKernelInfoAA.ReachingKernelEntries.isValidState())
|
|
return indicatePessimisticFixpoint();
|
|
|
|
for (Kernel K : CallerKernelInfoAA.ReachingKernelEntries) {
|
|
auto &AA = A.getAAFor<AAKernelInfo>(*this, IRPosition::function(*K),
|
|
DepClassTy::REQUIRED);
|
|
|
|
if (!AA.isValidState()) {
|
|
SimplifiedValue = nullptr;
|
|
return indicatePessimisticFixpoint();
|
|
}
|
|
|
|
if (AA.SPMDCompatibilityTracker.isAssumed()) {
|
|
if (AA.SPMDCompatibilityTracker.isAtFixpoint())
|
|
++KnownSPMDCount;
|
|
else
|
|
++AssumedSPMDCount;
|
|
} else {
|
|
if (AA.SPMDCompatibilityTracker.isAtFixpoint())
|
|
++KnownNonSPMDCount;
|
|
else
|
|
++AssumedNonSPMDCount;
|
|
}
|
|
}
|
|
|
|
if ((AssumedSPMDCount + KnownSPMDCount) &&
|
|
(AssumedNonSPMDCount + KnownNonSPMDCount))
|
|
return indicatePessimisticFixpoint();
|
|
|
|
auto &Ctx = getAnchorValue().getContext();
|
|
if (KnownSPMDCount || AssumedSPMDCount) {
|
|
assert(KnownNonSPMDCount == 0 && AssumedNonSPMDCount == 0 &&
|
|
"Expected only SPMD kernels!");
|
|
// All reaching kernels are in SPMD mode. Update all function calls to
|
|
// __kmpc_is_spmd_exec_mode to 1.
|
|
SimplifiedValue = ConstantInt::get(Type::getInt8Ty(Ctx), true);
|
|
} else if (KnownNonSPMDCount || AssumedNonSPMDCount) {
|
|
assert(KnownSPMDCount == 0 && AssumedSPMDCount == 0 &&
|
|
"Expected only non-SPMD kernels!");
|
|
// All reaching kernels are in non-SPMD mode. Update all function
|
|
// calls to __kmpc_is_spmd_exec_mode to 0.
|
|
SimplifiedValue = ConstantInt::get(Type::getInt8Ty(Ctx), false);
|
|
} else {
|
|
// We have empty reaching kernels, therefore we cannot tell if the
|
|
// associated call site can be folded. At this moment, SimplifiedValue
|
|
// must be none.
|
|
assert(!SimplifiedValue.hasValue() && "SimplifiedValue should be none");
|
|
}
|
|
|
|
return SimplifiedValue == SimplifiedValueBefore ? ChangeStatus::UNCHANGED
|
|
: ChangeStatus::CHANGED;
|
|
}
|
|
|
|
/// Fold __kmpc_is_generic_main_thread_id into a constant if possible.
|
|
ChangeStatus foldIsGenericMainThread(Attributor &A) {
|
|
Optional<Value *> SimplifiedValueBefore = SimplifiedValue;
|
|
|
|
CallBase &CB = cast<CallBase>(getAssociatedValue());
|
|
Function *F = CB.getFunction();
|
|
const auto &ExecutionDomainAA = A.getAAFor<AAExecutionDomain>(
|
|
*this, IRPosition::function(*F), DepClassTy::REQUIRED);
|
|
|
|
if (!ExecutionDomainAA.isValidState())
|
|
return indicatePessimisticFixpoint();
|
|
|
|
auto &Ctx = getAnchorValue().getContext();
|
|
if (ExecutionDomainAA.isExecutedByInitialThreadOnly(CB))
|
|
SimplifiedValue = ConstantInt::get(Type::getInt8Ty(Ctx), true);
|
|
else
|
|
return indicatePessimisticFixpoint();
|
|
|
|
return SimplifiedValue == SimplifiedValueBefore ? ChangeStatus::UNCHANGED
|
|
: ChangeStatus::CHANGED;
|
|
}
|
|
|
|
/// Fold __kmpc_parallel_level into a constant if possible.
|
|
ChangeStatus foldParallelLevel(Attributor &A) {
|
|
Optional<Value *> SimplifiedValueBefore = SimplifiedValue;
|
|
|
|
auto &CallerKernelInfoAA = A.getAAFor<AAKernelInfo>(
|
|
*this, IRPosition::function(*getAnchorScope()), DepClassTy::REQUIRED);
|
|
|
|
if (!CallerKernelInfoAA.ParallelLevels.isValidState())
|
|
return indicatePessimisticFixpoint();
|
|
|
|
if (!CallerKernelInfoAA.ReachingKernelEntries.isValidState())
|
|
return indicatePessimisticFixpoint();
|
|
|
|
if (CallerKernelInfoAA.ReachingKernelEntries.empty()) {
|
|
assert(!SimplifiedValue.hasValue() &&
|
|
"SimplifiedValue should keep none at this point");
|
|
return ChangeStatus::UNCHANGED;
|
|
}
|
|
|
|
unsigned AssumedSPMDCount = 0, KnownSPMDCount = 0;
|
|
unsigned AssumedNonSPMDCount = 0, KnownNonSPMDCount = 0;
|
|
for (Kernel K : CallerKernelInfoAA.ReachingKernelEntries) {
|
|
auto &AA = A.getAAFor<AAKernelInfo>(*this, IRPosition::function(*K),
|
|
DepClassTy::REQUIRED);
|
|
if (!AA.SPMDCompatibilityTracker.isValidState())
|
|
return indicatePessimisticFixpoint();
|
|
|
|
if (AA.SPMDCompatibilityTracker.isAssumed()) {
|
|
if (AA.SPMDCompatibilityTracker.isAtFixpoint())
|
|
++KnownSPMDCount;
|
|
else
|
|
++AssumedSPMDCount;
|
|
} else {
|
|
if (AA.SPMDCompatibilityTracker.isAtFixpoint())
|
|
++KnownNonSPMDCount;
|
|
else
|
|
++AssumedNonSPMDCount;
|
|
}
|
|
}
|
|
|
|
if ((AssumedSPMDCount + KnownSPMDCount) &&
|
|
(AssumedNonSPMDCount + KnownNonSPMDCount))
|
|
return indicatePessimisticFixpoint();
|
|
|
|
auto &Ctx = getAnchorValue().getContext();
|
|
// If the caller can only be reached by SPMD kernel entries, the parallel
|
|
// level is 1. Similarly, if the caller can only be reached by non-SPMD
|
|
// kernel entries, it is 0.
|
|
if (AssumedSPMDCount || KnownSPMDCount) {
|
|
assert(KnownNonSPMDCount == 0 && AssumedNonSPMDCount == 0 &&
|
|
"Expected only SPMD kernels!");
|
|
SimplifiedValue = ConstantInt::get(Type::getInt8Ty(Ctx), 1);
|
|
} else {
|
|
assert(KnownSPMDCount == 0 && AssumedSPMDCount == 0 &&
|
|
"Expected only non-SPMD kernels!");
|
|
SimplifiedValue = ConstantInt::get(Type::getInt8Ty(Ctx), 0);
|
|
}
|
|
return SimplifiedValue == SimplifiedValueBefore ? ChangeStatus::UNCHANGED
|
|
: ChangeStatus::CHANGED;
|
|
}
|
|
|
|
ChangeStatus foldKernelFnAttribute(Attributor &A, llvm::StringRef Attr) {
|
|
// Specialize only if all the calls agree with the attribute constant value
|
|
int32_t CurrentAttrValue = -1;
|
|
Optional<Value *> SimplifiedValueBefore = SimplifiedValue;
|
|
|
|
auto &CallerKernelInfoAA = A.getAAFor<AAKernelInfo>(
|
|
*this, IRPosition::function(*getAnchorScope()), DepClassTy::REQUIRED);
|
|
|
|
if (!CallerKernelInfoAA.ReachingKernelEntries.isValidState())
|
|
return indicatePessimisticFixpoint();
|
|
|
|
// Iterate over the kernels that reach this function
|
|
for (Kernel K : CallerKernelInfoAA.ReachingKernelEntries) {
|
|
int32_t NextAttrVal = -1;
|
|
if (K->hasFnAttribute(Attr))
|
|
NextAttrVal =
|
|
std::stoi(K->getFnAttribute(Attr).getValueAsString().str());
|
|
|
|
if (NextAttrVal == -1 ||
|
|
(CurrentAttrValue != -1 && CurrentAttrValue != NextAttrVal))
|
|
return indicatePessimisticFixpoint();
|
|
CurrentAttrValue = NextAttrVal;
|
|
}
|
|
|
|
if (CurrentAttrValue != -1) {
|
|
auto &Ctx = getAnchorValue().getContext();
|
|
SimplifiedValue =
|
|
ConstantInt::get(Type::getInt32Ty(Ctx), CurrentAttrValue);
|
|
}
|
|
return SimplifiedValue == SimplifiedValueBefore ? ChangeStatus::UNCHANGED
|
|
: ChangeStatus::CHANGED;
|
|
}
|
|
|
|
/// An optional value the associated value is assumed to fold to. That is, we
|
|
/// assume the associated value (which is a call) can be replaced by this
|
|
/// simplified value.
|
|
Optional<Value *> SimplifiedValue;
|
|
|
|
/// The runtime function kind of the callee of the associated call site.
|
|
RuntimeFunction RFKind;
|
|
};
|
|
|
|
} // namespace
|
|
|
|
/// Register folding callsite
|
|
void OpenMPOpt::registerFoldRuntimeCall(RuntimeFunction RF) {
|
|
auto &RFI = OMPInfoCache.RFIs[RF];
|
|
RFI.foreachUse(SCC, [&](Use &U, Function &F) {
|
|
CallInst *CI = OpenMPOpt::getCallIfRegularCall(U, &RFI);
|
|
if (!CI)
|
|
return false;
|
|
A.getOrCreateAAFor<AAFoldRuntimeCall>(
|
|
IRPosition::callsite_returned(*CI), /* QueryingAA */ nullptr,
|
|
DepClassTy::NONE, /* ForceUpdate */ false,
|
|
/* UpdateAfterInit */ false);
|
|
return false;
|
|
});
|
|
}
|
|
|
|
void OpenMPOpt::registerAAs(bool IsModulePass) {
|
|
if (SCC.empty())
|
|
|
|
return;
|
|
if (IsModulePass) {
|
|
// Ensure we create the AAKernelInfo AAs first and without triggering an
|
|
// update. This will make sure we register all value simplification
|
|
// callbacks before any other AA has the chance to create an AAValueSimplify
|
|
// or similar.
|
|
for (Function *Kernel : OMPInfoCache.Kernels)
|
|
A.getOrCreateAAFor<AAKernelInfo>(
|
|
IRPosition::function(*Kernel), /* QueryingAA */ nullptr,
|
|
DepClassTy::NONE, /* ForceUpdate */ false,
|
|
/* UpdateAfterInit */ false);
|
|
|
|
|
|
registerFoldRuntimeCall(OMPRTL___kmpc_is_generic_main_thread_id);
|
|
registerFoldRuntimeCall(OMPRTL___kmpc_is_spmd_exec_mode);
|
|
registerFoldRuntimeCall(OMPRTL___kmpc_parallel_level);
|
|
registerFoldRuntimeCall(OMPRTL___kmpc_get_hardware_num_threads_in_block);
|
|
registerFoldRuntimeCall(OMPRTL___kmpc_get_hardware_num_blocks);
|
|
}
|
|
|
|
// Create CallSite AA for all Getters.
|
|
for (int Idx = 0; Idx < OMPInfoCache.ICVs.size() - 1; ++Idx) {
|
|
auto ICVInfo = OMPInfoCache.ICVs[static_cast<InternalControlVar>(Idx)];
|
|
|
|
auto &GetterRFI = OMPInfoCache.RFIs[ICVInfo.Getter];
|
|
|
|
auto CreateAA = [&](Use &U, Function &Caller) {
|
|
CallInst *CI = OpenMPOpt::getCallIfRegularCall(U, &GetterRFI);
|
|
if (!CI)
|
|
return false;
|
|
|
|
auto &CB = cast<CallBase>(*CI);
|
|
|
|
IRPosition CBPos = IRPosition::callsite_function(CB);
|
|
A.getOrCreateAAFor<AAICVTracker>(CBPos);
|
|
return false;
|
|
};
|
|
|
|
GetterRFI.foreachUse(SCC, CreateAA);
|
|
}
|
|
auto &GlobalizationRFI = OMPInfoCache.RFIs[OMPRTL___kmpc_alloc_shared];
|
|
auto CreateAA = [&](Use &U, Function &F) {
|
|
A.getOrCreateAAFor<AAHeapToShared>(IRPosition::function(F));
|
|
return false;
|
|
};
|
|
GlobalizationRFI.foreachUse(SCC, CreateAA);
|
|
|
|
// Create an ExecutionDomain AA for every function and a HeapToStack AA for
|
|
// every function if there is a device kernel.
|
|
if (!isOpenMPDevice(M))
|
|
return;
|
|
|
|
for (auto *F : SCC) {
|
|
if (F->isDeclaration())
|
|
continue;
|
|
|
|
A.getOrCreateAAFor<AAExecutionDomain>(IRPosition::function(*F));
|
|
A.getOrCreateAAFor<AAHeapToStack>(IRPosition::function(*F));
|
|
|
|
for (auto &I : instructions(*F)) {
|
|
if (auto *LI = dyn_cast<LoadInst>(&I)) {
|
|
bool UsedAssumedInformation = false;
|
|
A.getAssumedSimplified(IRPosition::value(*LI), /* AA */ nullptr,
|
|
UsedAssumedInformation);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
const char AAICVTracker::ID = 0;
|
|
const char AAKernelInfo::ID = 0;
|
|
const char AAExecutionDomain::ID = 0;
|
|
const char AAHeapToShared::ID = 0;
|
|
const char AAFoldRuntimeCall::ID = 0;
|
|
|
|
AAICVTracker &AAICVTracker::createForPosition(const IRPosition &IRP,
|
|
Attributor &A) {
|
|
AAICVTracker *AA = nullptr;
|
|
switch (IRP.getPositionKind()) {
|
|
case IRPosition::IRP_INVALID:
|
|
case IRPosition::IRP_FLOAT:
|
|
case IRPosition::IRP_ARGUMENT:
|
|
case IRPosition::IRP_CALL_SITE_ARGUMENT:
|
|
llvm_unreachable("ICVTracker can only be created for function position!");
|
|
case IRPosition::IRP_RETURNED:
|
|
AA = new (A.Allocator) AAICVTrackerFunctionReturned(IRP, A);
|
|
break;
|
|
case IRPosition::IRP_CALL_SITE_RETURNED:
|
|
AA = new (A.Allocator) AAICVTrackerCallSiteReturned(IRP, A);
|
|
break;
|
|
case IRPosition::IRP_CALL_SITE:
|
|
AA = new (A.Allocator) AAICVTrackerCallSite(IRP, A);
|
|
break;
|
|
case IRPosition::IRP_FUNCTION:
|
|
AA = new (A.Allocator) AAICVTrackerFunction(IRP, A);
|
|
break;
|
|
}
|
|
|
|
return *AA;
|
|
}
|
|
|
|
AAExecutionDomain &AAExecutionDomain::createForPosition(const IRPosition &IRP,
|
|
Attributor &A) {
|
|
AAExecutionDomainFunction *AA = nullptr;
|
|
switch (IRP.getPositionKind()) {
|
|
case IRPosition::IRP_INVALID:
|
|
case IRPosition::IRP_FLOAT:
|
|
case IRPosition::IRP_ARGUMENT:
|
|
case IRPosition::IRP_CALL_SITE_ARGUMENT:
|
|
case IRPosition::IRP_RETURNED:
|
|
case IRPosition::IRP_CALL_SITE_RETURNED:
|
|
case IRPosition::IRP_CALL_SITE:
|
|
llvm_unreachable(
|
|
"AAExecutionDomain can only be created for function position!");
|
|
case IRPosition::IRP_FUNCTION:
|
|
AA = new (A.Allocator) AAExecutionDomainFunction(IRP, A);
|
|
break;
|
|
}
|
|
|
|
return *AA;
|
|
}
|
|
|
|
AAHeapToShared &AAHeapToShared::createForPosition(const IRPosition &IRP,
|
|
Attributor &A) {
|
|
AAHeapToSharedFunction *AA = nullptr;
|
|
switch (IRP.getPositionKind()) {
|
|
case IRPosition::IRP_INVALID:
|
|
case IRPosition::IRP_FLOAT:
|
|
case IRPosition::IRP_ARGUMENT:
|
|
case IRPosition::IRP_CALL_SITE_ARGUMENT:
|
|
case IRPosition::IRP_RETURNED:
|
|
case IRPosition::IRP_CALL_SITE_RETURNED:
|
|
case IRPosition::IRP_CALL_SITE:
|
|
llvm_unreachable(
|
|
"AAHeapToShared can only be created for function position!");
|
|
case IRPosition::IRP_FUNCTION:
|
|
AA = new (A.Allocator) AAHeapToSharedFunction(IRP, A);
|
|
break;
|
|
}
|
|
|
|
return *AA;
|
|
}
|
|
|
|
AAKernelInfo &AAKernelInfo::createForPosition(const IRPosition &IRP,
|
|
Attributor &A) {
|
|
AAKernelInfo *AA = nullptr;
|
|
switch (IRP.getPositionKind()) {
|
|
case IRPosition::IRP_INVALID:
|
|
case IRPosition::IRP_FLOAT:
|
|
case IRPosition::IRP_ARGUMENT:
|
|
case IRPosition::IRP_RETURNED:
|
|
case IRPosition::IRP_CALL_SITE_RETURNED:
|
|
case IRPosition::IRP_CALL_SITE_ARGUMENT:
|
|
llvm_unreachable("KernelInfo can only be created for function position!");
|
|
case IRPosition::IRP_CALL_SITE:
|
|
AA = new (A.Allocator) AAKernelInfoCallSite(IRP, A);
|
|
break;
|
|
case IRPosition::IRP_FUNCTION:
|
|
AA = new (A.Allocator) AAKernelInfoFunction(IRP, A);
|
|
break;
|
|
}
|
|
|
|
return *AA;
|
|
}
|
|
|
|
AAFoldRuntimeCall &AAFoldRuntimeCall::createForPosition(const IRPosition &IRP,
|
|
Attributor &A) {
|
|
AAFoldRuntimeCall *AA = nullptr;
|
|
switch (IRP.getPositionKind()) {
|
|
case IRPosition::IRP_INVALID:
|
|
case IRPosition::IRP_FLOAT:
|
|
case IRPosition::IRP_ARGUMENT:
|
|
case IRPosition::IRP_RETURNED:
|
|
case IRPosition::IRP_FUNCTION:
|
|
case IRPosition::IRP_CALL_SITE:
|
|
case IRPosition::IRP_CALL_SITE_ARGUMENT:
|
|
llvm_unreachable("KernelInfo can only be created for call site position!");
|
|
case IRPosition::IRP_CALL_SITE_RETURNED:
|
|
AA = new (A.Allocator) AAFoldRuntimeCallCallSiteReturned(IRP, A);
|
|
break;
|
|
}
|
|
|
|
return *AA;
|
|
}
|
|
|
|
PreservedAnalyses OpenMPOptPass::run(Module &M, ModuleAnalysisManager &AM) {
|
|
if (!containsOpenMP(M))
|
|
return PreservedAnalyses::all();
|
|
if (DisableOpenMPOptimizations)
|
|
return PreservedAnalyses::all();
|
|
|
|
FunctionAnalysisManager &FAM =
|
|
AM.getResult<FunctionAnalysisManagerModuleProxy>(M).getManager();
|
|
KernelSet Kernels = getDeviceKernels(M);
|
|
|
|
auto IsCalled = [&](Function &F) {
|
|
if (Kernels.contains(&F))
|
|
return true;
|
|
for (const User *U : F.users())
|
|
if (!isa<BlockAddress>(U))
|
|
return true;
|
|
return false;
|
|
};
|
|
|
|
auto EmitRemark = [&](Function &F) {
|
|
auto &ORE = FAM.getResult<OptimizationRemarkEmitterAnalysis>(F);
|
|
ORE.emit([&]() {
|
|
OptimizationRemarkAnalysis ORA(DEBUG_TYPE, "OMP140", &F);
|
|
return ORA << "Could not internalize function. "
|
|
<< "Some optimizations may not be possible. [OMP140]";
|
|
});
|
|
};
|
|
|
|
// Create internal copies of each function if this is a kernel Module. This
|
|
// allows iterprocedural passes to see every call edge.
|
|
DenseMap<Function *, Function *> InternalizedMap;
|
|
if (isOpenMPDevice(M)) {
|
|
SmallPtrSet<Function *, 16> InternalizeFns;
|
|
for (Function &F : M)
|
|
if (!F.isDeclaration() && !Kernels.contains(&F) && IsCalled(F) &&
|
|
!DisableInternalization) {
|
|
if (Attributor::isInternalizable(F)) {
|
|
InternalizeFns.insert(&F);
|
|
} else if (!F.hasLocalLinkage() && !F.hasFnAttribute(Attribute::Cold)) {
|
|
EmitRemark(F);
|
|
}
|
|
}
|
|
|
|
Attributor::internalizeFunctions(InternalizeFns, InternalizedMap);
|
|
}
|
|
|
|
// Look at every function in the Module unless it was internalized.
|
|
SmallVector<Function *, 16> SCC;
|
|
for (Function &F : M)
|
|
if (!F.isDeclaration() && !InternalizedMap.lookup(&F))
|
|
SCC.push_back(&F);
|
|
|
|
if (SCC.empty())
|
|
return PreservedAnalyses::all();
|
|
|
|
AnalysisGetter AG(FAM);
|
|
|
|
auto OREGetter = [&FAM](Function *F) -> OptimizationRemarkEmitter & {
|
|
return FAM.getResult<OptimizationRemarkEmitterAnalysis>(*F);
|
|
};
|
|
|
|
BumpPtrAllocator Allocator;
|
|
CallGraphUpdater CGUpdater;
|
|
|
|
SetVector<Function *> Functions(SCC.begin(), SCC.end());
|
|
OMPInformationCache InfoCache(M, AG, Allocator, /*CGSCC*/ Functions, Kernels);
|
|
|
|
unsigned MaxFixpointIterations = (isOpenMPDevice(M)) ? 128 : 32;
|
|
Attributor A(Functions, InfoCache, CGUpdater, nullptr, true, false,
|
|
MaxFixpointIterations, OREGetter, DEBUG_TYPE);
|
|
|
|
OpenMPOpt OMPOpt(SCC, CGUpdater, OREGetter, InfoCache, A);
|
|
bool Changed = OMPOpt.run(true);
|
|
if (Changed)
|
|
return PreservedAnalyses::none();
|
|
|
|
return PreservedAnalyses::all();
|
|
}
|
|
|
|
PreservedAnalyses OpenMPOptCGSCCPass::run(LazyCallGraph::SCC &C,
|
|
CGSCCAnalysisManager &AM,
|
|
LazyCallGraph &CG,
|
|
CGSCCUpdateResult &UR) {
|
|
if (!containsOpenMP(*C.begin()->getFunction().getParent()))
|
|
return PreservedAnalyses::all();
|
|
if (DisableOpenMPOptimizations)
|
|
return PreservedAnalyses::all();
|
|
|
|
SmallVector<Function *, 16> SCC;
|
|
// If there are kernels in the module, we have to run on all SCC's.
|
|
for (LazyCallGraph::Node &N : C) {
|
|
Function *Fn = &N.getFunction();
|
|
SCC.push_back(Fn);
|
|
}
|
|
|
|
if (SCC.empty())
|
|
return PreservedAnalyses::all();
|
|
|
|
Module &M = *C.begin()->getFunction().getParent();
|
|
|
|
KernelSet Kernels = getDeviceKernels(M);
|
|
|
|
FunctionAnalysisManager &FAM =
|
|
AM.getResult<FunctionAnalysisManagerCGSCCProxy>(C, CG).getManager();
|
|
|
|
AnalysisGetter AG(FAM);
|
|
|
|
auto OREGetter = [&FAM](Function *F) -> OptimizationRemarkEmitter & {
|
|
return FAM.getResult<OptimizationRemarkEmitterAnalysis>(*F);
|
|
};
|
|
|
|
BumpPtrAllocator Allocator;
|
|
CallGraphUpdater CGUpdater;
|
|
CGUpdater.initialize(CG, C, AM, UR);
|
|
|
|
SetVector<Function *> Functions(SCC.begin(), SCC.end());
|
|
OMPInformationCache InfoCache(*(Functions.back()->getParent()), AG, Allocator,
|
|
/*CGSCC*/ Functions, Kernels);
|
|
|
|
unsigned MaxFixpointIterations = (isOpenMPDevice(M)) ? 128 : 32;
|
|
Attributor A(Functions, InfoCache, CGUpdater, nullptr, false, true,
|
|
MaxFixpointIterations, OREGetter, DEBUG_TYPE);
|
|
|
|
OpenMPOpt OMPOpt(SCC, CGUpdater, OREGetter, InfoCache, A);
|
|
bool Changed = OMPOpt.run(false);
|
|
if (Changed)
|
|
return PreservedAnalyses::none();
|
|
|
|
return PreservedAnalyses::all();
|
|
}
|
|
|
|
namespace {
|
|
|
|
struct OpenMPOptCGSCCLegacyPass : public CallGraphSCCPass {
|
|
CallGraphUpdater CGUpdater;
|
|
static char ID;
|
|
|
|
OpenMPOptCGSCCLegacyPass() : CallGraphSCCPass(ID) {
|
|
initializeOpenMPOptCGSCCLegacyPassPass(*PassRegistry::getPassRegistry());
|
|
}
|
|
|
|
void getAnalysisUsage(AnalysisUsage &AU) const override {
|
|
CallGraphSCCPass::getAnalysisUsage(AU);
|
|
}
|
|
|
|
bool runOnSCC(CallGraphSCC &CGSCC) override {
|
|
if (!containsOpenMP(CGSCC.getCallGraph().getModule()))
|
|
return false;
|
|
if (DisableOpenMPOptimizations || skipSCC(CGSCC))
|
|
return false;
|
|
|
|
SmallVector<Function *, 16> SCC;
|
|
// If there are kernels in the module, we have to run on all SCC's.
|
|
for (CallGraphNode *CGN : CGSCC) {
|
|
Function *Fn = CGN->getFunction();
|
|
if (!Fn || Fn->isDeclaration())
|
|
continue;
|
|
SCC.push_back(Fn);
|
|
}
|
|
|
|
if (SCC.empty())
|
|
return false;
|
|
|
|
Module &M = CGSCC.getCallGraph().getModule();
|
|
KernelSet Kernels = getDeviceKernels(M);
|
|
|
|
CallGraph &CG = getAnalysis<CallGraphWrapperPass>().getCallGraph();
|
|
CGUpdater.initialize(CG, CGSCC);
|
|
|
|
// Maintain a map of functions to avoid rebuilding the ORE
|
|
DenseMap<Function *, std::unique_ptr<OptimizationRemarkEmitter>> OREMap;
|
|
auto OREGetter = [&OREMap](Function *F) -> OptimizationRemarkEmitter & {
|
|
std::unique_ptr<OptimizationRemarkEmitter> &ORE = OREMap[F];
|
|
if (!ORE)
|
|
ORE = std::make_unique<OptimizationRemarkEmitter>(F);
|
|
return *ORE;
|
|
};
|
|
|
|
AnalysisGetter AG;
|
|
SetVector<Function *> Functions(SCC.begin(), SCC.end());
|
|
BumpPtrAllocator Allocator;
|
|
OMPInformationCache InfoCache(*(Functions.back()->getParent()), AG,
|
|
Allocator,
|
|
/*CGSCC*/ Functions, Kernels);
|
|
|
|
unsigned MaxFixpointIterations = (isOpenMPDevice(M)) ? 128 : 32;
|
|
Attributor A(Functions, InfoCache, CGUpdater, nullptr, false, true,
|
|
MaxFixpointIterations, OREGetter, DEBUG_TYPE);
|
|
|
|
OpenMPOpt OMPOpt(SCC, CGUpdater, OREGetter, InfoCache, A);
|
|
return OMPOpt.run(false);
|
|
}
|
|
|
|
bool doFinalization(CallGraph &CG) override { return CGUpdater.finalize(); }
|
|
};
|
|
|
|
} // end anonymous namespace
|
|
|
|
KernelSet llvm::omp::getDeviceKernels(Module &M) {
|
|
// TODO: Create a more cross-platform way of determining device kernels.
|
|
NamedMDNode *MD = M.getOrInsertNamedMetadata("nvvm.annotations");
|
|
KernelSet Kernels;
|
|
|
|
if (!MD)
|
|
return Kernels;
|
|
|
|
for (auto *Op : MD->operands()) {
|
|
if (Op->getNumOperands() < 2)
|
|
continue;
|
|
MDString *KindID = dyn_cast<MDString>(Op->getOperand(1));
|
|
if (!KindID || KindID->getString() != "kernel")
|
|
continue;
|
|
|
|
Function *KernelFn =
|
|
mdconst::dyn_extract_or_null<Function>(Op->getOperand(0));
|
|
if (!KernelFn)
|
|
continue;
|
|
|
|
++NumOpenMPTargetRegionKernels;
|
|
|
|
Kernels.insert(KernelFn);
|
|
}
|
|
|
|
return Kernels;
|
|
}
|
|
|
|
bool llvm::omp::containsOpenMP(Module &M) {
|
|
Metadata *MD = M.getModuleFlag("openmp");
|
|
if (!MD)
|
|
return false;
|
|
|
|
return true;
|
|
}
|
|
|
|
bool llvm::omp::isOpenMPDevice(Module &M) {
|
|
Metadata *MD = M.getModuleFlag("openmp-device");
|
|
if (!MD)
|
|
return false;
|
|
|
|
return true;
|
|
}
|
|
|
|
char OpenMPOptCGSCCLegacyPass::ID = 0;
|
|
|
|
INITIALIZE_PASS_BEGIN(OpenMPOptCGSCCLegacyPass, "openmp-opt-cgscc",
|
|
"OpenMP specific optimizations", false, false)
|
|
INITIALIZE_PASS_DEPENDENCY(CallGraphWrapperPass)
|
|
INITIALIZE_PASS_END(OpenMPOptCGSCCLegacyPass, "openmp-opt-cgscc",
|
|
"OpenMP specific optimizations", false, false)
|
|
|
|
Pass *llvm::createOpenMPOptCGSCCLegacyPass() {
|
|
return new OpenMPOptCGSCCLegacyPass();
|
|
}
|