1
0
mirror of https://github.com/RPCS3/llvm-mirror.git synced 2024-11-22 02:33:06 +01:00
llvm-mirror/lib/Transforms/Scalar/LoopInterchange.cpp
Congzhe Cao 8f6ef387e2 [LoopInterchange] Check lcssa phis in the inner latch in scenarios of multi-level nested loops
We already know that we need to check whether lcssa
phis are supported in inner loop exit block or in
outer loop exit block, and we have logic to check
them already. Presumably the inner loop latch does
not have lcssa phis and there is no code that deals
with lcssa phis in the inner loop latch. However,
that assumption is not true, when we have loops
with more than two-level nesting. This patch adds
checks for lcssa phis in the inner latch.

Reviewed By: Whitney

Differential Revision: https://reviews.llvm.org/D102300
2021-07-16 11:59:20 -04:00

1826 lines
68 KiB
C++

//===- LoopInterchange.cpp - Loop interchange pass-------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This Pass handles loop interchange transform.
// This pass interchanges loops to provide a more cache-friendly memory access
// patterns.
//
//===----------------------------------------------------------------------===//
#include "llvm/Transforms/Scalar/LoopInterchange.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/ADT/StringRef.h"
#include "llvm/Analysis/DependenceAnalysis.h"
#include "llvm/Analysis/LoopInfo.h"
#include "llvm/Analysis/LoopNestAnalysis.h"
#include "llvm/Analysis/LoopPass.h"
#include "llvm/Analysis/OptimizationRemarkEmitter.h"
#include "llvm/Analysis/ScalarEvolution.h"
#include "llvm/Analysis/ScalarEvolutionExpressions.h"
#include "llvm/IR/BasicBlock.h"
#include "llvm/IR/Constants.h"
#include "llvm/IR/DiagnosticInfo.h"
#include "llvm/IR/Dominators.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/IRBuilder.h"
#include "llvm/IR/InstrTypes.h"
#include "llvm/IR/Instruction.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/Type.h"
#include "llvm/IR/User.h"
#include "llvm/IR/Value.h"
#include "llvm/InitializePasses.h"
#include "llvm/Pass.h"
#include "llvm/Support/Casting.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/Transforms/Scalar.h"
#include "llvm/Transforms/Utils.h"
#include "llvm/Transforms/Utils/BasicBlockUtils.h"
#include "llvm/Transforms/Utils/LoopUtils.h"
#include <cassert>
#include <utility>
#include <vector>
using namespace llvm;
#define DEBUG_TYPE "loop-interchange"
STATISTIC(LoopsInterchanged, "Number of loops interchanged");
static cl::opt<int> LoopInterchangeCostThreshold(
"loop-interchange-threshold", cl::init(0), cl::Hidden,
cl::desc("Interchange if you gain more than this number"));
namespace {
using LoopVector = SmallVector<Loop *, 8>;
// TODO: Check if we can use a sparse matrix here.
using CharMatrix = std::vector<std::vector<char>>;
} // end anonymous namespace
// Maximum number of dependencies that can be handled in the dependency matrix.
static const unsigned MaxMemInstrCount = 100;
// Maximum loop depth supported.
static const unsigned MaxLoopNestDepth = 10;
#ifdef DUMP_DEP_MATRICIES
static void printDepMatrix(CharMatrix &DepMatrix) {
for (auto &Row : DepMatrix) {
for (auto D : Row)
LLVM_DEBUG(dbgs() << D << " ");
LLVM_DEBUG(dbgs() << "\n");
}
}
#endif
static bool populateDependencyMatrix(CharMatrix &DepMatrix, unsigned Level,
Loop *L, DependenceInfo *DI) {
using ValueVector = SmallVector<Value *, 16>;
ValueVector MemInstr;
// For each block.
for (BasicBlock *BB : L->blocks()) {
// Scan the BB and collect legal loads and stores.
for (Instruction &I : *BB) {
if (!isa<Instruction>(I))
return false;
if (auto *Ld = dyn_cast<LoadInst>(&I)) {
if (!Ld->isSimple())
return false;
MemInstr.push_back(&I);
} else if (auto *St = dyn_cast<StoreInst>(&I)) {
if (!St->isSimple())
return false;
MemInstr.push_back(&I);
}
}
}
LLVM_DEBUG(dbgs() << "Found " << MemInstr.size()
<< " Loads and Stores to analyze\n");
ValueVector::iterator I, IE, J, JE;
for (I = MemInstr.begin(), IE = MemInstr.end(); I != IE; ++I) {
for (J = I, JE = MemInstr.end(); J != JE; ++J) {
std::vector<char> Dep;
Instruction *Src = cast<Instruction>(*I);
Instruction *Dst = cast<Instruction>(*J);
if (Src == Dst)
continue;
// Ignore Input dependencies.
if (isa<LoadInst>(Src) && isa<LoadInst>(Dst))
continue;
// Track Output, Flow, and Anti dependencies.
if (auto D = DI->depends(Src, Dst, true)) {
assert(D->isOrdered() && "Expected an output, flow or anti dep.");
LLVM_DEBUG(StringRef DepType =
D->isFlow() ? "flow" : D->isAnti() ? "anti" : "output";
dbgs() << "Found " << DepType
<< " dependency between Src and Dst\n"
<< " Src:" << *Src << "\n Dst:" << *Dst << '\n');
unsigned Levels = D->getLevels();
char Direction;
for (unsigned II = 1; II <= Levels; ++II) {
const SCEV *Distance = D->getDistance(II);
const SCEVConstant *SCEVConst =
dyn_cast_or_null<SCEVConstant>(Distance);
if (SCEVConst) {
const ConstantInt *CI = SCEVConst->getValue();
if (CI->isNegative())
Direction = '<';
else if (CI->isZero())
Direction = '=';
else
Direction = '>';
Dep.push_back(Direction);
} else if (D->isScalar(II)) {
Direction = 'S';
Dep.push_back(Direction);
} else {
unsigned Dir = D->getDirection(II);
if (Dir == Dependence::DVEntry::LT ||
Dir == Dependence::DVEntry::LE)
Direction = '<';
else if (Dir == Dependence::DVEntry::GT ||
Dir == Dependence::DVEntry::GE)
Direction = '>';
else if (Dir == Dependence::DVEntry::EQ)
Direction = '=';
else
Direction = '*';
Dep.push_back(Direction);
}
}
while (Dep.size() != Level) {
Dep.push_back('I');
}
DepMatrix.push_back(Dep);
if (DepMatrix.size() > MaxMemInstrCount) {
LLVM_DEBUG(dbgs() << "Cannot handle more than " << MaxMemInstrCount
<< " dependencies inside loop\n");
return false;
}
}
}
}
return true;
}
// A loop is moved from index 'from' to an index 'to'. Update the Dependence
// matrix by exchanging the two columns.
static void interChangeDependencies(CharMatrix &DepMatrix, unsigned FromIndx,
unsigned ToIndx) {
for (unsigned I = 0, E = DepMatrix.size(); I < E; ++I)
std::swap(DepMatrix[I][ToIndx], DepMatrix[I][FromIndx]);
}
// Checks if outermost non '=','S'or'I' dependence in the dependence matrix is
// '>'
static bool isOuterMostDepPositive(CharMatrix &DepMatrix, unsigned Row,
unsigned Column) {
for (unsigned i = 0; i <= Column; ++i) {
if (DepMatrix[Row][i] == '<')
return false;
if (DepMatrix[Row][i] == '>')
return true;
}
// All dependencies were '=','S' or 'I'
return false;
}
// Checks if no dependence exist in the dependency matrix in Row before Column.
static bool containsNoDependence(CharMatrix &DepMatrix, unsigned Row,
unsigned Column) {
for (unsigned i = 0; i < Column; ++i) {
if (DepMatrix[Row][i] != '=' && DepMatrix[Row][i] != 'S' &&
DepMatrix[Row][i] != 'I')
return false;
}
return true;
}
static bool validDepInterchange(CharMatrix &DepMatrix, unsigned Row,
unsigned OuterLoopId, char InnerDep,
char OuterDep) {
if (isOuterMostDepPositive(DepMatrix, Row, OuterLoopId))
return false;
if (InnerDep == OuterDep)
return true;
// It is legal to interchange if and only if after interchange no row has a
// '>' direction as the leftmost non-'='.
if (InnerDep == '=' || InnerDep == 'S' || InnerDep == 'I')
return true;
if (InnerDep == '<')
return true;
if (InnerDep == '>') {
// If OuterLoopId represents outermost loop then interchanging will make the
// 1st dependency as '>'
if (OuterLoopId == 0)
return false;
// If all dependencies before OuterloopId are '=','S'or 'I'. Then
// interchanging will result in this row having an outermost non '='
// dependency of '>'
if (!containsNoDependence(DepMatrix, Row, OuterLoopId))
return true;
}
return false;
}
// Checks if it is legal to interchange 2 loops.
// [Theorem] A permutation of the loops in a perfect nest is legal if and only
// if the direction matrix, after the same permutation is applied to its
// columns, has no ">" direction as the leftmost non-"=" direction in any row.
static bool isLegalToInterChangeLoops(CharMatrix &DepMatrix,
unsigned InnerLoopId,
unsigned OuterLoopId) {
unsigned NumRows = DepMatrix.size();
// For each row check if it is valid to interchange.
for (unsigned Row = 0; Row < NumRows; ++Row) {
char InnerDep = DepMatrix[Row][InnerLoopId];
char OuterDep = DepMatrix[Row][OuterLoopId];
if (InnerDep == '*' || OuterDep == '*')
return false;
if (!validDepInterchange(DepMatrix, Row, OuterLoopId, InnerDep, OuterDep))
return false;
}
return true;
}
static LoopVector populateWorklist(Loop &L) {
LLVM_DEBUG(dbgs() << "Calling populateWorklist on Func: "
<< L.getHeader()->getParent()->getName() << " Loop: %"
<< L.getHeader()->getName() << '\n');
LoopVector LoopList;
Loop *CurrentLoop = &L;
const std::vector<Loop *> *Vec = &CurrentLoop->getSubLoops();
while (!Vec->empty()) {
// The current loop has multiple subloops in it hence it is not tightly
// nested.
// Discard all loops above it added into Worklist.
if (Vec->size() != 1)
return {};
LoopList.push_back(CurrentLoop);
CurrentLoop = Vec->front();
Vec = &CurrentLoop->getSubLoops();
}
LoopList.push_back(CurrentLoop);
return LoopList;
}
static PHINode *getInductionVariable(Loop *L, ScalarEvolution *SE) {
PHINode *InnerIndexVar = L->getCanonicalInductionVariable();
if (InnerIndexVar)
return InnerIndexVar;
if (L->getLoopLatch() == nullptr || L->getLoopPredecessor() == nullptr)
return nullptr;
for (BasicBlock::iterator I = L->getHeader()->begin(); isa<PHINode>(I); ++I) {
PHINode *PhiVar = cast<PHINode>(I);
Type *PhiTy = PhiVar->getType();
if (!PhiTy->isIntegerTy() && !PhiTy->isFloatingPointTy() &&
!PhiTy->isPointerTy())
return nullptr;
const SCEVAddRecExpr *AddRec =
dyn_cast<SCEVAddRecExpr>(SE->getSCEV(PhiVar));
if (!AddRec || !AddRec->isAffine())
continue;
const SCEV *Step = AddRec->getStepRecurrence(*SE);
if (!isa<SCEVConstant>(Step))
continue;
// Found the induction variable.
// FIXME: Handle loops with more than one induction variable. Note that,
// currently, legality makes sure we have only one induction variable.
return PhiVar;
}
return nullptr;
}
namespace {
/// LoopInterchangeLegality checks if it is legal to interchange the loop.
class LoopInterchangeLegality {
public:
LoopInterchangeLegality(Loop *Outer, Loop *Inner, ScalarEvolution *SE,
OptimizationRemarkEmitter *ORE)
: OuterLoop(Outer), InnerLoop(Inner), SE(SE), ORE(ORE) {}
/// Check if the loops can be interchanged.
bool canInterchangeLoops(unsigned InnerLoopId, unsigned OuterLoopId,
CharMatrix &DepMatrix);
/// Check if the loop structure is understood. We do not handle triangular
/// loops for now.
bool isLoopStructureUnderstood(PHINode *InnerInductionVar);
bool currentLimitations();
const SmallPtrSetImpl<PHINode *> &getOuterInnerReductions() const {
return OuterInnerReductions;
}
private:
bool tightlyNested(Loop *Outer, Loop *Inner);
bool containsUnsafeInstructions(BasicBlock *BB);
/// Discover induction and reduction PHIs in the header of \p L. Induction
/// PHIs are added to \p Inductions, reductions are added to
/// OuterInnerReductions. When the outer loop is passed, the inner loop needs
/// to be passed as \p InnerLoop.
bool findInductionAndReductions(Loop *L,
SmallVector<PHINode *, 8> &Inductions,
Loop *InnerLoop);
Loop *OuterLoop;
Loop *InnerLoop;
ScalarEvolution *SE;
/// Interface to emit optimization remarks.
OptimizationRemarkEmitter *ORE;
/// Set of reduction PHIs taking part of a reduction across the inner and
/// outer loop.
SmallPtrSet<PHINode *, 4> OuterInnerReductions;
};
/// LoopInterchangeProfitability checks if it is profitable to interchange the
/// loop.
class LoopInterchangeProfitability {
public:
LoopInterchangeProfitability(Loop *Outer, Loop *Inner, ScalarEvolution *SE,
OptimizationRemarkEmitter *ORE)
: OuterLoop(Outer), InnerLoop(Inner), SE(SE), ORE(ORE) {}
/// Check if the loop interchange is profitable.
bool isProfitable(unsigned InnerLoopId, unsigned OuterLoopId,
CharMatrix &DepMatrix);
private:
int getInstrOrderCost();
Loop *OuterLoop;
Loop *InnerLoop;
/// Scev analysis.
ScalarEvolution *SE;
/// Interface to emit optimization remarks.
OptimizationRemarkEmitter *ORE;
};
/// LoopInterchangeTransform interchanges the loop.
class LoopInterchangeTransform {
public:
LoopInterchangeTransform(Loop *Outer, Loop *Inner, ScalarEvolution *SE,
LoopInfo *LI, DominatorTree *DT,
const LoopInterchangeLegality &LIL)
: OuterLoop(Outer), InnerLoop(Inner), SE(SE), LI(LI), DT(DT), LIL(LIL) {}
/// Interchange OuterLoop and InnerLoop.
bool transform();
void restructureLoops(Loop *NewInner, Loop *NewOuter,
BasicBlock *OrigInnerPreHeader,
BasicBlock *OrigOuterPreHeader);
void removeChildLoop(Loop *OuterLoop, Loop *InnerLoop);
private:
bool adjustLoopLinks();
bool adjustLoopBranches();
Loop *OuterLoop;
Loop *InnerLoop;
/// Scev analysis.
ScalarEvolution *SE;
LoopInfo *LI;
DominatorTree *DT;
const LoopInterchangeLegality &LIL;
};
struct LoopInterchange {
ScalarEvolution *SE = nullptr;
LoopInfo *LI = nullptr;
DependenceInfo *DI = nullptr;
DominatorTree *DT = nullptr;
/// Interface to emit optimization remarks.
OptimizationRemarkEmitter *ORE;
LoopInterchange(ScalarEvolution *SE, LoopInfo *LI, DependenceInfo *DI,
DominatorTree *DT, OptimizationRemarkEmitter *ORE)
: SE(SE), LI(LI), DI(DI), DT(DT), ORE(ORE) {}
bool run(Loop *L) {
if (L->getParentLoop())
return false;
return processLoopList(populateWorklist(*L));
}
bool run(LoopNest &LN) {
const auto &LoopList = LN.getLoops();
for (unsigned I = 1; I < LoopList.size(); ++I)
if (LoopList[I]->getParentLoop() != LoopList[I - 1])
return false;
return processLoopList(LoopList);
}
bool isComputableLoopNest(ArrayRef<Loop *> LoopList) {
for (Loop *L : LoopList) {
const SCEV *ExitCountOuter = SE->getBackedgeTakenCount(L);
if (isa<SCEVCouldNotCompute>(ExitCountOuter)) {
LLVM_DEBUG(dbgs() << "Couldn't compute backedge count\n");
return false;
}
if (L->getNumBackEdges() != 1) {
LLVM_DEBUG(dbgs() << "NumBackEdges is not equal to 1\n");
return false;
}
if (!L->getExitingBlock()) {
LLVM_DEBUG(dbgs() << "Loop doesn't have unique exit block\n");
return false;
}
}
return true;
}
unsigned selectLoopForInterchange(ArrayRef<Loop *> LoopList) {
// TODO: Add a better heuristic to select the loop to be interchanged based
// on the dependence matrix. Currently we select the innermost loop.
return LoopList.size() - 1;
}
bool processLoopList(ArrayRef<Loop *> LoopList) {
bool Changed = false;
unsigned LoopNestDepth = LoopList.size();
if (LoopNestDepth < 2) {
LLVM_DEBUG(dbgs() << "Loop doesn't contain minimum nesting level.\n");
return false;
}
if (LoopNestDepth > MaxLoopNestDepth) {
LLVM_DEBUG(dbgs() << "Cannot handle loops of depth greater than "
<< MaxLoopNestDepth << "\n");
return false;
}
if (!isComputableLoopNest(LoopList)) {
LLVM_DEBUG(dbgs() << "Not valid loop candidate for interchange\n");
return false;
}
LLVM_DEBUG(dbgs() << "Processing LoopList of size = " << LoopNestDepth
<< "\n");
CharMatrix DependencyMatrix;
Loop *OuterMostLoop = *(LoopList.begin());
if (!populateDependencyMatrix(DependencyMatrix, LoopNestDepth,
OuterMostLoop, DI)) {
LLVM_DEBUG(dbgs() << "Populating dependency matrix failed\n");
return false;
}
#ifdef DUMP_DEP_MATRICIES
LLVM_DEBUG(dbgs() << "Dependence before interchange\n");
printDepMatrix(DependencyMatrix);
#endif
// Get the Outermost loop exit.
BasicBlock *LoopNestExit = OuterMostLoop->getExitBlock();
if (!LoopNestExit) {
LLVM_DEBUG(dbgs() << "OuterMostLoop needs an unique exit block");
return false;
}
unsigned SelecLoopId = selectLoopForInterchange(LoopList);
// Move the selected loop outwards to the best possible position.
Loop *LoopToBeInterchanged = LoopList[SelecLoopId];
for (unsigned i = SelecLoopId; i > 0; i--) {
bool Interchanged = processLoop(LoopToBeInterchanged, LoopList[i - 1], i,
i - 1, DependencyMatrix);
if (!Interchanged)
return Changed;
// Update the DependencyMatrix
interChangeDependencies(DependencyMatrix, i, i - 1);
#ifdef DUMP_DEP_MATRICIES
LLVM_DEBUG(dbgs() << "Dependence after interchange\n");
printDepMatrix(DependencyMatrix);
#endif
Changed |= Interchanged;
}
return Changed;
}
bool processLoop(Loop *InnerLoop, Loop *OuterLoop, unsigned InnerLoopId,
unsigned OuterLoopId,
std::vector<std::vector<char>> &DependencyMatrix) {
LLVM_DEBUG(dbgs() << "Processing InnerLoopId = " << InnerLoopId
<< " and OuterLoopId = " << OuterLoopId << "\n");
LoopInterchangeLegality LIL(OuterLoop, InnerLoop, SE, ORE);
if (!LIL.canInterchangeLoops(InnerLoopId, OuterLoopId, DependencyMatrix)) {
LLVM_DEBUG(dbgs() << "Not interchanging loops. Cannot prove legality.\n");
return false;
}
LLVM_DEBUG(dbgs() << "Loops are legal to interchange\n");
LoopInterchangeProfitability LIP(OuterLoop, InnerLoop, SE, ORE);
if (!LIP.isProfitable(InnerLoopId, OuterLoopId, DependencyMatrix)) {
LLVM_DEBUG(dbgs() << "Interchanging loops not profitable.\n");
return false;
}
ORE->emit([&]() {
return OptimizationRemark(DEBUG_TYPE, "Interchanged",
InnerLoop->getStartLoc(),
InnerLoop->getHeader())
<< "Loop interchanged with enclosing loop.";
});
LoopInterchangeTransform LIT(OuterLoop, InnerLoop, SE, LI, DT, LIL);
LIT.transform();
LLVM_DEBUG(dbgs() << "Loops interchanged.\n");
LoopsInterchanged++;
assert(InnerLoop->isLCSSAForm(*DT) &&
"Inner loop not left in LCSSA form after loop interchange!");
assert(OuterLoop->isLCSSAForm(*DT) &&
"Outer loop not left in LCSSA form after loop interchange!");
return true;
}
};
} // end anonymous namespace
bool LoopInterchangeLegality::containsUnsafeInstructions(BasicBlock *BB) {
return any_of(*BB, [](const Instruction &I) {
return I.mayHaveSideEffects() || I.mayReadFromMemory();
});
}
bool LoopInterchangeLegality::tightlyNested(Loop *OuterLoop, Loop *InnerLoop) {
BasicBlock *OuterLoopHeader = OuterLoop->getHeader();
BasicBlock *InnerLoopPreHeader = InnerLoop->getLoopPreheader();
BasicBlock *OuterLoopLatch = OuterLoop->getLoopLatch();
LLVM_DEBUG(dbgs() << "Checking if loops are tightly nested\n");
// A perfectly nested loop will not have any branch in between the outer and
// inner block i.e. outer header will branch to either inner preheader and
// outerloop latch.
BranchInst *OuterLoopHeaderBI =
dyn_cast<BranchInst>(OuterLoopHeader->getTerminator());
if (!OuterLoopHeaderBI)
return false;
for (BasicBlock *Succ : successors(OuterLoopHeaderBI))
if (Succ != InnerLoopPreHeader && Succ != InnerLoop->getHeader() &&
Succ != OuterLoopLatch)
return false;
LLVM_DEBUG(dbgs() << "Checking instructions in Loop header and Loop latch\n");
// We do not have any basic block in between now make sure the outer header
// and outer loop latch doesn't contain any unsafe instructions.
if (containsUnsafeInstructions(OuterLoopHeader) ||
containsUnsafeInstructions(OuterLoopLatch))
return false;
// Also make sure the inner loop preheader does not contain any unsafe
// instructions. Note that all instructions in the preheader will be moved to
// the outer loop header when interchanging.
if (InnerLoopPreHeader != OuterLoopHeader &&
containsUnsafeInstructions(InnerLoopPreHeader))
return false;
BasicBlock *InnerLoopExit = InnerLoop->getExitBlock();
// Ensure the inner loop exit block flows to the outer loop latch possibly
// through empty blocks.
const BasicBlock &SuccInner =
LoopNest::skipEmptyBlockUntil(InnerLoopExit, OuterLoopLatch);
if (&SuccInner != OuterLoopLatch) {
LLVM_DEBUG(dbgs() << "Inner loop exit block " << *InnerLoopExit
<< " does not lead to the outer loop latch.\n";);
return false;
}
// The inner loop exit block does flow to the outer loop latch and not some
// other BBs, now make sure it contains safe instructions, since it will be
// moved into the (new) inner loop after interchange.
if (containsUnsafeInstructions(InnerLoopExit))
return false;
LLVM_DEBUG(dbgs() << "Loops are perfectly nested\n");
// We have a perfect loop nest.
return true;
}
bool LoopInterchangeLegality::isLoopStructureUnderstood(
PHINode *InnerInduction) {
unsigned Num = InnerInduction->getNumOperands();
BasicBlock *InnerLoopPreheader = InnerLoop->getLoopPreheader();
for (unsigned i = 0; i < Num; ++i) {
Value *Val = InnerInduction->getOperand(i);
if (isa<Constant>(Val))
continue;
Instruction *I = dyn_cast<Instruction>(Val);
if (!I)
return false;
// TODO: Handle triangular loops.
// e.g. for(int i=0;i<N;i++)
// for(int j=i;j<N;j++)
unsigned IncomBlockIndx = PHINode::getIncomingValueNumForOperand(i);
if (InnerInduction->getIncomingBlock(IncomBlockIndx) ==
InnerLoopPreheader &&
!OuterLoop->isLoopInvariant(I)) {
return false;
}
}
// TODO: Handle triangular loops of another form.
// e.g. for(int i=0;i<N;i++)
// for(int j=0;j<i;j++)
// or,
// for(int i=0;i<N;i++)
// for(int j=0;j*i<N;j++)
BasicBlock *InnerLoopLatch = InnerLoop->getLoopLatch();
BranchInst *InnerLoopLatchBI =
dyn_cast<BranchInst>(InnerLoopLatch->getTerminator());
if (!InnerLoopLatchBI->isConditional())
return false;
if (CmpInst *InnerLoopCmp =
dyn_cast<CmpInst>(InnerLoopLatchBI->getCondition())) {
Value *Op0 = InnerLoopCmp->getOperand(0);
Value *Op1 = InnerLoopCmp->getOperand(1);
// LHS and RHS of the inner loop exit condition, e.g.,
// in "for(int j=0;j<i;j++)", LHS is j and RHS is i.
Value *Left = nullptr;
Value *Right = nullptr;
// Check if V only involves inner loop induction variable.
// Return true if V is InnerInduction, or a cast from
// InnerInduction, or a binary operator that involves
// InnerInduction and a constant.
std::function<bool(Value *)> IsPathToIndVar;
IsPathToIndVar = [&InnerInduction, &IsPathToIndVar](Value *V) -> bool {
if (V == InnerInduction)
return true;
if (isa<Constant>(V))
return true;
Instruction *I = dyn_cast<Instruction>(V);
if (!I)
return false;
if (isa<CastInst>(I))
return IsPathToIndVar(I->getOperand(0));
if (isa<BinaryOperator>(I))
return IsPathToIndVar(I->getOperand(0)) &&
IsPathToIndVar(I->getOperand(1));
return false;
};
if (IsPathToIndVar(Op0) && !isa<Constant>(Op0)) {
Left = Op0;
Right = Op1;
} else if (IsPathToIndVar(Op1) && !isa<Constant>(Op1)) {
Left = Op1;
Right = Op0;
}
if (Left == nullptr)
return false;
const SCEV *S = SE->getSCEV(Right);
if (!SE->isLoopInvariant(S, OuterLoop))
return false;
}
return true;
}
// If SV is a LCSSA PHI node with a single incoming value, return the incoming
// value.
static Value *followLCSSA(Value *SV) {
PHINode *PHI = dyn_cast<PHINode>(SV);
if (!PHI)
return SV;
if (PHI->getNumIncomingValues() != 1)
return SV;
return followLCSSA(PHI->getIncomingValue(0));
}
// Check V's users to see if it is involved in a reduction in L.
static PHINode *findInnerReductionPhi(Loop *L, Value *V) {
// Reduction variables cannot be constants.
if (isa<Constant>(V))
return nullptr;
for (Value *User : V->users()) {
if (PHINode *PHI = dyn_cast<PHINode>(User)) {
if (PHI->getNumIncomingValues() == 1)
continue;
RecurrenceDescriptor RD;
if (RecurrenceDescriptor::isReductionPHI(PHI, L, RD))
return PHI;
return nullptr;
}
}
return nullptr;
}
bool LoopInterchangeLegality::findInductionAndReductions(
Loop *L, SmallVector<PHINode *, 8> &Inductions, Loop *InnerLoop) {
if (!L->getLoopLatch() || !L->getLoopPredecessor())
return false;
for (PHINode &PHI : L->getHeader()->phis()) {
RecurrenceDescriptor RD;
InductionDescriptor ID;
if (InductionDescriptor::isInductionPHI(&PHI, L, SE, ID))
Inductions.push_back(&PHI);
else {
// PHIs in inner loops need to be part of a reduction in the outer loop,
// discovered when checking the PHIs of the outer loop earlier.
if (!InnerLoop) {
if (!OuterInnerReductions.count(&PHI)) {
LLVM_DEBUG(dbgs() << "Inner loop PHI is not part of reductions "
"across the outer loop.\n");
return false;
}
} else {
assert(PHI.getNumIncomingValues() == 2 &&
"Phis in loop header should have exactly 2 incoming values");
// Check if we have a PHI node in the outer loop that has a reduction
// result from the inner loop as an incoming value.
Value *V = followLCSSA(PHI.getIncomingValueForBlock(L->getLoopLatch()));
PHINode *InnerRedPhi = findInnerReductionPhi(InnerLoop, V);
if (!InnerRedPhi ||
!llvm::is_contained(InnerRedPhi->incoming_values(), &PHI)) {
LLVM_DEBUG(
dbgs()
<< "Failed to recognize PHI as an induction or reduction.\n");
return false;
}
OuterInnerReductions.insert(&PHI);
OuterInnerReductions.insert(InnerRedPhi);
}
}
}
return true;
}
// This function indicates the current limitations in the transform as a result
// of which we do not proceed.
bool LoopInterchangeLegality::currentLimitations() {
BasicBlock *InnerLoopPreHeader = InnerLoop->getLoopPreheader();
BasicBlock *InnerLoopLatch = InnerLoop->getLoopLatch();
// transform currently expects the loop latches to also be the exiting
// blocks.
if (InnerLoop->getExitingBlock() != InnerLoopLatch ||
OuterLoop->getExitingBlock() != OuterLoop->getLoopLatch() ||
!isa<BranchInst>(InnerLoopLatch->getTerminator()) ||
!isa<BranchInst>(OuterLoop->getLoopLatch()->getTerminator())) {
LLVM_DEBUG(
dbgs() << "Loops where the latch is not the exiting block are not"
<< " supported currently.\n");
ORE->emit([&]() {
return OptimizationRemarkMissed(DEBUG_TYPE, "ExitingNotLatch",
OuterLoop->getStartLoc(),
OuterLoop->getHeader())
<< "Loops where the latch is not the exiting block cannot be"
" interchange currently.";
});
return true;
}
PHINode *InnerInductionVar;
SmallVector<PHINode *, 8> Inductions;
if (!findInductionAndReductions(OuterLoop, Inductions, InnerLoop)) {
LLVM_DEBUG(
dbgs() << "Only outer loops with induction or reduction PHI nodes "
<< "are supported currently.\n");
ORE->emit([&]() {
return OptimizationRemarkMissed(DEBUG_TYPE, "UnsupportedPHIOuter",
OuterLoop->getStartLoc(),
OuterLoop->getHeader())
<< "Only outer loops with induction or reduction PHI nodes can be"
" interchanged currently.";
});
return true;
}
// TODO: Currently we handle only loops with 1 induction variable.
if (Inductions.size() != 1) {
LLVM_DEBUG(dbgs() << "Loops with more than 1 induction variables are not "
<< "supported currently.\n");
ORE->emit([&]() {
return OptimizationRemarkMissed(DEBUG_TYPE, "MultiIndutionOuter",
OuterLoop->getStartLoc(),
OuterLoop->getHeader())
<< "Only outer loops with 1 induction variable can be "
"interchanged currently.";
});
return true;
}
Inductions.clear();
if (!findInductionAndReductions(InnerLoop, Inductions, nullptr)) {
LLVM_DEBUG(
dbgs() << "Only inner loops with induction or reduction PHI nodes "
<< "are supported currently.\n");
ORE->emit([&]() {
return OptimizationRemarkMissed(DEBUG_TYPE, "UnsupportedPHIInner",
InnerLoop->getStartLoc(),
InnerLoop->getHeader())
<< "Only inner loops with induction or reduction PHI nodes can be"
" interchange currently.";
});
return true;
}
// TODO: Currently we handle only loops with 1 induction variable.
if (Inductions.size() != 1) {
LLVM_DEBUG(
dbgs() << "We currently only support loops with 1 induction variable."
<< "Failed to interchange due to current limitation\n");
ORE->emit([&]() {
return OptimizationRemarkMissed(DEBUG_TYPE, "MultiInductionInner",
InnerLoop->getStartLoc(),
InnerLoop->getHeader())
<< "Only inner loops with 1 induction variable can be "
"interchanged currently.";
});
return true;
}
InnerInductionVar = Inductions.pop_back_val();
// TODO: Triangular loops are not handled for now.
if (!isLoopStructureUnderstood(InnerInductionVar)) {
LLVM_DEBUG(dbgs() << "Loop structure not understood by pass\n");
ORE->emit([&]() {
return OptimizationRemarkMissed(DEBUG_TYPE, "UnsupportedStructureInner",
InnerLoop->getStartLoc(),
InnerLoop->getHeader())
<< "Inner loop structure not understood currently.";
});
return true;
}
// TODO: Current limitation: Since we split the inner loop latch at the point
// were induction variable is incremented (induction.next); We cannot have
// more than 1 user of induction.next since it would result in broken code
// after split.
// e.g.
// for(i=0;i<N;i++) {
// for(j = 0;j<M;j++) {
// A[j+1][i+2] = A[j][i]+k;
// }
// }
Instruction *InnerIndexVarInc = nullptr;
if (InnerInductionVar->getIncomingBlock(0) == InnerLoopPreHeader)
InnerIndexVarInc =
dyn_cast<Instruction>(InnerInductionVar->getIncomingValue(1));
else
InnerIndexVarInc =
dyn_cast<Instruction>(InnerInductionVar->getIncomingValue(0));
if (!InnerIndexVarInc) {
LLVM_DEBUG(
dbgs() << "Did not find an instruction to increment the induction "
<< "variable.\n");
ORE->emit([&]() {
return OptimizationRemarkMissed(DEBUG_TYPE, "NoIncrementInInner",
InnerLoop->getStartLoc(),
InnerLoop->getHeader())
<< "The inner loop does not increment the induction variable.";
});
return true;
}
// Since we split the inner loop latch on this induction variable. Make sure
// we do not have any instruction between the induction variable and branch
// instruction.
bool FoundInduction = false;
for (const Instruction &I :
llvm::reverse(InnerLoopLatch->instructionsWithoutDebug())) {
if (isa<BranchInst>(I) || isa<CmpInst>(I) || isa<TruncInst>(I) ||
isa<ZExtInst>(I))
continue;
// We found an instruction. If this is not induction variable then it is not
// safe to split this loop latch.
if (!I.isIdenticalTo(InnerIndexVarInc)) {
LLVM_DEBUG(dbgs() << "Found unsupported instructions between induction "
<< "variable increment and branch.\n");
ORE->emit([&]() {
return OptimizationRemarkMissed(
DEBUG_TYPE, "UnsupportedInsBetweenInduction",
InnerLoop->getStartLoc(), InnerLoop->getHeader())
<< "Found unsupported instruction between induction variable "
"increment and branch.";
});
return true;
}
FoundInduction = true;
break;
}
// The loop latch ended and we didn't find the induction variable return as
// current limitation.
if (!FoundInduction) {
LLVM_DEBUG(dbgs() << "Did not find the induction variable.\n");
ORE->emit([&]() {
return OptimizationRemarkMissed(DEBUG_TYPE, "NoIndutionVariable",
InnerLoop->getStartLoc(),
InnerLoop->getHeader())
<< "Did not find the induction variable.";
});
return true;
}
return false;
}
// We currently only support LCSSA PHI nodes in the inner loop exit, if their
// users are either reduction PHIs or PHIs outside the outer loop (which means
// the we are only interested in the final value after the loop).
static bool
areInnerLoopExitPHIsSupported(Loop *InnerL, Loop *OuterL,
SmallPtrSetImpl<PHINode *> &Reductions) {
BasicBlock *InnerExit = OuterL->getUniqueExitBlock();
for (PHINode &PHI : InnerExit->phis()) {
// Reduction lcssa phi will have only 1 incoming block that from loop latch.
if (PHI.getNumIncomingValues() > 1)
return false;
if (any_of(PHI.users(), [&Reductions, OuterL](User *U) {
PHINode *PN = dyn_cast<PHINode>(U);
return !PN ||
(!Reductions.count(PN) && OuterL->contains(PN->getParent()));
})) {
return false;
}
}
return true;
}
// We currently support LCSSA PHI nodes in the outer loop exit, if their
// incoming values do not come from the outer loop latch or if the
// outer loop latch has a single predecessor. In that case, the value will
// be available if both the inner and outer loop conditions are true, which
// will still be true after interchanging. If we have multiple predecessor,
// that may not be the case, e.g. because the outer loop latch may be executed
// if the inner loop is not executed.
static bool areOuterLoopExitPHIsSupported(Loop *OuterLoop, Loop *InnerLoop) {
BasicBlock *LoopNestExit = OuterLoop->getUniqueExitBlock();
for (PHINode &PHI : LoopNestExit->phis()) {
// FIXME: We currently are not able to detect floating point reductions
// and have to use floating point PHIs as a proxy to prevent
// interchanging in the presence of floating point reductions.
if (PHI.getType()->isFloatingPointTy())
return false;
for (unsigned i = 0; i < PHI.getNumIncomingValues(); i++) {
Instruction *IncomingI = dyn_cast<Instruction>(PHI.getIncomingValue(i));
if (!IncomingI || IncomingI->getParent() != OuterLoop->getLoopLatch())
continue;
// The incoming value is defined in the outer loop latch. Currently we
// only support that in case the outer loop latch has a single predecessor.
// This guarantees that the outer loop latch is executed if and only if
// the inner loop is executed (because tightlyNested() guarantees that the
// outer loop header only branches to the inner loop or the outer loop
// latch).
// FIXME: We could weaken this logic and allow multiple predecessors,
// if the values are produced outside the loop latch. We would need
// additional logic to update the PHI nodes in the exit block as
// well.
if (OuterLoop->getLoopLatch()->getUniquePredecessor() == nullptr)
return false;
}
}
return true;
}
// In case of multi-level nested loops, it may occur that lcssa phis exist in
// the latch of InnerLoop, i.e., when defs of the incoming values are further
// inside the loopnest. Sometimes those incoming values are not available
// after interchange, since the original inner latch will become the new outer
// latch which may have predecessor paths that do not include those incoming
// values.
// TODO: Handle transformation of lcssa phis in the InnerLoop latch in case of
// multi-level loop nests.
static bool areInnerLoopLatchPHIsSupported(Loop *OuterLoop, Loop *InnerLoop) {
if (InnerLoop->getSubLoops().empty())
return true;
// If the original outer latch has only one predecessor, then values defined
// further inside the looploop, e.g., in the innermost loop, will be available
// at the new outer latch after interchange.
if (OuterLoop->getLoopLatch()->getUniquePredecessor() != nullptr)
return true;
// The outer latch has more than one predecessors, i.e., the inner
// exit and the inner header.
// PHI nodes in the inner latch are lcssa phis where the incoming values
// are defined further inside the loopnest. Check if those phis are used
// in the original inner latch. If that is the case then bail out since
// those incoming values may not be available at the new outer latch.
BasicBlock *InnerLoopLatch = InnerLoop->getLoopLatch();
for (PHINode &PHI : InnerLoopLatch->phis()) {
for (auto *U : PHI.users()) {
Instruction *UI = cast<Instruction>(U);
if (InnerLoopLatch == UI->getParent())
return false;
}
}
return true;
}
bool LoopInterchangeLegality::canInterchangeLoops(unsigned InnerLoopId,
unsigned OuterLoopId,
CharMatrix &DepMatrix) {
if (!isLegalToInterChangeLoops(DepMatrix, InnerLoopId, OuterLoopId)) {
LLVM_DEBUG(dbgs() << "Failed interchange InnerLoopId = " << InnerLoopId
<< " and OuterLoopId = " << OuterLoopId
<< " due to dependence\n");
ORE->emit([&]() {
return OptimizationRemarkMissed(DEBUG_TYPE, "Dependence",
InnerLoop->getStartLoc(),
InnerLoop->getHeader())
<< "Cannot interchange loops due to dependences.";
});
return false;
}
// Check if outer and inner loop contain legal instructions only.
for (auto *BB : OuterLoop->blocks())
for (Instruction &I : BB->instructionsWithoutDebug())
if (CallInst *CI = dyn_cast<CallInst>(&I)) {
// readnone functions do not prevent interchanging.
if (CI->doesNotReadMemory())
continue;
LLVM_DEBUG(
dbgs() << "Loops with call instructions cannot be interchanged "
<< "safely.");
ORE->emit([&]() {
return OptimizationRemarkMissed(DEBUG_TYPE, "CallInst",
CI->getDebugLoc(),
CI->getParent())
<< "Cannot interchange loops due to call instruction.";
});
return false;
}
if (!areInnerLoopLatchPHIsSupported(OuterLoop, InnerLoop)) {
LLVM_DEBUG(dbgs() << "Found unsupported PHI nodes in inner loop latch.\n");
ORE->emit([&]() {
return OptimizationRemarkMissed(DEBUG_TYPE, "UnsupportedInnerLatchPHI",
InnerLoop->getStartLoc(),
InnerLoop->getHeader())
<< "Cannot interchange loops because unsupported PHI nodes found "
"in inner loop latch.";
});
return false;
}
// TODO: The loops could not be interchanged due to current limitations in the
// transform module.
if (currentLimitations()) {
LLVM_DEBUG(dbgs() << "Not legal because of current transform limitation\n");
return false;
}
// Check if the loops are tightly nested.
if (!tightlyNested(OuterLoop, InnerLoop)) {
LLVM_DEBUG(dbgs() << "Loops not tightly nested\n");
ORE->emit([&]() {
return OptimizationRemarkMissed(DEBUG_TYPE, "NotTightlyNested",
InnerLoop->getStartLoc(),
InnerLoop->getHeader())
<< "Cannot interchange loops because they are not tightly "
"nested.";
});
return false;
}
if (!areInnerLoopExitPHIsSupported(OuterLoop, InnerLoop,
OuterInnerReductions)) {
LLVM_DEBUG(dbgs() << "Found unsupported PHI nodes in inner loop exit.\n");
ORE->emit([&]() {
return OptimizationRemarkMissed(DEBUG_TYPE, "UnsupportedExitPHI",
InnerLoop->getStartLoc(),
InnerLoop->getHeader())
<< "Found unsupported PHI node in loop exit.";
});
return false;
}
if (!areOuterLoopExitPHIsSupported(OuterLoop, InnerLoop)) {
LLVM_DEBUG(dbgs() << "Found unsupported PHI nodes in outer loop exit.\n");
ORE->emit([&]() {
return OptimizationRemarkMissed(DEBUG_TYPE, "UnsupportedExitPHI",
OuterLoop->getStartLoc(),
OuterLoop->getHeader())
<< "Found unsupported PHI node in loop exit.";
});
return false;
}
return true;
}
int LoopInterchangeProfitability::getInstrOrderCost() {
unsigned GoodOrder, BadOrder;
BadOrder = GoodOrder = 0;
for (BasicBlock *BB : InnerLoop->blocks()) {
for (Instruction &Ins : *BB) {
if (const GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(&Ins)) {
unsigned NumOp = GEP->getNumOperands();
bool FoundInnerInduction = false;
bool FoundOuterInduction = false;
for (unsigned i = 0; i < NumOp; ++i) {
// Skip operands that are not SCEV-able.
if (!SE->isSCEVable(GEP->getOperand(i)->getType()))
continue;
const SCEV *OperandVal = SE->getSCEV(GEP->getOperand(i));
const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(OperandVal);
if (!AR)
continue;
// If we find the inner induction after an outer induction e.g.
// for(int i=0;i<N;i++)
// for(int j=0;j<N;j++)
// A[i][j] = A[i-1][j-1]+k;
// then it is a good order.
if (AR->getLoop() == InnerLoop) {
// We found an InnerLoop induction after OuterLoop induction. It is
// a good order.
FoundInnerInduction = true;
if (FoundOuterInduction) {
GoodOrder++;
break;
}
}
// If we find the outer induction after an inner induction e.g.
// for(int i=0;i<N;i++)
// for(int j=0;j<N;j++)
// A[j][i] = A[j-1][i-1]+k;
// then it is a bad order.
if (AR->getLoop() == OuterLoop) {
// We found an OuterLoop induction after InnerLoop induction. It is
// a bad order.
FoundOuterInduction = true;
if (FoundInnerInduction) {
BadOrder++;
break;
}
}
}
}
}
}
return GoodOrder - BadOrder;
}
static bool isProfitableForVectorization(unsigned InnerLoopId,
unsigned OuterLoopId,
CharMatrix &DepMatrix) {
// TODO: Improve this heuristic to catch more cases.
// If the inner loop is loop independent or doesn't carry any dependency it is
// profitable to move this to outer position.
for (auto &Row : DepMatrix) {
if (Row[InnerLoopId] != 'S' && Row[InnerLoopId] != 'I')
return false;
// TODO: We need to improve this heuristic.
if (Row[OuterLoopId] != '=')
return false;
}
// If outer loop has dependence and inner loop is loop independent then it is
// profitable to interchange to enable parallelism.
// If there are no dependences, interchanging will not improve anything.
return !DepMatrix.empty();
}
bool LoopInterchangeProfitability::isProfitable(unsigned InnerLoopId,
unsigned OuterLoopId,
CharMatrix &DepMatrix) {
// TODO: Add better profitability checks.
// e.g
// 1) Construct dependency matrix and move the one with no loop carried dep
// inside to enable vectorization.
// This is rough cost estimation algorithm. It counts the good and bad order
// of induction variables in the instruction and allows reordering if number
// of bad orders is more than good.
int Cost = getInstrOrderCost();
LLVM_DEBUG(dbgs() << "Cost = " << Cost << "\n");
if (Cost < -LoopInterchangeCostThreshold)
return true;
// It is not profitable as per current cache profitability model. But check if
// we can move this loop outside to improve parallelism.
if (isProfitableForVectorization(InnerLoopId, OuterLoopId, DepMatrix))
return true;
ORE->emit([&]() {
return OptimizationRemarkMissed(DEBUG_TYPE, "InterchangeNotProfitable",
InnerLoop->getStartLoc(),
InnerLoop->getHeader())
<< "Interchanging loops is too costly (cost="
<< ore::NV("Cost", Cost) << ", threshold="
<< ore::NV("Threshold", LoopInterchangeCostThreshold)
<< ") and it does not improve parallelism.";
});
return false;
}
void LoopInterchangeTransform::removeChildLoop(Loop *OuterLoop,
Loop *InnerLoop) {
for (Loop *L : *OuterLoop)
if (L == InnerLoop) {
OuterLoop->removeChildLoop(L);
return;
}
llvm_unreachable("Couldn't find loop");
}
/// Update LoopInfo, after interchanging. NewInner and NewOuter refer to the
/// new inner and outer loop after interchanging: NewInner is the original
/// outer loop and NewOuter is the original inner loop.
///
/// Before interchanging, we have the following structure
/// Outer preheader
// Outer header
// Inner preheader
// Inner header
// Inner body
// Inner latch
// outer bbs
// Outer latch
//
// After interchanging:
// Inner preheader
// Inner header
// Outer preheader
// Outer header
// Inner body
// outer bbs
// Outer latch
// Inner latch
void LoopInterchangeTransform::restructureLoops(
Loop *NewInner, Loop *NewOuter, BasicBlock *OrigInnerPreHeader,
BasicBlock *OrigOuterPreHeader) {
Loop *OuterLoopParent = OuterLoop->getParentLoop();
// The original inner loop preheader moves from the new inner loop to
// the parent loop, if there is one.
NewInner->removeBlockFromLoop(OrigInnerPreHeader);
LI->changeLoopFor(OrigInnerPreHeader, OuterLoopParent);
// Switch the loop levels.
if (OuterLoopParent) {
// Remove the loop from its parent loop.
removeChildLoop(OuterLoopParent, NewInner);
removeChildLoop(NewInner, NewOuter);
OuterLoopParent->addChildLoop(NewOuter);
} else {
removeChildLoop(NewInner, NewOuter);
LI->changeTopLevelLoop(NewInner, NewOuter);
}
while (!NewOuter->isInnermost())
NewInner->addChildLoop(NewOuter->removeChildLoop(NewOuter->begin()));
NewOuter->addChildLoop(NewInner);
// BBs from the original inner loop.
SmallVector<BasicBlock *, 8> OrigInnerBBs(NewOuter->blocks());
// Add BBs from the original outer loop to the original inner loop (excluding
// BBs already in inner loop)
for (BasicBlock *BB : NewInner->blocks())
if (LI->getLoopFor(BB) == NewInner)
NewOuter->addBlockEntry(BB);
// Now remove inner loop header and latch from the new inner loop and move
// other BBs (the loop body) to the new inner loop.
BasicBlock *OuterHeader = NewOuter->getHeader();
BasicBlock *OuterLatch = NewOuter->getLoopLatch();
for (BasicBlock *BB : OrigInnerBBs) {
// Nothing will change for BBs in child loops.
if (LI->getLoopFor(BB) != NewOuter)
continue;
// Remove the new outer loop header and latch from the new inner loop.
if (BB == OuterHeader || BB == OuterLatch)
NewInner->removeBlockFromLoop(BB);
else
LI->changeLoopFor(BB, NewInner);
}
// The preheader of the original outer loop becomes part of the new
// outer loop.
NewOuter->addBlockEntry(OrigOuterPreHeader);
LI->changeLoopFor(OrigOuterPreHeader, NewOuter);
// Tell SE that we move the loops around.
SE->forgetLoop(NewOuter);
SE->forgetLoop(NewInner);
}
bool LoopInterchangeTransform::transform() {
bool Transformed = false;
Instruction *InnerIndexVar;
if (InnerLoop->getSubLoops().empty()) {
BasicBlock *InnerLoopPreHeader = InnerLoop->getLoopPreheader();
LLVM_DEBUG(dbgs() << "Splitting the inner loop latch\n");
PHINode *InductionPHI = getInductionVariable(InnerLoop, SE);
if (!InductionPHI) {
LLVM_DEBUG(dbgs() << "Failed to find the point to split loop latch \n");
return false;
}
if (InductionPHI->getIncomingBlock(0) == InnerLoopPreHeader)
InnerIndexVar = dyn_cast<Instruction>(InductionPHI->getIncomingValue(1));
else
InnerIndexVar = dyn_cast<Instruction>(InductionPHI->getIncomingValue(0));
// Ensure that InductionPHI is the first Phi node.
if (&InductionPHI->getParent()->front() != InductionPHI)
InductionPHI->moveBefore(&InductionPHI->getParent()->front());
// Create a new latch block for the inner loop. We split at the
// current latch's terminator and then move the condition and all
// operands that are not either loop-invariant or the induction PHI into the
// new latch block.
BasicBlock *NewLatch =
SplitBlock(InnerLoop->getLoopLatch(),
InnerLoop->getLoopLatch()->getTerminator(), DT, LI);
SmallSetVector<Instruction *, 4> WorkList;
unsigned i = 0;
auto MoveInstructions = [&i, &WorkList, this, InductionPHI, NewLatch]() {
for (; i < WorkList.size(); i++) {
// Duplicate instruction and move it the new latch. Update uses that
// have been moved.
Instruction *NewI = WorkList[i]->clone();
NewI->insertBefore(NewLatch->getFirstNonPHI());
assert(!NewI->mayHaveSideEffects() &&
"Moving instructions with side-effects may change behavior of "
"the loop nest!");
for (Use &U : llvm::make_early_inc_range(WorkList[i]->uses())) {
Instruction *UserI = cast<Instruction>(U.getUser());
if (!InnerLoop->contains(UserI->getParent()) ||
UserI->getParent() == NewLatch || UserI == InductionPHI)
U.set(NewI);
}
// Add operands of moved instruction to the worklist, except if they are
// outside the inner loop or are the induction PHI.
for (Value *Op : WorkList[i]->operands()) {
Instruction *OpI = dyn_cast<Instruction>(Op);
if (!OpI ||
this->LI->getLoopFor(OpI->getParent()) != this->InnerLoop ||
OpI == InductionPHI)
continue;
WorkList.insert(OpI);
}
}
};
// FIXME: Should we interchange when we have a constant condition?
Instruction *CondI = dyn_cast<Instruction>(
cast<BranchInst>(InnerLoop->getLoopLatch()->getTerminator())
->getCondition());
if (CondI)
WorkList.insert(CondI);
MoveInstructions();
WorkList.insert(cast<Instruction>(InnerIndexVar));
MoveInstructions();
// Splits the inner loops phi nodes out into a separate basic block.
BasicBlock *InnerLoopHeader = InnerLoop->getHeader();
SplitBlock(InnerLoopHeader, InnerLoopHeader->getFirstNonPHI(), DT, LI);
LLVM_DEBUG(dbgs() << "splitting InnerLoopHeader done\n");
}
// Instructions in the original inner loop preheader may depend on values
// defined in the outer loop header. Move them there, because the original
// inner loop preheader will become the entry into the interchanged loop nest.
// Currently we move all instructions and rely on LICM to move invariant
// instructions outside the loop nest.
BasicBlock *InnerLoopPreHeader = InnerLoop->getLoopPreheader();
BasicBlock *OuterLoopHeader = OuterLoop->getHeader();
if (InnerLoopPreHeader != OuterLoopHeader) {
SmallPtrSet<Instruction *, 4> NeedsMoving;
for (Instruction &I :
make_early_inc_range(make_range(InnerLoopPreHeader->begin(),
std::prev(InnerLoopPreHeader->end()))))
I.moveBefore(OuterLoopHeader->getTerminator());
}
Transformed |= adjustLoopLinks();
if (!Transformed) {
LLVM_DEBUG(dbgs() << "adjustLoopLinks failed\n");
return false;
}
return true;
}
/// \brief Move all instructions except the terminator from FromBB right before
/// InsertBefore
static void moveBBContents(BasicBlock *FromBB, Instruction *InsertBefore) {
auto &ToList = InsertBefore->getParent()->getInstList();
auto &FromList = FromBB->getInstList();
ToList.splice(InsertBefore->getIterator(), FromList, FromList.begin(),
FromBB->getTerminator()->getIterator());
}
/// Swap instructions between \p BB1 and \p BB2 but keep terminators intact.
static void swapBBContents(BasicBlock *BB1, BasicBlock *BB2) {
// Save all non-terminator instructions of BB1 into TempInstrs and unlink them
// from BB1 afterwards.
auto Iter = map_range(*BB1, [](Instruction &I) { return &I; });
SmallVector<Instruction *, 4> TempInstrs(Iter.begin(), std::prev(Iter.end()));
for (Instruction *I : TempInstrs)
I->removeFromParent();
// Move instructions from BB2 to BB1.
moveBBContents(BB2, BB1->getTerminator());
// Move instructions from TempInstrs to BB2.
for (Instruction *I : TempInstrs)
I->insertBefore(BB2->getTerminator());
}
// Update BI to jump to NewBB instead of OldBB. Records updates to the
// dominator tree in DTUpdates. If \p MustUpdateOnce is true, assert that
// \p OldBB is exactly once in BI's successor list.
static void updateSuccessor(BranchInst *BI, BasicBlock *OldBB,
BasicBlock *NewBB,
std::vector<DominatorTree::UpdateType> &DTUpdates,
bool MustUpdateOnce = true) {
assert((!MustUpdateOnce ||
llvm::count_if(successors(BI),
[OldBB](BasicBlock *BB) {
return BB == OldBB;
}) == 1) && "BI must jump to OldBB exactly once.");
bool Changed = false;
for (Use &Op : BI->operands())
if (Op == OldBB) {
Op.set(NewBB);
Changed = true;
}
if (Changed) {
DTUpdates.push_back(
{DominatorTree::UpdateKind::Insert, BI->getParent(), NewBB});
DTUpdates.push_back(
{DominatorTree::UpdateKind::Delete, BI->getParent(), OldBB});
}
assert(Changed && "Expected a successor to be updated");
}
// Move Lcssa PHIs to the right place.
static void moveLCSSAPhis(BasicBlock *InnerExit, BasicBlock *InnerHeader,
BasicBlock *InnerLatch, BasicBlock *OuterHeader,
BasicBlock *OuterLatch, BasicBlock *OuterExit,
Loop *InnerLoop, LoopInfo *LI) {
// Deal with LCSSA PHI nodes in the exit block of the inner loop, that are
// defined either in the header or latch. Those blocks will become header and
// latch of the new outer loop, and the only possible users can PHI nodes
// in the exit block of the loop nest or the outer loop header (reduction
// PHIs, in that case, the incoming value must be defined in the inner loop
// header). We can just substitute the user with the incoming value and remove
// the PHI.
for (PHINode &P : make_early_inc_range(InnerExit->phis())) {
assert(P.getNumIncomingValues() == 1 &&
"Only loops with a single exit are supported!");
// Incoming values are guaranteed be instructions currently.
auto IncI = cast<Instruction>(P.getIncomingValueForBlock(InnerLatch));
// Skip phis with incoming values from the inner loop body, excluding the
// header and latch.
if (IncI->getParent() != InnerLatch && IncI->getParent() != InnerHeader)
continue;
assert(all_of(P.users(),
[OuterHeader, OuterExit, IncI, InnerHeader](User *U) {
return (cast<PHINode>(U)->getParent() == OuterHeader &&
IncI->getParent() == InnerHeader) ||
cast<PHINode>(U)->getParent() == OuterExit;
}) &&
"Can only replace phis iff the uses are in the loop nest exit or "
"the incoming value is defined in the inner header (it will "
"dominate all loop blocks after interchanging)");
P.replaceAllUsesWith(IncI);
P.eraseFromParent();
}
SmallVector<PHINode *, 8> LcssaInnerExit;
for (PHINode &P : InnerExit->phis())
LcssaInnerExit.push_back(&P);
SmallVector<PHINode *, 8> LcssaInnerLatch;
for (PHINode &P : InnerLatch->phis())
LcssaInnerLatch.push_back(&P);
// Lcssa PHIs for values used outside the inner loop are in InnerExit.
// If a PHI node has users outside of InnerExit, it has a use outside the
// interchanged loop and we have to preserve it. We move these to
// InnerLatch, which will become the new exit block for the innermost
// loop after interchanging.
for (PHINode *P : LcssaInnerExit)
P->moveBefore(InnerLatch->getFirstNonPHI());
// If the inner loop latch contains LCSSA PHIs, those come from a child loop
// and we have to move them to the new inner latch.
for (PHINode *P : LcssaInnerLatch)
P->moveBefore(InnerExit->getFirstNonPHI());
// Deal with LCSSA PHI nodes in the loop nest exit block. For PHIs that have
// incoming values defined in the outer loop, we have to add a new PHI
// in the inner loop latch, which became the exit block of the outer loop,
// after interchanging.
if (OuterExit) {
for (PHINode &P : OuterExit->phis()) {
if (P.getNumIncomingValues() != 1)
continue;
// Skip Phis with incoming values defined in the inner loop. Those should
// already have been updated.
auto I = dyn_cast<Instruction>(P.getIncomingValue(0));
if (!I || LI->getLoopFor(I->getParent()) == InnerLoop)
continue;
PHINode *NewPhi = dyn_cast<PHINode>(P.clone());
NewPhi->setIncomingValue(0, P.getIncomingValue(0));
NewPhi->setIncomingBlock(0, OuterLatch);
// We might have incoming edges from other BBs, i.e., the original outer
// header.
for (auto *Pred : predecessors(InnerLatch)) {
if (Pred == OuterLatch)
continue;
NewPhi->addIncoming(P.getIncomingValue(0), Pred);
}
NewPhi->insertBefore(InnerLatch->getFirstNonPHI());
P.setIncomingValue(0, NewPhi);
}
}
// Now adjust the incoming blocks for the LCSSA PHIs.
// For PHIs moved from Inner's exit block, we need to replace Inner's latch
// with the new latch.
InnerLatch->replacePhiUsesWith(InnerLatch, OuterLatch);
}
bool LoopInterchangeTransform::adjustLoopBranches() {
LLVM_DEBUG(dbgs() << "adjustLoopBranches called\n");
std::vector<DominatorTree::UpdateType> DTUpdates;
BasicBlock *OuterLoopPreHeader = OuterLoop->getLoopPreheader();
BasicBlock *InnerLoopPreHeader = InnerLoop->getLoopPreheader();
assert(OuterLoopPreHeader != OuterLoop->getHeader() &&
InnerLoopPreHeader != InnerLoop->getHeader() && OuterLoopPreHeader &&
InnerLoopPreHeader && "Guaranteed by loop-simplify form");
// Ensure that both preheaders do not contain PHI nodes and have single
// predecessors. This allows us to move them easily. We use
// InsertPreHeaderForLoop to create an 'extra' preheader, if the existing
// preheaders do not satisfy those conditions.
if (isa<PHINode>(OuterLoopPreHeader->begin()) ||
!OuterLoopPreHeader->getUniquePredecessor())
OuterLoopPreHeader =
InsertPreheaderForLoop(OuterLoop, DT, LI, nullptr, true);
if (InnerLoopPreHeader == OuterLoop->getHeader())
InnerLoopPreHeader =
InsertPreheaderForLoop(InnerLoop, DT, LI, nullptr, true);
// Adjust the loop preheader
BasicBlock *InnerLoopHeader = InnerLoop->getHeader();
BasicBlock *OuterLoopHeader = OuterLoop->getHeader();
BasicBlock *InnerLoopLatch = InnerLoop->getLoopLatch();
BasicBlock *OuterLoopLatch = OuterLoop->getLoopLatch();
BasicBlock *OuterLoopPredecessor = OuterLoopPreHeader->getUniquePredecessor();
BasicBlock *InnerLoopLatchPredecessor =
InnerLoopLatch->getUniquePredecessor();
BasicBlock *InnerLoopLatchSuccessor;
BasicBlock *OuterLoopLatchSuccessor;
BranchInst *OuterLoopLatchBI =
dyn_cast<BranchInst>(OuterLoopLatch->getTerminator());
BranchInst *InnerLoopLatchBI =
dyn_cast<BranchInst>(InnerLoopLatch->getTerminator());
BranchInst *OuterLoopHeaderBI =
dyn_cast<BranchInst>(OuterLoopHeader->getTerminator());
BranchInst *InnerLoopHeaderBI =
dyn_cast<BranchInst>(InnerLoopHeader->getTerminator());
if (!OuterLoopPredecessor || !InnerLoopLatchPredecessor ||
!OuterLoopLatchBI || !InnerLoopLatchBI || !OuterLoopHeaderBI ||
!InnerLoopHeaderBI)
return false;
BranchInst *InnerLoopLatchPredecessorBI =
dyn_cast<BranchInst>(InnerLoopLatchPredecessor->getTerminator());
BranchInst *OuterLoopPredecessorBI =
dyn_cast<BranchInst>(OuterLoopPredecessor->getTerminator());
if (!OuterLoopPredecessorBI || !InnerLoopLatchPredecessorBI)
return false;
BasicBlock *InnerLoopHeaderSuccessor = InnerLoopHeader->getUniqueSuccessor();
if (!InnerLoopHeaderSuccessor)
return false;
// Adjust Loop Preheader and headers.
// The branches in the outer loop predecessor and the outer loop header can
// be unconditional branches or conditional branches with duplicates. Consider
// this when updating the successors.
updateSuccessor(OuterLoopPredecessorBI, OuterLoopPreHeader,
InnerLoopPreHeader, DTUpdates, /*MustUpdateOnce=*/false);
// The outer loop header might or might not branch to the outer latch.
// We are guaranteed to branch to the inner loop preheader.
if (llvm::is_contained(OuterLoopHeaderBI->successors(), OuterLoopLatch)) {
// In this case the outerLoopHeader should branch to the InnerLoopLatch.
updateSuccessor(OuterLoopHeaderBI, OuterLoopLatch, InnerLoopLatch,
DTUpdates,
/*MustUpdateOnce=*/false);
}
updateSuccessor(OuterLoopHeaderBI, InnerLoopPreHeader,
InnerLoopHeaderSuccessor, DTUpdates,
/*MustUpdateOnce=*/false);
// Adjust reduction PHI's now that the incoming block has changed.
InnerLoopHeaderSuccessor->replacePhiUsesWith(InnerLoopHeader,
OuterLoopHeader);
updateSuccessor(InnerLoopHeaderBI, InnerLoopHeaderSuccessor,
OuterLoopPreHeader, DTUpdates);
// -------------Adjust loop latches-----------
if (InnerLoopLatchBI->getSuccessor(0) == InnerLoopHeader)
InnerLoopLatchSuccessor = InnerLoopLatchBI->getSuccessor(1);
else
InnerLoopLatchSuccessor = InnerLoopLatchBI->getSuccessor(0);
updateSuccessor(InnerLoopLatchPredecessorBI, InnerLoopLatch,
InnerLoopLatchSuccessor, DTUpdates);
if (OuterLoopLatchBI->getSuccessor(0) == OuterLoopHeader)
OuterLoopLatchSuccessor = OuterLoopLatchBI->getSuccessor(1);
else
OuterLoopLatchSuccessor = OuterLoopLatchBI->getSuccessor(0);
updateSuccessor(InnerLoopLatchBI, InnerLoopLatchSuccessor,
OuterLoopLatchSuccessor, DTUpdates);
updateSuccessor(OuterLoopLatchBI, OuterLoopLatchSuccessor, InnerLoopLatch,
DTUpdates);
DT->applyUpdates(DTUpdates);
restructureLoops(OuterLoop, InnerLoop, InnerLoopPreHeader,
OuterLoopPreHeader);
moveLCSSAPhis(InnerLoopLatchSuccessor, InnerLoopHeader, InnerLoopLatch,
OuterLoopHeader, OuterLoopLatch, InnerLoop->getExitBlock(),
InnerLoop, LI);
// For PHIs in the exit block of the outer loop, outer's latch has been
// replaced by Inners'.
OuterLoopLatchSuccessor->replacePhiUsesWith(OuterLoopLatch, InnerLoopLatch);
auto &OuterInnerReductions = LIL.getOuterInnerReductions();
// Now update the reduction PHIs in the inner and outer loop headers.
SmallVector<PHINode *, 4> InnerLoopPHIs, OuterLoopPHIs;
for (PHINode &PHI : InnerLoopHeader->phis()) {
if (OuterInnerReductions.find(&PHI) == OuterInnerReductions.end())
continue;
InnerLoopPHIs.push_back(cast<PHINode>(&PHI));
}
for (PHINode &PHI : OuterLoopHeader->phis()) {
if (OuterInnerReductions.find(&PHI) == OuterInnerReductions.end())
continue;
OuterLoopPHIs.push_back(cast<PHINode>(&PHI));
}
// Now move the remaining reduction PHIs from outer to inner loop header and
// vice versa. The PHI nodes must be part of a reduction across the inner and
// outer loop and all the remains to do is and updating the incoming blocks.
for (PHINode *PHI : OuterLoopPHIs) {
PHI->moveBefore(InnerLoopHeader->getFirstNonPHI());
assert(OuterInnerReductions.count(PHI) && "Expected a reduction PHI node");
}
for (PHINode *PHI : InnerLoopPHIs) {
PHI->moveBefore(OuterLoopHeader->getFirstNonPHI());
assert(OuterInnerReductions.count(PHI) && "Expected a reduction PHI node");
}
// Update the incoming blocks for moved PHI nodes.
OuterLoopHeader->replacePhiUsesWith(InnerLoopPreHeader, OuterLoopPreHeader);
OuterLoopHeader->replacePhiUsesWith(InnerLoopLatch, OuterLoopLatch);
InnerLoopHeader->replacePhiUsesWith(OuterLoopPreHeader, InnerLoopPreHeader);
InnerLoopHeader->replacePhiUsesWith(OuterLoopLatch, InnerLoopLatch);
// Values defined in the outer loop header could be used in the inner loop
// latch. In that case, we need to create LCSSA phis for them, because after
// interchanging they will be defined in the new inner loop and used in the
// new outer loop.
IRBuilder<> Builder(OuterLoopHeader->getContext());
SmallVector<Instruction *, 4> MayNeedLCSSAPhis;
for (Instruction &I :
make_range(OuterLoopHeader->begin(), std::prev(OuterLoopHeader->end())))
MayNeedLCSSAPhis.push_back(&I);
formLCSSAForInstructions(MayNeedLCSSAPhis, *DT, *LI, SE, Builder);
return true;
}
bool LoopInterchangeTransform::adjustLoopLinks() {
// Adjust all branches in the inner and outer loop.
bool Changed = adjustLoopBranches();
if (Changed) {
// We have interchanged the preheaders so we need to interchange the data in
// the preheaders as well. This is because the content of the inner
// preheader was previously executed inside the outer loop.
BasicBlock *OuterLoopPreHeader = OuterLoop->getLoopPreheader();
BasicBlock *InnerLoopPreHeader = InnerLoop->getLoopPreheader();
swapBBContents(OuterLoopPreHeader, InnerLoopPreHeader);
}
return Changed;
}
/// Main LoopInterchange Pass.
struct LoopInterchangeLegacyPass : public LoopPass {
static char ID;
LoopInterchangeLegacyPass() : LoopPass(ID) {
initializeLoopInterchangeLegacyPassPass(*PassRegistry::getPassRegistry());
}
void getAnalysisUsage(AnalysisUsage &AU) const override {
AU.addRequired<DependenceAnalysisWrapperPass>();
AU.addRequired<OptimizationRemarkEmitterWrapperPass>();
getLoopAnalysisUsage(AU);
}
bool runOnLoop(Loop *L, LPPassManager &LPM) override {
if (skipLoop(L))
return false;
auto *SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE();
auto *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
auto *DI = &getAnalysis<DependenceAnalysisWrapperPass>().getDI();
auto *DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
auto *ORE = &getAnalysis<OptimizationRemarkEmitterWrapperPass>().getORE();
return LoopInterchange(SE, LI, DI, DT, ORE).run(L);
}
};
char LoopInterchangeLegacyPass::ID = 0;
INITIALIZE_PASS_BEGIN(LoopInterchangeLegacyPass, "loop-interchange",
"Interchanges loops for cache reuse", false, false)
INITIALIZE_PASS_DEPENDENCY(LoopPass)
INITIALIZE_PASS_DEPENDENCY(DependenceAnalysisWrapperPass)
INITIALIZE_PASS_DEPENDENCY(OptimizationRemarkEmitterWrapperPass)
INITIALIZE_PASS_END(LoopInterchangeLegacyPass, "loop-interchange",
"Interchanges loops for cache reuse", false, false)
Pass *llvm::createLoopInterchangePass() {
return new LoopInterchangeLegacyPass();
}
PreservedAnalyses LoopInterchangePass::run(LoopNest &LN,
LoopAnalysisManager &AM,
LoopStandardAnalysisResults &AR,
LPMUpdater &U) {
Function &F = *LN.getParent();
DependenceInfo DI(&F, &AR.AA, &AR.SE, &AR.LI);
OptimizationRemarkEmitter ORE(&F);
if (!LoopInterchange(&AR.SE, &AR.LI, &DI, &AR.DT, &ORE).run(LN))
return PreservedAnalyses::all();
return getLoopPassPreservedAnalyses();
}