mirror of
https://github.com/RPCS3/llvm-mirror.git
synced 2024-11-22 02:33:06 +01:00
4ce16022d3
This is the second attempt to remove the `llvm.trap` insertion after https://reviews.llvm.org/rGe14e7bc4b889dfaffb7180d176a03311df2d4ae6 reverted the first one. It is not clear what the exact issue was back then and it might already be gone by now, it has been >5 years after all. Replaces D106299. Differential Revision: https://reviews.llvm.org/D106308
1809 lines
68 KiB
C++
1809 lines
68 KiB
C++
//===-- LoopUtils.cpp - Loop Utility functions -------------------------===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file defines common loop utility functions.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "llvm/Transforms/Utils/LoopUtils.h"
|
|
#include "llvm/ADT/DenseSet.h"
|
|
#include "llvm/ADT/Optional.h"
|
|
#include "llvm/ADT/PriorityWorklist.h"
|
|
#include "llvm/ADT/ScopeExit.h"
|
|
#include "llvm/ADT/SetVector.h"
|
|
#include "llvm/ADT/SmallPtrSet.h"
|
|
#include "llvm/ADT/SmallVector.h"
|
|
#include "llvm/Analysis/AliasAnalysis.h"
|
|
#include "llvm/Analysis/BasicAliasAnalysis.h"
|
|
#include "llvm/Analysis/DomTreeUpdater.h"
|
|
#include "llvm/Analysis/GlobalsModRef.h"
|
|
#include "llvm/Analysis/InstructionSimplify.h"
|
|
#include "llvm/Analysis/LoopAccessAnalysis.h"
|
|
#include "llvm/Analysis/LoopInfo.h"
|
|
#include "llvm/Analysis/LoopPass.h"
|
|
#include "llvm/Analysis/MemorySSA.h"
|
|
#include "llvm/Analysis/MemorySSAUpdater.h"
|
|
#include "llvm/Analysis/MustExecute.h"
|
|
#include "llvm/Analysis/ScalarEvolution.h"
|
|
#include "llvm/Analysis/ScalarEvolutionAliasAnalysis.h"
|
|
#include "llvm/Analysis/ScalarEvolutionExpressions.h"
|
|
#include "llvm/Analysis/TargetTransformInfo.h"
|
|
#include "llvm/Analysis/ValueTracking.h"
|
|
#include "llvm/IR/DIBuilder.h"
|
|
#include "llvm/IR/Dominators.h"
|
|
#include "llvm/IR/Instructions.h"
|
|
#include "llvm/IR/IntrinsicInst.h"
|
|
#include "llvm/IR/MDBuilder.h"
|
|
#include "llvm/IR/Module.h"
|
|
#include "llvm/IR/Operator.h"
|
|
#include "llvm/IR/PatternMatch.h"
|
|
#include "llvm/IR/ValueHandle.h"
|
|
#include "llvm/InitializePasses.h"
|
|
#include "llvm/Pass.h"
|
|
#include "llvm/Support/Debug.h"
|
|
#include "llvm/Support/KnownBits.h"
|
|
#include "llvm/Transforms/Utils/BasicBlockUtils.h"
|
|
#include "llvm/Transforms/Utils/Local.h"
|
|
#include "llvm/Transforms/Utils/ScalarEvolutionExpander.h"
|
|
|
|
using namespace llvm;
|
|
using namespace llvm::PatternMatch;
|
|
|
|
#define DEBUG_TYPE "loop-utils"
|
|
|
|
static const char *LLVMLoopDisableNonforced = "llvm.loop.disable_nonforced";
|
|
static const char *LLVMLoopDisableLICM = "llvm.licm.disable";
|
|
|
|
bool llvm::formDedicatedExitBlocks(Loop *L, DominatorTree *DT, LoopInfo *LI,
|
|
MemorySSAUpdater *MSSAU,
|
|
bool PreserveLCSSA) {
|
|
bool Changed = false;
|
|
|
|
// We re-use a vector for the in-loop predecesosrs.
|
|
SmallVector<BasicBlock *, 4> InLoopPredecessors;
|
|
|
|
auto RewriteExit = [&](BasicBlock *BB) {
|
|
assert(InLoopPredecessors.empty() &&
|
|
"Must start with an empty predecessors list!");
|
|
auto Cleanup = make_scope_exit([&] { InLoopPredecessors.clear(); });
|
|
|
|
// See if there are any non-loop predecessors of this exit block and
|
|
// keep track of the in-loop predecessors.
|
|
bool IsDedicatedExit = true;
|
|
for (auto *PredBB : predecessors(BB))
|
|
if (L->contains(PredBB)) {
|
|
if (isa<IndirectBrInst>(PredBB->getTerminator()))
|
|
// We cannot rewrite exiting edges from an indirectbr.
|
|
return false;
|
|
if (isa<CallBrInst>(PredBB->getTerminator()))
|
|
// We cannot rewrite exiting edges from a callbr.
|
|
return false;
|
|
|
|
InLoopPredecessors.push_back(PredBB);
|
|
} else {
|
|
IsDedicatedExit = false;
|
|
}
|
|
|
|
assert(!InLoopPredecessors.empty() && "Must have *some* loop predecessor!");
|
|
|
|
// Nothing to do if this is already a dedicated exit.
|
|
if (IsDedicatedExit)
|
|
return false;
|
|
|
|
auto *NewExitBB = SplitBlockPredecessors(
|
|
BB, InLoopPredecessors, ".loopexit", DT, LI, MSSAU, PreserveLCSSA);
|
|
|
|
if (!NewExitBB)
|
|
LLVM_DEBUG(
|
|
dbgs() << "WARNING: Can't create a dedicated exit block for loop: "
|
|
<< *L << "\n");
|
|
else
|
|
LLVM_DEBUG(dbgs() << "LoopSimplify: Creating dedicated exit block "
|
|
<< NewExitBB->getName() << "\n");
|
|
return true;
|
|
};
|
|
|
|
// Walk the exit blocks directly rather than building up a data structure for
|
|
// them, but only visit each one once.
|
|
SmallPtrSet<BasicBlock *, 4> Visited;
|
|
for (auto *BB : L->blocks())
|
|
for (auto *SuccBB : successors(BB)) {
|
|
// We're looking for exit blocks so skip in-loop successors.
|
|
if (L->contains(SuccBB))
|
|
continue;
|
|
|
|
// Visit each exit block exactly once.
|
|
if (!Visited.insert(SuccBB).second)
|
|
continue;
|
|
|
|
Changed |= RewriteExit(SuccBB);
|
|
}
|
|
|
|
return Changed;
|
|
}
|
|
|
|
/// Returns the instructions that use values defined in the loop.
|
|
SmallVector<Instruction *, 8> llvm::findDefsUsedOutsideOfLoop(Loop *L) {
|
|
SmallVector<Instruction *, 8> UsedOutside;
|
|
|
|
for (auto *Block : L->getBlocks())
|
|
// FIXME: I believe that this could use copy_if if the Inst reference could
|
|
// be adapted into a pointer.
|
|
for (auto &Inst : *Block) {
|
|
auto Users = Inst.users();
|
|
if (any_of(Users, [&](User *U) {
|
|
auto *Use = cast<Instruction>(U);
|
|
return !L->contains(Use->getParent());
|
|
}))
|
|
UsedOutside.push_back(&Inst);
|
|
}
|
|
|
|
return UsedOutside;
|
|
}
|
|
|
|
void llvm::getLoopAnalysisUsage(AnalysisUsage &AU) {
|
|
// By definition, all loop passes need the LoopInfo analysis and the
|
|
// Dominator tree it depends on. Because they all participate in the loop
|
|
// pass manager, they must also preserve these.
|
|
AU.addRequired<DominatorTreeWrapperPass>();
|
|
AU.addPreserved<DominatorTreeWrapperPass>();
|
|
AU.addRequired<LoopInfoWrapperPass>();
|
|
AU.addPreserved<LoopInfoWrapperPass>();
|
|
|
|
// We must also preserve LoopSimplify and LCSSA. We locally access their IDs
|
|
// here because users shouldn't directly get them from this header.
|
|
extern char &LoopSimplifyID;
|
|
extern char &LCSSAID;
|
|
AU.addRequiredID(LoopSimplifyID);
|
|
AU.addPreservedID(LoopSimplifyID);
|
|
AU.addRequiredID(LCSSAID);
|
|
AU.addPreservedID(LCSSAID);
|
|
// This is used in the LPPassManager to perform LCSSA verification on passes
|
|
// which preserve lcssa form
|
|
AU.addRequired<LCSSAVerificationPass>();
|
|
AU.addPreserved<LCSSAVerificationPass>();
|
|
|
|
// Loop passes are designed to run inside of a loop pass manager which means
|
|
// that any function analyses they require must be required by the first loop
|
|
// pass in the manager (so that it is computed before the loop pass manager
|
|
// runs) and preserved by all loop pasess in the manager. To make this
|
|
// reasonably robust, the set needed for most loop passes is maintained here.
|
|
// If your loop pass requires an analysis not listed here, you will need to
|
|
// carefully audit the loop pass manager nesting structure that results.
|
|
AU.addRequired<AAResultsWrapperPass>();
|
|
AU.addPreserved<AAResultsWrapperPass>();
|
|
AU.addPreserved<BasicAAWrapperPass>();
|
|
AU.addPreserved<GlobalsAAWrapperPass>();
|
|
AU.addPreserved<SCEVAAWrapperPass>();
|
|
AU.addRequired<ScalarEvolutionWrapperPass>();
|
|
AU.addPreserved<ScalarEvolutionWrapperPass>();
|
|
// FIXME: When all loop passes preserve MemorySSA, it can be required and
|
|
// preserved here instead of the individual handling in each pass.
|
|
}
|
|
|
|
/// Manually defined generic "LoopPass" dependency initialization. This is used
|
|
/// to initialize the exact set of passes from above in \c
|
|
/// getLoopAnalysisUsage. It can be used within a loop pass's initialization
|
|
/// with:
|
|
///
|
|
/// INITIALIZE_PASS_DEPENDENCY(LoopPass)
|
|
///
|
|
/// As-if "LoopPass" were a pass.
|
|
void llvm::initializeLoopPassPass(PassRegistry &Registry) {
|
|
INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
|
|
INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
|
|
INITIALIZE_PASS_DEPENDENCY(LoopSimplify)
|
|
INITIALIZE_PASS_DEPENDENCY(LCSSAWrapperPass)
|
|
INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
|
|
INITIALIZE_PASS_DEPENDENCY(BasicAAWrapperPass)
|
|
INITIALIZE_PASS_DEPENDENCY(GlobalsAAWrapperPass)
|
|
INITIALIZE_PASS_DEPENDENCY(SCEVAAWrapperPass)
|
|
INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass)
|
|
INITIALIZE_PASS_DEPENDENCY(MemorySSAWrapperPass)
|
|
}
|
|
|
|
/// Create MDNode for input string.
|
|
static MDNode *createStringMetadata(Loop *TheLoop, StringRef Name, unsigned V) {
|
|
LLVMContext &Context = TheLoop->getHeader()->getContext();
|
|
Metadata *MDs[] = {
|
|
MDString::get(Context, Name),
|
|
ConstantAsMetadata::get(ConstantInt::get(Type::getInt32Ty(Context), V))};
|
|
return MDNode::get(Context, MDs);
|
|
}
|
|
|
|
/// Set input string into loop metadata by keeping other values intact.
|
|
/// If the string is already in loop metadata update value if it is
|
|
/// different.
|
|
void llvm::addStringMetadataToLoop(Loop *TheLoop, const char *StringMD,
|
|
unsigned V) {
|
|
SmallVector<Metadata *, 4> MDs(1);
|
|
// If the loop already has metadata, retain it.
|
|
MDNode *LoopID = TheLoop->getLoopID();
|
|
if (LoopID) {
|
|
for (unsigned i = 1, ie = LoopID->getNumOperands(); i < ie; ++i) {
|
|
MDNode *Node = cast<MDNode>(LoopID->getOperand(i));
|
|
// If it is of form key = value, try to parse it.
|
|
if (Node->getNumOperands() == 2) {
|
|
MDString *S = dyn_cast<MDString>(Node->getOperand(0));
|
|
if (S && S->getString().equals(StringMD)) {
|
|
ConstantInt *IntMD =
|
|
mdconst::extract_or_null<ConstantInt>(Node->getOperand(1));
|
|
if (IntMD && IntMD->getSExtValue() == V)
|
|
// It is already in place. Do nothing.
|
|
return;
|
|
// We need to update the value, so just skip it here and it will
|
|
// be added after copying other existed nodes.
|
|
continue;
|
|
}
|
|
}
|
|
MDs.push_back(Node);
|
|
}
|
|
}
|
|
// Add new metadata.
|
|
MDs.push_back(createStringMetadata(TheLoop, StringMD, V));
|
|
// Replace current metadata node with new one.
|
|
LLVMContext &Context = TheLoop->getHeader()->getContext();
|
|
MDNode *NewLoopID = MDNode::get(Context, MDs);
|
|
// Set operand 0 to refer to the loop id itself.
|
|
NewLoopID->replaceOperandWith(0, NewLoopID);
|
|
TheLoop->setLoopID(NewLoopID);
|
|
}
|
|
|
|
Optional<ElementCount>
|
|
llvm::getOptionalElementCountLoopAttribute(const Loop *TheLoop) {
|
|
Optional<int> Width =
|
|
getOptionalIntLoopAttribute(TheLoop, "llvm.loop.vectorize.width");
|
|
|
|
if (Width.hasValue()) {
|
|
Optional<int> IsScalable = getOptionalIntLoopAttribute(
|
|
TheLoop, "llvm.loop.vectorize.scalable.enable");
|
|
return ElementCount::get(*Width, IsScalable.getValueOr(false));
|
|
}
|
|
|
|
return None;
|
|
}
|
|
|
|
Optional<MDNode *> llvm::makeFollowupLoopID(
|
|
MDNode *OrigLoopID, ArrayRef<StringRef> FollowupOptions,
|
|
const char *InheritOptionsExceptPrefix, bool AlwaysNew) {
|
|
if (!OrigLoopID) {
|
|
if (AlwaysNew)
|
|
return nullptr;
|
|
return None;
|
|
}
|
|
|
|
assert(OrigLoopID->getOperand(0) == OrigLoopID);
|
|
|
|
bool InheritAllAttrs = !InheritOptionsExceptPrefix;
|
|
bool InheritSomeAttrs =
|
|
InheritOptionsExceptPrefix && InheritOptionsExceptPrefix[0] != '\0';
|
|
SmallVector<Metadata *, 8> MDs;
|
|
MDs.push_back(nullptr);
|
|
|
|
bool Changed = false;
|
|
if (InheritAllAttrs || InheritSomeAttrs) {
|
|
for (const MDOperand &Existing : drop_begin(OrigLoopID->operands())) {
|
|
MDNode *Op = cast<MDNode>(Existing.get());
|
|
|
|
auto InheritThisAttribute = [InheritSomeAttrs,
|
|
InheritOptionsExceptPrefix](MDNode *Op) {
|
|
if (!InheritSomeAttrs)
|
|
return false;
|
|
|
|
// Skip malformatted attribute metadata nodes.
|
|
if (Op->getNumOperands() == 0)
|
|
return true;
|
|
Metadata *NameMD = Op->getOperand(0).get();
|
|
if (!isa<MDString>(NameMD))
|
|
return true;
|
|
StringRef AttrName = cast<MDString>(NameMD)->getString();
|
|
|
|
// Do not inherit excluded attributes.
|
|
return !AttrName.startswith(InheritOptionsExceptPrefix);
|
|
};
|
|
|
|
if (InheritThisAttribute(Op))
|
|
MDs.push_back(Op);
|
|
else
|
|
Changed = true;
|
|
}
|
|
} else {
|
|
// Modified if we dropped at least one attribute.
|
|
Changed = OrigLoopID->getNumOperands() > 1;
|
|
}
|
|
|
|
bool HasAnyFollowup = false;
|
|
for (StringRef OptionName : FollowupOptions) {
|
|
MDNode *FollowupNode = findOptionMDForLoopID(OrigLoopID, OptionName);
|
|
if (!FollowupNode)
|
|
continue;
|
|
|
|
HasAnyFollowup = true;
|
|
for (const MDOperand &Option : drop_begin(FollowupNode->operands())) {
|
|
MDs.push_back(Option.get());
|
|
Changed = true;
|
|
}
|
|
}
|
|
|
|
// Attributes of the followup loop not specified explicity, so signal to the
|
|
// transformation pass to add suitable attributes.
|
|
if (!AlwaysNew && !HasAnyFollowup)
|
|
return None;
|
|
|
|
// If no attributes were added or remove, the previous loop Id can be reused.
|
|
if (!AlwaysNew && !Changed)
|
|
return OrigLoopID;
|
|
|
|
// No attributes is equivalent to having no !llvm.loop metadata at all.
|
|
if (MDs.size() == 1)
|
|
return nullptr;
|
|
|
|
// Build the new loop ID.
|
|
MDTuple *FollowupLoopID = MDNode::get(OrigLoopID->getContext(), MDs);
|
|
FollowupLoopID->replaceOperandWith(0, FollowupLoopID);
|
|
return FollowupLoopID;
|
|
}
|
|
|
|
bool llvm::hasDisableAllTransformsHint(const Loop *L) {
|
|
return getBooleanLoopAttribute(L, LLVMLoopDisableNonforced);
|
|
}
|
|
|
|
bool llvm::hasDisableLICMTransformsHint(const Loop *L) {
|
|
return getBooleanLoopAttribute(L, LLVMLoopDisableLICM);
|
|
}
|
|
|
|
TransformationMode llvm::hasUnrollTransformation(const Loop *L) {
|
|
if (getBooleanLoopAttribute(L, "llvm.loop.unroll.disable"))
|
|
return TM_SuppressedByUser;
|
|
|
|
Optional<int> Count =
|
|
getOptionalIntLoopAttribute(L, "llvm.loop.unroll.count");
|
|
if (Count.hasValue())
|
|
return Count.getValue() == 1 ? TM_SuppressedByUser : TM_ForcedByUser;
|
|
|
|
if (getBooleanLoopAttribute(L, "llvm.loop.unroll.enable"))
|
|
return TM_ForcedByUser;
|
|
|
|
if (getBooleanLoopAttribute(L, "llvm.loop.unroll.full"))
|
|
return TM_ForcedByUser;
|
|
|
|
if (hasDisableAllTransformsHint(L))
|
|
return TM_Disable;
|
|
|
|
return TM_Unspecified;
|
|
}
|
|
|
|
TransformationMode llvm::hasUnrollAndJamTransformation(const Loop *L) {
|
|
if (getBooleanLoopAttribute(L, "llvm.loop.unroll_and_jam.disable"))
|
|
return TM_SuppressedByUser;
|
|
|
|
Optional<int> Count =
|
|
getOptionalIntLoopAttribute(L, "llvm.loop.unroll_and_jam.count");
|
|
if (Count.hasValue())
|
|
return Count.getValue() == 1 ? TM_SuppressedByUser : TM_ForcedByUser;
|
|
|
|
if (getBooleanLoopAttribute(L, "llvm.loop.unroll_and_jam.enable"))
|
|
return TM_ForcedByUser;
|
|
|
|
if (hasDisableAllTransformsHint(L))
|
|
return TM_Disable;
|
|
|
|
return TM_Unspecified;
|
|
}
|
|
|
|
TransformationMode llvm::hasVectorizeTransformation(const Loop *L) {
|
|
Optional<bool> Enable =
|
|
getOptionalBoolLoopAttribute(L, "llvm.loop.vectorize.enable");
|
|
|
|
if (Enable == false)
|
|
return TM_SuppressedByUser;
|
|
|
|
Optional<ElementCount> VectorizeWidth =
|
|
getOptionalElementCountLoopAttribute(L);
|
|
Optional<int> InterleaveCount =
|
|
getOptionalIntLoopAttribute(L, "llvm.loop.interleave.count");
|
|
|
|
// 'Forcing' vector width and interleave count to one effectively disables
|
|
// this tranformation.
|
|
if (Enable == true && VectorizeWidth && VectorizeWidth->isScalar() &&
|
|
InterleaveCount == 1)
|
|
return TM_SuppressedByUser;
|
|
|
|
if (getBooleanLoopAttribute(L, "llvm.loop.isvectorized"))
|
|
return TM_Disable;
|
|
|
|
if (Enable == true)
|
|
return TM_ForcedByUser;
|
|
|
|
if ((VectorizeWidth && VectorizeWidth->isScalar()) && InterleaveCount == 1)
|
|
return TM_Disable;
|
|
|
|
if ((VectorizeWidth && VectorizeWidth->isVector()) || InterleaveCount > 1)
|
|
return TM_Enable;
|
|
|
|
if (hasDisableAllTransformsHint(L))
|
|
return TM_Disable;
|
|
|
|
return TM_Unspecified;
|
|
}
|
|
|
|
TransformationMode llvm::hasDistributeTransformation(const Loop *L) {
|
|
if (getBooleanLoopAttribute(L, "llvm.loop.distribute.enable"))
|
|
return TM_ForcedByUser;
|
|
|
|
if (hasDisableAllTransformsHint(L))
|
|
return TM_Disable;
|
|
|
|
return TM_Unspecified;
|
|
}
|
|
|
|
TransformationMode llvm::hasLICMVersioningTransformation(const Loop *L) {
|
|
if (getBooleanLoopAttribute(L, "llvm.loop.licm_versioning.disable"))
|
|
return TM_SuppressedByUser;
|
|
|
|
if (hasDisableAllTransformsHint(L))
|
|
return TM_Disable;
|
|
|
|
return TM_Unspecified;
|
|
}
|
|
|
|
/// Does a BFS from a given node to all of its children inside a given loop.
|
|
/// The returned vector of nodes includes the starting point.
|
|
SmallVector<DomTreeNode *, 16>
|
|
llvm::collectChildrenInLoop(DomTreeNode *N, const Loop *CurLoop) {
|
|
SmallVector<DomTreeNode *, 16> Worklist;
|
|
auto AddRegionToWorklist = [&](DomTreeNode *DTN) {
|
|
// Only include subregions in the top level loop.
|
|
BasicBlock *BB = DTN->getBlock();
|
|
if (CurLoop->contains(BB))
|
|
Worklist.push_back(DTN);
|
|
};
|
|
|
|
AddRegionToWorklist(N);
|
|
|
|
for (size_t I = 0; I < Worklist.size(); I++) {
|
|
for (DomTreeNode *Child : Worklist[I]->children())
|
|
AddRegionToWorklist(Child);
|
|
}
|
|
|
|
return Worklist;
|
|
}
|
|
|
|
void llvm::deleteDeadLoop(Loop *L, DominatorTree *DT, ScalarEvolution *SE,
|
|
LoopInfo *LI, MemorySSA *MSSA) {
|
|
assert((!DT || L->isLCSSAForm(*DT)) && "Expected LCSSA!");
|
|
auto *Preheader = L->getLoopPreheader();
|
|
assert(Preheader && "Preheader should exist!");
|
|
|
|
std::unique_ptr<MemorySSAUpdater> MSSAU;
|
|
if (MSSA)
|
|
MSSAU = std::make_unique<MemorySSAUpdater>(MSSA);
|
|
|
|
// Now that we know the removal is safe, remove the loop by changing the
|
|
// branch from the preheader to go to the single exit block.
|
|
//
|
|
// Because we're deleting a large chunk of code at once, the sequence in which
|
|
// we remove things is very important to avoid invalidation issues.
|
|
|
|
// Tell ScalarEvolution that the loop is deleted. Do this before
|
|
// deleting the loop so that ScalarEvolution can look at the loop
|
|
// to determine what it needs to clean up.
|
|
if (SE)
|
|
SE->forgetLoop(L);
|
|
|
|
auto *OldBr = dyn_cast<BranchInst>(Preheader->getTerminator());
|
|
assert(OldBr && "Preheader must end with a branch");
|
|
assert(OldBr->isUnconditional() && "Preheader must have a single successor");
|
|
// Connect the preheader to the exit block. Keep the old edge to the header
|
|
// around to perform the dominator tree update in two separate steps
|
|
// -- #1 insertion of the edge preheader -> exit and #2 deletion of the edge
|
|
// preheader -> header.
|
|
//
|
|
//
|
|
// 0. Preheader 1. Preheader 2. Preheader
|
|
// | | | |
|
|
// V | V |
|
|
// Header <--\ | Header <--\ | Header <--\
|
|
// | | | | | | | | | | |
|
|
// | V | | | V | | | V |
|
|
// | Body --/ | | Body --/ | | Body --/
|
|
// V V V V V
|
|
// Exit Exit Exit
|
|
//
|
|
// By doing this is two separate steps we can perform the dominator tree
|
|
// update without using the batch update API.
|
|
//
|
|
// Even when the loop is never executed, we cannot remove the edge from the
|
|
// source block to the exit block. Consider the case where the unexecuted loop
|
|
// branches back to an outer loop. If we deleted the loop and removed the edge
|
|
// coming to this inner loop, this will break the outer loop structure (by
|
|
// deleting the backedge of the outer loop). If the outer loop is indeed a
|
|
// non-loop, it will be deleted in a future iteration of loop deletion pass.
|
|
IRBuilder<> Builder(OldBr);
|
|
|
|
auto *ExitBlock = L->getUniqueExitBlock();
|
|
DomTreeUpdater DTU(DT, DomTreeUpdater::UpdateStrategy::Eager);
|
|
if (ExitBlock) {
|
|
assert(ExitBlock && "Should have a unique exit block!");
|
|
assert(L->hasDedicatedExits() && "Loop should have dedicated exits!");
|
|
|
|
Builder.CreateCondBr(Builder.getFalse(), L->getHeader(), ExitBlock);
|
|
// Remove the old branch. The conditional branch becomes a new terminator.
|
|
OldBr->eraseFromParent();
|
|
|
|
// Rewrite phis in the exit block to get their inputs from the Preheader
|
|
// instead of the exiting block.
|
|
for (PHINode &P : ExitBlock->phis()) {
|
|
// Set the zero'th element of Phi to be from the preheader and remove all
|
|
// other incoming values. Given the loop has dedicated exits, all other
|
|
// incoming values must be from the exiting blocks.
|
|
int PredIndex = 0;
|
|
P.setIncomingBlock(PredIndex, Preheader);
|
|
// Removes all incoming values from all other exiting blocks (including
|
|
// duplicate values from an exiting block).
|
|
// Nuke all entries except the zero'th entry which is the preheader entry.
|
|
// NOTE! We need to remove Incoming Values in the reverse order as done
|
|
// below, to keep the indices valid for deletion (removeIncomingValues
|
|
// updates getNumIncomingValues and shifts all values down into the
|
|
// operand being deleted).
|
|
for (unsigned i = 0, e = P.getNumIncomingValues() - 1; i != e; ++i)
|
|
P.removeIncomingValue(e - i, false);
|
|
|
|
assert((P.getNumIncomingValues() == 1 &&
|
|
P.getIncomingBlock(PredIndex) == Preheader) &&
|
|
"Should have exactly one value and that's from the preheader!");
|
|
}
|
|
|
|
if (DT) {
|
|
DTU.applyUpdates({{DominatorTree::Insert, Preheader, ExitBlock}});
|
|
if (MSSA) {
|
|
MSSAU->applyUpdates({{DominatorTree::Insert, Preheader, ExitBlock}},
|
|
*DT);
|
|
if (VerifyMemorySSA)
|
|
MSSA->verifyMemorySSA();
|
|
}
|
|
}
|
|
|
|
// Disconnect the loop body by branching directly to its exit.
|
|
Builder.SetInsertPoint(Preheader->getTerminator());
|
|
Builder.CreateBr(ExitBlock);
|
|
// Remove the old branch.
|
|
Preheader->getTerminator()->eraseFromParent();
|
|
} else {
|
|
assert(L->hasNoExitBlocks() &&
|
|
"Loop should have either zero or one exit blocks.");
|
|
|
|
Builder.SetInsertPoint(OldBr);
|
|
Builder.CreateUnreachable();
|
|
Preheader->getTerminator()->eraseFromParent();
|
|
}
|
|
|
|
if (DT) {
|
|
DTU.applyUpdates({{DominatorTree::Delete, Preheader, L->getHeader()}});
|
|
if (MSSA) {
|
|
MSSAU->applyUpdates({{DominatorTree::Delete, Preheader, L->getHeader()}},
|
|
*DT);
|
|
SmallSetVector<BasicBlock *, 8> DeadBlockSet(L->block_begin(),
|
|
L->block_end());
|
|
MSSAU->removeBlocks(DeadBlockSet);
|
|
if (VerifyMemorySSA)
|
|
MSSA->verifyMemorySSA();
|
|
}
|
|
}
|
|
|
|
// Use a map to unique and a vector to guarantee deterministic ordering.
|
|
llvm::SmallDenseSet<std::pair<DIVariable *, DIExpression *>, 4> DeadDebugSet;
|
|
llvm::SmallVector<DbgVariableIntrinsic *, 4> DeadDebugInst;
|
|
|
|
if (ExitBlock) {
|
|
// Given LCSSA form is satisfied, we should not have users of instructions
|
|
// within the dead loop outside of the loop. However, LCSSA doesn't take
|
|
// unreachable uses into account. We handle them here.
|
|
// We could do it after drop all references (in this case all users in the
|
|
// loop will be already eliminated and we have less work to do but according
|
|
// to API doc of User::dropAllReferences only valid operation after dropping
|
|
// references, is deletion. So let's substitute all usages of
|
|
// instruction from the loop with undef value of corresponding type first.
|
|
for (auto *Block : L->blocks())
|
|
for (Instruction &I : *Block) {
|
|
auto *Undef = UndefValue::get(I.getType());
|
|
for (Value::use_iterator UI = I.use_begin(), E = I.use_end();
|
|
UI != E;) {
|
|
Use &U = *UI;
|
|
++UI;
|
|
if (auto *Usr = dyn_cast<Instruction>(U.getUser()))
|
|
if (L->contains(Usr->getParent()))
|
|
continue;
|
|
// If we have a DT then we can check that uses outside a loop only in
|
|
// unreachable block.
|
|
if (DT)
|
|
assert(!DT->isReachableFromEntry(U) &&
|
|
"Unexpected user in reachable block");
|
|
U.set(Undef);
|
|
}
|
|
auto *DVI = dyn_cast<DbgVariableIntrinsic>(&I);
|
|
if (!DVI)
|
|
continue;
|
|
auto Key =
|
|
DeadDebugSet.find({DVI->getVariable(), DVI->getExpression()});
|
|
if (Key != DeadDebugSet.end())
|
|
continue;
|
|
DeadDebugSet.insert({DVI->getVariable(), DVI->getExpression()});
|
|
DeadDebugInst.push_back(DVI);
|
|
}
|
|
|
|
// After the loop has been deleted all the values defined and modified
|
|
// inside the loop are going to be unavailable.
|
|
// Since debug values in the loop have been deleted, inserting an undef
|
|
// dbg.value truncates the range of any dbg.value before the loop where the
|
|
// loop used to be. This is particularly important for constant values.
|
|
DIBuilder DIB(*ExitBlock->getModule());
|
|
Instruction *InsertDbgValueBefore = ExitBlock->getFirstNonPHI();
|
|
assert(InsertDbgValueBefore &&
|
|
"There should be a non-PHI instruction in exit block, else these "
|
|
"instructions will have no parent.");
|
|
for (auto *DVI : DeadDebugInst)
|
|
DIB.insertDbgValueIntrinsic(UndefValue::get(Builder.getInt32Ty()),
|
|
DVI->getVariable(), DVI->getExpression(),
|
|
DVI->getDebugLoc(), InsertDbgValueBefore);
|
|
}
|
|
|
|
// Remove the block from the reference counting scheme, so that we can
|
|
// delete it freely later.
|
|
for (auto *Block : L->blocks())
|
|
Block->dropAllReferences();
|
|
|
|
if (MSSA && VerifyMemorySSA)
|
|
MSSA->verifyMemorySSA();
|
|
|
|
if (LI) {
|
|
// Erase the instructions and the blocks without having to worry
|
|
// about ordering because we already dropped the references.
|
|
// NOTE: This iteration is safe because erasing the block does not remove
|
|
// its entry from the loop's block list. We do that in the next section.
|
|
for (Loop::block_iterator LpI = L->block_begin(), LpE = L->block_end();
|
|
LpI != LpE; ++LpI)
|
|
(*LpI)->eraseFromParent();
|
|
|
|
// Finally, the blocks from loopinfo. This has to happen late because
|
|
// otherwise our loop iterators won't work.
|
|
|
|
SmallPtrSet<BasicBlock *, 8> blocks;
|
|
blocks.insert(L->block_begin(), L->block_end());
|
|
for (BasicBlock *BB : blocks)
|
|
LI->removeBlock(BB);
|
|
|
|
// The last step is to update LoopInfo now that we've eliminated this loop.
|
|
// Note: LoopInfo::erase remove the given loop and relink its subloops with
|
|
// its parent. While removeLoop/removeChildLoop remove the given loop but
|
|
// not relink its subloops, which is what we want.
|
|
if (Loop *ParentLoop = L->getParentLoop()) {
|
|
Loop::iterator I = find(*ParentLoop, L);
|
|
assert(I != ParentLoop->end() && "Couldn't find loop");
|
|
ParentLoop->removeChildLoop(I);
|
|
} else {
|
|
Loop::iterator I = find(*LI, L);
|
|
assert(I != LI->end() && "Couldn't find loop");
|
|
LI->removeLoop(I);
|
|
}
|
|
LI->destroy(L);
|
|
}
|
|
}
|
|
|
|
static Loop *getOutermostLoop(Loop *L) {
|
|
while (Loop *Parent = L->getParentLoop())
|
|
L = Parent;
|
|
return L;
|
|
}
|
|
|
|
void llvm::breakLoopBackedge(Loop *L, DominatorTree &DT, ScalarEvolution &SE,
|
|
LoopInfo &LI, MemorySSA *MSSA) {
|
|
auto *Latch = L->getLoopLatch();
|
|
assert(Latch && "multiple latches not yet supported");
|
|
auto *Header = L->getHeader();
|
|
Loop *OutermostLoop = getOutermostLoop(L);
|
|
|
|
SE.forgetLoop(L);
|
|
|
|
// Note: By splitting the backedge, and then explicitly making it unreachable
|
|
// we gracefully handle corner cases such as non-bottom tested loops and the
|
|
// like. We also have the benefit of being able to reuse existing well tested
|
|
// code. It might be worth special casing the common bottom tested case at
|
|
// some point to avoid code churn.
|
|
|
|
std::unique_ptr<MemorySSAUpdater> MSSAU;
|
|
if (MSSA)
|
|
MSSAU = std::make_unique<MemorySSAUpdater>(MSSA);
|
|
|
|
auto *BackedgeBB = SplitEdge(Latch, Header, &DT, &LI, MSSAU.get());
|
|
|
|
DomTreeUpdater DTU(&DT, DomTreeUpdater::UpdateStrategy::Eager);
|
|
(void)changeToUnreachable(BackedgeBB->getTerminator(),
|
|
/*PreserveLCSSA*/ true, &DTU, MSSAU.get());
|
|
|
|
// Erase (and destroy) this loop instance. Handles relinking sub-loops
|
|
// and blocks within the loop as needed.
|
|
LI.erase(L);
|
|
|
|
// If the loop we broke had a parent, then changeToUnreachable might have
|
|
// caused a block to be removed from the parent loop (see loop_nest_lcssa
|
|
// test case in zero-btc.ll for an example), thus changing the parent's
|
|
// exit blocks. If that happened, we need to rebuild LCSSA on the outermost
|
|
// loop which might have a had a block removed.
|
|
if (OutermostLoop != L)
|
|
formLCSSARecursively(*OutermostLoop, DT, &LI, &SE);
|
|
}
|
|
|
|
|
|
/// Checks if \p L has single exit through latch block except possibly
|
|
/// "deoptimizing" exits. Returns branch instruction terminating the loop
|
|
/// latch if above check is successful, nullptr otherwise.
|
|
static BranchInst *getExpectedExitLoopLatchBranch(Loop *L) {
|
|
BasicBlock *Latch = L->getLoopLatch();
|
|
if (!Latch)
|
|
return nullptr;
|
|
|
|
BranchInst *LatchBR = dyn_cast<BranchInst>(Latch->getTerminator());
|
|
if (!LatchBR || LatchBR->getNumSuccessors() != 2 || !L->isLoopExiting(Latch))
|
|
return nullptr;
|
|
|
|
assert((LatchBR->getSuccessor(0) == L->getHeader() ||
|
|
LatchBR->getSuccessor(1) == L->getHeader()) &&
|
|
"At least one edge out of the latch must go to the header");
|
|
|
|
SmallVector<BasicBlock *, 4> ExitBlocks;
|
|
L->getUniqueNonLatchExitBlocks(ExitBlocks);
|
|
if (any_of(ExitBlocks, [](const BasicBlock *EB) {
|
|
return !EB->getTerminatingDeoptimizeCall();
|
|
}))
|
|
return nullptr;
|
|
|
|
return LatchBR;
|
|
}
|
|
|
|
Optional<unsigned>
|
|
llvm::getLoopEstimatedTripCount(Loop *L,
|
|
unsigned *EstimatedLoopInvocationWeight) {
|
|
// Support loops with an exiting latch and other existing exists only
|
|
// deoptimize.
|
|
BranchInst *LatchBranch = getExpectedExitLoopLatchBranch(L);
|
|
if (!LatchBranch)
|
|
return None;
|
|
|
|
// To estimate the number of times the loop body was executed, we want to
|
|
// know the number of times the backedge was taken, vs. the number of times
|
|
// we exited the loop.
|
|
uint64_t BackedgeTakenWeight, LatchExitWeight;
|
|
if (!LatchBranch->extractProfMetadata(BackedgeTakenWeight, LatchExitWeight))
|
|
return None;
|
|
|
|
if (LatchBranch->getSuccessor(0) != L->getHeader())
|
|
std::swap(BackedgeTakenWeight, LatchExitWeight);
|
|
|
|
if (!LatchExitWeight)
|
|
return None;
|
|
|
|
if (EstimatedLoopInvocationWeight)
|
|
*EstimatedLoopInvocationWeight = LatchExitWeight;
|
|
|
|
// Estimated backedge taken count is a ratio of the backedge taken weight by
|
|
// the weight of the edge exiting the loop, rounded to nearest.
|
|
uint64_t BackedgeTakenCount =
|
|
llvm::divideNearest(BackedgeTakenWeight, LatchExitWeight);
|
|
// Estimated trip count is one plus estimated backedge taken count.
|
|
return BackedgeTakenCount + 1;
|
|
}
|
|
|
|
bool llvm::setLoopEstimatedTripCount(Loop *L, unsigned EstimatedTripCount,
|
|
unsigned EstimatedloopInvocationWeight) {
|
|
// Support loops with an exiting latch and other existing exists only
|
|
// deoptimize.
|
|
BranchInst *LatchBranch = getExpectedExitLoopLatchBranch(L);
|
|
if (!LatchBranch)
|
|
return false;
|
|
|
|
// Calculate taken and exit weights.
|
|
unsigned LatchExitWeight = 0;
|
|
unsigned BackedgeTakenWeight = 0;
|
|
|
|
if (EstimatedTripCount > 0) {
|
|
LatchExitWeight = EstimatedloopInvocationWeight;
|
|
BackedgeTakenWeight = (EstimatedTripCount - 1) * LatchExitWeight;
|
|
}
|
|
|
|
// Make a swap if back edge is taken when condition is "false".
|
|
if (LatchBranch->getSuccessor(0) != L->getHeader())
|
|
std::swap(BackedgeTakenWeight, LatchExitWeight);
|
|
|
|
MDBuilder MDB(LatchBranch->getContext());
|
|
|
|
// Set/Update profile metadata.
|
|
LatchBranch->setMetadata(
|
|
LLVMContext::MD_prof,
|
|
MDB.createBranchWeights(BackedgeTakenWeight, LatchExitWeight));
|
|
|
|
return true;
|
|
}
|
|
|
|
bool llvm::hasIterationCountInvariantInParent(Loop *InnerLoop,
|
|
ScalarEvolution &SE) {
|
|
Loop *OuterL = InnerLoop->getParentLoop();
|
|
if (!OuterL)
|
|
return true;
|
|
|
|
// Get the backedge taken count for the inner loop
|
|
BasicBlock *InnerLoopLatch = InnerLoop->getLoopLatch();
|
|
const SCEV *InnerLoopBECountSC = SE.getExitCount(InnerLoop, InnerLoopLatch);
|
|
if (isa<SCEVCouldNotCompute>(InnerLoopBECountSC) ||
|
|
!InnerLoopBECountSC->getType()->isIntegerTy())
|
|
return false;
|
|
|
|
// Get whether count is invariant to the outer loop
|
|
ScalarEvolution::LoopDisposition LD =
|
|
SE.getLoopDisposition(InnerLoopBECountSC, OuterL);
|
|
if (LD != ScalarEvolution::LoopInvariant)
|
|
return false;
|
|
|
|
return true;
|
|
}
|
|
|
|
Value *llvm::createMinMaxOp(IRBuilderBase &Builder, RecurKind RK, Value *Left,
|
|
Value *Right) {
|
|
CmpInst::Predicate Pred;
|
|
switch (RK) {
|
|
default:
|
|
llvm_unreachable("Unknown min/max recurrence kind");
|
|
case RecurKind::UMin:
|
|
Pred = CmpInst::ICMP_ULT;
|
|
break;
|
|
case RecurKind::UMax:
|
|
Pred = CmpInst::ICMP_UGT;
|
|
break;
|
|
case RecurKind::SMin:
|
|
Pred = CmpInst::ICMP_SLT;
|
|
break;
|
|
case RecurKind::SMax:
|
|
Pred = CmpInst::ICMP_SGT;
|
|
break;
|
|
case RecurKind::FMin:
|
|
Pred = CmpInst::FCMP_OLT;
|
|
break;
|
|
case RecurKind::FMax:
|
|
Pred = CmpInst::FCMP_OGT;
|
|
break;
|
|
}
|
|
|
|
Value *Cmp = Builder.CreateCmp(Pred, Left, Right, "rdx.minmax.cmp");
|
|
Value *Select = Builder.CreateSelect(Cmp, Left, Right, "rdx.minmax.select");
|
|
return Select;
|
|
}
|
|
|
|
// Helper to generate an ordered reduction.
|
|
Value *llvm::getOrderedReduction(IRBuilderBase &Builder, Value *Acc, Value *Src,
|
|
unsigned Op, RecurKind RdxKind,
|
|
ArrayRef<Value *> RedOps) {
|
|
unsigned VF = cast<FixedVectorType>(Src->getType())->getNumElements();
|
|
|
|
// Extract and apply reduction ops in ascending order:
|
|
// e.g. ((((Acc + Scl[0]) + Scl[1]) + Scl[2]) + ) ... + Scl[VF-1]
|
|
Value *Result = Acc;
|
|
for (unsigned ExtractIdx = 0; ExtractIdx != VF; ++ExtractIdx) {
|
|
Value *Ext =
|
|
Builder.CreateExtractElement(Src, Builder.getInt32(ExtractIdx));
|
|
|
|
if (Op != Instruction::ICmp && Op != Instruction::FCmp) {
|
|
Result = Builder.CreateBinOp((Instruction::BinaryOps)Op, Result, Ext,
|
|
"bin.rdx");
|
|
} else {
|
|
assert(RecurrenceDescriptor::isMinMaxRecurrenceKind(RdxKind) &&
|
|
"Invalid min/max");
|
|
Result = createMinMaxOp(Builder, RdxKind, Result, Ext);
|
|
}
|
|
|
|
if (!RedOps.empty())
|
|
propagateIRFlags(Result, RedOps);
|
|
}
|
|
|
|
return Result;
|
|
}
|
|
|
|
// Helper to generate a log2 shuffle reduction.
|
|
Value *llvm::getShuffleReduction(IRBuilderBase &Builder, Value *Src,
|
|
unsigned Op, RecurKind RdxKind,
|
|
ArrayRef<Value *> RedOps) {
|
|
unsigned VF = cast<FixedVectorType>(Src->getType())->getNumElements();
|
|
// VF is a power of 2 so we can emit the reduction using log2(VF) shuffles
|
|
// and vector ops, reducing the set of values being computed by half each
|
|
// round.
|
|
assert(isPowerOf2_32(VF) &&
|
|
"Reduction emission only supported for pow2 vectors!");
|
|
Value *TmpVec = Src;
|
|
SmallVector<int, 32> ShuffleMask(VF);
|
|
for (unsigned i = VF; i != 1; i >>= 1) {
|
|
// Move the upper half of the vector to the lower half.
|
|
for (unsigned j = 0; j != i / 2; ++j)
|
|
ShuffleMask[j] = i / 2 + j;
|
|
|
|
// Fill the rest of the mask with undef.
|
|
std::fill(&ShuffleMask[i / 2], ShuffleMask.end(), -1);
|
|
|
|
Value *Shuf = Builder.CreateShuffleVector(TmpVec, ShuffleMask, "rdx.shuf");
|
|
|
|
if (Op != Instruction::ICmp && Op != Instruction::FCmp) {
|
|
// The builder propagates its fast-math-flags setting.
|
|
TmpVec = Builder.CreateBinOp((Instruction::BinaryOps)Op, TmpVec, Shuf,
|
|
"bin.rdx");
|
|
} else {
|
|
assert(RecurrenceDescriptor::isMinMaxRecurrenceKind(RdxKind) &&
|
|
"Invalid min/max");
|
|
TmpVec = createMinMaxOp(Builder, RdxKind, TmpVec, Shuf);
|
|
}
|
|
if (!RedOps.empty())
|
|
propagateIRFlags(TmpVec, RedOps);
|
|
|
|
// We may compute the reassociated scalar ops in a way that does not
|
|
// preserve nsw/nuw etc. Conservatively, drop those flags.
|
|
if (auto *ReductionInst = dyn_cast<Instruction>(TmpVec))
|
|
ReductionInst->dropPoisonGeneratingFlags();
|
|
}
|
|
// The result is in the first element of the vector.
|
|
return Builder.CreateExtractElement(TmpVec, Builder.getInt32(0));
|
|
}
|
|
|
|
Value *llvm::createSimpleTargetReduction(IRBuilderBase &Builder,
|
|
const TargetTransformInfo *TTI,
|
|
Value *Src, RecurKind RdxKind,
|
|
ArrayRef<Value *> RedOps) {
|
|
TargetTransformInfo::ReductionFlags RdxFlags;
|
|
RdxFlags.IsMaxOp = RdxKind == RecurKind::SMax || RdxKind == RecurKind::UMax ||
|
|
RdxKind == RecurKind::FMax;
|
|
RdxFlags.IsSigned = RdxKind == RecurKind::SMax || RdxKind == RecurKind::SMin;
|
|
|
|
auto *SrcVecEltTy = cast<VectorType>(Src->getType())->getElementType();
|
|
switch (RdxKind) {
|
|
case RecurKind::Add:
|
|
return Builder.CreateAddReduce(Src);
|
|
case RecurKind::Mul:
|
|
return Builder.CreateMulReduce(Src);
|
|
case RecurKind::And:
|
|
return Builder.CreateAndReduce(Src);
|
|
case RecurKind::Or:
|
|
return Builder.CreateOrReduce(Src);
|
|
case RecurKind::Xor:
|
|
return Builder.CreateXorReduce(Src);
|
|
case RecurKind::FAdd:
|
|
return Builder.CreateFAddReduce(ConstantFP::getNegativeZero(SrcVecEltTy),
|
|
Src);
|
|
case RecurKind::FMul:
|
|
return Builder.CreateFMulReduce(ConstantFP::get(SrcVecEltTy, 1.0), Src);
|
|
case RecurKind::SMax:
|
|
return Builder.CreateIntMaxReduce(Src, true);
|
|
case RecurKind::SMin:
|
|
return Builder.CreateIntMinReduce(Src, true);
|
|
case RecurKind::UMax:
|
|
return Builder.CreateIntMaxReduce(Src, false);
|
|
case RecurKind::UMin:
|
|
return Builder.CreateIntMinReduce(Src, false);
|
|
case RecurKind::FMax:
|
|
return Builder.CreateFPMaxReduce(Src);
|
|
case RecurKind::FMin:
|
|
return Builder.CreateFPMinReduce(Src);
|
|
default:
|
|
llvm_unreachable("Unhandled opcode");
|
|
}
|
|
}
|
|
|
|
Value *llvm::createTargetReduction(IRBuilderBase &B,
|
|
const TargetTransformInfo *TTI,
|
|
const RecurrenceDescriptor &Desc,
|
|
Value *Src) {
|
|
// TODO: Support in-order reductions based on the recurrence descriptor.
|
|
// All ops in the reduction inherit fast-math-flags from the recurrence
|
|
// descriptor.
|
|
IRBuilderBase::FastMathFlagGuard FMFGuard(B);
|
|
B.setFastMathFlags(Desc.getFastMathFlags());
|
|
return createSimpleTargetReduction(B, TTI, Src, Desc.getRecurrenceKind());
|
|
}
|
|
|
|
Value *llvm::createOrderedReduction(IRBuilderBase &B,
|
|
const RecurrenceDescriptor &Desc,
|
|
Value *Src, Value *Start) {
|
|
assert(Desc.getRecurrenceKind() == RecurKind::FAdd &&
|
|
"Unexpected reduction kind");
|
|
assert(Src->getType()->isVectorTy() && "Expected a vector type");
|
|
assert(!Start->getType()->isVectorTy() && "Expected a scalar type");
|
|
|
|
return B.CreateFAddReduce(Start, Src);
|
|
}
|
|
|
|
void llvm::propagateIRFlags(Value *I, ArrayRef<Value *> VL, Value *OpValue) {
|
|
auto *VecOp = dyn_cast<Instruction>(I);
|
|
if (!VecOp)
|
|
return;
|
|
auto *Intersection = (OpValue == nullptr) ? dyn_cast<Instruction>(VL[0])
|
|
: dyn_cast<Instruction>(OpValue);
|
|
if (!Intersection)
|
|
return;
|
|
const unsigned Opcode = Intersection->getOpcode();
|
|
VecOp->copyIRFlags(Intersection);
|
|
for (auto *V : VL) {
|
|
auto *Instr = dyn_cast<Instruction>(V);
|
|
if (!Instr)
|
|
continue;
|
|
if (OpValue == nullptr || Opcode == Instr->getOpcode())
|
|
VecOp->andIRFlags(V);
|
|
}
|
|
}
|
|
|
|
bool llvm::isKnownNegativeInLoop(const SCEV *S, const Loop *L,
|
|
ScalarEvolution &SE) {
|
|
const SCEV *Zero = SE.getZero(S->getType());
|
|
return SE.isAvailableAtLoopEntry(S, L) &&
|
|
SE.isLoopEntryGuardedByCond(L, ICmpInst::ICMP_SLT, S, Zero);
|
|
}
|
|
|
|
bool llvm::isKnownNonNegativeInLoop(const SCEV *S, const Loop *L,
|
|
ScalarEvolution &SE) {
|
|
const SCEV *Zero = SE.getZero(S->getType());
|
|
return SE.isAvailableAtLoopEntry(S, L) &&
|
|
SE.isLoopEntryGuardedByCond(L, ICmpInst::ICMP_SGE, S, Zero);
|
|
}
|
|
|
|
bool llvm::cannotBeMinInLoop(const SCEV *S, const Loop *L, ScalarEvolution &SE,
|
|
bool Signed) {
|
|
unsigned BitWidth = cast<IntegerType>(S->getType())->getBitWidth();
|
|
APInt Min = Signed ? APInt::getSignedMinValue(BitWidth) :
|
|
APInt::getMinValue(BitWidth);
|
|
auto Predicate = Signed ? ICmpInst::ICMP_SGT : ICmpInst::ICMP_UGT;
|
|
return SE.isAvailableAtLoopEntry(S, L) &&
|
|
SE.isLoopEntryGuardedByCond(L, Predicate, S,
|
|
SE.getConstant(Min));
|
|
}
|
|
|
|
bool llvm::cannotBeMaxInLoop(const SCEV *S, const Loop *L, ScalarEvolution &SE,
|
|
bool Signed) {
|
|
unsigned BitWidth = cast<IntegerType>(S->getType())->getBitWidth();
|
|
APInt Max = Signed ? APInt::getSignedMaxValue(BitWidth) :
|
|
APInt::getMaxValue(BitWidth);
|
|
auto Predicate = Signed ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT;
|
|
return SE.isAvailableAtLoopEntry(S, L) &&
|
|
SE.isLoopEntryGuardedByCond(L, Predicate, S,
|
|
SE.getConstant(Max));
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// rewriteLoopExitValues - Optimize IV users outside the loop.
|
|
// As a side effect, reduces the amount of IV processing within the loop.
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
// Return true if the SCEV expansion generated by the rewriter can replace the
|
|
// original value. SCEV guarantees that it produces the same value, but the way
|
|
// it is produced may be illegal IR. Ideally, this function will only be
|
|
// called for verification.
|
|
static bool isValidRewrite(ScalarEvolution *SE, Value *FromVal, Value *ToVal) {
|
|
// If an SCEV expression subsumed multiple pointers, its expansion could
|
|
// reassociate the GEP changing the base pointer. This is illegal because the
|
|
// final address produced by a GEP chain must be inbounds relative to its
|
|
// underlying object. Otherwise basic alias analysis, among other things,
|
|
// could fail in a dangerous way. Ultimately, SCEV will be improved to avoid
|
|
// producing an expression involving multiple pointers. Until then, we must
|
|
// bail out here.
|
|
//
|
|
// Retrieve the pointer operand of the GEP. Don't use getUnderlyingObject
|
|
// because it understands lcssa phis while SCEV does not.
|
|
Value *FromPtr = FromVal;
|
|
Value *ToPtr = ToVal;
|
|
if (auto *GEP = dyn_cast<GEPOperator>(FromVal))
|
|
FromPtr = GEP->getPointerOperand();
|
|
|
|
if (auto *GEP = dyn_cast<GEPOperator>(ToVal))
|
|
ToPtr = GEP->getPointerOperand();
|
|
|
|
if (FromPtr != FromVal || ToPtr != ToVal) {
|
|
// Quickly check the common case
|
|
if (FromPtr == ToPtr)
|
|
return true;
|
|
|
|
// SCEV may have rewritten an expression that produces the GEP's pointer
|
|
// operand. That's ok as long as the pointer operand has the same base
|
|
// pointer. Unlike getUnderlyingObject(), getPointerBase() will find the
|
|
// base of a recurrence. This handles the case in which SCEV expansion
|
|
// converts a pointer type recurrence into a nonrecurrent pointer base
|
|
// indexed by an integer recurrence.
|
|
|
|
// If the GEP base pointer is a vector of pointers, abort.
|
|
if (!FromPtr->getType()->isPointerTy() || !ToPtr->getType()->isPointerTy())
|
|
return false;
|
|
|
|
const SCEV *FromBase = SE->getPointerBase(SE->getSCEV(FromPtr));
|
|
const SCEV *ToBase = SE->getPointerBase(SE->getSCEV(ToPtr));
|
|
if (FromBase == ToBase)
|
|
return true;
|
|
|
|
LLVM_DEBUG(dbgs() << "rewriteLoopExitValues: GEP rewrite bail out "
|
|
<< *FromBase << " != " << *ToBase << "\n");
|
|
|
|
return false;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
static bool hasHardUserWithinLoop(const Loop *L, const Instruction *I) {
|
|
SmallPtrSet<const Instruction *, 8> Visited;
|
|
SmallVector<const Instruction *, 8> WorkList;
|
|
Visited.insert(I);
|
|
WorkList.push_back(I);
|
|
while (!WorkList.empty()) {
|
|
const Instruction *Curr = WorkList.pop_back_val();
|
|
// This use is outside the loop, nothing to do.
|
|
if (!L->contains(Curr))
|
|
continue;
|
|
// Do we assume it is a "hard" use which will not be eliminated easily?
|
|
if (Curr->mayHaveSideEffects())
|
|
return true;
|
|
// Otherwise, add all its users to worklist.
|
|
for (auto U : Curr->users()) {
|
|
auto *UI = cast<Instruction>(U);
|
|
if (Visited.insert(UI).second)
|
|
WorkList.push_back(UI);
|
|
}
|
|
}
|
|
return false;
|
|
}
|
|
|
|
// Collect information about PHI nodes which can be transformed in
|
|
// rewriteLoopExitValues.
|
|
struct RewritePhi {
|
|
PHINode *PN; // For which PHI node is this replacement?
|
|
unsigned Ith; // For which incoming value?
|
|
const SCEV *ExpansionSCEV; // The SCEV of the incoming value we are rewriting.
|
|
Instruction *ExpansionPoint; // Where we'd like to expand that SCEV?
|
|
bool HighCost; // Is this expansion a high-cost?
|
|
|
|
Value *Expansion = nullptr;
|
|
bool ValidRewrite = false;
|
|
|
|
RewritePhi(PHINode *P, unsigned I, const SCEV *Val, Instruction *ExpansionPt,
|
|
bool H)
|
|
: PN(P), Ith(I), ExpansionSCEV(Val), ExpansionPoint(ExpansionPt),
|
|
HighCost(H) {}
|
|
};
|
|
|
|
// Check whether it is possible to delete the loop after rewriting exit
|
|
// value. If it is possible, ignore ReplaceExitValue and do rewriting
|
|
// aggressively.
|
|
static bool canLoopBeDeleted(Loop *L, SmallVector<RewritePhi, 8> &RewritePhiSet) {
|
|
BasicBlock *Preheader = L->getLoopPreheader();
|
|
// If there is no preheader, the loop will not be deleted.
|
|
if (!Preheader)
|
|
return false;
|
|
|
|
// In LoopDeletion pass Loop can be deleted when ExitingBlocks.size() > 1.
|
|
// We obviate multiple ExitingBlocks case for simplicity.
|
|
// TODO: If we see testcase with multiple ExitingBlocks can be deleted
|
|
// after exit value rewriting, we can enhance the logic here.
|
|
SmallVector<BasicBlock *, 4> ExitingBlocks;
|
|
L->getExitingBlocks(ExitingBlocks);
|
|
SmallVector<BasicBlock *, 8> ExitBlocks;
|
|
L->getUniqueExitBlocks(ExitBlocks);
|
|
if (ExitBlocks.size() != 1 || ExitingBlocks.size() != 1)
|
|
return false;
|
|
|
|
BasicBlock *ExitBlock = ExitBlocks[0];
|
|
BasicBlock::iterator BI = ExitBlock->begin();
|
|
while (PHINode *P = dyn_cast<PHINode>(BI)) {
|
|
Value *Incoming = P->getIncomingValueForBlock(ExitingBlocks[0]);
|
|
|
|
// If the Incoming value of P is found in RewritePhiSet, we know it
|
|
// could be rewritten to use a loop invariant value in transformation
|
|
// phase later. Skip it in the loop invariant check below.
|
|
bool found = false;
|
|
for (const RewritePhi &Phi : RewritePhiSet) {
|
|
if (!Phi.ValidRewrite)
|
|
continue;
|
|
unsigned i = Phi.Ith;
|
|
if (Phi.PN == P && (Phi.PN)->getIncomingValue(i) == Incoming) {
|
|
found = true;
|
|
break;
|
|
}
|
|
}
|
|
|
|
Instruction *I;
|
|
if (!found && (I = dyn_cast<Instruction>(Incoming)))
|
|
if (!L->hasLoopInvariantOperands(I))
|
|
return false;
|
|
|
|
++BI;
|
|
}
|
|
|
|
for (auto *BB : L->blocks())
|
|
if (llvm::any_of(*BB, [](Instruction &I) {
|
|
return I.mayHaveSideEffects();
|
|
}))
|
|
return false;
|
|
|
|
return true;
|
|
}
|
|
|
|
int llvm::rewriteLoopExitValues(Loop *L, LoopInfo *LI, TargetLibraryInfo *TLI,
|
|
ScalarEvolution *SE,
|
|
const TargetTransformInfo *TTI,
|
|
SCEVExpander &Rewriter, DominatorTree *DT,
|
|
ReplaceExitVal ReplaceExitValue,
|
|
SmallVector<WeakTrackingVH, 16> &DeadInsts) {
|
|
// Check a pre-condition.
|
|
assert(L->isRecursivelyLCSSAForm(*DT, *LI) &&
|
|
"Indvars did not preserve LCSSA!");
|
|
|
|
SmallVector<BasicBlock*, 8> ExitBlocks;
|
|
L->getUniqueExitBlocks(ExitBlocks);
|
|
|
|
SmallVector<RewritePhi, 8> RewritePhiSet;
|
|
// Find all values that are computed inside the loop, but used outside of it.
|
|
// Because of LCSSA, these values will only occur in LCSSA PHI Nodes. Scan
|
|
// the exit blocks of the loop to find them.
|
|
for (BasicBlock *ExitBB : ExitBlocks) {
|
|
// If there are no PHI nodes in this exit block, then no values defined
|
|
// inside the loop are used on this path, skip it.
|
|
PHINode *PN = dyn_cast<PHINode>(ExitBB->begin());
|
|
if (!PN) continue;
|
|
|
|
unsigned NumPreds = PN->getNumIncomingValues();
|
|
|
|
// Iterate over all of the PHI nodes.
|
|
BasicBlock::iterator BBI = ExitBB->begin();
|
|
while ((PN = dyn_cast<PHINode>(BBI++))) {
|
|
if (PN->use_empty())
|
|
continue; // dead use, don't replace it
|
|
|
|
if (!SE->isSCEVable(PN->getType()))
|
|
continue;
|
|
|
|
// It's necessary to tell ScalarEvolution about this explicitly so that
|
|
// it can walk the def-use list and forget all SCEVs, as it may not be
|
|
// watching the PHI itself. Once the new exit value is in place, there
|
|
// may not be a def-use connection between the loop and every instruction
|
|
// which got a SCEVAddRecExpr for that loop.
|
|
SE->forgetValue(PN);
|
|
|
|
// Iterate over all of the values in all the PHI nodes.
|
|
for (unsigned i = 0; i != NumPreds; ++i) {
|
|
// If the value being merged in is not integer or is not defined
|
|
// in the loop, skip it.
|
|
Value *InVal = PN->getIncomingValue(i);
|
|
if (!isa<Instruction>(InVal))
|
|
continue;
|
|
|
|
// If this pred is for a subloop, not L itself, skip it.
|
|
if (LI->getLoopFor(PN->getIncomingBlock(i)) != L)
|
|
continue; // The Block is in a subloop, skip it.
|
|
|
|
// Check that InVal is defined in the loop.
|
|
Instruction *Inst = cast<Instruction>(InVal);
|
|
if (!L->contains(Inst))
|
|
continue;
|
|
|
|
// Okay, this instruction has a user outside of the current loop
|
|
// and varies predictably *inside* the loop. Evaluate the value it
|
|
// contains when the loop exits, if possible. We prefer to start with
|
|
// expressions which are true for all exits (so as to maximize
|
|
// expression reuse by the SCEVExpander), but resort to per-exit
|
|
// evaluation if that fails.
|
|
const SCEV *ExitValue = SE->getSCEVAtScope(Inst, L->getParentLoop());
|
|
if (isa<SCEVCouldNotCompute>(ExitValue) ||
|
|
!SE->isLoopInvariant(ExitValue, L) ||
|
|
!isSafeToExpand(ExitValue, *SE)) {
|
|
// TODO: This should probably be sunk into SCEV in some way; maybe a
|
|
// getSCEVForExit(SCEV*, L, ExitingBB)? It can be generalized for
|
|
// most SCEV expressions and other recurrence types (e.g. shift
|
|
// recurrences). Is there existing code we can reuse?
|
|
const SCEV *ExitCount = SE->getExitCount(L, PN->getIncomingBlock(i));
|
|
if (isa<SCEVCouldNotCompute>(ExitCount))
|
|
continue;
|
|
if (auto *AddRec = dyn_cast<SCEVAddRecExpr>(SE->getSCEV(Inst)))
|
|
if (AddRec->getLoop() == L)
|
|
ExitValue = AddRec->evaluateAtIteration(ExitCount, *SE);
|
|
if (isa<SCEVCouldNotCompute>(ExitValue) ||
|
|
!SE->isLoopInvariant(ExitValue, L) ||
|
|
!isSafeToExpand(ExitValue, *SE))
|
|
continue;
|
|
}
|
|
|
|
// Computing the value outside of the loop brings no benefit if it is
|
|
// definitely used inside the loop in a way which can not be optimized
|
|
// away. Avoid doing so unless we know we have a value which computes
|
|
// the ExitValue already. TODO: This should be merged into SCEV
|
|
// expander to leverage its knowledge of existing expressions.
|
|
if (ReplaceExitValue != AlwaysRepl && !isa<SCEVConstant>(ExitValue) &&
|
|
!isa<SCEVUnknown>(ExitValue) && hasHardUserWithinLoop(L, Inst))
|
|
continue;
|
|
|
|
// Check if expansions of this SCEV would count as being high cost.
|
|
bool HighCost = Rewriter.isHighCostExpansion(
|
|
ExitValue, L, SCEVCheapExpansionBudget, TTI, Inst);
|
|
|
|
// Note that we must not perform expansions until after
|
|
// we query *all* the costs, because if we perform temporary expansion
|
|
// inbetween, one that we might not intend to keep, said expansion
|
|
// *may* affect cost calculation of the the next SCEV's we'll query,
|
|
// and next SCEV may errneously get smaller cost.
|
|
|
|
// Collect all the candidate PHINodes to be rewritten.
|
|
RewritePhiSet.emplace_back(PN, i, ExitValue, Inst, HighCost);
|
|
}
|
|
}
|
|
}
|
|
|
|
// Now that we've done preliminary filtering and billed all the SCEV's,
|
|
// we can perform the last sanity check - the expansion must be valid.
|
|
for (RewritePhi &Phi : RewritePhiSet) {
|
|
Phi.Expansion = Rewriter.expandCodeFor(Phi.ExpansionSCEV, Phi.PN->getType(),
|
|
Phi.ExpansionPoint);
|
|
|
|
LLVM_DEBUG(dbgs() << "rewriteLoopExitValues: AfterLoopVal = "
|
|
<< *(Phi.Expansion) << '\n'
|
|
<< " LoopVal = " << *(Phi.ExpansionPoint) << "\n");
|
|
|
|
// FIXME: isValidRewrite() is a hack. it should be an assert, eventually.
|
|
Phi.ValidRewrite = isValidRewrite(SE, Phi.ExpansionPoint, Phi.Expansion);
|
|
if (!Phi.ValidRewrite) {
|
|
DeadInsts.push_back(Phi.Expansion);
|
|
continue;
|
|
}
|
|
|
|
#ifndef NDEBUG
|
|
// If we reuse an instruction from a loop which is neither L nor one of
|
|
// its containing loops, we end up breaking LCSSA form for this loop by
|
|
// creating a new use of its instruction.
|
|
if (auto *ExitInsn = dyn_cast<Instruction>(Phi.Expansion))
|
|
if (auto *EVL = LI->getLoopFor(ExitInsn->getParent()))
|
|
if (EVL != L)
|
|
assert(EVL->contains(L) && "LCSSA breach detected!");
|
|
#endif
|
|
}
|
|
|
|
// TODO: after isValidRewrite() is an assertion, evaluate whether
|
|
// it is beneficial to change how we calculate high-cost:
|
|
// if we have SCEV 'A' which we know we will expand, should we calculate
|
|
// the cost of other SCEV's after expanding SCEV 'A',
|
|
// thus potentially giving cost bonus to those other SCEV's?
|
|
|
|
bool LoopCanBeDel = canLoopBeDeleted(L, RewritePhiSet);
|
|
int NumReplaced = 0;
|
|
|
|
// Transformation.
|
|
for (const RewritePhi &Phi : RewritePhiSet) {
|
|
if (!Phi.ValidRewrite)
|
|
continue;
|
|
|
|
PHINode *PN = Phi.PN;
|
|
Value *ExitVal = Phi.Expansion;
|
|
|
|
// Only do the rewrite when the ExitValue can be expanded cheaply.
|
|
// If LoopCanBeDel is true, rewrite exit value aggressively.
|
|
if (ReplaceExitValue == OnlyCheapRepl && !LoopCanBeDel && Phi.HighCost) {
|
|
DeadInsts.push_back(ExitVal);
|
|
continue;
|
|
}
|
|
|
|
NumReplaced++;
|
|
Instruction *Inst = cast<Instruction>(PN->getIncomingValue(Phi.Ith));
|
|
PN->setIncomingValue(Phi.Ith, ExitVal);
|
|
|
|
// If this instruction is dead now, delete it. Don't do it now to avoid
|
|
// invalidating iterators.
|
|
if (isInstructionTriviallyDead(Inst, TLI))
|
|
DeadInsts.push_back(Inst);
|
|
|
|
// Replace PN with ExitVal if that is legal and does not break LCSSA.
|
|
if (PN->getNumIncomingValues() == 1 &&
|
|
LI->replacementPreservesLCSSAForm(PN, ExitVal)) {
|
|
PN->replaceAllUsesWith(ExitVal);
|
|
PN->eraseFromParent();
|
|
}
|
|
}
|
|
|
|
// The insertion point instruction may have been deleted; clear it out
|
|
// so that the rewriter doesn't trip over it later.
|
|
Rewriter.clearInsertPoint();
|
|
return NumReplaced;
|
|
}
|
|
|
|
/// Set weights for \p UnrolledLoop and \p RemainderLoop based on weights for
|
|
/// \p OrigLoop.
|
|
void llvm::setProfileInfoAfterUnrolling(Loop *OrigLoop, Loop *UnrolledLoop,
|
|
Loop *RemainderLoop, uint64_t UF) {
|
|
assert(UF > 0 && "Zero unrolled factor is not supported");
|
|
assert(UnrolledLoop != RemainderLoop &&
|
|
"Unrolled and Remainder loops are expected to distinct");
|
|
|
|
// Get number of iterations in the original scalar loop.
|
|
unsigned OrigLoopInvocationWeight = 0;
|
|
Optional<unsigned> OrigAverageTripCount =
|
|
getLoopEstimatedTripCount(OrigLoop, &OrigLoopInvocationWeight);
|
|
if (!OrigAverageTripCount)
|
|
return;
|
|
|
|
// Calculate number of iterations in unrolled loop.
|
|
unsigned UnrolledAverageTripCount = *OrigAverageTripCount / UF;
|
|
// Calculate number of iterations for remainder loop.
|
|
unsigned RemainderAverageTripCount = *OrigAverageTripCount % UF;
|
|
|
|
setLoopEstimatedTripCount(UnrolledLoop, UnrolledAverageTripCount,
|
|
OrigLoopInvocationWeight);
|
|
setLoopEstimatedTripCount(RemainderLoop, RemainderAverageTripCount,
|
|
OrigLoopInvocationWeight);
|
|
}
|
|
|
|
/// Utility that implements appending of loops onto a worklist.
|
|
/// Loops are added in preorder (analogous for reverse postorder for trees),
|
|
/// and the worklist is processed LIFO.
|
|
template <typename RangeT>
|
|
void llvm::appendReversedLoopsToWorklist(
|
|
RangeT &&Loops, SmallPriorityWorklist<Loop *, 4> &Worklist) {
|
|
// We use an internal worklist to build up the preorder traversal without
|
|
// recursion.
|
|
SmallVector<Loop *, 4> PreOrderLoops, PreOrderWorklist;
|
|
|
|
// We walk the initial sequence of loops in reverse because we generally want
|
|
// to visit defs before uses and the worklist is LIFO.
|
|
for (Loop *RootL : Loops) {
|
|
assert(PreOrderLoops.empty() && "Must start with an empty preorder walk.");
|
|
assert(PreOrderWorklist.empty() &&
|
|
"Must start with an empty preorder walk worklist.");
|
|
PreOrderWorklist.push_back(RootL);
|
|
do {
|
|
Loop *L = PreOrderWorklist.pop_back_val();
|
|
PreOrderWorklist.append(L->begin(), L->end());
|
|
PreOrderLoops.push_back(L);
|
|
} while (!PreOrderWorklist.empty());
|
|
|
|
Worklist.insert(std::move(PreOrderLoops));
|
|
PreOrderLoops.clear();
|
|
}
|
|
}
|
|
|
|
template <typename RangeT>
|
|
void llvm::appendLoopsToWorklist(RangeT &&Loops,
|
|
SmallPriorityWorklist<Loop *, 4> &Worklist) {
|
|
appendReversedLoopsToWorklist(reverse(Loops), Worklist);
|
|
}
|
|
|
|
template void llvm::appendLoopsToWorklist<ArrayRef<Loop *> &>(
|
|
ArrayRef<Loop *> &Loops, SmallPriorityWorklist<Loop *, 4> &Worklist);
|
|
|
|
template void
|
|
llvm::appendLoopsToWorklist<Loop &>(Loop &L,
|
|
SmallPriorityWorklist<Loop *, 4> &Worklist);
|
|
|
|
void llvm::appendLoopsToWorklist(LoopInfo &LI,
|
|
SmallPriorityWorklist<Loop *, 4> &Worklist) {
|
|
appendReversedLoopsToWorklist(LI, Worklist);
|
|
}
|
|
|
|
Loop *llvm::cloneLoop(Loop *L, Loop *PL, ValueToValueMapTy &VM,
|
|
LoopInfo *LI, LPPassManager *LPM) {
|
|
Loop &New = *LI->AllocateLoop();
|
|
if (PL)
|
|
PL->addChildLoop(&New);
|
|
else
|
|
LI->addTopLevelLoop(&New);
|
|
|
|
if (LPM)
|
|
LPM->addLoop(New);
|
|
|
|
// Add all of the blocks in L to the new loop.
|
|
for (Loop::block_iterator I = L->block_begin(), E = L->block_end();
|
|
I != E; ++I)
|
|
if (LI->getLoopFor(*I) == L)
|
|
New.addBasicBlockToLoop(cast<BasicBlock>(VM[*I]), *LI);
|
|
|
|
// Add all of the subloops to the new loop.
|
|
for (Loop *I : *L)
|
|
cloneLoop(I, &New, VM, LI, LPM);
|
|
|
|
return &New;
|
|
}
|
|
|
|
/// IR Values for the lower and upper bounds of a pointer evolution. We
|
|
/// need to use value-handles because SCEV expansion can invalidate previously
|
|
/// expanded values. Thus expansion of a pointer can invalidate the bounds for
|
|
/// a previous one.
|
|
struct PointerBounds {
|
|
TrackingVH<Value> Start;
|
|
TrackingVH<Value> End;
|
|
};
|
|
|
|
/// Expand code for the lower and upper bound of the pointer group \p CG
|
|
/// in \p TheLoop. \return the values for the bounds.
|
|
static PointerBounds expandBounds(const RuntimeCheckingPtrGroup *CG,
|
|
Loop *TheLoop, Instruction *Loc,
|
|
SCEVExpander &Exp) {
|
|
LLVMContext &Ctx = Loc->getContext();
|
|
Type *PtrArithTy = Type::getInt8PtrTy(Ctx, CG->AddressSpace);
|
|
|
|
Value *Start = nullptr, *End = nullptr;
|
|
LLVM_DEBUG(dbgs() << "LAA: Adding RT check for range:\n");
|
|
Start = Exp.expandCodeFor(CG->Low, PtrArithTy, Loc);
|
|
End = Exp.expandCodeFor(CG->High, PtrArithTy, Loc);
|
|
LLVM_DEBUG(dbgs() << "Start: " << *CG->Low << " End: " << *CG->High << "\n");
|
|
return {Start, End};
|
|
}
|
|
|
|
/// Turns a collection of checks into a collection of expanded upper and
|
|
/// lower bounds for both pointers in the check.
|
|
static SmallVector<std::pair<PointerBounds, PointerBounds>, 4>
|
|
expandBounds(const SmallVectorImpl<RuntimePointerCheck> &PointerChecks, Loop *L,
|
|
Instruction *Loc, SCEVExpander &Exp) {
|
|
SmallVector<std::pair<PointerBounds, PointerBounds>, 4> ChecksWithBounds;
|
|
|
|
// Here we're relying on the SCEV Expander's cache to only emit code for the
|
|
// same bounds once.
|
|
transform(PointerChecks, std::back_inserter(ChecksWithBounds),
|
|
[&](const RuntimePointerCheck &Check) {
|
|
PointerBounds First = expandBounds(Check.first, L, Loc, Exp),
|
|
Second = expandBounds(Check.second, L, Loc, Exp);
|
|
return std::make_pair(First, Second);
|
|
});
|
|
|
|
return ChecksWithBounds;
|
|
}
|
|
|
|
std::pair<Instruction *, Instruction *> llvm::addRuntimeChecks(
|
|
Instruction *Loc, Loop *TheLoop,
|
|
const SmallVectorImpl<RuntimePointerCheck> &PointerChecks,
|
|
SCEVExpander &Exp) {
|
|
// TODO: Move noalias annotation code from LoopVersioning here and share with LV if possible.
|
|
// TODO: Pass RtPtrChecking instead of PointerChecks and SE separately, if possible
|
|
auto ExpandedChecks = expandBounds(PointerChecks, TheLoop, Loc, Exp);
|
|
|
|
LLVMContext &Ctx = Loc->getContext();
|
|
Instruction *FirstInst = nullptr;
|
|
IRBuilder<> ChkBuilder(Loc);
|
|
// Our instructions might fold to a constant.
|
|
Value *MemoryRuntimeCheck = nullptr;
|
|
|
|
// FIXME: this helper is currently a duplicate of the one in
|
|
// LoopVectorize.cpp.
|
|
auto GetFirstInst = [](Instruction *FirstInst, Value *V,
|
|
Instruction *Loc) -> Instruction * {
|
|
if (FirstInst)
|
|
return FirstInst;
|
|
if (Instruction *I = dyn_cast<Instruction>(V))
|
|
return I->getParent() == Loc->getParent() ? I : nullptr;
|
|
return nullptr;
|
|
};
|
|
|
|
for (const auto &Check : ExpandedChecks) {
|
|
const PointerBounds &A = Check.first, &B = Check.second;
|
|
// Check if two pointers (A and B) conflict where conflict is computed as:
|
|
// start(A) <= end(B) && start(B) <= end(A)
|
|
unsigned AS0 = A.Start->getType()->getPointerAddressSpace();
|
|
unsigned AS1 = B.Start->getType()->getPointerAddressSpace();
|
|
|
|
assert((AS0 == B.End->getType()->getPointerAddressSpace()) &&
|
|
(AS1 == A.End->getType()->getPointerAddressSpace()) &&
|
|
"Trying to bounds check pointers with different address spaces");
|
|
|
|
Type *PtrArithTy0 = Type::getInt8PtrTy(Ctx, AS0);
|
|
Type *PtrArithTy1 = Type::getInt8PtrTy(Ctx, AS1);
|
|
|
|
Value *Start0 = ChkBuilder.CreateBitCast(A.Start, PtrArithTy0, "bc");
|
|
Value *Start1 = ChkBuilder.CreateBitCast(B.Start, PtrArithTy1, "bc");
|
|
Value *End0 = ChkBuilder.CreateBitCast(A.End, PtrArithTy1, "bc");
|
|
Value *End1 = ChkBuilder.CreateBitCast(B.End, PtrArithTy0, "bc");
|
|
|
|
// [A|B].Start points to the first accessed byte under base [A|B].
|
|
// [A|B].End points to the last accessed byte, plus one.
|
|
// There is no conflict when the intervals are disjoint:
|
|
// NoConflict = (B.Start >= A.End) || (A.Start >= B.End)
|
|
//
|
|
// bound0 = (B.Start < A.End)
|
|
// bound1 = (A.Start < B.End)
|
|
// IsConflict = bound0 & bound1
|
|
Value *Cmp0 = ChkBuilder.CreateICmpULT(Start0, End1, "bound0");
|
|
FirstInst = GetFirstInst(FirstInst, Cmp0, Loc);
|
|
Value *Cmp1 = ChkBuilder.CreateICmpULT(Start1, End0, "bound1");
|
|
FirstInst = GetFirstInst(FirstInst, Cmp1, Loc);
|
|
Value *IsConflict = ChkBuilder.CreateAnd(Cmp0, Cmp1, "found.conflict");
|
|
FirstInst = GetFirstInst(FirstInst, IsConflict, Loc);
|
|
if (MemoryRuntimeCheck) {
|
|
IsConflict =
|
|
ChkBuilder.CreateOr(MemoryRuntimeCheck, IsConflict, "conflict.rdx");
|
|
FirstInst = GetFirstInst(FirstInst, IsConflict, Loc);
|
|
}
|
|
MemoryRuntimeCheck = IsConflict;
|
|
}
|
|
|
|
if (!MemoryRuntimeCheck)
|
|
return std::make_pair(nullptr, nullptr);
|
|
|
|
// We have to do this trickery because the IRBuilder might fold the check to a
|
|
// constant expression in which case there is no Instruction anchored in a
|
|
// the block.
|
|
Instruction *Check =
|
|
BinaryOperator::CreateAnd(MemoryRuntimeCheck, ConstantInt::getTrue(Ctx));
|
|
ChkBuilder.Insert(Check, "memcheck.conflict");
|
|
FirstInst = GetFirstInst(FirstInst, Check, Loc);
|
|
return std::make_pair(FirstInst, Check);
|
|
}
|
|
|
|
Optional<IVConditionInfo> llvm::hasPartialIVCondition(Loop &L,
|
|
unsigned MSSAThreshold,
|
|
MemorySSA &MSSA,
|
|
AAResults &AA) {
|
|
auto *TI = dyn_cast<BranchInst>(L.getHeader()->getTerminator());
|
|
if (!TI || !TI->isConditional())
|
|
return {};
|
|
|
|
auto *CondI = dyn_cast<CmpInst>(TI->getCondition());
|
|
// The case with the condition outside the loop should already be handled
|
|
// earlier.
|
|
if (!CondI || !L.contains(CondI))
|
|
return {};
|
|
|
|
SmallVector<Instruction *> InstToDuplicate;
|
|
InstToDuplicate.push_back(CondI);
|
|
|
|
SmallVector<Value *, 4> WorkList;
|
|
WorkList.append(CondI->op_begin(), CondI->op_end());
|
|
|
|
SmallVector<MemoryAccess *, 4> AccessesToCheck;
|
|
SmallVector<MemoryLocation, 4> AccessedLocs;
|
|
while (!WorkList.empty()) {
|
|
Instruction *I = dyn_cast<Instruction>(WorkList.pop_back_val());
|
|
if (!I || !L.contains(I))
|
|
continue;
|
|
|
|
// TODO: support additional instructions.
|
|
if (!isa<LoadInst>(I) && !isa<GetElementPtrInst>(I))
|
|
return {};
|
|
|
|
// Do not duplicate volatile and atomic loads.
|
|
if (auto *LI = dyn_cast<LoadInst>(I))
|
|
if (LI->isVolatile() || LI->isAtomic())
|
|
return {};
|
|
|
|
InstToDuplicate.push_back(I);
|
|
if (MemoryAccess *MA = MSSA.getMemoryAccess(I)) {
|
|
if (auto *MemUse = dyn_cast_or_null<MemoryUse>(MA)) {
|
|
// Queue the defining access to check for alias checks.
|
|
AccessesToCheck.push_back(MemUse->getDefiningAccess());
|
|
AccessedLocs.push_back(MemoryLocation::get(I));
|
|
} else {
|
|
// MemoryDefs may clobber the location or may be atomic memory
|
|
// operations. Bail out.
|
|
return {};
|
|
}
|
|
}
|
|
WorkList.append(I->op_begin(), I->op_end());
|
|
}
|
|
|
|
if (InstToDuplicate.empty())
|
|
return {};
|
|
|
|
SmallVector<BasicBlock *, 4> ExitingBlocks;
|
|
L.getExitingBlocks(ExitingBlocks);
|
|
auto HasNoClobbersOnPath =
|
|
[&L, &AA, &AccessedLocs, &ExitingBlocks, &InstToDuplicate,
|
|
MSSAThreshold](BasicBlock *Succ, BasicBlock *Header,
|
|
SmallVector<MemoryAccess *, 4> AccessesToCheck)
|
|
-> Optional<IVConditionInfo> {
|
|
IVConditionInfo Info;
|
|
// First, collect all blocks in the loop that are on a patch from Succ
|
|
// to the header.
|
|
SmallVector<BasicBlock *, 4> WorkList;
|
|
WorkList.push_back(Succ);
|
|
WorkList.push_back(Header);
|
|
SmallPtrSet<BasicBlock *, 4> Seen;
|
|
Seen.insert(Header);
|
|
Info.PathIsNoop &=
|
|
all_of(*Header, [](Instruction &I) { return !I.mayHaveSideEffects(); });
|
|
|
|
while (!WorkList.empty()) {
|
|
BasicBlock *Current = WorkList.pop_back_val();
|
|
if (!L.contains(Current))
|
|
continue;
|
|
const auto &SeenIns = Seen.insert(Current);
|
|
if (!SeenIns.second)
|
|
continue;
|
|
|
|
Info.PathIsNoop &= all_of(
|
|
*Current, [](Instruction &I) { return !I.mayHaveSideEffects(); });
|
|
WorkList.append(succ_begin(Current), succ_end(Current));
|
|
}
|
|
|
|
// Require at least 2 blocks on a path through the loop. This skips
|
|
// paths that directly exit the loop.
|
|
if (Seen.size() < 2)
|
|
return {};
|
|
|
|
// Next, check if there are any MemoryDefs that are on the path through
|
|
// the loop (in the Seen set) and they may-alias any of the locations in
|
|
// AccessedLocs. If that is the case, they may modify the condition and
|
|
// partial unswitching is not possible.
|
|
SmallPtrSet<MemoryAccess *, 4> SeenAccesses;
|
|
while (!AccessesToCheck.empty()) {
|
|
MemoryAccess *Current = AccessesToCheck.pop_back_val();
|
|
auto SeenI = SeenAccesses.insert(Current);
|
|
if (!SeenI.second || !Seen.contains(Current->getBlock()))
|
|
continue;
|
|
|
|
// Bail out if exceeded the threshold.
|
|
if (SeenAccesses.size() >= MSSAThreshold)
|
|
return {};
|
|
|
|
// MemoryUse are read-only accesses.
|
|
if (isa<MemoryUse>(Current))
|
|
continue;
|
|
|
|
// For a MemoryDef, check if is aliases any of the location feeding
|
|
// the original condition.
|
|
if (auto *CurrentDef = dyn_cast<MemoryDef>(Current)) {
|
|
if (any_of(AccessedLocs, [&AA, CurrentDef](MemoryLocation &Loc) {
|
|
return isModSet(
|
|
AA.getModRefInfo(CurrentDef->getMemoryInst(), Loc));
|
|
}))
|
|
return {};
|
|
}
|
|
|
|
for (Use &U : Current->uses())
|
|
AccessesToCheck.push_back(cast<MemoryAccess>(U.getUser()));
|
|
}
|
|
|
|
// We could also allow loops with known trip counts without mustprogress,
|
|
// but ScalarEvolution may not be available.
|
|
Info.PathIsNoop &= isMustProgress(&L);
|
|
|
|
// If the path is considered a no-op so far, check if it reaches a
|
|
// single exit block without any phis. This ensures no values from the
|
|
// loop are used outside of the loop.
|
|
if (Info.PathIsNoop) {
|
|
for (auto *Exiting : ExitingBlocks) {
|
|
if (!Seen.contains(Exiting))
|
|
continue;
|
|
for (auto *Succ : successors(Exiting)) {
|
|
if (L.contains(Succ))
|
|
continue;
|
|
|
|
Info.PathIsNoop &= llvm::empty(Succ->phis()) &&
|
|
(!Info.ExitForPath || Info.ExitForPath == Succ);
|
|
if (!Info.PathIsNoop)
|
|
break;
|
|
assert((!Info.ExitForPath || Info.ExitForPath == Succ) &&
|
|
"cannot have multiple exit blocks");
|
|
Info.ExitForPath = Succ;
|
|
}
|
|
}
|
|
}
|
|
if (!Info.ExitForPath)
|
|
Info.PathIsNoop = false;
|
|
|
|
Info.InstToDuplicate = InstToDuplicate;
|
|
return Info;
|
|
};
|
|
|
|
// If we branch to the same successor, partial unswitching will not be
|
|
// beneficial.
|
|
if (TI->getSuccessor(0) == TI->getSuccessor(1))
|
|
return {};
|
|
|
|
if (auto Info = HasNoClobbersOnPath(TI->getSuccessor(0), L.getHeader(),
|
|
AccessesToCheck)) {
|
|
Info->KnownValue = ConstantInt::getTrue(TI->getContext());
|
|
return Info;
|
|
}
|
|
if (auto Info = HasNoClobbersOnPath(TI->getSuccessor(1), L.getHeader(),
|
|
AccessesToCheck)) {
|
|
Info->KnownValue = ConstantInt::getFalse(TI->getContext());
|
|
return Info;
|
|
}
|
|
|
|
return {};
|
|
}
|