mirror of
https://github.com/RPCS3/llvm-mirror.git
synced 2024-11-22 02:33:06 +01:00
76b4fd1b08
ResultPtr is guaranteed to be non-null - and using dyn_cast_or_null causes unnecessary static analyzer warnings. We can't say the same for FirstResult AFAICT, so keep dyn_cast_or_null for that.
1388 lines
55 KiB
C++
1388 lines
55 KiB
C++
//===- SeparateConstOffsetFromGEP.cpp -------------------------------------===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// Loop unrolling may create many similar GEPs for array accesses.
|
|
// e.g., a 2-level loop
|
|
//
|
|
// float a[32][32]; // global variable
|
|
//
|
|
// for (int i = 0; i < 2; ++i) {
|
|
// for (int j = 0; j < 2; ++j) {
|
|
// ...
|
|
// ... = a[x + i][y + j];
|
|
// ...
|
|
// }
|
|
// }
|
|
//
|
|
// will probably be unrolled to:
|
|
//
|
|
// gep %a, 0, %x, %y; load
|
|
// gep %a, 0, %x, %y + 1; load
|
|
// gep %a, 0, %x + 1, %y; load
|
|
// gep %a, 0, %x + 1, %y + 1; load
|
|
//
|
|
// LLVM's GVN does not use partial redundancy elimination yet, and is thus
|
|
// unable to reuse (gep %a, 0, %x, %y). As a result, this misoptimization incurs
|
|
// significant slowdown in targets with limited addressing modes. For instance,
|
|
// because the PTX target does not support the reg+reg addressing mode, the
|
|
// NVPTX backend emits PTX code that literally computes the pointer address of
|
|
// each GEP, wasting tons of registers. It emits the following PTX for the
|
|
// first load and similar PTX for other loads.
|
|
//
|
|
// mov.u32 %r1, %x;
|
|
// mov.u32 %r2, %y;
|
|
// mul.wide.u32 %rl2, %r1, 128;
|
|
// mov.u64 %rl3, a;
|
|
// add.s64 %rl4, %rl3, %rl2;
|
|
// mul.wide.u32 %rl5, %r2, 4;
|
|
// add.s64 %rl6, %rl4, %rl5;
|
|
// ld.global.f32 %f1, [%rl6];
|
|
//
|
|
// To reduce the register pressure, the optimization implemented in this file
|
|
// merges the common part of a group of GEPs, so we can compute each pointer
|
|
// address by adding a simple offset to the common part, saving many registers.
|
|
//
|
|
// It works by splitting each GEP into a variadic base and a constant offset.
|
|
// The variadic base can be computed once and reused by multiple GEPs, and the
|
|
// constant offsets can be nicely folded into the reg+immediate addressing mode
|
|
// (supported by most targets) without using any extra register.
|
|
//
|
|
// For instance, we transform the four GEPs and four loads in the above example
|
|
// into:
|
|
//
|
|
// base = gep a, 0, x, y
|
|
// load base
|
|
// laod base + 1 * sizeof(float)
|
|
// load base + 32 * sizeof(float)
|
|
// load base + 33 * sizeof(float)
|
|
//
|
|
// Given the transformed IR, a backend that supports the reg+immediate
|
|
// addressing mode can easily fold the pointer arithmetics into the loads. For
|
|
// example, the NVPTX backend can easily fold the pointer arithmetics into the
|
|
// ld.global.f32 instructions, and the resultant PTX uses much fewer registers.
|
|
//
|
|
// mov.u32 %r1, %tid.x;
|
|
// mov.u32 %r2, %tid.y;
|
|
// mul.wide.u32 %rl2, %r1, 128;
|
|
// mov.u64 %rl3, a;
|
|
// add.s64 %rl4, %rl3, %rl2;
|
|
// mul.wide.u32 %rl5, %r2, 4;
|
|
// add.s64 %rl6, %rl4, %rl5;
|
|
// ld.global.f32 %f1, [%rl6]; // so far the same as unoptimized PTX
|
|
// ld.global.f32 %f2, [%rl6+4]; // much better
|
|
// ld.global.f32 %f3, [%rl6+128]; // much better
|
|
// ld.global.f32 %f4, [%rl6+132]; // much better
|
|
//
|
|
// Another improvement enabled by the LowerGEP flag is to lower a GEP with
|
|
// multiple indices to either multiple GEPs with a single index or arithmetic
|
|
// operations (depending on whether the target uses alias analysis in codegen).
|
|
// Such transformation can have following benefits:
|
|
// (1) It can always extract constants in the indices of structure type.
|
|
// (2) After such Lowering, there are more optimization opportunities such as
|
|
// CSE, LICM and CGP.
|
|
//
|
|
// E.g. The following GEPs have multiple indices:
|
|
// BB1:
|
|
// %p = getelementptr [10 x %struct]* %ptr, i64 %i, i64 %j1, i32 3
|
|
// load %p
|
|
// ...
|
|
// BB2:
|
|
// %p2 = getelementptr [10 x %struct]* %ptr, i64 %i, i64 %j1, i32 2
|
|
// load %p2
|
|
// ...
|
|
//
|
|
// We can not do CSE to the common part related to index "i64 %i". Lowering
|
|
// GEPs can achieve such goals.
|
|
// If the target does not use alias analysis in codegen, this pass will
|
|
// lower a GEP with multiple indices into arithmetic operations:
|
|
// BB1:
|
|
// %1 = ptrtoint [10 x %struct]* %ptr to i64 ; CSE opportunity
|
|
// %2 = mul i64 %i, length_of_10xstruct ; CSE opportunity
|
|
// %3 = add i64 %1, %2 ; CSE opportunity
|
|
// %4 = mul i64 %j1, length_of_struct
|
|
// %5 = add i64 %3, %4
|
|
// %6 = add i64 %3, struct_field_3 ; Constant offset
|
|
// %p = inttoptr i64 %6 to i32*
|
|
// load %p
|
|
// ...
|
|
// BB2:
|
|
// %7 = ptrtoint [10 x %struct]* %ptr to i64 ; CSE opportunity
|
|
// %8 = mul i64 %i, length_of_10xstruct ; CSE opportunity
|
|
// %9 = add i64 %7, %8 ; CSE opportunity
|
|
// %10 = mul i64 %j2, length_of_struct
|
|
// %11 = add i64 %9, %10
|
|
// %12 = add i64 %11, struct_field_2 ; Constant offset
|
|
// %p = inttoptr i64 %12 to i32*
|
|
// load %p2
|
|
// ...
|
|
//
|
|
// If the target uses alias analysis in codegen, this pass will lower a GEP
|
|
// with multiple indices into multiple GEPs with a single index:
|
|
// BB1:
|
|
// %1 = bitcast [10 x %struct]* %ptr to i8* ; CSE opportunity
|
|
// %2 = mul i64 %i, length_of_10xstruct ; CSE opportunity
|
|
// %3 = getelementptr i8* %1, i64 %2 ; CSE opportunity
|
|
// %4 = mul i64 %j1, length_of_struct
|
|
// %5 = getelementptr i8* %3, i64 %4
|
|
// %6 = getelementptr i8* %5, struct_field_3 ; Constant offset
|
|
// %p = bitcast i8* %6 to i32*
|
|
// load %p
|
|
// ...
|
|
// BB2:
|
|
// %7 = bitcast [10 x %struct]* %ptr to i8* ; CSE opportunity
|
|
// %8 = mul i64 %i, length_of_10xstruct ; CSE opportunity
|
|
// %9 = getelementptr i8* %7, i64 %8 ; CSE opportunity
|
|
// %10 = mul i64 %j2, length_of_struct
|
|
// %11 = getelementptr i8* %9, i64 %10
|
|
// %12 = getelementptr i8* %11, struct_field_2 ; Constant offset
|
|
// %p2 = bitcast i8* %12 to i32*
|
|
// load %p2
|
|
// ...
|
|
//
|
|
// Lowering GEPs can also benefit other passes such as LICM and CGP.
|
|
// LICM (Loop Invariant Code Motion) can not hoist/sink a GEP of multiple
|
|
// indices if one of the index is variant. If we lower such GEP into invariant
|
|
// parts and variant parts, LICM can hoist/sink those invariant parts.
|
|
// CGP (CodeGen Prepare) tries to sink address calculations that match the
|
|
// target's addressing modes. A GEP with multiple indices may not match and will
|
|
// not be sunk. If we lower such GEP into smaller parts, CGP may sink some of
|
|
// them. So we end up with a better addressing mode.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "llvm/Transforms/Scalar/SeparateConstOffsetFromGEP.h"
|
|
#include "llvm/ADT/APInt.h"
|
|
#include "llvm/ADT/DenseMap.h"
|
|
#include "llvm/ADT/DepthFirstIterator.h"
|
|
#include "llvm/ADT/SmallVector.h"
|
|
#include "llvm/Analysis/LoopInfo.h"
|
|
#include "llvm/Analysis/MemoryBuiltins.h"
|
|
#include "llvm/Analysis/ScalarEvolution.h"
|
|
#include "llvm/Analysis/TargetLibraryInfo.h"
|
|
#include "llvm/Analysis/TargetTransformInfo.h"
|
|
#include "llvm/Analysis/ValueTracking.h"
|
|
#include "llvm/IR/BasicBlock.h"
|
|
#include "llvm/IR/Constant.h"
|
|
#include "llvm/IR/Constants.h"
|
|
#include "llvm/IR/DataLayout.h"
|
|
#include "llvm/IR/DerivedTypes.h"
|
|
#include "llvm/IR/Dominators.h"
|
|
#include "llvm/IR/Function.h"
|
|
#include "llvm/IR/GetElementPtrTypeIterator.h"
|
|
#include "llvm/IR/IRBuilder.h"
|
|
#include "llvm/IR/Instruction.h"
|
|
#include "llvm/IR/Instructions.h"
|
|
#include "llvm/IR/Module.h"
|
|
#include "llvm/IR/PassManager.h"
|
|
#include "llvm/IR/PatternMatch.h"
|
|
#include "llvm/IR/Type.h"
|
|
#include "llvm/IR/User.h"
|
|
#include "llvm/IR/Value.h"
|
|
#include "llvm/InitializePasses.h"
|
|
#include "llvm/Pass.h"
|
|
#include "llvm/Support/Casting.h"
|
|
#include "llvm/Support/CommandLine.h"
|
|
#include "llvm/Support/ErrorHandling.h"
|
|
#include "llvm/Support/raw_ostream.h"
|
|
#include "llvm/Target/TargetMachine.h"
|
|
#include "llvm/Transforms/Scalar.h"
|
|
#include "llvm/Transforms/Utils/Local.h"
|
|
#include <cassert>
|
|
#include <cstdint>
|
|
#include <string>
|
|
|
|
using namespace llvm;
|
|
using namespace llvm::PatternMatch;
|
|
|
|
static cl::opt<bool> DisableSeparateConstOffsetFromGEP(
|
|
"disable-separate-const-offset-from-gep", cl::init(false),
|
|
cl::desc("Do not separate the constant offset from a GEP instruction"),
|
|
cl::Hidden);
|
|
|
|
// Setting this flag may emit false positives when the input module already
|
|
// contains dead instructions. Therefore, we set it only in unit tests that are
|
|
// free of dead code.
|
|
static cl::opt<bool>
|
|
VerifyNoDeadCode("reassociate-geps-verify-no-dead-code", cl::init(false),
|
|
cl::desc("Verify this pass produces no dead code"),
|
|
cl::Hidden);
|
|
|
|
namespace {
|
|
|
|
/// A helper class for separating a constant offset from a GEP index.
|
|
///
|
|
/// In real programs, a GEP index may be more complicated than a simple addition
|
|
/// of something and a constant integer which can be trivially splitted. For
|
|
/// example, to split ((a << 3) | 5) + b, we need to search deeper for the
|
|
/// constant offset, so that we can separate the index to (a << 3) + b and 5.
|
|
///
|
|
/// Therefore, this class looks into the expression that computes a given GEP
|
|
/// index, and tries to find a constant integer that can be hoisted to the
|
|
/// outermost level of the expression as an addition. Not every constant in an
|
|
/// expression can jump out. e.g., we cannot transform (b * (a + 5)) to (b * a +
|
|
/// 5); nor can we transform (3 * (a + 5)) to (3 * a + 5), however in this case,
|
|
/// -instcombine probably already optimized (3 * (a + 5)) to (3 * a + 15).
|
|
class ConstantOffsetExtractor {
|
|
public:
|
|
/// Extracts a constant offset from the given GEP index. It returns the
|
|
/// new index representing the remainder (equal to the original index minus
|
|
/// the constant offset), or nullptr if we cannot extract a constant offset.
|
|
/// \p Idx The given GEP index
|
|
/// \p GEP The given GEP
|
|
/// \p UserChainTail Outputs the tail of UserChain so that we can
|
|
/// garbage-collect unused instructions in UserChain.
|
|
static Value *Extract(Value *Idx, GetElementPtrInst *GEP,
|
|
User *&UserChainTail, const DominatorTree *DT);
|
|
|
|
/// Looks for a constant offset from the given GEP index without extracting
|
|
/// it. It returns the numeric value of the extracted constant offset (0 if
|
|
/// failed). The meaning of the arguments are the same as Extract.
|
|
static int64_t Find(Value *Idx, GetElementPtrInst *GEP,
|
|
const DominatorTree *DT);
|
|
|
|
private:
|
|
ConstantOffsetExtractor(Instruction *InsertionPt, const DominatorTree *DT)
|
|
: IP(InsertionPt), DL(InsertionPt->getModule()->getDataLayout()), DT(DT) {
|
|
}
|
|
|
|
/// Searches the expression that computes V for a non-zero constant C s.t.
|
|
/// V can be reassociated into the form V' + C. If the searching is
|
|
/// successful, returns C and update UserChain as a def-use chain from C to V;
|
|
/// otherwise, UserChain is empty.
|
|
///
|
|
/// \p V The given expression
|
|
/// \p SignExtended Whether V will be sign-extended in the computation of the
|
|
/// GEP index
|
|
/// \p ZeroExtended Whether V will be zero-extended in the computation of the
|
|
/// GEP index
|
|
/// \p NonNegative Whether V is guaranteed to be non-negative. For example,
|
|
/// an index of an inbounds GEP is guaranteed to be
|
|
/// non-negative. Levaraging this, we can better split
|
|
/// inbounds GEPs.
|
|
APInt find(Value *V, bool SignExtended, bool ZeroExtended, bool NonNegative);
|
|
|
|
/// A helper function to look into both operands of a binary operator.
|
|
APInt findInEitherOperand(BinaryOperator *BO, bool SignExtended,
|
|
bool ZeroExtended);
|
|
|
|
/// After finding the constant offset C from the GEP index I, we build a new
|
|
/// index I' s.t. I' + C = I. This function builds and returns the new
|
|
/// index I' according to UserChain produced by function "find".
|
|
///
|
|
/// The building conceptually takes two steps:
|
|
/// 1) iteratively distribute s/zext towards the leaves of the expression tree
|
|
/// that computes I
|
|
/// 2) reassociate the expression tree to the form I' + C.
|
|
///
|
|
/// For example, to extract the 5 from sext(a + (b + 5)), we first distribute
|
|
/// sext to a, b and 5 so that we have
|
|
/// sext(a) + (sext(b) + 5).
|
|
/// Then, we reassociate it to
|
|
/// (sext(a) + sext(b)) + 5.
|
|
/// Given this form, we know I' is sext(a) + sext(b).
|
|
Value *rebuildWithoutConstOffset();
|
|
|
|
/// After the first step of rebuilding the GEP index without the constant
|
|
/// offset, distribute s/zext to the operands of all operators in UserChain.
|
|
/// e.g., zext(sext(a + (b + 5)) (assuming no overflow) =>
|
|
/// zext(sext(a)) + (zext(sext(b)) + zext(sext(5))).
|
|
///
|
|
/// The function also updates UserChain to point to new subexpressions after
|
|
/// distributing s/zext. e.g., the old UserChain of the above example is
|
|
/// 5 -> b + 5 -> a + (b + 5) -> sext(...) -> zext(sext(...)),
|
|
/// and the new UserChain is
|
|
/// zext(sext(5)) -> zext(sext(b)) + zext(sext(5)) ->
|
|
/// zext(sext(a)) + (zext(sext(b)) + zext(sext(5))
|
|
///
|
|
/// \p ChainIndex The index to UserChain. ChainIndex is initially
|
|
/// UserChain.size() - 1, and is decremented during
|
|
/// the recursion.
|
|
Value *distributeExtsAndCloneChain(unsigned ChainIndex);
|
|
|
|
/// Reassociates the GEP index to the form I' + C and returns I'.
|
|
Value *removeConstOffset(unsigned ChainIndex);
|
|
|
|
/// A helper function to apply ExtInsts, a list of s/zext, to value V.
|
|
/// e.g., if ExtInsts = [sext i32 to i64, zext i16 to i32], this function
|
|
/// returns "sext i32 (zext i16 V to i32) to i64".
|
|
Value *applyExts(Value *V);
|
|
|
|
/// A helper function that returns whether we can trace into the operands
|
|
/// of binary operator BO for a constant offset.
|
|
///
|
|
/// \p SignExtended Whether BO is surrounded by sext
|
|
/// \p ZeroExtended Whether BO is surrounded by zext
|
|
/// \p NonNegative Whether BO is known to be non-negative, e.g., an in-bound
|
|
/// array index.
|
|
bool CanTraceInto(bool SignExtended, bool ZeroExtended, BinaryOperator *BO,
|
|
bool NonNegative);
|
|
|
|
/// The path from the constant offset to the old GEP index. e.g., if the GEP
|
|
/// index is "a * b + (c + 5)". After running function find, UserChain[0] will
|
|
/// be the constant 5, UserChain[1] will be the subexpression "c + 5", and
|
|
/// UserChain[2] will be the entire expression "a * b + (c + 5)".
|
|
///
|
|
/// This path helps to rebuild the new GEP index.
|
|
SmallVector<User *, 8> UserChain;
|
|
|
|
/// A data structure used in rebuildWithoutConstOffset. Contains all
|
|
/// sext/zext instructions along UserChain.
|
|
SmallVector<CastInst *, 16> ExtInsts;
|
|
|
|
/// Insertion position of cloned instructions.
|
|
Instruction *IP;
|
|
|
|
const DataLayout &DL;
|
|
const DominatorTree *DT;
|
|
};
|
|
|
|
/// A pass that tries to split every GEP in the function into a variadic
|
|
/// base and a constant offset. It is a FunctionPass because searching for the
|
|
/// constant offset may inspect other basic blocks.
|
|
class SeparateConstOffsetFromGEPLegacyPass : public FunctionPass {
|
|
public:
|
|
static char ID;
|
|
|
|
SeparateConstOffsetFromGEPLegacyPass(bool LowerGEP = false)
|
|
: FunctionPass(ID), LowerGEP(LowerGEP) {
|
|
initializeSeparateConstOffsetFromGEPLegacyPassPass(
|
|
*PassRegistry::getPassRegistry());
|
|
}
|
|
|
|
void getAnalysisUsage(AnalysisUsage &AU) const override {
|
|
AU.addRequired<DominatorTreeWrapperPass>();
|
|
AU.addRequired<ScalarEvolutionWrapperPass>();
|
|
AU.addRequired<TargetTransformInfoWrapperPass>();
|
|
AU.addRequired<LoopInfoWrapperPass>();
|
|
AU.setPreservesCFG();
|
|
AU.addRequired<TargetLibraryInfoWrapperPass>();
|
|
}
|
|
|
|
bool runOnFunction(Function &F) override;
|
|
|
|
private:
|
|
bool LowerGEP;
|
|
};
|
|
|
|
/// A pass that tries to split every GEP in the function into a variadic
|
|
/// base and a constant offset. It is a FunctionPass because searching for the
|
|
/// constant offset may inspect other basic blocks.
|
|
class SeparateConstOffsetFromGEP {
|
|
public:
|
|
SeparateConstOffsetFromGEP(
|
|
DominatorTree *DT, ScalarEvolution *SE, LoopInfo *LI,
|
|
TargetLibraryInfo *TLI,
|
|
function_ref<TargetTransformInfo &(Function &)> GetTTI, bool LowerGEP)
|
|
: DT(DT), SE(SE), LI(LI), TLI(TLI), GetTTI(GetTTI), LowerGEP(LowerGEP) {}
|
|
|
|
bool run(Function &F);
|
|
|
|
private:
|
|
/// Tries to split the given GEP into a variadic base and a constant offset,
|
|
/// and returns true if the splitting succeeds.
|
|
bool splitGEP(GetElementPtrInst *GEP);
|
|
|
|
/// Lower a GEP with multiple indices into multiple GEPs with a single index.
|
|
/// Function splitGEP already split the original GEP into a variadic part and
|
|
/// a constant offset (i.e., AccumulativeByteOffset). This function lowers the
|
|
/// variadic part into a set of GEPs with a single index and applies
|
|
/// AccumulativeByteOffset to it.
|
|
/// \p Variadic The variadic part of the original GEP.
|
|
/// \p AccumulativeByteOffset The constant offset.
|
|
void lowerToSingleIndexGEPs(GetElementPtrInst *Variadic,
|
|
int64_t AccumulativeByteOffset);
|
|
|
|
/// Lower a GEP with multiple indices into ptrtoint+arithmetics+inttoptr form.
|
|
/// Function splitGEP already split the original GEP into a variadic part and
|
|
/// a constant offset (i.e., AccumulativeByteOffset). This function lowers the
|
|
/// variadic part into a set of arithmetic operations and applies
|
|
/// AccumulativeByteOffset to it.
|
|
/// \p Variadic The variadic part of the original GEP.
|
|
/// \p AccumulativeByteOffset The constant offset.
|
|
void lowerToArithmetics(GetElementPtrInst *Variadic,
|
|
int64_t AccumulativeByteOffset);
|
|
|
|
/// Finds the constant offset within each index and accumulates them. If
|
|
/// LowerGEP is true, it finds in indices of both sequential and structure
|
|
/// types, otherwise it only finds in sequential indices. The output
|
|
/// NeedsExtraction indicates whether we successfully find a non-zero constant
|
|
/// offset.
|
|
int64_t accumulateByteOffset(GetElementPtrInst *GEP, bool &NeedsExtraction);
|
|
|
|
/// Canonicalize array indices to pointer-size integers. This helps to
|
|
/// simplify the logic of splitting a GEP. For example, if a + b is a
|
|
/// pointer-size integer, we have
|
|
/// gep base, a + b = gep (gep base, a), b
|
|
/// However, this equality may not hold if the size of a + b is smaller than
|
|
/// the pointer size, because LLVM conceptually sign-extends GEP indices to
|
|
/// pointer size before computing the address
|
|
/// (http://llvm.org/docs/LangRef.html#id181).
|
|
///
|
|
/// This canonicalization is very likely already done in clang and
|
|
/// instcombine. Therefore, the program will probably remain the same.
|
|
///
|
|
/// Returns true if the module changes.
|
|
///
|
|
/// Verified in @i32_add in split-gep.ll
|
|
bool canonicalizeArrayIndicesToPointerSize(GetElementPtrInst *GEP);
|
|
|
|
/// Optimize sext(a)+sext(b) to sext(a+b) when a+b can't sign overflow.
|
|
/// SeparateConstOffsetFromGEP distributes a sext to leaves before extracting
|
|
/// the constant offset. After extraction, it becomes desirable to reunion the
|
|
/// distributed sexts. For example,
|
|
///
|
|
/// &a[sext(i +nsw (j +nsw 5)]
|
|
/// => distribute &a[sext(i) +nsw (sext(j) +nsw 5)]
|
|
/// => constant extraction &a[sext(i) + sext(j)] + 5
|
|
/// => reunion &a[sext(i +nsw j)] + 5
|
|
bool reuniteExts(Function &F);
|
|
|
|
/// A helper that reunites sexts in an instruction.
|
|
bool reuniteExts(Instruction *I);
|
|
|
|
/// Find the closest dominator of <Dominatee> that is equivalent to <Key>.
|
|
Instruction *findClosestMatchingDominator(
|
|
const SCEV *Key, Instruction *Dominatee,
|
|
DenseMap<const SCEV *, SmallVector<Instruction *, 2>> &DominatingExprs);
|
|
|
|
/// Verify F is free of dead code.
|
|
void verifyNoDeadCode(Function &F);
|
|
|
|
bool hasMoreThanOneUseInLoop(Value *v, Loop *L);
|
|
|
|
// Swap the index operand of two GEP.
|
|
void swapGEPOperand(GetElementPtrInst *First, GetElementPtrInst *Second);
|
|
|
|
// Check if it is safe to swap operand of two GEP.
|
|
bool isLegalToSwapOperand(GetElementPtrInst *First, GetElementPtrInst *Second,
|
|
Loop *CurLoop);
|
|
|
|
const DataLayout *DL = nullptr;
|
|
DominatorTree *DT = nullptr;
|
|
ScalarEvolution *SE;
|
|
LoopInfo *LI;
|
|
TargetLibraryInfo *TLI;
|
|
// Retrieved lazily since not always used.
|
|
function_ref<TargetTransformInfo &(Function &)> GetTTI;
|
|
|
|
/// Whether to lower a GEP with multiple indices into arithmetic operations or
|
|
/// multiple GEPs with a single index.
|
|
bool LowerGEP;
|
|
|
|
DenseMap<const SCEV *, SmallVector<Instruction *, 2>> DominatingAdds;
|
|
DenseMap<const SCEV *, SmallVector<Instruction *, 2>> DominatingSubs;
|
|
};
|
|
|
|
} // end anonymous namespace
|
|
|
|
char SeparateConstOffsetFromGEPLegacyPass::ID = 0;
|
|
|
|
INITIALIZE_PASS_BEGIN(
|
|
SeparateConstOffsetFromGEPLegacyPass, "separate-const-offset-from-gep",
|
|
"Split GEPs to a variadic base and a constant offset for better CSE", false,
|
|
false)
|
|
INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
|
|
INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass)
|
|
INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
|
|
INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
|
|
INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
|
|
INITIALIZE_PASS_END(
|
|
SeparateConstOffsetFromGEPLegacyPass, "separate-const-offset-from-gep",
|
|
"Split GEPs to a variadic base and a constant offset for better CSE", false,
|
|
false)
|
|
|
|
FunctionPass *llvm::createSeparateConstOffsetFromGEPPass(bool LowerGEP) {
|
|
return new SeparateConstOffsetFromGEPLegacyPass(LowerGEP);
|
|
}
|
|
|
|
bool ConstantOffsetExtractor::CanTraceInto(bool SignExtended,
|
|
bool ZeroExtended,
|
|
BinaryOperator *BO,
|
|
bool NonNegative) {
|
|
// We only consider ADD, SUB and OR, because a non-zero constant found in
|
|
// expressions composed of these operations can be easily hoisted as a
|
|
// constant offset by reassociation.
|
|
if (BO->getOpcode() != Instruction::Add &&
|
|
BO->getOpcode() != Instruction::Sub &&
|
|
BO->getOpcode() != Instruction::Or) {
|
|
return false;
|
|
}
|
|
|
|
Value *LHS = BO->getOperand(0), *RHS = BO->getOperand(1);
|
|
// Do not trace into "or" unless it is equivalent to "add". If LHS and RHS
|
|
// don't have common bits, (LHS | RHS) is equivalent to (LHS + RHS).
|
|
// FIXME: this does not appear to be covered by any tests
|
|
// (with x86/aarch64 backends at least)
|
|
if (BO->getOpcode() == Instruction::Or &&
|
|
!haveNoCommonBitsSet(LHS, RHS, DL, nullptr, BO, DT))
|
|
return false;
|
|
|
|
// In addition, tracing into BO requires that its surrounding s/zext (if
|
|
// any) is distributable to both operands.
|
|
//
|
|
// Suppose BO = A op B.
|
|
// SignExtended | ZeroExtended | Distributable?
|
|
// --------------+--------------+----------------------------------
|
|
// 0 | 0 | true because no s/zext exists
|
|
// 0 | 1 | zext(BO) == zext(A) op zext(B)
|
|
// 1 | 0 | sext(BO) == sext(A) op sext(B)
|
|
// 1 | 1 | zext(sext(BO)) ==
|
|
// | | zext(sext(A)) op zext(sext(B))
|
|
if (BO->getOpcode() == Instruction::Add && !ZeroExtended && NonNegative) {
|
|
// If a + b >= 0 and (a >= 0 or b >= 0), then
|
|
// sext(a + b) = sext(a) + sext(b)
|
|
// even if the addition is not marked nsw.
|
|
//
|
|
// Leveraging this invariant, we can trace into an sext'ed inbound GEP
|
|
// index if the constant offset is non-negative.
|
|
//
|
|
// Verified in @sext_add in split-gep.ll.
|
|
if (ConstantInt *ConstLHS = dyn_cast<ConstantInt>(LHS)) {
|
|
if (!ConstLHS->isNegative())
|
|
return true;
|
|
}
|
|
if (ConstantInt *ConstRHS = dyn_cast<ConstantInt>(RHS)) {
|
|
if (!ConstRHS->isNegative())
|
|
return true;
|
|
}
|
|
}
|
|
|
|
// sext (add/sub nsw A, B) == add/sub nsw (sext A), (sext B)
|
|
// zext (add/sub nuw A, B) == add/sub nuw (zext A), (zext B)
|
|
if (BO->getOpcode() == Instruction::Add ||
|
|
BO->getOpcode() == Instruction::Sub) {
|
|
if (SignExtended && !BO->hasNoSignedWrap())
|
|
return false;
|
|
if (ZeroExtended && !BO->hasNoUnsignedWrap())
|
|
return false;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
APInt ConstantOffsetExtractor::findInEitherOperand(BinaryOperator *BO,
|
|
bool SignExtended,
|
|
bool ZeroExtended) {
|
|
// Save off the current height of the chain, in case we need to restore it.
|
|
size_t ChainLength = UserChain.size();
|
|
|
|
// BO being non-negative does not shed light on whether its operands are
|
|
// non-negative. Clear the NonNegative flag here.
|
|
APInt ConstantOffset = find(BO->getOperand(0), SignExtended, ZeroExtended,
|
|
/* NonNegative */ false);
|
|
// If we found a constant offset in the left operand, stop and return that.
|
|
// This shortcut might cause us to miss opportunities of combining the
|
|
// constant offsets in both operands, e.g., (a + 4) + (b + 5) => (a + b) + 9.
|
|
// However, such cases are probably already handled by -instcombine,
|
|
// given this pass runs after the standard optimizations.
|
|
if (ConstantOffset != 0) return ConstantOffset;
|
|
|
|
// Reset the chain back to where it was when we started exploring this node,
|
|
// since visiting the LHS didn't pan out.
|
|
UserChain.resize(ChainLength);
|
|
|
|
ConstantOffset = find(BO->getOperand(1), SignExtended, ZeroExtended,
|
|
/* NonNegative */ false);
|
|
// If U is a sub operator, negate the constant offset found in the right
|
|
// operand.
|
|
if (BO->getOpcode() == Instruction::Sub)
|
|
ConstantOffset = -ConstantOffset;
|
|
|
|
// If RHS wasn't a suitable candidate either, reset the chain again.
|
|
if (ConstantOffset == 0)
|
|
UserChain.resize(ChainLength);
|
|
|
|
return ConstantOffset;
|
|
}
|
|
|
|
APInt ConstantOffsetExtractor::find(Value *V, bool SignExtended,
|
|
bool ZeroExtended, bool NonNegative) {
|
|
// TODO(jingyue): We could trace into integer/pointer casts, such as
|
|
// inttoptr, ptrtoint, bitcast, and addrspacecast. We choose to handle only
|
|
// integers because it gives good enough results for our benchmarks.
|
|
unsigned BitWidth = cast<IntegerType>(V->getType())->getBitWidth();
|
|
|
|
// We cannot do much with Values that are not a User, such as an Argument.
|
|
User *U = dyn_cast<User>(V);
|
|
if (U == nullptr) return APInt(BitWidth, 0);
|
|
|
|
APInt ConstantOffset(BitWidth, 0);
|
|
if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
|
|
// Hooray, we found it!
|
|
ConstantOffset = CI->getValue();
|
|
} else if (BinaryOperator *BO = dyn_cast<BinaryOperator>(V)) {
|
|
// Trace into subexpressions for more hoisting opportunities.
|
|
if (CanTraceInto(SignExtended, ZeroExtended, BO, NonNegative))
|
|
ConstantOffset = findInEitherOperand(BO, SignExtended, ZeroExtended);
|
|
} else if (isa<TruncInst>(V)) {
|
|
ConstantOffset =
|
|
find(U->getOperand(0), SignExtended, ZeroExtended, NonNegative)
|
|
.trunc(BitWidth);
|
|
} else if (isa<SExtInst>(V)) {
|
|
ConstantOffset = find(U->getOperand(0), /* SignExtended */ true,
|
|
ZeroExtended, NonNegative).sext(BitWidth);
|
|
} else if (isa<ZExtInst>(V)) {
|
|
// As an optimization, we can clear the SignExtended flag because
|
|
// sext(zext(a)) = zext(a). Verified in @sext_zext in split-gep.ll.
|
|
//
|
|
// Clear the NonNegative flag, because zext(a) >= 0 does not imply a >= 0.
|
|
ConstantOffset =
|
|
find(U->getOperand(0), /* SignExtended */ false,
|
|
/* ZeroExtended */ true, /* NonNegative */ false).zext(BitWidth);
|
|
}
|
|
|
|
// If we found a non-zero constant offset, add it to the path for
|
|
// rebuildWithoutConstOffset. Zero is a valid constant offset, but doesn't
|
|
// help this optimization.
|
|
if (ConstantOffset != 0)
|
|
UserChain.push_back(U);
|
|
return ConstantOffset;
|
|
}
|
|
|
|
Value *ConstantOffsetExtractor::applyExts(Value *V) {
|
|
Value *Current = V;
|
|
// ExtInsts is built in the use-def order. Therefore, we apply them to V
|
|
// in the reversed order.
|
|
for (auto I = ExtInsts.rbegin(), E = ExtInsts.rend(); I != E; ++I) {
|
|
if (Constant *C = dyn_cast<Constant>(Current)) {
|
|
// If Current is a constant, apply s/zext using ConstantExpr::getCast.
|
|
// ConstantExpr::getCast emits a ConstantInt if C is a ConstantInt.
|
|
Current = ConstantExpr::getCast((*I)->getOpcode(), C, (*I)->getType());
|
|
} else {
|
|
Instruction *Ext = (*I)->clone();
|
|
Ext->setOperand(0, Current);
|
|
Ext->insertBefore(IP);
|
|
Current = Ext;
|
|
}
|
|
}
|
|
return Current;
|
|
}
|
|
|
|
Value *ConstantOffsetExtractor::rebuildWithoutConstOffset() {
|
|
distributeExtsAndCloneChain(UserChain.size() - 1);
|
|
// Remove all nullptrs (used to be s/zext) from UserChain.
|
|
unsigned NewSize = 0;
|
|
for (User *I : UserChain) {
|
|
if (I != nullptr) {
|
|
UserChain[NewSize] = I;
|
|
NewSize++;
|
|
}
|
|
}
|
|
UserChain.resize(NewSize);
|
|
return removeConstOffset(UserChain.size() - 1);
|
|
}
|
|
|
|
Value *
|
|
ConstantOffsetExtractor::distributeExtsAndCloneChain(unsigned ChainIndex) {
|
|
User *U = UserChain[ChainIndex];
|
|
if (ChainIndex == 0) {
|
|
assert(isa<ConstantInt>(U));
|
|
// If U is a ConstantInt, applyExts will return a ConstantInt as well.
|
|
return UserChain[ChainIndex] = cast<ConstantInt>(applyExts(U));
|
|
}
|
|
|
|
if (CastInst *Cast = dyn_cast<CastInst>(U)) {
|
|
assert(
|
|
(isa<SExtInst>(Cast) || isa<ZExtInst>(Cast) || isa<TruncInst>(Cast)) &&
|
|
"Only following instructions can be traced: sext, zext & trunc");
|
|
ExtInsts.push_back(Cast);
|
|
UserChain[ChainIndex] = nullptr;
|
|
return distributeExtsAndCloneChain(ChainIndex - 1);
|
|
}
|
|
|
|
// Function find only trace into BinaryOperator and CastInst.
|
|
BinaryOperator *BO = cast<BinaryOperator>(U);
|
|
// OpNo = which operand of BO is UserChain[ChainIndex - 1]
|
|
unsigned OpNo = (BO->getOperand(0) == UserChain[ChainIndex - 1] ? 0 : 1);
|
|
Value *TheOther = applyExts(BO->getOperand(1 - OpNo));
|
|
Value *NextInChain = distributeExtsAndCloneChain(ChainIndex - 1);
|
|
|
|
BinaryOperator *NewBO = nullptr;
|
|
if (OpNo == 0) {
|
|
NewBO = BinaryOperator::Create(BO->getOpcode(), NextInChain, TheOther,
|
|
BO->getName(), IP);
|
|
} else {
|
|
NewBO = BinaryOperator::Create(BO->getOpcode(), TheOther, NextInChain,
|
|
BO->getName(), IP);
|
|
}
|
|
return UserChain[ChainIndex] = NewBO;
|
|
}
|
|
|
|
Value *ConstantOffsetExtractor::removeConstOffset(unsigned ChainIndex) {
|
|
if (ChainIndex == 0) {
|
|
assert(isa<ConstantInt>(UserChain[ChainIndex]));
|
|
return ConstantInt::getNullValue(UserChain[ChainIndex]->getType());
|
|
}
|
|
|
|
BinaryOperator *BO = cast<BinaryOperator>(UserChain[ChainIndex]);
|
|
assert((BO->use_empty() || BO->hasOneUse()) &&
|
|
"distributeExtsAndCloneChain clones each BinaryOperator in "
|
|
"UserChain, so no one should be used more than "
|
|
"once");
|
|
|
|
unsigned OpNo = (BO->getOperand(0) == UserChain[ChainIndex - 1] ? 0 : 1);
|
|
assert(BO->getOperand(OpNo) == UserChain[ChainIndex - 1]);
|
|
Value *NextInChain = removeConstOffset(ChainIndex - 1);
|
|
Value *TheOther = BO->getOperand(1 - OpNo);
|
|
|
|
// If NextInChain is 0 and not the LHS of a sub, we can simplify the
|
|
// sub-expression to be just TheOther.
|
|
if (ConstantInt *CI = dyn_cast<ConstantInt>(NextInChain)) {
|
|
if (CI->isZero() && !(BO->getOpcode() == Instruction::Sub && OpNo == 0))
|
|
return TheOther;
|
|
}
|
|
|
|
BinaryOperator::BinaryOps NewOp = BO->getOpcode();
|
|
if (BO->getOpcode() == Instruction::Or) {
|
|
// Rebuild "or" as "add", because "or" may be invalid for the new
|
|
// expression.
|
|
//
|
|
// For instance, given
|
|
// a | (b + 5) where a and b + 5 have no common bits,
|
|
// we can extract 5 as the constant offset.
|
|
//
|
|
// However, reusing the "or" in the new index would give us
|
|
// (a | b) + 5
|
|
// which does not equal a | (b + 5).
|
|
//
|
|
// Replacing the "or" with "add" is fine, because
|
|
// a | (b + 5) = a + (b + 5) = (a + b) + 5
|
|
NewOp = Instruction::Add;
|
|
}
|
|
|
|
BinaryOperator *NewBO;
|
|
if (OpNo == 0) {
|
|
NewBO = BinaryOperator::Create(NewOp, NextInChain, TheOther, "", IP);
|
|
} else {
|
|
NewBO = BinaryOperator::Create(NewOp, TheOther, NextInChain, "", IP);
|
|
}
|
|
NewBO->takeName(BO);
|
|
return NewBO;
|
|
}
|
|
|
|
Value *ConstantOffsetExtractor::Extract(Value *Idx, GetElementPtrInst *GEP,
|
|
User *&UserChainTail,
|
|
const DominatorTree *DT) {
|
|
ConstantOffsetExtractor Extractor(GEP, DT);
|
|
// Find a non-zero constant offset first.
|
|
APInt ConstantOffset =
|
|
Extractor.find(Idx, /* SignExtended */ false, /* ZeroExtended */ false,
|
|
GEP->isInBounds());
|
|
if (ConstantOffset == 0) {
|
|
UserChainTail = nullptr;
|
|
return nullptr;
|
|
}
|
|
// Separates the constant offset from the GEP index.
|
|
Value *IdxWithoutConstOffset = Extractor.rebuildWithoutConstOffset();
|
|
UserChainTail = Extractor.UserChain.back();
|
|
return IdxWithoutConstOffset;
|
|
}
|
|
|
|
int64_t ConstantOffsetExtractor::Find(Value *Idx, GetElementPtrInst *GEP,
|
|
const DominatorTree *DT) {
|
|
// If Idx is an index of an inbound GEP, Idx is guaranteed to be non-negative.
|
|
return ConstantOffsetExtractor(GEP, DT)
|
|
.find(Idx, /* SignExtended */ false, /* ZeroExtended */ false,
|
|
GEP->isInBounds())
|
|
.getSExtValue();
|
|
}
|
|
|
|
bool SeparateConstOffsetFromGEP::canonicalizeArrayIndicesToPointerSize(
|
|
GetElementPtrInst *GEP) {
|
|
bool Changed = false;
|
|
Type *IntPtrTy = DL->getIntPtrType(GEP->getType());
|
|
gep_type_iterator GTI = gep_type_begin(*GEP);
|
|
for (User::op_iterator I = GEP->op_begin() + 1, E = GEP->op_end();
|
|
I != E; ++I, ++GTI) {
|
|
// Skip struct member indices which must be i32.
|
|
if (GTI.isSequential()) {
|
|
if ((*I)->getType() != IntPtrTy) {
|
|
*I = CastInst::CreateIntegerCast(*I, IntPtrTy, true, "idxprom", GEP);
|
|
Changed = true;
|
|
}
|
|
}
|
|
}
|
|
return Changed;
|
|
}
|
|
|
|
int64_t
|
|
SeparateConstOffsetFromGEP::accumulateByteOffset(GetElementPtrInst *GEP,
|
|
bool &NeedsExtraction) {
|
|
NeedsExtraction = false;
|
|
int64_t AccumulativeByteOffset = 0;
|
|
gep_type_iterator GTI = gep_type_begin(*GEP);
|
|
for (unsigned I = 1, E = GEP->getNumOperands(); I != E; ++I, ++GTI) {
|
|
if (GTI.isSequential()) {
|
|
// Tries to extract a constant offset from this GEP index.
|
|
int64_t ConstantOffset =
|
|
ConstantOffsetExtractor::Find(GEP->getOperand(I), GEP, DT);
|
|
if (ConstantOffset != 0) {
|
|
NeedsExtraction = true;
|
|
// A GEP may have multiple indices. We accumulate the extracted
|
|
// constant offset to a byte offset, and later offset the remainder of
|
|
// the original GEP with this byte offset.
|
|
AccumulativeByteOffset +=
|
|
ConstantOffset * DL->getTypeAllocSize(GTI.getIndexedType());
|
|
}
|
|
} else if (LowerGEP) {
|
|
StructType *StTy = GTI.getStructType();
|
|
uint64_t Field = cast<ConstantInt>(GEP->getOperand(I))->getZExtValue();
|
|
// Skip field 0 as the offset is always 0.
|
|
if (Field != 0) {
|
|
NeedsExtraction = true;
|
|
AccumulativeByteOffset +=
|
|
DL->getStructLayout(StTy)->getElementOffset(Field);
|
|
}
|
|
}
|
|
}
|
|
return AccumulativeByteOffset;
|
|
}
|
|
|
|
void SeparateConstOffsetFromGEP::lowerToSingleIndexGEPs(
|
|
GetElementPtrInst *Variadic, int64_t AccumulativeByteOffset) {
|
|
IRBuilder<> Builder(Variadic);
|
|
Type *IntPtrTy = DL->getIntPtrType(Variadic->getType());
|
|
|
|
Type *I8PtrTy =
|
|
Builder.getInt8PtrTy(Variadic->getType()->getPointerAddressSpace());
|
|
Value *ResultPtr = Variadic->getOperand(0);
|
|
Loop *L = LI->getLoopFor(Variadic->getParent());
|
|
// Check if the base is not loop invariant or used more than once.
|
|
bool isSwapCandidate =
|
|
L && L->isLoopInvariant(ResultPtr) &&
|
|
!hasMoreThanOneUseInLoop(ResultPtr, L);
|
|
Value *FirstResult = nullptr;
|
|
|
|
if (ResultPtr->getType() != I8PtrTy)
|
|
ResultPtr = Builder.CreateBitCast(ResultPtr, I8PtrTy);
|
|
|
|
gep_type_iterator GTI = gep_type_begin(*Variadic);
|
|
// Create an ugly GEP for each sequential index. We don't create GEPs for
|
|
// structure indices, as they are accumulated in the constant offset index.
|
|
for (unsigned I = 1, E = Variadic->getNumOperands(); I != E; ++I, ++GTI) {
|
|
if (GTI.isSequential()) {
|
|
Value *Idx = Variadic->getOperand(I);
|
|
// Skip zero indices.
|
|
if (ConstantInt *CI = dyn_cast<ConstantInt>(Idx))
|
|
if (CI->isZero())
|
|
continue;
|
|
|
|
APInt ElementSize = APInt(IntPtrTy->getIntegerBitWidth(),
|
|
DL->getTypeAllocSize(GTI.getIndexedType()));
|
|
// Scale the index by element size.
|
|
if (ElementSize != 1) {
|
|
if (ElementSize.isPowerOf2()) {
|
|
Idx = Builder.CreateShl(
|
|
Idx, ConstantInt::get(IntPtrTy, ElementSize.logBase2()));
|
|
} else {
|
|
Idx = Builder.CreateMul(Idx, ConstantInt::get(IntPtrTy, ElementSize));
|
|
}
|
|
}
|
|
// Create an ugly GEP with a single index for each index.
|
|
ResultPtr =
|
|
Builder.CreateGEP(Builder.getInt8Ty(), ResultPtr, Idx, "uglygep");
|
|
if (FirstResult == nullptr)
|
|
FirstResult = ResultPtr;
|
|
}
|
|
}
|
|
|
|
// Create a GEP with the constant offset index.
|
|
if (AccumulativeByteOffset != 0) {
|
|
Value *Offset = ConstantInt::get(IntPtrTy, AccumulativeByteOffset);
|
|
ResultPtr =
|
|
Builder.CreateGEP(Builder.getInt8Ty(), ResultPtr, Offset, "uglygep");
|
|
} else
|
|
isSwapCandidate = false;
|
|
|
|
// If we created a GEP with constant index, and the base is loop invariant,
|
|
// then we swap the first one with it, so LICM can move constant GEP out
|
|
// later.
|
|
auto *FirstGEP = dyn_cast_or_null<GetElementPtrInst>(FirstResult);
|
|
auto *SecondGEP = dyn_cast<GetElementPtrInst>(ResultPtr);
|
|
if (isSwapCandidate && isLegalToSwapOperand(FirstGEP, SecondGEP, L))
|
|
swapGEPOperand(FirstGEP, SecondGEP);
|
|
|
|
if (ResultPtr->getType() != Variadic->getType())
|
|
ResultPtr = Builder.CreateBitCast(ResultPtr, Variadic->getType());
|
|
|
|
Variadic->replaceAllUsesWith(ResultPtr);
|
|
Variadic->eraseFromParent();
|
|
}
|
|
|
|
void
|
|
SeparateConstOffsetFromGEP::lowerToArithmetics(GetElementPtrInst *Variadic,
|
|
int64_t AccumulativeByteOffset) {
|
|
IRBuilder<> Builder(Variadic);
|
|
Type *IntPtrTy = DL->getIntPtrType(Variadic->getType());
|
|
|
|
Value *ResultPtr = Builder.CreatePtrToInt(Variadic->getOperand(0), IntPtrTy);
|
|
gep_type_iterator GTI = gep_type_begin(*Variadic);
|
|
// Create ADD/SHL/MUL arithmetic operations for each sequential indices. We
|
|
// don't create arithmetics for structure indices, as they are accumulated
|
|
// in the constant offset index.
|
|
for (unsigned I = 1, E = Variadic->getNumOperands(); I != E; ++I, ++GTI) {
|
|
if (GTI.isSequential()) {
|
|
Value *Idx = Variadic->getOperand(I);
|
|
// Skip zero indices.
|
|
if (ConstantInt *CI = dyn_cast<ConstantInt>(Idx))
|
|
if (CI->isZero())
|
|
continue;
|
|
|
|
APInt ElementSize = APInt(IntPtrTy->getIntegerBitWidth(),
|
|
DL->getTypeAllocSize(GTI.getIndexedType()));
|
|
// Scale the index by element size.
|
|
if (ElementSize != 1) {
|
|
if (ElementSize.isPowerOf2()) {
|
|
Idx = Builder.CreateShl(
|
|
Idx, ConstantInt::get(IntPtrTy, ElementSize.logBase2()));
|
|
} else {
|
|
Idx = Builder.CreateMul(Idx, ConstantInt::get(IntPtrTy, ElementSize));
|
|
}
|
|
}
|
|
// Create an ADD for each index.
|
|
ResultPtr = Builder.CreateAdd(ResultPtr, Idx);
|
|
}
|
|
}
|
|
|
|
// Create an ADD for the constant offset index.
|
|
if (AccumulativeByteOffset != 0) {
|
|
ResultPtr = Builder.CreateAdd(
|
|
ResultPtr, ConstantInt::get(IntPtrTy, AccumulativeByteOffset));
|
|
}
|
|
|
|
ResultPtr = Builder.CreateIntToPtr(ResultPtr, Variadic->getType());
|
|
Variadic->replaceAllUsesWith(ResultPtr);
|
|
Variadic->eraseFromParent();
|
|
}
|
|
|
|
bool SeparateConstOffsetFromGEP::splitGEP(GetElementPtrInst *GEP) {
|
|
// Skip vector GEPs.
|
|
if (GEP->getType()->isVectorTy())
|
|
return false;
|
|
|
|
// The backend can already nicely handle the case where all indices are
|
|
// constant.
|
|
if (GEP->hasAllConstantIndices())
|
|
return false;
|
|
|
|
bool Changed = canonicalizeArrayIndicesToPointerSize(GEP);
|
|
|
|
bool NeedsExtraction;
|
|
int64_t AccumulativeByteOffset = accumulateByteOffset(GEP, NeedsExtraction);
|
|
|
|
if (!NeedsExtraction)
|
|
return Changed;
|
|
|
|
TargetTransformInfo &TTI = GetTTI(*GEP->getFunction());
|
|
|
|
// If LowerGEP is disabled, before really splitting the GEP, check whether the
|
|
// backend supports the addressing mode we are about to produce. If no, this
|
|
// splitting probably won't be beneficial.
|
|
// If LowerGEP is enabled, even the extracted constant offset can not match
|
|
// the addressing mode, we can still do optimizations to other lowered parts
|
|
// of variable indices. Therefore, we don't check for addressing modes in that
|
|
// case.
|
|
if (!LowerGEP) {
|
|
unsigned AddrSpace = GEP->getPointerAddressSpace();
|
|
if (!TTI.isLegalAddressingMode(GEP->getResultElementType(),
|
|
/*BaseGV=*/nullptr, AccumulativeByteOffset,
|
|
/*HasBaseReg=*/true, /*Scale=*/0,
|
|
AddrSpace)) {
|
|
return Changed;
|
|
}
|
|
}
|
|
|
|
// Remove the constant offset in each sequential index. The resultant GEP
|
|
// computes the variadic base.
|
|
// Notice that we don't remove struct field indices here. If LowerGEP is
|
|
// disabled, a structure index is not accumulated and we still use the old
|
|
// one. If LowerGEP is enabled, a structure index is accumulated in the
|
|
// constant offset. LowerToSingleIndexGEPs or lowerToArithmetics will later
|
|
// handle the constant offset and won't need a new structure index.
|
|
gep_type_iterator GTI = gep_type_begin(*GEP);
|
|
for (unsigned I = 1, E = GEP->getNumOperands(); I != E; ++I, ++GTI) {
|
|
if (GTI.isSequential()) {
|
|
// Splits this GEP index into a variadic part and a constant offset, and
|
|
// uses the variadic part as the new index.
|
|
Value *OldIdx = GEP->getOperand(I);
|
|
User *UserChainTail;
|
|
Value *NewIdx =
|
|
ConstantOffsetExtractor::Extract(OldIdx, GEP, UserChainTail, DT);
|
|
if (NewIdx != nullptr) {
|
|
// Switches to the index with the constant offset removed.
|
|
GEP->setOperand(I, NewIdx);
|
|
// After switching to the new index, we can garbage-collect UserChain
|
|
// and the old index if they are not used.
|
|
RecursivelyDeleteTriviallyDeadInstructions(UserChainTail);
|
|
RecursivelyDeleteTriviallyDeadInstructions(OldIdx);
|
|
}
|
|
}
|
|
}
|
|
|
|
// Clear the inbounds attribute because the new index may be off-bound.
|
|
// e.g.,
|
|
//
|
|
// b = add i64 a, 5
|
|
// addr = gep inbounds float, float* p, i64 b
|
|
//
|
|
// is transformed to:
|
|
//
|
|
// addr2 = gep float, float* p, i64 a ; inbounds removed
|
|
// addr = gep inbounds float, float* addr2, i64 5
|
|
//
|
|
// If a is -4, although the old index b is in bounds, the new index a is
|
|
// off-bound. http://llvm.org/docs/LangRef.html#id181 says "if the
|
|
// inbounds keyword is not present, the offsets are added to the base
|
|
// address with silently-wrapping two's complement arithmetic".
|
|
// Therefore, the final code will be a semantically equivalent.
|
|
//
|
|
// TODO(jingyue): do some range analysis to keep as many inbounds as
|
|
// possible. GEPs with inbounds are more friendly to alias analysis.
|
|
bool GEPWasInBounds = GEP->isInBounds();
|
|
GEP->setIsInBounds(false);
|
|
|
|
// Lowers a GEP to either GEPs with a single index or arithmetic operations.
|
|
if (LowerGEP) {
|
|
// As currently BasicAA does not analyze ptrtoint/inttoptr, do not lower to
|
|
// arithmetic operations if the target uses alias analysis in codegen.
|
|
if (TTI.useAA())
|
|
lowerToSingleIndexGEPs(GEP, AccumulativeByteOffset);
|
|
else
|
|
lowerToArithmetics(GEP, AccumulativeByteOffset);
|
|
return true;
|
|
}
|
|
|
|
// No need to create another GEP if the accumulative byte offset is 0.
|
|
if (AccumulativeByteOffset == 0)
|
|
return true;
|
|
|
|
// Offsets the base with the accumulative byte offset.
|
|
//
|
|
// %gep ; the base
|
|
// ... %gep ...
|
|
//
|
|
// => add the offset
|
|
//
|
|
// %gep2 ; clone of %gep
|
|
// %new.gep = gep %gep2, <offset / sizeof(*%gep)>
|
|
// %gep ; will be removed
|
|
// ... %gep ...
|
|
//
|
|
// => replace all uses of %gep with %new.gep and remove %gep
|
|
//
|
|
// %gep2 ; clone of %gep
|
|
// %new.gep = gep %gep2, <offset / sizeof(*%gep)>
|
|
// ... %new.gep ...
|
|
//
|
|
// If AccumulativeByteOffset is not a multiple of sizeof(*%gep), we emit an
|
|
// uglygep (http://llvm.org/docs/GetElementPtr.html#what-s-an-uglygep):
|
|
// bitcast %gep2 to i8*, add the offset, and bitcast the result back to the
|
|
// type of %gep.
|
|
//
|
|
// %gep2 ; clone of %gep
|
|
// %0 = bitcast %gep2 to i8*
|
|
// %uglygep = gep %0, <offset>
|
|
// %new.gep = bitcast %uglygep to <type of %gep>
|
|
// ... %new.gep ...
|
|
Instruction *NewGEP = GEP->clone();
|
|
NewGEP->insertBefore(GEP);
|
|
|
|
// Per ANSI C standard, signed / unsigned = unsigned and signed % unsigned =
|
|
// unsigned.. Therefore, we cast ElementTypeSizeOfGEP to signed because it is
|
|
// used with unsigned integers later.
|
|
int64_t ElementTypeSizeOfGEP = static_cast<int64_t>(
|
|
DL->getTypeAllocSize(GEP->getResultElementType()));
|
|
Type *IntPtrTy = DL->getIntPtrType(GEP->getType());
|
|
if (AccumulativeByteOffset % ElementTypeSizeOfGEP == 0) {
|
|
// Very likely. As long as %gep is naturally aligned, the byte offset we
|
|
// extracted should be a multiple of sizeof(*%gep).
|
|
int64_t Index = AccumulativeByteOffset / ElementTypeSizeOfGEP;
|
|
NewGEP = GetElementPtrInst::Create(GEP->getResultElementType(), NewGEP,
|
|
ConstantInt::get(IntPtrTy, Index, true),
|
|
GEP->getName(), GEP);
|
|
NewGEP->copyMetadata(*GEP);
|
|
// Inherit the inbounds attribute of the original GEP.
|
|
cast<GetElementPtrInst>(NewGEP)->setIsInBounds(GEPWasInBounds);
|
|
} else {
|
|
// Unlikely but possible. For example,
|
|
// #pragma pack(1)
|
|
// struct S {
|
|
// int a[3];
|
|
// int64 b[8];
|
|
// };
|
|
// #pragma pack()
|
|
//
|
|
// Suppose the gep before extraction is &s[i + 1].b[j + 3]. After
|
|
// extraction, it becomes &s[i].b[j] and AccumulativeByteOffset is
|
|
// sizeof(S) + 3 * sizeof(int64) = 100, which is not a multiple of
|
|
// sizeof(int64).
|
|
//
|
|
// Emit an uglygep in this case.
|
|
Type *I8PtrTy = Type::getInt8PtrTy(GEP->getContext(),
|
|
GEP->getPointerAddressSpace());
|
|
NewGEP = new BitCastInst(NewGEP, I8PtrTy, "", GEP);
|
|
NewGEP = GetElementPtrInst::Create(
|
|
Type::getInt8Ty(GEP->getContext()), NewGEP,
|
|
ConstantInt::get(IntPtrTy, AccumulativeByteOffset, true), "uglygep",
|
|
GEP);
|
|
NewGEP->copyMetadata(*GEP);
|
|
// Inherit the inbounds attribute of the original GEP.
|
|
cast<GetElementPtrInst>(NewGEP)->setIsInBounds(GEPWasInBounds);
|
|
if (GEP->getType() != I8PtrTy)
|
|
NewGEP = new BitCastInst(NewGEP, GEP->getType(), GEP->getName(), GEP);
|
|
}
|
|
|
|
GEP->replaceAllUsesWith(NewGEP);
|
|
GEP->eraseFromParent();
|
|
|
|
return true;
|
|
}
|
|
|
|
bool SeparateConstOffsetFromGEPLegacyPass::runOnFunction(Function &F) {
|
|
if (skipFunction(F))
|
|
return false;
|
|
auto *DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
|
|
auto *SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE();
|
|
auto *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
|
|
auto *TLI = &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F);
|
|
auto GetTTI = [this](Function &F) -> TargetTransformInfo & {
|
|
return this->getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F);
|
|
};
|
|
SeparateConstOffsetFromGEP Impl(DT, SE, LI, TLI, GetTTI, LowerGEP);
|
|
return Impl.run(F);
|
|
}
|
|
|
|
bool SeparateConstOffsetFromGEP::run(Function &F) {
|
|
if (DisableSeparateConstOffsetFromGEP)
|
|
return false;
|
|
|
|
DL = &F.getParent()->getDataLayout();
|
|
bool Changed = false;
|
|
for (BasicBlock &B : F) {
|
|
for (BasicBlock::iterator I = B.begin(), IE = B.end(); I != IE;)
|
|
if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(I++))
|
|
Changed |= splitGEP(GEP);
|
|
// No need to split GEP ConstantExprs because all its indices are constant
|
|
// already.
|
|
}
|
|
|
|
Changed |= reuniteExts(F);
|
|
|
|
if (VerifyNoDeadCode)
|
|
verifyNoDeadCode(F);
|
|
|
|
return Changed;
|
|
}
|
|
|
|
Instruction *SeparateConstOffsetFromGEP::findClosestMatchingDominator(
|
|
const SCEV *Key, Instruction *Dominatee,
|
|
DenseMap<const SCEV *, SmallVector<Instruction *, 2>> &DominatingExprs) {
|
|
auto Pos = DominatingExprs.find(Key);
|
|
if (Pos == DominatingExprs.end())
|
|
return nullptr;
|
|
|
|
auto &Candidates = Pos->second;
|
|
// Because we process the basic blocks in pre-order of the dominator tree, a
|
|
// candidate that doesn't dominate the current instruction won't dominate any
|
|
// future instruction either. Therefore, we pop it out of the stack. This
|
|
// optimization makes the algorithm O(n).
|
|
while (!Candidates.empty()) {
|
|
Instruction *Candidate = Candidates.back();
|
|
if (DT->dominates(Candidate, Dominatee))
|
|
return Candidate;
|
|
Candidates.pop_back();
|
|
}
|
|
return nullptr;
|
|
}
|
|
|
|
bool SeparateConstOffsetFromGEP::reuniteExts(Instruction *I) {
|
|
if (!SE->isSCEVable(I->getType()))
|
|
return false;
|
|
|
|
// Dom: LHS+RHS
|
|
// I: sext(LHS)+sext(RHS)
|
|
// If Dom can't sign overflow and Dom dominates I, optimize I to sext(Dom).
|
|
// TODO: handle zext
|
|
Value *LHS = nullptr, *RHS = nullptr;
|
|
if (match(I, m_Add(m_SExt(m_Value(LHS)), m_SExt(m_Value(RHS))))) {
|
|
if (LHS->getType() == RHS->getType()) {
|
|
const SCEV *Key =
|
|
SE->getAddExpr(SE->getUnknown(LHS), SE->getUnknown(RHS));
|
|
if (auto *Dom = findClosestMatchingDominator(Key, I, DominatingAdds)) {
|
|
Instruction *NewSExt = new SExtInst(Dom, I->getType(), "", I);
|
|
NewSExt->takeName(I);
|
|
I->replaceAllUsesWith(NewSExt);
|
|
RecursivelyDeleteTriviallyDeadInstructions(I);
|
|
return true;
|
|
}
|
|
}
|
|
} else if (match(I, m_Sub(m_SExt(m_Value(LHS)), m_SExt(m_Value(RHS))))) {
|
|
if (LHS->getType() == RHS->getType()) {
|
|
const SCEV *Key =
|
|
SE->getAddExpr(SE->getUnknown(LHS), SE->getUnknown(RHS));
|
|
if (auto *Dom = findClosestMatchingDominator(Key, I, DominatingSubs)) {
|
|
Instruction *NewSExt = new SExtInst(Dom, I->getType(), "", I);
|
|
NewSExt->takeName(I);
|
|
I->replaceAllUsesWith(NewSExt);
|
|
RecursivelyDeleteTriviallyDeadInstructions(I);
|
|
return true;
|
|
}
|
|
}
|
|
}
|
|
|
|
// Add I to DominatingExprs if it's an add/sub that can't sign overflow.
|
|
if (match(I, m_NSWAdd(m_Value(LHS), m_Value(RHS)))) {
|
|
if (programUndefinedIfPoison(I)) {
|
|
const SCEV *Key =
|
|
SE->getAddExpr(SE->getUnknown(LHS), SE->getUnknown(RHS));
|
|
DominatingAdds[Key].push_back(I);
|
|
}
|
|
} else if (match(I, m_NSWSub(m_Value(LHS), m_Value(RHS)))) {
|
|
if (programUndefinedIfPoison(I)) {
|
|
const SCEV *Key =
|
|
SE->getAddExpr(SE->getUnknown(LHS), SE->getUnknown(RHS));
|
|
DominatingSubs[Key].push_back(I);
|
|
}
|
|
}
|
|
return false;
|
|
}
|
|
|
|
bool SeparateConstOffsetFromGEP::reuniteExts(Function &F) {
|
|
bool Changed = false;
|
|
DominatingAdds.clear();
|
|
DominatingSubs.clear();
|
|
for (const auto Node : depth_first(DT)) {
|
|
BasicBlock *BB = Node->getBlock();
|
|
for (auto I = BB->begin(); I != BB->end(); ) {
|
|
Instruction *Cur = &*I++;
|
|
Changed |= reuniteExts(Cur);
|
|
}
|
|
}
|
|
return Changed;
|
|
}
|
|
|
|
void SeparateConstOffsetFromGEP::verifyNoDeadCode(Function &F) {
|
|
for (BasicBlock &B : F) {
|
|
for (Instruction &I : B) {
|
|
if (isInstructionTriviallyDead(&I)) {
|
|
std::string ErrMessage;
|
|
raw_string_ostream RSO(ErrMessage);
|
|
RSO << "Dead instruction detected!\n" << I << "\n";
|
|
llvm_unreachable(RSO.str().c_str());
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
bool SeparateConstOffsetFromGEP::isLegalToSwapOperand(
|
|
GetElementPtrInst *FirstGEP, GetElementPtrInst *SecondGEP, Loop *CurLoop) {
|
|
if (!FirstGEP || !FirstGEP->hasOneUse())
|
|
return false;
|
|
|
|
if (!SecondGEP || FirstGEP->getParent() != SecondGEP->getParent())
|
|
return false;
|
|
|
|
if (FirstGEP == SecondGEP)
|
|
return false;
|
|
|
|
unsigned FirstNum = FirstGEP->getNumOperands();
|
|
unsigned SecondNum = SecondGEP->getNumOperands();
|
|
// Give up if the number of operands are not 2.
|
|
if (FirstNum != SecondNum || FirstNum != 2)
|
|
return false;
|
|
|
|
Value *FirstBase = FirstGEP->getOperand(0);
|
|
Value *SecondBase = SecondGEP->getOperand(0);
|
|
Value *FirstOffset = FirstGEP->getOperand(1);
|
|
// Give up if the index of the first GEP is loop invariant.
|
|
if (CurLoop->isLoopInvariant(FirstOffset))
|
|
return false;
|
|
|
|
// Give up if base doesn't have same type.
|
|
if (FirstBase->getType() != SecondBase->getType())
|
|
return false;
|
|
|
|
Instruction *FirstOffsetDef = dyn_cast<Instruction>(FirstOffset);
|
|
|
|
// Check if the second operand of first GEP has constant coefficient.
|
|
// For an example, for the following code, we won't gain anything by
|
|
// hoisting the second GEP out because the second GEP can be folded away.
|
|
// %scevgep.sum.ur159 = add i64 %idxprom48.ur, 256
|
|
// %67 = shl i64 %scevgep.sum.ur159, 2
|
|
// %uglygep160 = getelementptr i8* %65, i64 %67
|
|
// %uglygep161 = getelementptr i8* %uglygep160, i64 -1024
|
|
|
|
// Skip constant shift instruction which may be generated by Splitting GEPs.
|
|
if (FirstOffsetDef && FirstOffsetDef->isShift() &&
|
|
isa<ConstantInt>(FirstOffsetDef->getOperand(1)))
|
|
FirstOffsetDef = dyn_cast<Instruction>(FirstOffsetDef->getOperand(0));
|
|
|
|
// Give up if FirstOffsetDef is an Add or Sub with constant.
|
|
// Because it may not profitable at all due to constant folding.
|
|
if (FirstOffsetDef)
|
|
if (BinaryOperator *BO = dyn_cast<BinaryOperator>(FirstOffsetDef)) {
|
|
unsigned opc = BO->getOpcode();
|
|
if ((opc == Instruction::Add || opc == Instruction::Sub) &&
|
|
(isa<ConstantInt>(BO->getOperand(0)) ||
|
|
isa<ConstantInt>(BO->getOperand(1))))
|
|
return false;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
bool SeparateConstOffsetFromGEP::hasMoreThanOneUseInLoop(Value *V, Loop *L) {
|
|
int UsesInLoop = 0;
|
|
for (User *U : V->users()) {
|
|
if (Instruction *User = dyn_cast<Instruction>(U))
|
|
if (L->contains(User))
|
|
if (++UsesInLoop > 1)
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
void SeparateConstOffsetFromGEP::swapGEPOperand(GetElementPtrInst *First,
|
|
GetElementPtrInst *Second) {
|
|
Value *Offset1 = First->getOperand(1);
|
|
Value *Offset2 = Second->getOperand(1);
|
|
First->setOperand(1, Offset2);
|
|
Second->setOperand(1, Offset1);
|
|
|
|
// We changed p+o+c to p+c+o, p+c may not be inbound anymore.
|
|
const DataLayout &DAL = First->getModule()->getDataLayout();
|
|
APInt Offset(DAL.getIndexSizeInBits(
|
|
cast<PointerType>(First->getType())->getAddressSpace()),
|
|
0);
|
|
Value *NewBase =
|
|
First->stripAndAccumulateInBoundsConstantOffsets(DAL, Offset);
|
|
uint64_t ObjectSize;
|
|
if (!getObjectSize(NewBase, ObjectSize, DAL, TLI) ||
|
|
Offset.ugt(ObjectSize)) {
|
|
First->setIsInBounds(false);
|
|
Second->setIsInBounds(false);
|
|
} else
|
|
First->setIsInBounds(true);
|
|
}
|
|
|
|
PreservedAnalyses
|
|
SeparateConstOffsetFromGEPPass::run(Function &F, FunctionAnalysisManager &AM) {
|
|
auto *DT = &AM.getResult<DominatorTreeAnalysis>(F);
|
|
auto *SE = &AM.getResult<ScalarEvolutionAnalysis>(F);
|
|
auto *LI = &AM.getResult<LoopAnalysis>(F);
|
|
auto *TLI = &AM.getResult<TargetLibraryAnalysis>(F);
|
|
auto GetTTI = [&AM](Function &F) -> TargetTransformInfo & {
|
|
return AM.getResult<TargetIRAnalysis>(F);
|
|
};
|
|
SeparateConstOffsetFromGEP Impl(DT, SE, LI, TLI, GetTTI, LowerGEP);
|
|
if (!Impl.run(F))
|
|
return PreservedAnalyses::all();
|
|
PreservedAnalyses PA;
|
|
PA.preserveSet<CFGAnalyses>();
|
|
return PA;
|
|
}
|