mirror of
https://github.com/RPCS3/llvm-mirror.git
synced 2024-11-22 02:33:06 +01:00
de093310b0
Summary: The function SplitCriticalEdge (called by SplitEdge) can return a nullptr in cases where the edge is a critical. SplitEdge uses SplitCriticalEdge assuming it can always split all critical edges, which is an incorrect assumption. The three cases where the function SplitCriticalEdge will return a nullptr is: 1. DestBB is an exception block 2. Options.IgnoreUnreachableDests is set to true and isa(DestBB->getFirstNonPHIOrDbgOrLifetime()) is not equal to a nullptr 3. LoopSimplify form must be preserved (Options.PreserveLoopSimplify is true) and it cannot be maintained for a loop due to indirect branches For each of these situations they are handled in the following way: 1. Modified the function ehAwareSplitEdge originally from llvm/lib/Transforms/Coroutines/CoroFrame.cpp to handle the cases when the DestBB is an exception block. This function is called directly in SplitEdge. SplitEdge does not call SplitCriticalEdge in this case 2. Options.IgnoreUnreachableDests is set to false by default, so this situation does not apply. 3. Return a nullptr in this situation since the SplitCriticalEdge also returned nullptr. Nothing we can do in this case. Reviewed By: asbirlea Differential Revision:https://reviews.llvm.org/D94619
475 lines
18 KiB
C++
475 lines
18 KiB
C++
//===- BreakCriticalEdges.cpp - Critical Edge Elimination Pass ------------===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// BreakCriticalEdges pass - Break all of the critical edges in the CFG by
|
|
// inserting a dummy basic block. This pass may be "required" by passes that
|
|
// cannot deal with critical edges. For this usage, the structure type is
|
|
// forward declared. This pass obviously invalidates the CFG, but can update
|
|
// dominator trees.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "llvm/Transforms/Utils/BreakCriticalEdges.h"
|
|
#include "llvm/ADT/SetVector.h"
|
|
#include "llvm/ADT/SmallVector.h"
|
|
#include "llvm/ADT/Statistic.h"
|
|
#include "llvm/Analysis/BlockFrequencyInfo.h"
|
|
#include "llvm/Analysis/BranchProbabilityInfo.h"
|
|
#include "llvm/Analysis/CFG.h"
|
|
#include "llvm/Analysis/LoopInfo.h"
|
|
#include "llvm/Analysis/MemorySSAUpdater.h"
|
|
#include "llvm/Analysis/PostDominators.h"
|
|
#include "llvm/IR/CFG.h"
|
|
#include "llvm/IR/Dominators.h"
|
|
#include "llvm/IR/Instructions.h"
|
|
#include "llvm/IR/Type.h"
|
|
#include "llvm/InitializePasses.h"
|
|
#include "llvm/Support/ErrorHandling.h"
|
|
#include "llvm/Transforms/Utils.h"
|
|
#include "llvm/Transforms/Utils/BasicBlockUtils.h"
|
|
#include "llvm/Transforms/Utils/Cloning.h"
|
|
#include "llvm/Transforms/Utils/ValueMapper.h"
|
|
using namespace llvm;
|
|
|
|
#define DEBUG_TYPE "break-crit-edges"
|
|
|
|
STATISTIC(NumBroken, "Number of blocks inserted");
|
|
|
|
namespace {
|
|
struct BreakCriticalEdges : public FunctionPass {
|
|
static char ID; // Pass identification, replacement for typeid
|
|
BreakCriticalEdges() : FunctionPass(ID) {
|
|
initializeBreakCriticalEdgesPass(*PassRegistry::getPassRegistry());
|
|
}
|
|
|
|
bool runOnFunction(Function &F) override {
|
|
auto *DTWP = getAnalysisIfAvailable<DominatorTreeWrapperPass>();
|
|
auto *DT = DTWP ? &DTWP->getDomTree() : nullptr;
|
|
|
|
auto *PDTWP = getAnalysisIfAvailable<PostDominatorTreeWrapperPass>();
|
|
auto *PDT = PDTWP ? &PDTWP->getPostDomTree() : nullptr;
|
|
|
|
auto *LIWP = getAnalysisIfAvailable<LoopInfoWrapperPass>();
|
|
auto *LI = LIWP ? &LIWP->getLoopInfo() : nullptr;
|
|
unsigned N =
|
|
SplitAllCriticalEdges(F, CriticalEdgeSplittingOptions(DT, LI, nullptr, PDT));
|
|
NumBroken += N;
|
|
return N > 0;
|
|
}
|
|
|
|
void getAnalysisUsage(AnalysisUsage &AU) const override {
|
|
AU.addPreserved<DominatorTreeWrapperPass>();
|
|
AU.addPreserved<LoopInfoWrapperPass>();
|
|
|
|
// No loop canonicalization guarantees are broken by this pass.
|
|
AU.addPreservedID(LoopSimplifyID);
|
|
}
|
|
};
|
|
}
|
|
|
|
char BreakCriticalEdges::ID = 0;
|
|
INITIALIZE_PASS(BreakCriticalEdges, "break-crit-edges",
|
|
"Break critical edges in CFG", false, false)
|
|
|
|
// Publicly exposed interface to pass...
|
|
char &llvm::BreakCriticalEdgesID = BreakCriticalEdges::ID;
|
|
FunctionPass *llvm::createBreakCriticalEdgesPass() {
|
|
return new BreakCriticalEdges();
|
|
}
|
|
|
|
PreservedAnalyses BreakCriticalEdgesPass::run(Function &F,
|
|
FunctionAnalysisManager &AM) {
|
|
auto *DT = AM.getCachedResult<DominatorTreeAnalysis>(F);
|
|
auto *LI = AM.getCachedResult<LoopAnalysis>(F);
|
|
unsigned N = SplitAllCriticalEdges(F, CriticalEdgeSplittingOptions(DT, LI));
|
|
NumBroken += N;
|
|
if (N == 0)
|
|
return PreservedAnalyses::all();
|
|
PreservedAnalyses PA;
|
|
PA.preserve<DominatorTreeAnalysis>();
|
|
PA.preserve<LoopAnalysis>();
|
|
return PA;
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Implementation of the external critical edge manipulation functions
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
BasicBlock *llvm::SplitCriticalEdge(Instruction *TI, unsigned SuccNum,
|
|
const CriticalEdgeSplittingOptions &Options,
|
|
const Twine &BBName) {
|
|
if (!isCriticalEdge(TI, SuccNum, Options.MergeIdenticalEdges))
|
|
return nullptr;
|
|
|
|
return SplitKnownCriticalEdge(TI, SuccNum, Options, BBName);
|
|
}
|
|
|
|
BasicBlock *
|
|
llvm::SplitKnownCriticalEdge(Instruction *TI, unsigned SuccNum,
|
|
const CriticalEdgeSplittingOptions &Options,
|
|
const Twine &BBName) {
|
|
assert(!isa<IndirectBrInst>(TI) &&
|
|
"Cannot split critical edge from IndirectBrInst");
|
|
|
|
BasicBlock *TIBB = TI->getParent();
|
|
BasicBlock *DestBB = TI->getSuccessor(SuccNum);
|
|
|
|
// Splitting the critical edge to a pad block is non-trivial. Don't do
|
|
// it in this generic function.
|
|
if (DestBB->isEHPad()) return nullptr;
|
|
|
|
if (Options.IgnoreUnreachableDests &&
|
|
isa<UnreachableInst>(DestBB->getFirstNonPHIOrDbgOrLifetime()))
|
|
return nullptr;
|
|
|
|
auto *LI = Options.LI;
|
|
SmallVector<BasicBlock *, 4> LoopPreds;
|
|
// Check if extra modifications will be required to preserve loop-simplify
|
|
// form after splitting. If it would require splitting blocks with IndirectBr
|
|
// or CallBr terminators, bail out if preserving loop-simplify form is
|
|
// requested.
|
|
if (LI) {
|
|
if (Loop *TIL = LI->getLoopFor(TIBB)) {
|
|
|
|
// The only way that we can break LoopSimplify form by splitting a
|
|
// critical edge is if after the split there exists some edge from TIL to
|
|
// DestBB *and* the only edge into DestBB from outside of TIL is that of
|
|
// NewBB. If the first isn't true, then LoopSimplify still holds, NewBB
|
|
// is the new exit block and it has no non-loop predecessors. If the
|
|
// second isn't true, then DestBB was not in LoopSimplify form prior to
|
|
// the split as it had a non-loop predecessor. In both of these cases,
|
|
// the predecessor must be directly in TIL, not in a subloop, or again
|
|
// LoopSimplify doesn't hold.
|
|
for (BasicBlock *P : predecessors(DestBB)) {
|
|
if (P == TIBB)
|
|
continue; // The new block is known.
|
|
if (LI->getLoopFor(P) != TIL) {
|
|
// No need to re-simplify, it wasn't to start with.
|
|
LoopPreds.clear();
|
|
break;
|
|
}
|
|
LoopPreds.push_back(P);
|
|
}
|
|
// Loop-simplify form can be preserved, if we can split all in-loop
|
|
// predecessors.
|
|
if (any_of(LoopPreds, [](BasicBlock *Pred) {
|
|
const Instruction *T = Pred->getTerminator();
|
|
if (const auto *CBR = dyn_cast<CallBrInst>(T))
|
|
return CBR->getDefaultDest() != Pred;
|
|
return isa<IndirectBrInst>(T);
|
|
})) {
|
|
if (Options.PreserveLoopSimplify)
|
|
return nullptr;
|
|
LoopPreds.clear();
|
|
}
|
|
}
|
|
}
|
|
|
|
// Create a new basic block, linking it into the CFG.
|
|
BasicBlock *NewBB = nullptr;
|
|
if (BBName.str() != "")
|
|
NewBB = BasicBlock::Create(TI->getContext(), BBName);
|
|
else
|
|
NewBB = BasicBlock::Create(TI->getContext(), TIBB->getName() + "." +
|
|
DestBB->getName() +
|
|
"_crit_edge");
|
|
// Create our unconditional branch.
|
|
BranchInst *NewBI = BranchInst::Create(DestBB, NewBB);
|
|
NewBI->setDebugLoc(TI->getDebugLoc());
|
|
|
|
// Insert the block into the function... right after the block TI lives in.
|
|
Function &F = *TIBB->getParent();
|
|
Function::iterator FBBI = TIBB->getIterator();
|
|
F.getBasicBlockList().insert(++FBBI, NewBB);
|
|
|
|
// Branch to the new block, breaking the edge.
|
|
TI->setSuccessor(SuccNum, NewBB);
|
|
|
|
// If there are any PHI nodes in DestBB, we need to update them so that they
|
|
// merge incoming values from NewBB instead of from TIBB.
|
|
{
|
|
unsigned BBIdx = 0;
|
|
for (BasicBlock::iterator I = DestBB->begin(); isa<PHINode>(I); ++I) {
|
|
// We no longer enter through TIBB, now we come in through NewBB.
|
|
// Revector exactly one entry in the PHI node that used to come from
|
|
// TIBB to come from NewBB.
|
|
PHINode *PN = cast<PHINode>(I);
|
|
|
|
// Reuse the previous value of BBIdx if it lines up. In cases where we
|
|
// have multiple phi nodes with *lots* of predecessors, this is a speed
|
|
// win because we don't have to scan the PHI looking for TIBB. This
|
|
// happens because the BB list of PHI nodes are usually in the same
|
|
// order.
|
|
if (PN->getIncomingBlock(BBIdx) != TIBB)
|
|
BBIdx = PN->getBasicBlockIndex(TIBB);
|
|
PN->setIncomingBlock(BBIdx, NewBB);
|
|
}
|
|
}
|
|
|
|
// If there are any other edges from TIBB to DestBB, update those to go
|
|
// through the split block, making those edges non-critical as well (and
|
|
// reducing the number of phi entries in the DestBB if relevant).
|
|
if (Options.MergeIdenticalEdges) {
|
|
for (unsigned i = SuccNum+1, e = TI->getNumSuccessors(); i != e; ++i) {
|
|
if (TI->getSuccessor(i) != DestBB) continue;
|
|
|
|
// Remove an entry for TIBB from DestBB phi nodes.
|
|
DestBB->removePredecessor(TIBB, Options.KeepOneInputPHIs);
|
|
|
|
// We found another edge to DestBB, go to NewBB instead.
|
|
TI->setSuccessor(i, NewBB);
|
|
}
|
|
}
|
|
|
|
// If we have nothing to update, just return.
|
|
auto *DT = Options.DT;
|
|
auto *PDT = Options.PDT;
|
|
auto *MSSAU = Options.MSSAU;
|
|
if (MSSAU)
|
|
MSSAU->wireOldPredecessorsToNewImmediatePredecessor(
|
|
DestBB, NewBB, {TIBB}, Options.MergeIdenticalEdges);
|
|
|
|
if (!DT && !PDT && !LI)
|
|
return NewBB;
|
|
|
|
if (DT || PDT) {
|
|
// Update the DominatorTree.
|
|
// ---> NewBB -----\
|
|
// / V
|
|
// TIBB -------\\------> DestBB
|
|
//
|
|
// First, inform the DT about the new path from TIBB to DestBB via NewBB,
|
|
// then delete the old edge from TIBB to DestBB. By doing this in that order
|
|
// DestBB stays reachable in the DT the whole time and its subtree doesn't
|
|
// get disconnected.
|
|
SmallVector<DominatorTree::UpdateType, 3> Updates;
|
|
Updates.push_back({DominatorTree::Insert, TIBB, NewBB});
|
|
Updates.push_back({DominatorTree::Insert, NewBB, DestBB});
|
|
if (!llvm::is_contained(successors(TIBB), DestBB))
|
|
Updates.push_back({DominatorTree::Delete, TIBB, DestBB});
|
|
|
|
if (DT)
|
|
DT->applyUpdates(Updates);
|
|
if (PDT)
|
|
PDT->applyUpdates(Updates);
|
|
}
|
|
|
|
// Update LoopInfo if it is around.
|
|
if (LI) {
|
|
if (Loop *TIL = LI->getLoopFor(TIBB)) {
|
|
// If one or the other blocks were not in a loop, the new block is not
|
|
// either, and thus LI doesn't need to be updated.
|
|
if (Loop *DestLoop = LI->getLoopFor(DestBB)) {
|
|
if (TIL == DestLoop) {
|
|
// Both in the same loop, the NewBB joins loop.
|
|
DestLoop->addBasicBlockToLoop(NewBB, *LI);
|
|
} else if (TIL->contains(DestLoop)) {
|
|
// Edge from an outer loop to an inner loop. Add to the outer loop.
|
|
TIL->addBasicBlockToLoop(NewBB, *LI);
|
|
} else if (DestLoop->contains(TIL)) {
|
|
// Edge from an inner loop to an outer loop. Add to the outer loop.
|
|
DestLoop->addBasicBlockToLoop(NewBB, *LI);
|
|
} else {
|
|
// Edge from two loops with no containment relation. Because these
|
|
// are natural loops, we know that the destination block must be the
|
|
// header of its loop (adding a branch into a loop elsewhere would
|
|
// create an irreducible loop).
|
|
assert(DestLoop->getHeader() == DestBB &&
|
|
"Should not create irreducible loops!");
|
|
if (Loop *P = DestLoop->getParentLoop())
|
|
P->addBasicBlockToLoop(NewBB, *LI);
|
|
}
|
|
}
|
|
|
|
// If TIBB is in a loop and DestBB is outside of that loop, we may need
|
|
// to update LoopSimplify form and LCSSA form.
|
|
if (!TIL->contains(DestBB)) {
|
|
assert(!TIL->contains(NewBB) &&
|
|
"Split point for loop exit is contained in loop!");
|
|
|
|
// Update LCSSA form in the newly created exit block.
|
|
if (Options.PreserveLCSSA) {
|
|
createPHIsForSplitLoopExit(TIBB, NewBB, DestBB);
|
|
}
|
|
|
|
if (!LoopPreds.empty()) {
|
|
assert(!DestBB->isEHPad() && "We don't split edges to EH pads!");
|
|
BasicBlock *NewExitBB = SplitBlockPredecessors(
|
|
DestBB, LoopPreds, "split", DT, LI, MSSAU, Options.PreserveLCSSA);
|
|
if (Options.PreserveLCSSA)
|
|
createPHIsForSplitLoopExit(LoopPreds, NewExitBB, DestBB);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
return NewBB;
|
|
}
|
|
|
|
// Return the unique indirectbr predecessor of a block. This may return null
|
|
// even if such a predecessor exists, if it's not useful for splitting.
|
|
// If a predecessor is found, OtherPreds will contain all other (non-indirectbr)
|
|
// predecessors of BB.
|
|
static BasicBlock *
|
|
findIBRPredecessor(BasicBlock *BB, SmallVectorImpl<BasicBlock *> &OtherPreds) {
|
|
// If the block doesn't have any PHIs, we don't care about it, since there's
|
|
// no point in splitting it.
|
|
PHINode *PN = dyn_cast<PHINode>(BB->begin());
|
|
if (!PN)
|
|
return nullptr;
|
|
|
|
// Verify we have exactly one IBR predecessor.
|
|
// Conservatively bail out if one of the other predecessors is not a "regular"
|
|
// terminator (that is, not a switch or a br).
|
|
BasicBlock *IBB = nullptr;
|
|
for (unsigned Pred = 0, E = PN->getNumIncomingValues(); Pred != E; ++Pred) {
|
|
BasicBlock *PredBB = PN->getIncomingBlock(Pred);
|
|
Instruction *PredTerm = PredBB->getTerminator();
|
|
switch (PredTerm->getOpcode()) {
|
|
case Instruction::IndirectBr:
|
|
if (IBB)
|
|
return nullptr;
|
|
IBB = PredBB;
|
|
break;
|
|
case Instruction::Br:
|
|
case Instruction::Switch:
|
|
OtherPreds.push_back(PredBB);
|
|
continue;
|
|
default:
|
|
return nullptr;
|
|
}
|
|
}
|
|
|
|
return IBB;
|
|
}
|
|
|
|
bool llvm::SplitIndirectBrCriticalEdges(Function &F,
|
|
BranchProbabilityInfo *BPI,
|
|
BlockFrequencyInfo *BFI) {
|
|
// Check whether the function has any indirectbrs, and collect which blocks
|
|
// they may jump to. Since most functions don't have indirect branches,
|
|
// this lowers the common case's overhead to O(Blocks) instead of O(Edges).
|
|
SmallSetVector<BasicBlock *, 16> Targets;
|
|
for (auto &BB : F) {
|
|
auto *IBI = dyn_cast<IndirectBrInst>(BB.getTerminator());
|
|
if (!IBI)
|
|
continue;
|
|
|
|
for (unsigned Succ = 0, E = IBI->getNumSuccessors(); Succ != E; ++Succ)
|
|
Targets.insert(IBI->getSuccessor(Succ));
|
|
}
|
|
|
|
if (Targets.empty())
|
|
return false;
|
|
|
|
bool ShouldUpdateAnalysis = BPI && BFI;
|
|
bool Changed = false;
|
|
for (BasicBlock *Target : Targets) {
|
|
SmallVector<BasicBlock *, 16> OtherPreds;
|
|
BasicBlock *IBRPred = findIBRPredecessor(Target, OtherPreds);
|
|
// If we did not found an indirectbr, or the indirectbr is the only
|
|
// incoming edge, this isn't the kind of edge we're looking for.
|
|
if (!IBRPred || OtherPreds.empty())
|
|
continue;
|
|
|
|
// Don't even think about ehpads/landingpads.
|
|
Instruction *FirstNonPHI = Target->getFirstNonPHI();
|
|
if (FirstNonPHI->isEHPad() || Target->isLandingPad())
|
|
continue;
|
|
|
|
// Remember edge probabilities if needed.
|
|
SmallVector<BranchProbability, 4> EdgeProbabilities;
|
|
if (ShouldUpdateAnalysis) {
|
|
EdgeProbabilities.reserve(Target->getTerminator()->getNumSuccessors());
|
|
for (unsigned I = 0, E = Target->getTerminator()->getNumSuccessors();
|
|
I < E; ++I)
|
|
EdgeProbabilities.emplace_back(BPI->getEdgeProbability(Target, I));
|
|
BPI->eraseBlock(Target);
|
|
}
|
|
|
|
BasicBlock *BodyBlock = Target->splitBasicBlock(FirstNonPHI, ".split");
|
|
if (ShouldUpdateAnalysis) {
|
|
// Copy the BFI/BPI from Target to BodyBlock.
|
|
BPI->setEdgeProbability(BodyBlock, EdgeProbabilities);
|
|
BFI->setBlockFreq(BodyBlock, BFI->getBlockFreq(Target).getFrequency());
|
|
}
|
|
// It's possible Target was its own successor through an indirectbr.
|
|
// In this case, the indirectbr now comes from BodyBlock.
|
|
if (IBRPred == Target)
|
|
IBRPred = BodyBlock;
|
|
|
|
// At this point Target only has PHIs, and BodyBlock has the rest of the
|
|
// block's body. Create a copy of Target that will be used by the "direct"
|
|
// preds.
|
|
ValueToValueMapTy VMap;
|
|
BasicBlock *DirectSucc = CloneBasicBlock(Target, VMap, ".clone", &F);
|
|
|
|
BlockFrequency BlockFreqForDirectSucc;
|
|
for (BasicBlock *Pred : OtherPreds) {
|
|
// If the target is a loop to itself, then the terminator of the split
|
|
// block (BodyBlock) needs to be updated.
|
|
BasicBlock *Src = Pred != Target ? Pred : BodyBlock;
|
|
Src->getTerminator()->replaceUsesOfWith(Target, DirectSucc);
|
|
if (ShouldUpdateAnalysis)
|
|
BlockFreqForDirectSucc += BFI->getBlockFreq(Src) *
|
|
BPI->getEdgeProbability(Src, DirectSucc);
|
|
}
|
|
if (ShouldUpdateAnalysis) {
|
|
BFI->setBlockFreq(DirectSucc, BlockFreqForDirectSucc.getFrequency());
|
|
BlockFrequency NewBlockFreqForTarget =
|
|
BFI->getBlockFreq(Target) - BlockFreqForDirectSucc;
|
|
BFI->setBlockFreq(Target, NewBlockFreqForTarget.getFrequency());
|
|
}
|
|
|
|
// Ok, now fix up the PHIs. We know the two blocks only have PHIs, and that
|
|
// they are clones, so the number of PHIs are the same.
|
|
// (a) Remove the edge coming from IBRPred from the "Direct" PHI
|
|
// (b) Leave that as the only edge in the "Indirect" PHI.
|
|
// (c) Merge the two in the body block.
|
|
BasicBlock::iterator Indirect = Target->begin(),
|
|
End = Target->getFirstNonPHI()->getIterator();
|
|
BasicBlock::iterator Direct = DirectSucc->begin();
|
|
BasicBlock::iterator MergeInsert = BodyBlock->getFirstInsertionPt();
|
|
|
|
assert(&*End == Target->getTerminator() &&
|
|
"Block was expected to only contain PHIs");
|
|
|
|
while (Indirect != End) {
|
|
PHINode *DirPHI = cast<PHINode>(Direct);
|
|
PHINode *IndPHI = cast<PHINode>(Indirect);
|
|
|
|
// Now, clean up - the direct block shouldn't get the indirect value,
|
|
// and vice versa.
|
|
DirPHI->removeIncomingValue(IBRPred);
|
|
Direct++;
|
|
|
|
// Advance the pointer here, to avoid invalidation issues when the old
|
|
// PHI is erased.
|
|
Indirect++;
|
|
|
|
PHINode *NewIndPHI = PHINode::Create(IndPHI->getType(), 1, "ind", IndPHI);
|
|
NewIndPHI->addIncoming(IndPHI->getIncomingValueForBlock(IBRPred),
|
|
IBRPred);
|
|
|
|
// Create a PHI in the body block, to merge the direct and indirect
|
|
// predecessors.
|
|
PHINode *MergePHI =
|
|
PHINode::Create(IndPHI->getType(), 2, "merge", &*MergeInsert);
|
|
MergePHI->addIncoming(NewIndPHI, Target);
|
|
MergePHI->addIncoming(DirPHI, DirectSucc);
|
|
|
|
IndPHI->replaceAllUsesWith(MergePHI);
|
|
IndPHI->eraseFromParent();
|
|
}
|
|
|
|
Changed = true;
|
|
}
|
|
|
|
return Changed;
|
|
}
|