1
0
mirror of https://github.com/RPCS3/llvm-mirror.git synced 2024-11-22 02:33:06 +01:00
llvm-mirror/lib/Transforms/IPO/ThinLTOBitcodeWriter.cpp
Sami Tolvanen 8a19c7f52b ThinLTO: Fix inline assembly references to static functions with CFI
Create an internal alias with the original name for static functions
that are renamed in promoteInternals to avoid breaking inline
assembly references to them.

Relands 700d07f8ce6f2879610fd6b6968b05c6f17bb915 with -msvc targets
fixed.

Link: https://github.com/ClangBuiltLinux/linux/issues/1354

Reviewed By: nickdesaulniers, pcc

Differential Revision: https://reviews.llvm.org/D104058

(cherry picked from commit 7ce1c4da7726577986535cb7766d782f325145fe)
2021-08-24 18:49:13 -07:00

600 lines
22 KiB
C++

//===- ThinLTOBitcodeWriter.cpp - Bitcode writing pass for ThinLTO --------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "llvm/Transforms/IPO/ThinLTOBitcodeWriter.h"
#include "llvm/Analysis/BasicAliasAnalysis.h"
#include "llvm/Analysis/ModuleSummaryAnalysis.h"
#include "llvm/Analysis/ProfileSummaryInfo.h"
#include "llvm/Analysis/TypeMetadataUtils.h"
#include "llvm/Bitcode/BitcodeWriter.h"
#include "llvm/IR/Constants.h"
#include "llvm/IR/DebugInfo.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/Intrinsics.h"
#include "llvm/IR/Module.h"
#include "llvm/IR/PassManager.h"
#include "llvm/InitializePasses.h"
#include "llvm/Object/ModuleSymbolTable.h"
#include "llvm/Pass.h"
#include "llvm/Support/ScopedPrinter.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/Transforms/IPO.h"
#include "llvm/Transforms/IPO/FunctionAttrs.h"
#include "llvm/Transforms/IPO/FunctionImport.h"
#include "llvm/Transforms/IPO/LowerTypeTests.h"
#include "llvm/Transforms/Utils/Cloning.h"
#include "llvm/Transforms/Utils/ModuleUtils.h"
using namespace llvm;
namespace {
// Determine if a promotion alias should be created for a symbol name.
static bool allowPromotionAlias(const std::string &Name) {
// Promotion aliases are used only in inline assembly. It's safe to
// simply skip unusual names. Subset of MCAsmInfo::isAcceptableChar()
// and MCAsmInfoXCOFF::isAcceptableChar().
for (const char &C : Name) {
if (isAlnum(C) || C == '_' || C == '.')
continue;
return false;
}
return true;
}
// Promote each local-linkage entity defined by ExportM and used by ImportM by
// changing visibility and appending the given ModuleId.
void promoteInternals(Module &ExportM, Module &ImportM, StringRef ModuleId,
SetVector<GlobalValue *> &PromoteExtra) {
DenseMap<const Comdat *, Comdat *> RenamedComdats;
for (auto &ExportGV : ExportM.global_values()) {
if (!ExportGV.hasLocalLinkage())
continue;
auto Name = ExportGV.getName();
GlobalValue *ImportGV = nullptr;
if (!PromoteExtra.count(&ExportGV)) {
ImportGV = ImportM.getNamedValue(Name);
if (!ImportGV)
continue;
ImportGV->removeDeadConstantUsers();
if (ImportGV->use_empty()) {
ImportGV->eraseFromParent();
continue;
}
}
std::string OldName = Name.str();
std::string NewName = (Name + ModuleId).str();
if (const auto *C = ExportGV.getComdat())
if (C->getName() == Name)
RenamedComdats.try_emplace(C, ExportM.getOrInsertComdat(NewName));
ExportGV.setName(NewName);
ExportGV.setLinkage(GlobalValue::ExternalLinkage);
ExportGV.setVisibility(GlobalValue::HiddenVisibility);
if (ImportGV) {
ImportGV->setName(NewName);
ImportGV->setVisibility(GlobalValue::HiddenVisibility);
}
if (isa<Function>(&ExportGV) && allowPromotionAlias(OldName)) {
// Create a local alias with the original name to avoid breaking
// references from inline assembly.
std::string Alias = ".set " + OldName + "," + NewName + "\n";
ExportM.appendModuleInlineAsm(Alias);
}
}
if (!RenamedComdats.empty())
for (auto &GO : ExportM.global_objects())
if (auto *C = GO.getComdat()) {
auto Replacement = RenamedComdats.find(C);
if (Replacement != RenamedComdats.end())
GO.setComdat(Replacement->second);
}
}
// Promote all internal (i.e. distinct) type ids used by the module by replacing
// them with external type ids formed using the module id.
//
// Note that this needs to be done before we clone the module because each clone
// will receive its own set of distinct metadata nodes.
void promoteTypeIds(Module &M, StringRef ModuleId) {
DenseMap<Metadata *, Metadata *> LocalToGlobal;
auto ExternalizeTypeId = [&](CallInst *CI, unsigned ArgNo) {
Metadata *MD =
cast<MetadataAsValue>(CI->getArgOperand(ArgNo))->getMetadata();
if (isa<MDNode>(MD) && cast<MDNode>(MD)->isDistinct()) {
Metadata *&GlobalMD = LocalToGlobal[MD];
if (!GlobalMD) {
std::string NewName = (Twine(LocalToGlobal.size()) + ModuleId).str();
GlobalMD = MDString::get(M.getContext(), NewName);
}
CI->setArgOperand(ArgNo,
MetadataAsValue::get(M.getContext(), GlobalMD));
}
};
if (Function *TypeTestFunc =
M.getFunction(Intrinsic::getName(Intrinsic::type_test))) {
for (const Use &U : TypeTestFunc->uses()) {
auto CI = cast<CallInst>(U.getUser());
ExternalizeTypeId(CI, 1);
}
}
if (Function *TypeCheckedLoadFunc =
M.getFunction(Intrinsic::getName(Intrinsic::type_checked_load))) {
for (const Use &U : TypeCheckedLoadFunc->uses()) {
auto CI = cast<CallInst>(U.getUser());
ExternalizeTypeId(CI, 2);
}
}
for (GlobalObject &GO : M.global_objects()) {
SmallVector<MDNode *, 1> MDs;
GO.getMetadata(LLVMContext::MD_type, MDs);
GO.eraseMetadata(LLVMContext::MD_type);
for (auto MD : MDs) {
auto I = LocalToGlobal.find(MD->getOperand(1));
if (I == LocalToGlobal.end()) {
GO.addMetadata(LLVMContext::MD_type, *MD);
continue;
}
GO.addMetadata(
LLVMContext::MD_type,
*MDNode::get(M.getContext(), {MD->getOperand(0), I->second}));
}
}
}
// Drop unused globals, and drop type information from function declarations.
// FIXME: If we made functions typeless then there would be no need to do this.
void simplifyExternals(Module &M) {
FunctionType *EmptyFT =
FunctionType::get(Type::getVoidTy(M.getContext()), false);
for (auto I = M.begin(), E = M.end(); I != E;) {
Function &F = *I++;
if (F.isDeclaration() && F.use_empty()) {
F.eraseFromParent();
continue;
}
if (!F.isDeclaration() || F.getFunctionType() == EmptyFT ||
// Changing the type of an intrinsic may invalidate the IR.
F.getName().startswith("llvm."))
continue;
Function *NewF =
Function::Create(EmptyFT, GlobalValue::ExternalLinkage,
F.getAddressSpace(), "", &M);
NewF->copyAttributesFrom(&F);
// Only copy function attribtues.
NewF->setAttributes(
AttributeList::get(M.getContext(), AttributeList::FunctionIndex,
F.getAttributes().getFnAttributes()));
NewF->takeName(&F);
F.replaceAllUsesWith(ConstantExpr::getBitCast(NewF, F.getType()));
F.eraseFromParent();
}
for (auto I = M.global_begin(), E = M.global_end(); I != E;) {
GlobalVariable &GV = *I++;
if (GV.isDeclaration() && GV.use_empty()) {
GV.eraseFromParent();
continue;
}
}
}
static void
filterModule(Module *M,
function_ref<bool(const GlobalValue *)> ShouldKeepDefinition) {
std::vector<GlobalValue *> V;
for (GlobalValue &GV : M->global_values())
if (!ShouldKeepDefinition(&GV))
V.push_back(&GV);
for (GlobalValue *GV : V)
if (!convertToDeclaration(*GV))
GV->eraseFromParent();
}
void forEachVirtualFunction(Constant *C, function_ref<void(Function *)> Fn) {
if (auto *F = dyn_cast<Function>(C))
return Fn(F);
if (isa<GlobalValue>(C))
return;
for (Value *Op : C->operands())
forEachVirtualFunction(cast<Constant>(Op), Fn);
}
// Clone any @llvm[.compiler].used over to the new module and append
// values whose defs were cloned into that module.
static void cloneUsedGlobalVariables(const Module &SrcM, Module &DestM,
bool CompilerUsed) {
SmallVector<GlobalValue *, 4> Used, NewUsed;
// First collect those in the llvm[.compiler].used set.
collectUsedGlobalVariables(SrcM, Used, CompilerUsed);
// Next build a set of the equivalent values defined in DestM.
for (auto *V : Used) {
auto *GV = DestM.getNamedValue(V->getName());
if (GV && !GV->isDeclaration())
NewUsed.push_back(GV);
}
// Finally, add them to a llvm[.compiler].used variable in DestM.
if (CompilerUsed)
appendToCompilerUsed(DestM, NewUsed);
else
appendToUsed(DestM, NewUsed);
}
// If it's possible to split M into regular and thin LTO parts, do so and write
// a multi-module bitcode file with the two parts to OS. Otherwise, write only a
// regular LTO bitcode file to OS.
void splitAndWriteThinLTOBitcode(
raw_ostream &OS, raw_ostream *ThinLinkOS,
function_ref<AAResults &(Function &)> AARGetter, Module &M) {
std::string ModuleId = getUniqueModuleId(&M);
if (ModuleId.empty()) {
// We couldn't generate a module ID for this module, write it out as a
// regular LTO module with an index for summary-based dead stripping.
ProfileSummaryInfo PSI(M);
M.addModuleFlag(Module::Error, "ThinLTO", uint32_t(0));
ModuleSummaryIndex Index = buildModuleSummaryIndex(M, nullptr, &PSI);
WriteBitcodeToFile(M, OS, /*ShouldPreserveUseListOrder=*/false, &Index);
if (ThinLinkOS)
// We don't have a ThinLTO part, but still write the module to the
// ThinLinkOS if requested so that the expected output file is produced.
WriteBitcodeToFile(M, *ThinLinkOS, /*ShouldPreserveUseListOrder=*/false,
&Index);
return;
}
promoteTypeIds(M, ModuleId);
// Returns whether a global or its associated global has attached type
// metadata. The former may participate in CFI or whole-program
// devirtualization, so they need to appear in the merged module instead of
// the thin LTO module. Similarly, globals that are associated with globals
// with type metadata need to appear in the merged module because they will
// reference the global's section directly.
auto HasTypeMetadata = [](const GlobalObject *GO) {
if (MDNode *MD = GO->getMetadata(LLVMContext::MD_associated))
if (auto *AssocVM = dyn_cast_or_null<ValueAsMetadata>(MD->getOperand(0)))
if (auto *AssocGO = dyn_cast<GlobalObject>(AssocVM->getValue()))
if (AssocGO->hasMetadata(LLVMContext::MD_type))
return true;
return GO->hasMetadata(LLVMContext::MD_type);
};
// Collect the set of virtual functions that are eligible for virtual constant
// propagation. Each eligible function must not access memory, must return
// an integer of width <=64 bits, must take at least one argument, must not
// use its first argument (assumed to be "this") and all arguments other than
// the first one must be of <=64 bit integer type.
//
// Note that we test whether this copy of the function is readnone, rather
// than testing function attributes, which must hold for any copy of the
// function, even a less optimized version substituted at link time. This is
// sound because the virtual constant propagation optimizations effectively
// inline all implementations of the virtual function into each call site,
// rather than using function attributes to perform local optimization.
DenseSet<const Function *> EligibleVirtualFns;
// If any member of a comdat lives in MergedM, put all members of that
// comdat in MergedM to keep the comdat together.
DenseSet<const Comdat *> MergedMComdats;
for (GlobalVariable &GV : M.globals())
if (HasTypeMetadata(&GV)) {
if (const auto *C = GV.getComdat())
MergedMComdats.insert(C);
forEachVirtualFunction(GV.getInitializer(), [&](Function *F) {
auto *RT = dyn_cast<IntegerType>(F->getReturnType());
if (!RT || RT->getBitWidth() > 64 || F->arg_empty() ||
!F->arg_begin()->use_empty())
return;
for (auto &Arg : drop_begin(F->args())) {
auto *ArgT = dyn_cast<IntegerType>(Arg.getType());
if (!ArgT || ArgT->getBitWidth() > 64)
return;
}
if (!F->isDeclaration() &&
computeFunctionBodyMemoryAccess(*F, AARGetter(*F)) == MAK_ReadNone)
EligibleVirtualFns.insert(F);
});
}
ValueToValueMapTy VMap;
std::unique_ptr<Module> MergedM(
CloneModule(M, VMap, [&](const GlobalValue *GV) -> bool {
if (const auto *C = GV->getComdat())
if (MergedMComdats.count(C))
return true;
if (auto *F = dyn_cast<Function>(GV))
return EligibleVirtualFns.count(F);
if (auto *GVar = dyn_cast_or_null<GlobalVariable>(GV->getBaseObject()))
return HasTypeMetadata(GVar);
return false;
}));
StripDebugInfo(*MergedM);
MergedM->setModuleInlineAsm("");
// Clone any llvm.*used globals to ensure the included values are
// not deleted.
cloneUsedGlobalVariables(M, *MergedM, /*CompilerUsed*/ false);
cloneUsedGlobalVariables(M, *MergedM, /*CompilerUsed*/ true);
for (Function &F : *MergedM)
if (!F.isDeclaration()) {
// Reset the linkage of all functions eligible for virtual constant
// propagation. The canonical definitions live in the thin LTO module so
// that they can be imported.
F.setLinkage(GlobalValue::AvailableExternallyLinkage);
F.setComdat(nullptr);
}
SetVector<GlobalValue *> CfiFunctions;
for (auto &F : M)
if ((!F.hasLocalLinkage() || F.hasAddressTaken()) && HasTypeMetadata(&F))
CfiFunctions.insert(&F);
// Remove all globals with type metadata, globals with comdats that live in
// MergedM, and aliases pointing to such globals from the thin LTO module.
filterModule(&M, [&](const GlobalValue *GV) {
if (auto *GVar = dyn_cast_or_null<GlobalVariable>(GV->getBaseObject()))
if (HasTypeMetadata(GVar))
return false;
if (const auto *C = GV->getComdat())
if (MergedMComdats.count(C))
return false;
return true;
});
promoteInternals(*MergedM, M, ModuleId, CfiFunctions);
promoteInternals(M, *MergedM, ModuleId, CfiFunctions);
auto &Ctx = MergedM->getContext();
SmallVector<MDNode *, 8> CfiFunctionMDs;
for (auto V : CfiFunctions) {
Function &F = *cast<Function>(V);
SmallVector<MDNode *, 2> Types;
F.getMetadata(LLVMContext::MD_type, Types);
SmallVector<Metadata *, 4> Elts;
Elts.push_back(MDString::get(Ctx, F.getName()));
CfiFunctionLinkage Linkage;
if (lowertypetests::isJumpTableCanonical(&F))
Linkage = CFL_Definition;
else if (F.hasExternalWeakLinkage())
Linkage = CFL_WeakDeclaration;
else
Linkage = CFL_Declaration;
Elts.push_back(ConstantAsMetadata::get(
llvm::ConstantInt::get(Type::getInt8Ty(Ctx), Linkage)));
append_range(Elts, Types);
CfiFunctionMDs.push_back(MDTuple::get(Ctx, Elts));
}
if(!CfiFunctionMDs.empty()) {
NamedMDNode *NMD = MergedM->getOrInsertNamedMetadata("cfi.functions");
for (auto MD : CfiFunctionMDs)
NMD->addOperand(MD);
}
SmallVector<MDNode *, 8> FunctionAliases;
for (auto &A : M.aliases()) {
if (!isa<Function>(A.getAliasee()))
continue;
auto *F = cast<Function>(A.getAliasee());
Metadata *Elts[] = {
MDString::get(Ctx, A.getName()),
MDString::get(Ctx, F->getName()),
ConstantAsMetadata::get(
ConstantInt::get(Type::getInt8Ty(Ctx), A.getVisibility())),
ConstantAsMetadata::get(
ConstantInt::get(Type::getInt8Ty(Ctx), A.isWeakForLinker())),
};
FunctionAliases.push_back(MDTuple::get(Ctx, Elts));
}
if (!FunctionAliases.empty()) {
NamedMDNode *NMD = MergedM->getOrInsertNamedMetadata("aliases");
for (auto MD : FunctionAliases)
NMD->addOperand(MD);
}
SmallVector<MDNode *, 8> Symvers;
ModuleSymbolTable::CollectAsmSymvers(M, [&](StringRef Name, StringRef Alias) {
Function *F = M.getFunction(Name);
if (!F || F->use_empty())
return;
Symvers.push_back(MDTuple::get(
Ctx, {MDString::get(Ctx, Name), MDString::get(Ctx, Alias)}));
});
if (!Symvers.empty()) {
NamedMDNode *NMD = MergedM->getOrInsertNamedMetadata("symvers");
for (auto MD : Symvers)
NMD->addOperand(MD);
}
simplifyExternals(*MergedM);
// FIXME: Try to re-use BSI and PFI from the original module here.
ProfileSummaryInfo PSI(M);
ModuleSummaryIndex Index = buildModuleSummaryIndex(M, nullptr, &PSI);
// Mark the merged module as requiring full LTO. We still want an index for
// it though, so that it can participate in summary-based dead stripping.
MergedM->addModuleFlag(Module::Error, "ThinLTO", uint32_t(0));
ModuleSummaryIndex MergedMIndex =
buildModuleSummaryIndex(*MergedM, nullptr, &PSI);
SmallVector<char, 0> Buffer;
BitcodeWriter W(Buffer);
// Save the module hash produced for the full bitcode, which will
// be used in the backends, and use that in the minimized bitcode
// produced for the full link.
ModuleHash ModHash = {{0}};
W.writeModule(M, /*ShouldPreserveUseListOrder=*/false, &Index,
/*GenerateHash=*/true, &ModHash);
W.writeModule(*MergedM, /*ShouldPreserveUseListOrder=*/false, &MergedMIndex);
W.writeSymtab();
W.writeStrtab();
OS << Buffer;
// If a minimized bitcode module was requested for the thin link, only
// the information that is needed by thin link will be written in the
// given OS (the merged module will be written as usual).
if (ThinLinkOS) {
Buffer.clear();
BitcodeWriter W2(Buffer);
StripDebugInfo(M);
W2.writeThinLinkBitcode(M, Index, ModHash);
W2.writeModule(*MergedM, /*ShouldPreserveUseListOrder=*/false,
&MergedMIndex);
W2.writeSymtab();
W2.writeStrtab();
*ThinLinkOS << Buffer;
}
}
// Check if the LTO Unit splitting has been enabled.
bool enableSplitLTOUnit(Module &M) {
bool EnableSplitLTOUnit = false;
if (auto *MD = mdconst::extract_or_null<ConstantInt>(
M.getModuleFlag("EnableSplitLTOUnit")))
EnableSplitLTOUnit = MD->getZExtValue();
return EnableSplitLTOUnit;
}
// Returns whether this module needs to be split because it uses type metadata.
bool hasTypeMetadata(Module &M) {
for (auto &GO : M.global_objects()) {
if (GO.hasMetadata(LLVMContext::MD_type))
return true;
}
return false;
}
void writeThinLTOBitcode(raw_ostream &OS, raw_ostream *ThinLinkOS,
function_ref<AAResults &(Function &)> AARGetter,
Module &M, const ModuleSummaryIndex *Index) {
std::unique_ptr<ModuleSummaryIndex> NewIndex = nullptr;
// See if this module has any type metadata. If so, we try to split it
// or at least promote type ids to enable WPD.
if (hasTypeMetadata(M)) {
if (enableSplitLTOUnit(M))
return splitAndWriteThinLTOBitcode(OS, ThinLinkOS, AARGetter, M);
// Promote type ids as needed for index-based WPD.
std::string ModuleId = getUniqueModuleId(&M);
if (!ModuleId.empty()) {
promoteTypeIds(M, ModuleId);
// Need to rebuild the index so that it contains type metadata
// for the newly promoted type ids.
// FIXME: Probably should not bother building the index at all
// in the caller of writeThinLTOBitcode (which does so via the
// ModuleSummaryIndexAnalysis pass), since we have to rebuild it
// anyway whenever there is type metadata (here or in
// splitAndWriteThinLTOBitcode). Just always build it once via the
// buildModuleSummaryIndex when Module(s) are ready.
ProfileSummaryInfo PSI(M);
NewIndex = std::make_unique<ModuleSummaryIndex>(
buildModuleSummaryIndex(M, nullptr, &PSI));
Index = NewIndex.get();
}
}
// Write it out as an unsplit ThinLTO module.
// Save the module hash produced for the full bitcode, which will
// be used in the backends, and use that in the minimized bitcode
// produced for the full link.
ModuleHash ModHash = {{0}};
WriteBitcodeToFile(M, OS, /*ShouldPreserveUseListOrder=*/false, Index,
/*GenerateHash=*/true, &ModHash);
// If a minimized bitcode module was requested for the thin link, only
// the information that is needed by thin link will be written in the
// given OS.
if (ThinLinkOS && Index)
WriteThinLinkBitcodeToFile(M, *ThinLinkOS, *Index, ModHash);
}
class WriteThinLTOBitcode : public ModulePass {
raw_ostream &OS; // raw_ostream to print on
// The output stream on which to emit a minimized module for use
// just in the thin link, if requested.
raw_ostream *ThinLinkOS;
public:
static char ID; // Pass identification, replacement for typeid
WriteThinLTOBitcode() : ModulePass(ID), OS(dbgs()), ThinLinkOS(nullptr) {
initializeWriteThinLTOBitcodePass(*PassRegistry::getPassRegistry());
}
explicit WriteThinLTOBitcode(raw_ostream &o, raw_ostream *ThinLinkOS)
: ModulePass(ID), OS(o), ThinLinkOS(ThinLinkOS) {
initializeWriteThinLTOBitcodePass(*PassRegistry::getPassRegistry());
}
StringRef getPassName() const override { return "ThinLTO Bitcode Writer"; }
bool runOnModule(Module &M) override {
const ModuleSummaryIndex *Index =
&(getAnalysis<ModuleSummaryIndexWrapperPass>().getIndex());
writeThinLTOBitcode(OS, ThinLinkOS, LegacyAARGetter(*this), M, Index);
return true;
}
void getAnalysisUsage(AnalysisUsage &AU) const override {
AU.setPreservesAll();
AU.addRequired<AssumptionCacheTracker>();
AU.addRequired<ModuleSummaryIndexWrapperPass>();
AU.addRequired<TargetLibraryInfoWrapperPass>();
}
};
} // anonymous namespace
char WriteThinLTOBitcode::ID = 0;
INITIALIZE_PASS_BEGIN(WriteThinLTOBitcode, "write-thinlto-bitcode",
"Write ThinLTO Bitcode", false, true)
INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
INITIALIZE_PASS_DEPENDENCY(ModuleSummaryIndexWrapperPass)
INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
INITIALIZE_PASS_END(WriteThinLTOBitcode, "write-thinlto-bitcode",
"Write ThinLTO Bitcode", false, true)
ModulePass *llvm::createWriteThinLTOBitcodePass(raw_ostream &Str,
raw_ostream *ThinLinkOS) {
return new WriteThinLTOBitcode(Str, ThinLinkOS);
}
PreservedAnalyses
llvm::ThinLTOBitcodeWriterPass::run(Module &M, ModuleAnalysisManager &AM) {
FunctionAnalysisManager &FAM =
AM.getResult<FunctionAnalysisManagerModuleProxy>(M).getManager();
writeThinLTOBitcode(OS, ThinLinkOS,
[&FAM](Function &F) -> AAResults & {
return FAM.getResult<AAManager>(F);
},
M, &AM.getResult<ModuleSummaryIndexAnalysis>(M));
return PreservedAnalyses::all();
}