1
0
mirror of https://github.com/RPCS3/llvm-mirror.git synced 2024-11-25 04:02:41 +01:00
llvm-mirror/lib/Transforms/Scalar/CallSiteSplitting.cpp
David Sherwood e693cbf9f5 [Support] Introduce a new InstructionCost class
This is the first in a series of patches that attempts to migrate
existing cost instructions to return a new InstructionCost class
in place of a simple integer. This new class is intended to be
as light-weight and simple as possible, with a full range of
arithmetic and comparison operators that largely mirror the same
sets of operations on basic types, such as integers. The main
advantage to using an InstructionCost is that it can encode a
particular cost state in addition to a value. The initial
implementation only has two states - Normal and Invalid - but these
could be expanded over time if necessary. An invalid state can
be used to represent an unknown cost or an instruction that is
prohibitively expensive.

This patch adds the new class and changes the getInstructionCost
interface to return the new class. Other cost functions, such as
getUserCost, etc., will be migrated in future patches as I believe
this to be less disruptive. One benefit of this new class is that
it provides a way to unify many of the magic costs in the codebase
where the cost is set to a deliberately high number to prevent
optimisations taking place, e.g. vectorization. It also provides
a route to represent the extremely high, and unknown, cost of
scalarization of scalable vectors, which is not currently supported.

Differential Revision: https://reviews.llvm.org/D91174
2020-12-11 08:12:54 +00:00

591 lines
21 KiB
C++

//===- CallSiteSplitting.cpp ----------------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file implements a transformation that tries to split a call-site to pass
// more constrained arguments if its argument is predicated in the control flow
// so that we can expose better context to the later passes (e.g, inliner, jump
// threading, or IPA-CP based function cloning, etc.).
// As of now we support two cases :
//
// 1) Try to a split call-site with constrained arguments, if any constraints
// on any argument can be found by following the single predecessors of the
// all site's predecessors. Currently this pass only handles call-sites with 2
// predecessors. For example, in the code below, we try to split the call-site
// since we can predicate the argument(ptr) based on the OR condition.
//
// Split from :
// if (!ptr || c)
// callee(ptr);
// to :
// if (!ptr)
// callee(null) // set the known constant value
// else if (c)
// callee(nonnull ptr) // set non-null attribute in the argument
//
// 2) We can also split a call-site based on constant incoming values of a PHI
// For example,
// from :
// Header:
// %c = icmp eq i32 %i1, %i2
// br i1 %c, label %Tail, label %TBB
// TBB:
// br label Tail%
// Tail:
// %p = phi i32 [ 0, %Header], [ 1, %TBB]
// call void @bar(i32 %p)
// to
// Header:
// %c = icmp eq i32 %i1, %i2
// br i1 %c, label %Tail-split0, label %TBB
// TBB:
// br label %Tail-split1
// Tail-split0:
// call void @bar(i32 0)
// br label %Tail
// Tail-split1:
// call void @bar(i32 1)
// br label %Tail
// Tail:
// %p = phi i32 [ 0, %Tail-split0 ], [ 1, %Tail-split1 ]
//
//===----------------------------------------------------------------------===//
#include "llvm/Transforms/Scalar/CallSiteSplitting.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/Analysis/TargetLibraryInfo.h"
#include "llvm/Analysis/TargetTransformInfo.h"
#include "llvm/IR/IntrinsicInst.h"
#include "llvm/IR/PatternMatch.h"
#include "llvm/InitializePasses.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Debug.h"
#include "llvm/Transforms/Scalar.h"
#include "llvm/Transforms/Utils/BasicBlockUtils.h"
#include "llvm/Transforms/Utils/Cloning.h"
#include "llvm/Transforms/Utils/Local.h"
using namespace llvm;
using namespace PatternMatch;
#define DEBUG_TYPE "callsite-splitting"
STATISTIC(NumCallSiteSplit, "Number of call-site split");
/// Only allow instructions before a call, if their CodeSize cost is below
/// DuplicationThreshold. Those instructions need to be duplicated in all
/// split blocks.
static cl::opt<unsigned>
DuplicationThreshold("callsite-splitting-duplication-threshold", cl::Hidden,
cl::desc("Only allow instructions before a call, if "
"their cost is below DuplicationThreshold"),
cl::init(5));
static void addNonNullAttribute(CallBase &CB, Value *Op) {
unsigned ArgNo = 0;
for (auto &I : CB.args()) {
if (&*I == Op)
CB.addParamAttr(ArgNo, Attribute::NonNull);
++ArgNo;
}
}
static void setConstantInArgument(CallBase &CB, Value *Op,
Constant *ConstValue) {
unsigned ArgNo = 0;
for (auto &I : CB.args()) {
if (&*I == Op) {
// It is possible we have already added the non-null attribute to the
// parameter by using an earlier constraining condition.
CB.removeParamAttr(ArgNo, Attribute::NonNull);
CB.setArgOperand(ArgNo, ConstValue);
}
++ArgNo;
}
}
static bool isCondRelevantToAnyCallArgument(ICmpInst *Cmp, CallBase &CB) {
assert(isa<Constant>(Cmp->getOperand(1)) && "Expected a constant operand.");
Value *Op0 = Cmp->getOperand(0);
unsigned ArgNo = 0;
for (auto I = CB.arg_begin(), E = CB.arg_end(); I != E; ++I, ++ArgNo) {
// Don't consider constant or arguments that are already known non-null.
if (isa<Constant>(*I) || CB.paramHasAttr(ArgNo, Attribute::NonNull))
continue;
if (*I == Op0)
return true;
}
return false;
}
typedef std::pair<ICmpInst *, unsigned> ConditionTy;
typedef SmallVector<ConditionTy, 2> ConditionsTy;
/// If From has a conditional jump to To, add the condition to Conditions,
/// if it is relevant to any argument at CB.
static void recordCondition(CallBase &CB, BasicBlock *From, BasicBlock *To,
ConditionsTy &Conditions) {
auto *BI = dyn_cast<BranchInst>(From->getTerminator());
if (!BI || !BI->isConditional())
return;
CmpInst::Predicate Pred;
Value *Cond = BI->getCondition();
if (!match(Cond, m_ICmp(Pred, m_Value(), m_Constant())))
return;
ICmpInst *Cmp = cast<ICmpInst>(Cond);
if (Pred == ICmpInst::ICMP_EQ || Pred == ICmpInst::ICMP_NE)
if (isCondRelevantToAnyCallArgument(Cmp, CB))
Conditions.push_back({Cmp, From->getTerminator()->getSuccessor(0) == To
? Pred
: Cmp->getInversePredicate()});
}
/// Record ICmp conditions relevant to any argument in CB following Pred's
/// single predecessors. If there are conflicting conditions along a path, like
/// x == 1 and x == 0, the first condition will be used. We stop once we reach
/// an edge to StopAt.
static void recordConditions(CallBase &CB, BasicBlock *Pred,
ConditionsTy &Conditions, BasicBlock *StopAt) {
BasicBlock *From = Pred;
BasicBlock *To = Pred;
SmallPtrSet<BasicBlock *, 4> Visited;
while (To != StopAt && !Visited.count(From->getSinglePredecessor()) &&
(From = From->getSinglePredecessor())) {
recordCondition(CB, From, To, Conditions);
Visited.insert(From);
To = From;
}
}
static void addConditions(CallBase &CB, const ConditionsTy &Conditions) {
for (auto &Cond : Conditions) {
Value *Arg = Cond.first->getOperand(0);
Constant *ConstVal = cast<Constant>(Cond.first->getOperand(1));
if (Cond.second == ICmpInst::ICMP_EQ)
setConstantInArgument(CB, Arg, ConstVal);
else if (ConstVal->getType()->isPointerTy() && ConstVal->isNullValue()) {
assert(Cond.second == ICmpInst::ICMP_NE);
addNonNullAttribute(CB, Arg);
}
}
}
static SmallVector<BasicBlock *, 2> getTwoPredecessors(BasicBlock *BB) {
SmallVector<BasicBlock *, 2> Preds(predecessors((BB)));
assert(Preds.size() == 2 && "Expected exactly 2 predecessors!");
return Preds;
}
static bool canSplitCallSite(CallBase &CB, TargetTransformInfo &TTI) {
if (CB.isConvergent() || CB.cannotDuplicate())
return false;
// FIXME: As of now we handle only CallInst. InvokeInst could be handled
// without too much effort.
if (!isa<CallInst>(CB))
return false;
BasicBlock *CallSiteBB = CB.getParent();
// Need 2 predecessors and cannot split an edge from an IndirectBrInst.
SmallVector<BasicBlock *, 2> Preds(predecessors(CallSiteBB));
if (Preds.size() != 2 || isa<IndirectBrInst>(Preds[0]->getTerminator()) ||
isa<IndirectBrInst>(Preds[1]->getTerminator()))
return false;
// BasicBlock::canSplitPredecessors is more aggressive, so checking for
// BasicBlock::isEHPad as well.
if (!CallSiteBB->canSplitPredecessors() || CallSiteBB->isEHPad())
return false;
// Allow splitting a call-site only when the CodeSize cost of the
// instructions before the call is less then DuplicationThreshold. The
// instructions before the call will be duplicated in the split blocks and
// corresponding uses will be updated.
InstructionCost Cost = 0;
for (auto &InstBeforeCall :
llvm::make_range(CallSiteBB->begin(), CB.getIterator())) {
Cost += TTI.getInstructionCost(&InstBeforeCall,
TargetTransformInfo::TCK_CodeSize);
if (Cost >= DuplicationThreshold)
return false;
}
return true;
}
static Instruction *cloneInstForMustTail(Instruction *I, Instruction *Before,
Value *V) {
Instruction *Copy = I->clone();
Copy->setName(I->getName());
Copy->insertBefore(Before);
if (V)
Copy->setOperand(0, V);
return Copy;
}
/// Copy mandatory `musttail` return sequence that follows original `CI`, and
/// link it up to `NewCI` value instead:
///
/// * (optional) `bitcast NewCI to ...`
/// * `ret bitcast or NewCI`
///
/// Insert this sequence right before `SplitBB`'s terminator, which will be
/// cleaned up later in `splitCallSite` below.
static void copyMustTailReturn(BasicBlock *SplitBB, Instruction *CI,
Instruction *NewCI) {
bool IsVoid = SplitBB->getParent()->getReturnType()->isVoidTy();
auto II = std::next(CI->getIterator());
BitCastInst* BCI = dyn_cast<BitCastInst>(&*II);
if (BCI)
++II;
ReturnInst* RI = dyn_cast<ReturnInst>(&*II);
assert(RI && "`musttail` call must be followed by `ret` instruction");
Instruction *TI = SplitBB->getTerminator();
Value *V = NewCI;
if (BCI)
V = cloneInstForMustTail(BCI, TI, V);
cloneInstForMustTail(RI, TI, IsVoid ? nullptr : V);
// FIXME: remove TI here, `DuplicateInstructionsInSplitBetween` has a bug
// that prevents doing this now.
}
/// For each (predecessor, conditions from predecessors) pair, it will split the
/// basic block containing the call site, hook it up to the predecessor and
/// replace the call instruction with new call instructions, which contain
/// constraints based on the conditions from their predecessors.
/// For example, in the IR below with an OR condition, the call-site can
/// be split. In this case, Preds for Tail is [(Header, a == null),
/// (TBB, a != null, b == null)]. Tail is replaced by 2 split blocks, containing
/// CallInst1, which has constraints based on the conditions from Head and
/// CallInst2, which has constraints based on the conditions coming from TBB.
///
/// From :
///
/// Header:
/// %c = icmp eq i32* %a, null
/// br i1 %c %Tail, %TBB
/// TBB:
/// %c2 = icmp eq i32* %b, null
/// br i1 %c %Tail, %End
/// Tail:
/// %ca = call i1 @callee (i32* %a, i32* %b)
///
/// to :
///
/// Header: // PredBB1 is Header
/// %c = icmp eq i32* %a, null
/// br i1 %c %Tail-split1, %TBB
/// TBB: // PredBB2 is TBB
/// %c2 = icmp eq i32* %b, null
/// br i1 %c %Tail-split2, %End
/// Tail-split1:
/// %ca1 = call @callee (i32* null, i32* %b) // CallInst1
/// br %Tail
/// Tail-split2:
/// %ca2 = call @callee (i32* nonnull %a, i32* null) // CallInst2
/// br %Tail
/// Tail:
/// %p = phi i1 [%ca1, %Tail-split1],[%ca2, %Tail-split2]
///
/// Note that in case any arguments at the call-site are constrained by its
/// predecessors, new call-sites with more constrained arguments will be
/// created in createCallSitesOnPredicatedArgument().
static void splitCallSite(
CallBase &CB,
const SmallVectorImpl<std::pair<BasicBlock *, ConditionsTy>> &Preds,
DomTreeUpdater &DTU) {
BasicBlock *TailBB = CB.getParent();
bool IsMustTailCall = CB.isMustTailCall();
PHINode *CallPN = nullptr;
// `musttail` calls must be followed by optional `bitcast`, and `ret`. The
// split blocks will be terminated right after that so there're no users for
// this phi in a `TailBB`.
if (!IsMustTailCall && !CB.use_empty()) {
CallPN = PHINode::Create(CB.getType(), Preds.size(), "phi.call");
CallPN->setDebugLoc(CB.getDebugLoc());
}
LLVM_DEBUG(dbgs() << "split call-site : " << CB << " into \n");
assert(Preds.size() == 2 && "The ValueToValueMaps array has size 2.");
// ValueToValueMapTy is neither copy nor moveable, so we use a simple array
// here.
ValueToValueMapTy ValueToValueMaps[2];
for (unsigned i = 0; i < Preds.size(); i++) {
BasicBlock *PredBB = Preds[i].first;
BasicBlock *SplitBlock = DuplicateInstructionsInSplitBetween(
TailBB, PredBB, &*std::next(CB.getIterator()), ValueToValueMaps[i],
DTU);
assert(SplitBlock && "Unexpected new basic block split.");
auto *NewCI =
cast<CallBase>(&*std::prev(SplitBlock->getTerminator()->getIterator()));
addConditions(*NewCI, Preds[i].second);
// Handle PHIs used as arguments in the call-site.
for (PHINode &PN : TailBB->phis()) {
unsigned ArgNo = 0;
for (auto &CI : CB.args()) {
if (&*CI == &PN) {
NewCI->setArgOperand(ArgNo, PN.getIncomingValueForBlock(SplitBlock));
}
++ArgNo;
}
}
LLVM_DEBUG(dbgs() << " " << *NewCI << " in " << SplitBlock->getName()
<< "\n");
if (CallPN)
CallPN->addIncoming(NewCI, SplitBlock);
// Clone and place bitcast and return instructions before `TI`
if (IsMustTailCall)
copyMustTailReturn(SplitBlock, &CB, NewCI);
}
NumCallSiteSplit++;
// FIXME: remove TI in `copyMustTailReturn`
if (IsMustTailCall) {
// Remove superfluous `br` terminators from the end of the Split blocks
// NOTE: Removing terminator removes the SplitBlock from the TailBB's
// predecessors. Therefore we must get complete list of Splits before
// attempting removal.
SmallVector<BasicBlock *, 2> Splits(predecessors((TailBB)));
assert(Splits.size() == 2 && "Expected exactly 2 splits!");
for (unsigned i = 0; i < Splits.size(); i++) {
Splits[i]->getTerminator()->eraseFromParent();
DTU.applyUpdatesPermissive({{DominatorTree::Delete, Splits[i], TailBB}});
}
// Erase the tail block once done with musttail patching
DTU.deleteBB(TailBB);
return;
}
auto *OriginalBegin = &*TailBB->begin();
// Replace users of the original call with a PHI mering call-sites split.
if (CallPN) {
CallPN->insertBefore(OriginalBegin);
CB.replaceAllUsesWith(CallPN);
}
// Remove instructions moved to split blocks from TailBB, from the duplicated
// call instruction to the beginning of the basic block. If an instruction
// has any uses, add a new PHI node to combine the values coming from the
// split blocks. The new PHI nodes are placed before the first original
// instruction, so we do not end up deleting them. By using reverse-order, we
// do not introduce unnecessary PHI nodes for def-use chains from the call
// instruction to the beginning of the block.
auto I = CB.getReverseIterator();
while (I != TailBB->rend()) {
Instruction *CurrentI = &*I++;
if (!CurrentI->use_empty()) {
// If an existing PHI has users after the call, there is no need to create
// a new one.
if (isa<PHINode>(CurrentI))
continue;
PHINode *NewPN = PHINode::Create(CurrentI->getType(), Preds.size());
NewPN->setDebugLoc(CurrentI->getDebugLoc());
for (auto &Mapping : ValueToValueMaps)
NewPN->addIncoming(Mapping[CurrentI],
cast<Instruction>(Mapping[CurrentI])->getParent());
NewPN->insertBefore(&*TailBB->begin());
CurrentI->replaceAllUsesWith(NewPN);
}
CurrentI->eraseFromParent();
// We are done once we handled the first original instruction in TailBB.
if (CurrentI == OriginalBegin)
break;
}
}
// Return true if the call-site has an argument which is a PHI with only
// constant incoming values.
static bool isPredicatedOnPHI(CallBase &CB) {
BasicBlock *Parent = CB.getParent();
if (&CB != Parent->getFirstNonPHIOrDbg())
return false;
for (auto &PN : Parent->phis()) {
for (auto &Arg : CB.args()) {
if (&*Arg != &PN)
continue;
assert(PN.getNumIncomingValues() == 2 &&
"Unexpected number of incoming values");
if (PN.getIncomingBlock(0) == PN.getIncomingBlock(1))
return false;
if (PN.getIncomingValue(0) == PN.getIncomingValue(1))
continue;
if (isa<Constant>(PN.getIncomingValue(0)) &&
isa<Constant>(PN.getIncomingValue(1)))
return true;
}
}
return false;
}
using PredsWithCondsTy = SmallVector<std::pair<BasicBlock *, ConditionsTy>, 2>;
// Check if any of the arguments in CS are predicated on a PHI node and return
// the set of predecessors we should use for splitting.
static PredsWithCondsTy shouldSplitOnPHIPredicatedArgument(CallBase &CB) {
if (!isPredicatedOnPHI(CB))
return {};
auto Preds = getTwoPredecessors(CB.getParent());
return {{Preds[0], {}}, {Preds[1], {}}};
}
// Checks if any of the arguments in CS are predicated in a predecessor and
// returns a list of predecessors with the conditions that hold on their edges
// to CS.
static PredsWithCondsTy shouldSplitOnPredicatedArgument(CallBase &CB,
DomTreeUpdater &DTU) {
auto Preds = getTwoPredecessors(CB.getParent());
if (Preds[0] == Preds[1])
return {};
// We can stop recording conditions once we reached the immediate dominator
// for the block containing the call site. Conditions in predecessors of the
// that node will be the same for all paths to the call site and splitting
// is not beneficial.
assert(DTU.hasDomTree() && "We need a DTU with a valid DT!");
auto *CSDTNode = DTU.getDomTree().getNode(CB.getParent());
BasicBlock *StopAt = CSDTNode ? CSDTNode->getIDom()->getBlock() : nullptr;
SmallVector<std::pair<BasicBlock *, ConditionsTy>, 2> PredsCS;
for (auto *Pred : make_range(Preds.rbegin(), Preds.rend())) {
ConditionsTy Conditions;
// Record condition on edge BB(CS) <- Pred
recordCondition(CB, Pred, CB.getParent(), Conditions);
// Record conditions following Pred's single predecessors.
recordConditions(CB, Pred, Conditions, StopAt);
PredsCS.push_back({Pred, Conditions});
}
if (all_of(PredsCS, [](const std::pair<BasicBlock *, ConditionsTy> &P) {
return P.second.empty();
}))
return {};
return PredsCS;
}
static bool tryToSplitCallSite(CallBase &CB, TargetTransformInfo &TTI,
DomTreeUpdater &DTU) {
// Check if we can split the call site.
if (!CB.arg_size() || !canSplitCallSite(CB, TTI))
return false;
auto PredsWithConds = shouldSplitOnPredicatedArgument(CB, DTU);
if (PredsWithConds.empty())
PredsWithConds = shouldSplitOnPHIPredicatedArgument(CB);
if (PredsWithConds.empty())
return false;
splitCallSite(CB, PredsWithConds, DTU);
return true;
}
static bool doCallSiteSplitting(Function &F, TargetLibraryInfo &TLI,
TargetTransformInfo &TTI, DominatorTree &DT) {
DomTreeUpdater DTU(&DT, DomTreeUpdater::UpdateStrategy::Lazy);
bool Changed = false;
for (Function::iterator BI = F.begin(), BE = F.end(); BI != BE;) {
BasicBlock &BB = *BI++;
auto II = BB.getFirstNonPHIOrDbg()->getIterator();
auto IE = BB.getTerminator()->getIterator();
// Iterate until we reach the terminator instruction. tryToSplitCallSite
// can replace BB's terminator in case BB is a successor of itself. In that
// case, IE will be invalidated and we also have to check the current
// terminator.
while (II != IE && &*II != BB.getTerminator()) {
CallBase *CB = dyn_cast<CallBase>(&*II++);
if (!CB || isa<IntrinsicInst>(CB) || isInstructionTriviallyDead(CB, &TLI))
continue;
Function *Callee = CB->getCalledFunction();
if (!Callee || Callee->isDeclaration())
continue;
// Successful musttail call-site splits result in erased CI and erased BB.
// Check if such path is possible before attempting the splitting.
bool IsMustTail = CB->isMustTailCall();
Changed |= tryToSplitCallSite(*CB, TTI, DTU);
// There're no interesting instructions after this. The call site
// itself might have been erased on splitting.
if (IsMustTail)
break;
}
}
return Changed;
}
namespace {
struct CallSiteSplittingLegacyPass : public FunctionPass {
static char ID;
CallSiteSplittingLegacyPass() : FunctionPass(ID) {
initializeCallSiteSplittingLegacyPassPass(*PassRegistry::getPassRegistry());
}
void getAnalysisUsage(AnalysisUsage &AU) const override {
AU.addRequired<TargetLibraryInfoWrapperPass>();
AU.addRequired<TargetTransformInfoWrapperPass>();
AU.addRequired<DominatorTreeWrapperPass>();
AU.addPreserved<DominatorTreeWrapperPass>();
FunctionPass::getAnalysisUsage(AU);
}
bool runOnFunction(Function &F) override {
if (skipFunction(F))
return false;
auto &TLI = getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F);
auto &TTI = getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F);
auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree();
return doCallSiteSplitting(F, TLI, TTI, DT);
}
};
} // namespace
char CallSiteSplittingLegacyPass::ID = 0;
INITIALIZE_PASS_BEGIN(CallSiteSplittingLegacyPass, "callsite-splitting",
"Call-site splitting", false, false)
INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
INITIALIZE_PASS_END(CallSiteSplittingLegacyPass, "callsite-splitting",
"Call-site splitting", false, false)
FunctionPass *llvm::createCallSiteSplittingPass() {
return new CallSiteSplittingLegacyPass();
}
PreservedAnalyses CallSiteSplittingPass::run(Function &F,
FunctionAnalysisManager &AM) {
auto &TLI = AM.getResult<TargetLibraryAnalysis>(F);
auto &TTI = AM.getResult<TargetIRAnalysis>(F);
auto &DT = AM.getResult<DominatorTreeAnalysis>(F);
if (!doCallSiteSplitting(F, TLI, TTI, DT))
return PreservedAnalyses::all();
PreservedAnalyses PA;
PA.preserve<DominatorTreeAnalysis>();
return PA;
}