mirror of
https://github.com/RPCS3/llvm-mirror.git
synced 2024-11-22 02:33:06 +01:00
bedf13b1a7
I can't seem to wrap my head around the proper fix here, we should be fine without this requirement, iff we can form this form, but the naive attempt (https://reviews.llvm.org/D106317) has failed. So just to unblock the release, put up a restriction. Fixes https://bugs.llvm.org/show_bug.cgi?id=51125 (cherry picked from commit 909cba969981032c5740774ca84a34b7f76b909b)
6681 lines
254 KiB
C++
6681 lines
254 KiB
C++
//===- SimplifyCFG.cpp - Code to perform CFG simplification ---------------===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// Peephole optimize the CFG.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "llvm/ADT/APInt.h"
|
|
#include "llvm/ADT/ArrayRef.h"
|
|
#include "llvm/ADT/DenseMap.h"
|
|
#include "llvm/ADT/MapVector.h"
|
|
#include "llvm/ADT/Optional.h"
|
|
#include "llvm/ADT/STLExtras.h"
|
|
#include "llvm/ADT/ScopeExit.h"
|
|
#include "llvm/ADT/Sequence.h"
|
|
#include "llvm/ADT/SetOperations.h"
|
|
#include "llvm/ADT/SetVector.h"
|
|
#include "llvm/ADT/SmallPtrSet.h"
|
|
#include "llvm/ADT/SmallVector.h"
|
|
#include "llvm/ADT/Statistic.h"
|
|
#include "llvm/ADT/StringRef.h"
|
|
#include "llvm/Analysis/AssumptionCache.h"
|
|
#include "llvm/Analysis/ConstantFolding.h"
|
|
#include "llvm/Analysis/EHPersonalities.h"
|
|
#include "llvm/Analysis/GuardUtils.h"
|
|
#include "llvm/Analysis/InstructionSimplify.h"
|
|
#include "llvm/Analysis/MemorySSA.h"
|
|
#include "llvm/Analysis/MemorySSAUpdater.h"
|
|
#include "llvm/Analysis/TargetTransformInfo.h"
|
|
#include "llvm/Analysis/ValueTracking.h"
|
|
#include "llvm/IR/Attributes.h"
|
|
#include "llvm/IR/BasicBlock.h"
|
|
#include "llvm/IR/CFG.h"
|
|
#include "llvm/IR/Constant.h"
|
|
#include "llvm/IR/ConstantRange.h"
|
|
#include "llvm/IR/Constants.h"
|
|
#include "llvm/IR/DataLayout.h"
|
|
#include "llvm/IR/DerivedTypes.h"
|
|
#include "llvm/IR/Function.h"
|
|
#include "llvm/IR/GlobalValue.h"
|
|
#include "llvm/IR/GlobalVariable.h"
|
|
#include "llvm/IR/IRBuilder.h"
|
|
#include "llvm/IR/InstrTypes.h"
|
|
#include "llvm/IR/Instruction.h"
|
|
#include "llvm/IR/Instructions.h"
|
|
#include "llvm/IR/IntrinsicInst.h"
|
|
#include "llvm/IR/Intrinsics.h"
|
|
#include "llvm/IR/LLVMContext.h"
|
|
#include "llvm/IR/MDBuilder.h"
|
|
#include "llvm/IR/Metadata.h"
|
|
#include "llvm/IR/Module.h"
|
|
#include "llvm/IR/NoFolder.h"
|
|
#include "llvm/IR/Operator.h"
|
|
#include "llvm/IR/PatternMatch.h"
|
|
#include "llvm/IR/PseudoProbe.h"
|
|
#include "llvm/IR/Type.h"
|
|
#include "llvm/IR/Use.h"
|
|
#include "llvm/IR/User.h"
|
|
#include "llvm/IR/Value.h"
|
|
#include "llvm/IR/ValueHandle.h"
|
|
#include "llvm/Support/BranchProbability.h"
|
|
#include "llvm/Support/Casting.h"
|
|
#include "llvm/Support/CommandLine.h"
|
|
#include "llvm/Support/Debug.h"
|
|
#include "llvm/Support/ErrorHandling.h"
|
|
#include "llvm/Support/KnownBits.h"
|
|
#include "llvm/Support/MathExtras.h"
|
|
#include "llvm/Support/raw_ostream.h"
|
|
#include "llvm/Transforms/Utils/BasicBlockUtils.h"
|
|
#include "llvm/Transforms/Utils/Local.h"
|
|
#include "llvm/Transforms/Utils/SSAUpdater.h"
|
|
#include "llvm/Transforms/Utils/ValueMapper.h"
|
|
#include <algorithm>
|
|
#include <cassert>
|
|
#include <climits>
|
|
#include <cstddef>
|
|
#include <cstdint>
|
|
#include <iterator>
|
|
#include <map>
|
|
#include <set>
|
|
#include <tuple>
|
|
#include <utility>
|
|
#include <vector>
|
|
|
|
using namespace llvm;
|
|
using namespace PatternMatch;
|
|
|
|
#define DEBUG_TYPE "simplifycfg"
|
|
|
|
cl::opt<bool> llvm::RequireAndPreserveDomTree(
|
|
"simplifycfg-require-and-preserve-domtree", cl::Hidden, cl::ZeroOrMore,
|
|
cl::init(false),
|
|
cl::desc("Temorary development switch used to gradually uplift SimplifyCFG "
|
|
"into preserving DomTree,"));
|
|
|
|
// Chosen as 2 so as to be cheap, but still to have enough power to fold
|
|
// a select, so the "clamp" idiom (of a min followed by a max) will be caught.
|
|
// To catch this, we need to fold a compare and a select, hence '2' being the
|
|
// minimum reasonable default.
|
|
static cl::opt<unsigned> PHINodeFoldingThreshold(
|
|
"phi-node-folding-threshold", cl::Hidden, cl::init(2),
|
|
cl::desc(
|
|
"Control the amount of phi node folding to perform (default = 2)"));
|
|
|
|
static cl::opt<unsigned> TwoEntryPHINodeFoldingThreshold(
|
|
"two-entry-phi-node-folding-threshold", cl::Hidden, cl::init(4),
|
|
cl::desc("Control the maximal total instruction cost that we are willing "
|
|
"to speculatively execute to fold a 2-entry PHI node into a "
|
|
"select (default = 4)"));
|
|
|
|
static cl::opt<bool>
|
|
HoistCommon("simplifycfg-hoist-common", cl::Hidden, cl::init(true),
|
|
cl::desc("Hoist common instructions up to the parent block"));
|
|
|
|
static cl::opt<bool>
|
|
SinkCommon("simplifycfg-sink-common", cl::Hidden, cl::init(true),
|
|
cl::desc("Sink common instructions down to the end block"));
|
|
|
|
static cl::opt<bool> HoistCondStores(
|
|
"simplifycfg-hoist-cond-stores", cl::Hidden, cl::init(true),
|
|
cl::desc("Hoist conditional stores if an unconditional store precedes"));
|
|
|
|
static cl::opt<bool> MergeCondStores(
|
|
"simplifycfg-merge-cond-stores", cl::Hidden, cl::init(true),
|
|
cl::desc("Hoist conditional stores even if an unconditional store does not "
|
|
"precede - hoist multiple conditional stores into a single "
|
|
"predicated store"));
|
|
|
|
static cl::opt<bool> MergeCondStoresAggressively(
|
|
"simplifycfg-merge-cond-stores-aggressively", cl::Hidden, cl::init(false),
|
|
cl::desc("When merging conditional stores, do so even if the resultant "
|
|
"basic blocks are unlikely to be if-converted as a result"));
|
|
|
|
static cl::opt<bool> SpeculateOneExpensiveInst(
|
|
"speculate-one-expensive-inst", cl::Hidden, cl::init(true),
|
|
cl::desc("Allow exactly one expensive instruction to be speculatively "
|
|
"executed"));
|
|
|
|
static cl::opt<unsigned> MaxSpeculationDepth(
|
|
"max-speculation-depth", cl::Hidden, cl::init(10),
|
|
cl::desc("Limit maximum recursion depth when calculating costs of "
|
|
"speculatively executed instructions"));
|
|
|
|
static cl::opt<int>
|
|
MaxSmallBlockSize("simplifycfg-max-small-block-size", cl::Hidden,
|
|
cl::init(10),
|
|
cl::desc("Max size of a block which is still considered "
|
|
"small enough to thread through"));
|
|
|
|
// Two is chosen to allow one negation and a logical combine.
|
|
static cl::opt<unsigned>
|
|
BranchFoldThreshold("simplifycfg-branch-fold-threshold", cl::Hidden,
|
|
cl::init(2),
|
|
cl::desc("Maximum cost of combining conditions when "
|
|
"folding branches"));
|
|
|
|
STATISTIC(NumBitMaps, "Number of switch instructions turned into bitmaps");
|
|
STATISTIC(NumLinearMaps,
|
|
"Number of switch instructions turned into linear mapping");
|
|
STATISTIC(NumLookupTables,
|
|
"Number of switch instructions turned into lookup tables");
|
|
STATISTIC(
|
|
NumLookupTablesHoles,
|
|
"Number of switch instructions turned into lookup tables (holes checked)");
|
|
STATISTIC(NumTableCmpReuses, "Number of reused switch table lookup compares");
|
|
STATISTIC(NumFoldValueComparisonIntoPredecessors,
|
|
"Number of value comparisons folded into predecessor basic blocks");
|
|
STATISTIC(NumFoldBranchToCommonDest,
|
|
"Number of branches folded into predecessor basic block");
|
|
STATISTIC(
|
|
NumHoistCommonCode,
|
|
"Number of common instruction 'blocks' hoisted up to the begin block");
|
|
STATISTIC(NumHoistCommonInstrs,
|
|
"Number of common instructions hoisted up to the begin block");
|
|
STATISTIC(NumSinkCommonCode,
|
|
"Number of common instruction 'blocks' sunk down to the end block");
|
|
STATISTIC(NumSinkCommonInstrs,
|
|
"Number of common instructions sunk down to the end block");
|
|
STATISTIC(NumSpeculations, "Number of speculative executed instructions");
|
|
STATISTIC(NumInvokes,
|
|
"Number of invokes with empty resume blocks simplified into calls");
|
|
|
|
namespace {
|
|
|
|
// The first field contains the value that the switch produces when a certain
|
|
// case group is selected, and the second field is a vector containing the
|
|
// cases composing the case group.
|
|
using SwitchCaseResultVectorTy =
|
|
SmallVector<std::pair<Constant *, SmallVector<ConstantInt *, 4>>, 2>;
|
|
|
|
// The first field contains the phi node that generates a result of the switch
|
|
// and the second field contains the value generated for a certain case in the
|
|
// switch for that PHI.
|
|
using SwitchCaseResultsTy = SmallVector<std::pair<PHINode *, Constant *>, 4>;
|
|
|
|
/// ValueEqualityComparisonCase - Represents a case of a switch.
|
|
struct ValueEqualityComparisonCase {
|
|
ConstantInt *Value;
|
|
BasicBlock *Dest;
|
|
|
|
ValueEqualityComparisonCase(ConstantInt *Value, BasicBlock *Dest)
|
|
: Value(Value), Dest(Dest) {}
|
|
|
|
bool operator<(ValueEqualityComparisonCase RHS) const {
|
|
// Comparing pointers is ok as we only rely on the order for uniquing.
|
|
return Value < RHS.Value;
|
|
}
|
|
|
|
bool operator==(BasicBlock *RHSDest) const { return Dest == RHSDest; }
|
|
};
|
|
|
|
class SimplifyCFGOpt {
|
|
const TargetTransformInfo &TTI;
|
|
DomTreeUpdater *DTU;
|
|
const DataLayout &DL;
|
|
ArrayRef<WeakVH> LoopHeaders;
|
|
const SimplifyCFGOptions &Options;
|
|
bool Resimplify;
|
|
|
|
Value *isValueEqualityComparison(Instruction *TI);
|
|
BasicBlock *GetValueEqualityComparisonCases(
|
|
Instruction *TI, std::vector<ValueEqualityComparisonCase> &Cases);
|
|
bool SimplifyEqualityComparisonWithOnlyPredecessor(Instruction *TI,
|
|
BasicBlock *Pred,
|
|
IRBuilder<> &Builder);
|
|
bool PerformValueComparisonIntoPredecessorFolding(Instruction *TI, Value *&CV,
|
|
Instruction *PTI,
|
|
IRBuilder<> &Builder);
|
|
bool FoldValueComparisonIntoPredecessors(Instruction *TI,
|
|
IRBuilder<> &Builder);
|
|
|
|
bool simplifyResume(ResumeInst *RI, IRBuilder<> &Builder);
|
|
bool simplifySingleResume(ResumeInst *RI);
|
|
bool simplifyCommonResume(ResumeInst *RI);
|
|
bool simplifyCleanupReturn(CleanupReturnInst *RI);
|
|
bool simplifyUnreachable(UnreachableInst *UI);
|
|
bool simplifySwitch(SwitchInst *SI, IRBuilder<> &Builder);
|
|
bool simplifyIndirectBr(IndirectBrInst *IBI);
|
|
bool simplifyBranch(BranchInst *Branch, IRBuilder<> &Builder);
|
|
bool simplifyUncondBranch(BranchInst *BI, IRBuilder<> &Builder);
|
|
bool simplifyCondBranch(BranchInst *BI, IRBuilder<> &Builder);
|
|
|
|
bool tryToSimplifyUncondBranchWithICmpInIt(ICmpInst *ICI,
|
|
IRBuilder<> &Builder);
|
|
|
|
bool HoistThenElseCodeToIf(BranchInst *BI, const TargetTransformInfo &TTI,
|
|
bool EqTermsOnly);
|
|
bool SpeculativelyExecuteBB(BranchInst *BI, BasicBlock *ThenBB,
|
|
const TargetTransformInfo &TTI);
|
|
bool SimplifyTerminatorOnSelect(Instruction *OldTerm, Value *Cond,
|
|
BasicBlock *TrueBB, BasicBlock *FalseBB,
|
|
uint32_t TrueWeight, uint32_t FalseWeight);
|
|
bool SimplifyBranchOnICmpChain(BranchInst *BI, IRBuilder<> &Builder,
|
|
const DataLayout &DL);
|
|
bool SimplifySwitchOnSelect(SwitchInst *SI, SelectInst *Select);
|
|
bool SimplifyIndirectBrOnSelect(IndirectBrInst *IBI, SelectInst *SI);
|
|
bool TurnSwitchRangeIntoICmp(SwitchInst *SI, IRBuilder<> &Builder);
|
|
|
|
public:
|
|
SimplifyCFGOpt(const TargetTransformInfo &TTI, DomTreeUpdater *DTU,
|
|
const DataLayout &DL, ArrayRef<WeakVH> LoopHeaders,
|
|
const SimplifyCFGOptions &Opts)
|
|
: TTI(TTI), DTU(DTU), DL(DL), LoopHeaders(LoopHeaders), Options(Opts) {
|
|
assert((!DTU || !DTU->hasPostDomTree()) &&
|
|
"SimplifyCFG is not yet capable of maintaining validity of a "
|
|
"PostDomTree, so don't ask for it.");
|
|
}
|
|
|
|
bool simplifyOnce(BasicBlock *BB);
|
|
bool simplifyOnceImpl(BasicBlock *BB);
|
|
bool run(BasicBlock *BB);
|
|
|
|
// Helper to set Resimplify and return change indication.
|
|
bool requestResimplify() {
|
|
Resimplify = true;
|
|
return true;
|
|
}
|
|
};
|
|
|
|
} // end anonymous namespace
|
|
|
|
/// Return true if it is safe to merge these two
|
|
/// terminator instructions together.
|
|
static bool
|
|
SafeToMergeTerminators(Instruction *SI1, Instruction *SI2,
|
|
SmallSetVector<BasicBlock *, 4> *FailBlocks = nullptr) {
|
|
if (SI1 == SI2)
|
|
return false; // Can't merge with self!
|
|
|
|
// It is not safe to merge these two switch instructions if they have a common
|
|
// successor, and if that successor has a PHI node, and if *that* PHI node has
|
|
// conflicting incoming values from the two switch blocks.
|
|
BasicBlock *SI1BB = SI1->getParent();
|
|
BasicBlock *SI2BB = SI2->getParent();
|
|
|
|
SmallPtrSet<BasicBlock *, 16> SI1Succs(succ_begin(SI1BB), succ_end(SI1BB));
|
|
bool Fail = false;
|
|
for (BasicBlock *Succ : successors(SI2BB))
|
|
if (SI1Succs.count(Succ))
|
|
for (BasicBlock::iterator BBI = Succ->begin(); isa<PHINode>(BBI); ++BBI) {
|
|
PHINode *PN = cast<PHINode>(BBI);
|
|
if (PN->getIncomingValueForBlock(SI1BB) !=
|
|
PN->getIncomingValueForBlock(SI2BB)) {
|
|
if (FailBlocks)
|
|
FailBlocks->insert(Succ);
|
|
Fail = true;
|
|
}
|
|
}
|
|
|
|
return !Fail;
|
|
}
|
|
|
|
/// Update PHI nodes in Succ to indicate that there will now be entries in it
|
|
/// from the 'NewPred' block. The values that will be flowing into the PHI nodes
|
|
/// will be the same as those coming in from ExistPred, an existing predecessor
|
|
/// of Succ.
|
|
static void AddPredecessorToBlock(BasicBlock *Succ, BasicBlock *NewPred,
|
|
BasicBlock *ExistPred,
|
|
MemorySSAUpdater *MSSAU = nullptr) {
|
|
for (PHINode &PN : Succ->phis())
|
|
PN.addIncoming(PN.getIncomingValueForBlock(ExistPred), NewPred);
|
|
if (MSSAU)
|
|
if (auto *MPhi = MSSAU->getMemorySSA()->getMemoryAccess(Succ))
|
|
MPhi->addIncoming(MPhi->getIncomingValueForBlock(ExistPred), NewPred);
|
|
}
|
|
|
|
/// Compute an abstract "cost" of speculating the given instruction,
|
|
/// which is assumed to be safe to speculate. TCC_Free means cheap,
|
|
/// TCC_Basic means less cheap, and TCC_Expensive means prohibitively
|
|
/// expensive.
|
|
static InstructionCost computeSpeculationCost(const User *I,
|
|
const TargetTransformInfo &TTI) {
|
|
assert(isSafeToSpeculativelyExecute(I) &&
|
|
"Instruction is not safe to speculatively execute!");
|
|
return TTI.getUserCost(I, TargetTransformInfo::TCK_SizeAndLatency);
|
|
}
|
|
|
|
/// If we have a merge point of an "if condition" as accepted above,
|
|
/// return true if the specified value dominates the block. We
|
|
/// don't handle the true generality of domination here, just a special case
|
|
/// which works well enough for us.
|
|
///
|
|
/// If AggressiveInsts is non-null, and if V does not dominate BB, we check to
|
|
/// see if V (which must be an instruction) and its recursive operands
|
|
/// that do not dominate BB have a combined cost lower than Budget and
|
|
/// are non-trapping. If both are true, the instruction is inserted into the
|
|
/// set and true is returned.
|
|
///
|
|
/// The cost for most non-trapping instructions is defined as 1 except for
|
|
/// Select whose cost is 2.
|
|
///
|
|
/// After this function returns, Cost is increased by the cost of
|
|
/// V plus its non-dominating operands. If that cost is greater than
|
|
/// Budget, false is returned and Cost is undefined.
|
|
static bool dominatesMergePoint(Value *V, BasicBlock *BB,
|
|
SmallPtrSetImpl<Instruction *> &AggressiveInsts,
|
|
InstructionCost &Cost,
|
|
InstructionCost Budget,
|
|
const TargetTransformInfo &TTI,
|
|
unsigned Depth = 0) {
|
|
// It is possible to hit a zero-cost cycle (phi/gep instructions for example),
|
|
// so limit the recursion depth.
|
|
// TODO: While this recursion limit does prevent pathological behavior, it
|
|
// would be better to track visited instructions to avoid cycles.
|
|
if (Depth == MaxSpeculationDepth)
|
|
return false;
|
|
|
|
Instruction *I = dyn_cast<Instruction>(V);
|
|
if (!I) {
|
|
// Non-instructions all dominate instructions, but not all constantexprs
|
|
// can be executed unconditionally.
|
|
if (ConstantExpr *C = dyn_cast<ConstantExpr>(V))
|
|
if (C->canTrap())
|
|
return false;
|
|
return true;
|
|
}
|
|
BasicBlock *PBB = I->getParent();
|
|
|
|
// We don't want to allow weird loops that might have the "if condition" in
|
|
// the bottom of this block.
|
|
if (PBB == BB)
|
|
return false;
|
|
|
|
// If this instruction is defined in a block that contains an unconditional
|
|
// branch to BB, then it must be in the 'conditional' part of the "if
|
|
// statement". If not, it definitely dominates the region.
|
|
BranchInst *BI = dyn_cast<BranchInst>(PBB->getTerminator());
|
|
if (!BI || BI->isConditional() || BI->getSuccessor(0) != BB)
|
|
return true;
|
|
|
|
// If we have seen this instruction before, don't count it again.
|
|
if (AggressiveInsts.count(I))
|
|
return true;
|
|
|
|
// Okay, it looks like the instruction IS in the "condition". Check to
|
|
// see if it's a cheap instruction to unconditionally compute, and if it
|
|
// only uses stuff defined outside of the condition. If so, hoist it out.
|
|
if (!isSafeToSpeculativelyExecute(I))
|
|
return false;
|
|
|
|
Cost += computeSpeculationCost(I, TTI);
|
|
|
|
// Allow exactly one instruction to be speculated regardless of its cost
|
|
// (as long as it is safe to do so).
|
|
// This is intended to flatten the CFG even if the instruction is a division
|
|
// or other expensive operation. The speculation of an expensive instruction
|
|
// is expected to be undone in CodeGenPrepare if the speculation has not
|
|
// enabled further IR optimizations.
|
|
if (Cost > Budget &&
|
|
(!SpeculateOneExpensiveInst || !AggressiveInsts.empty() || Depth > 0 ||
|
|
!Cost.isValid()))
|
|
return false;
|
|
|
|
// Okay, we can only really hoist these out if their operands do
|
|
// not take us over the cost threshold.
|
|
for (Use &Op : I->operands())
|
|
if (!dominatesMergePoint(Op, BB, AggressiveInsts, Cost, Budget, TTI,
|
|
Depth + 1))
|
|
return false;
|
|
// Okay, it's safe to do this! Remember this instruction.
|
|
AggressiveInsts.insert(I);
|
|
return true;
|
|
}
|
|
|
|
/// Extract ConstantInt from value, looking through IntToPtr
|
|
/// and PointerNullValue. Return NULL if value is not a constant int.
|
|
static ConstantInt *GetConstantInt(Value *V, const DataLayout &DL) {
|
|
// Normal constant int.
|
|
ConstantInt *CI = dyn_cast<ConstantInt>(V);
|
|
if (CI || !isa<Constant>(V) || !V->getType()->isPointerTy())
|
|
return CI;
|
|
|
|
// This is some kind of pointer constant. Turn it into a pointer-sized
|
|
// ConstantInt if possible.
|
|
IntegerType *PtrTy = cast<IntegerType>(DL.getIntPtrType(V->getType()));
|
|
|
|
// Null pointer means 0, see SelectionDAGBuilder::getValue(const Value*).
|
|
if (isa<ConstantPointerNull>(V))
|
|
return ConstantInt::get(PtrTy, 0);
|
|
|
|
// IntToPtr const int.
|
|
if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V))
|
|
if (CE->getOpcode() == Instruction::IntToPtr)
|
|
if (ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(0))) {
|
|
// The constant is very likely to have the right type already.
|
|
if (CI->getType() == PtrTy)
|
|
return CI;
|
|
else
|
|
return cast<ConstantInt>(
|
|
ConstantExpr::getIntegerCast(CI, PtrTy, /*isSigned=*/false));
|
|
}
|
|
return nullptr;
|
|
}
|
|
|
|
namespace {
|
|
|
|
/// Given a chain of or (||) or and (&&) comparison of a value against a
|
|
/// constant, this will try to recover the information required for a switch
|
|
/// structure.
|
|
/// It will depth-first traverse the chain of comparison, seeking for patterns
|
|
/// like %a == 12 or %a < 4 and combine them to produce a set of integer
|
|
/// representing the different cases for the switch.
|
|
/// Note that if the chain is composed of '||' it will build the set of elements
|
|
/// that matches the comparisons (i.e. any of this value validate the chain)
|
|
/// while for a chain of '&&' it will build the set elements that make the test
|
|
/// fail.
|
|
struct ConstantComparesGatherer {
|
|
const DataLayout &DL;
|
|
|
|
/// Value found for the switch comparison
|
|
Value *CompValue = nullptr;
|
|
|
|
/// Extra clause to be checked before the switch
|
|
Value *Extra = nullptr;
|
|
|
|
/// Set of integers to match in switch
|
|
SmallVector<ConstantInt *, 8> Vals;
|
|
|
|
/// Number of comparisons matched in the and/or chain
|
|
unsigned UsedICmps = 0;
|
|
|
|
/// Construct and compute the result for the comparison instruction Cond
|
|
ConstantComparesGatherer(Instruction *Cond, const DataLayout &DL) : DL(DL) {
|
|
gather(Cond);
|
|
}
|
|
|
|
ConstantComparesGatherer(const ConstantComparesGatherer &) = delete;
|
|
ConstantComparesGatherer &
|
|
operator=(const ConstantComparesGatherer &) = delete;
|
|
|
|
private:
|
|
/// Try to set the current value used for the comparison, it succeeds only if
|
|
/// it wasn't set before or if the new value is the same as the old one
|
|
bool setValueOnce(Value *NewVal) {
|
|
if (CompValue && CompValue != NewVal)
|
|
return false;
|
|
CompValue = NewVal;
|
|
return (CompValue != nullptr);
|
|
}
|
|
|
|
/// Try to match Instruction "I" as a comparison against a constant and
|
|
/// populates the array Vals with the set of values that match (or do not
|
|
/// match depending on isEQ).
|
|
/// Return false on failure. On success, the Value the comparison matched
|
|
/// against is placed in CompValue.
|
|
/// If CompValue is already set, the function is expected to fail if a match
|
|
/// is found but the value compared to is different.
|
|
bool matchInstruction(Instruction *I, bool isEQ) {
|
|
// If this is an icmp against a constant, handle this as one of the cases.
|
|
ICmpInst *ICI;
|
|
ConstantInt *C;
|
|
if (!((ICI = dyn_cast<ICmpInst>(I)) &&
|
|
(C = GetConstantInt(I->getOperand(1), DL)))) {
|
|
return false;
|
|
}
|
|
|
|
Value *RHSVal;
|
|
const APInt *RHSC;
|
|
|
|
// Pattern match a special case
|
|
// (x & ~2^z) == y --> x == y || x == y|2^z
|
|
// This undoes a transformation done by instcombine to fuse 2 compares.
|
|
if (ICI->getPredicate() == (isEQ ? ICmpInst::ICMP_EQ : ICmpInst::ICMP_NE)) {
|
|
// It's a little bit hard to see why the following transformations are
|
|
// correct. Here is a CVC3 program to verify them for 64-bit values:
|
|
|
|
/*
|
|
ONE : BITVECTOR(64) = BVZEROEXTEND(0bin1, 63);
|
|
x : BITVECTOR(64);
|
|
y : BITVECTOR(64);
|
|
z : BITVECTOR(64);
|
|
mask : BITVECTOR(64) = BVSHL(ONE, z);
|
|
QUERY( (y & ~mask = y) =>
|
|
((x & ~mask = y) <=> (x = y OR x = (y | mask)))
|
|
);
|
|
QUERY( (y | mask = y) =>
|
|
((x | mask = y) <=> (x = y OR x = (y & ~mask)))
|
|
);
|
|
*/
|
|
|
|
// Please note that each pattern must be a dual implication (<--> or
|
|
// iff). One directional implication can create spurious matches. If the
|
|
// implication is only one-way, an unsatisfiable condition on the left
|
|
// side can imply a satisfiable condition on the right side. Dual
|
|
// implication ensures that satisfiable conditions are transformed to
|
|
// other satisfiable conditions and unsatisfiable conditions are
|
|
// transformed to other unsatisfiable conditions.
|
|
|
|
// Here is a concrete example of a unsatisfiable condition on the left
|
|
// implying a satisfiable condition on the right:
|
|
//
|
|
// mask = (1 << z)
|
|
// (x & ~mask) == y --> (x == y || x == (y | mask))
|
|
//
|
|
// Substituting y = 3, z = 0 yields:
|
|
// (x & -2) == 3 --> (x == 3 || x == 2)
|
|
|
|
// Pattern match a special case:
|
|
/*
|
|
QUERY( (y & ~mask = y) =>
|
|
((x & ~mask = y) <=> (x = y OR x = (y | mask)))
|
|
);
|
|
*/
|
|
if (match(ICI->getOperand(0),
|
|
m_And(m_Value(RHSVal), m_APInt(RHSC)))) {
|
|
APInt Mask = ~*RHSC;
|
|
if (Mask.isPowerOf2() && (C->getValue() & ~Mask) == C->getValue()) {
|
|
// If we already have a value for the switch, it has to match!
|
|
if (!setValueOnce(RHSVal))
|
|
return false;
|
|
|
|
Vals.push_back(C);
|
|
Vals.push_back(
|
|
ConstantInt::get(C->getContext(),
|
|
C->getValue() | Mask));
|
|
UsedICmps++;
|
|
return true;
|
|
}
|
|
}
|
|
|
|
// Pattern match a special case:
|
|
/*
|
|
QUERY( (y | mask = y) =>
|
|
((x | mask = y) <=> (x = y OR x = (y & ~mask)))
|
|
);
|
|
*/
|
|
if (match(ICI->getOperand(0),
|
|
m_Or(m_Value(RHSVal), m_APInt(RHSC)))) {
|
|
APInt Mask = *RHSC;
|
|
if (Mask.isPowerOf2() && (C->getValue() | Mask) == C->getValue()) {
|
|
// If we already have a value for the switch, it has to match!
|
|
if (!setValueOnce(RHSVal))
|
|
return false;
|
|
|
|
Vals.push_back(C);
|
|
Vals.push_back(ConstantInt::get(C->getContext(),
|
|
C->getValue() & ~Mask));
|
|
UsedICmps++;
|
|
return true;
|
|
}
|
|
}
|
|
|
|
// If we already have a value for the switch, it has to match!
|
|
if (!setValueOnce(ICI->getOperand(0)))
|
|
return false;
|
|
|
|
UsedICmps++;
|
|
Vals.push_back(C);
|
|
return ICI->getOperand(0);
|
|
}
|
|
|
|
// If we have "x ult 3", for example, then we can add 0,1,2 to the set.
|
|
ConstantRange Span =
|
|
ConstantRange::makeExactICmpRegion(ICI->getPredicate(), C->getValue());
|
|
|
|
// Shift the range if the compare is fed by an add. This is the range
|
|
// compare idiom as emitted by instcombine.
|
|
Value *CandidateVal = I->getOperand(0);
|
|
if (match(I->getOperand(0), m_Add(m_Value(RHSVal), m_APInt(RHSC)))) {
|
|
Span = Span.subtract(*RHSC);
|
|
CandidateVal = RHSVal;
|
|
}
|
|
|
|
// If this is an and/!= check, then we are looking to build the set of
|
|
// value that *don't* pass the and chain. I.e. to turn "x ugt 2" into
|
|
// x != 0 && x != 1.
|
|
if (!isEQ)
|
|
Span = Span.inverse();
|
|
|
|
// If there are a ton of values, we don't want to make a ginormous switch.
|
|
if (Span.isSizeLargerThan(8) || Span.isEmptySet()) {
|
|
return false;
|
|
}
|
|
|
|
// If we already have a value for the switch, it has to match!
|
|
if (!setValueOnce(CandidateVal))
|
|
return false;
|
|
|
|
// Add all values from the range to the set
|
|
for (APInt Tmp = Span.getLower(); Tmp != Span.getUpper(); ++Tmp)
|
|
Vals.push_back(ConstantInt::get(I->getContext(), Tmp));
|
|
|
|
UsedICmps++;
|
|
return true;
|
|
}
|
|
|
|
/// Given a potentially 'or'd or 'and'd together collection of icmp
|
|
/// eq/ne/lt/gt instructions that compare a value against a constant, extract
|
|
/// the value being compared, and stick the list constants into the Vals
|
|
/// vector.
|
|
/// One "Extra" case is allowed to differ from the other.
|
|
void gather(Value *V) {
|
|
bool isEQ = match(V, m_LogicalOr(m_Value(), m_Value()));
|
|
|
|
// Keep a stack (SmallVector for efficiency) for depth-first traversal
|
|
SmallVector<Value *, 8> DFT;
|
|
SmallPtrSet<Value *, 8> Visited;
|
|
|
|
// Initialize
|
|
Visited.insert(V);
|
|
DFT.push_back(V);
|
|
|
|
while (!DFT.empty()) {
|
|
V = DFT.pop_back_val();
|
|
|
|
if (Instruction *I = dyn_cast<Instruction>(V)) {
|
|
// If it is a || (or && depending on isEQ), process the operands.
|
|
Value *Op0, *Op1;
|
|
if (isEQ ? match(I, m_LogicalOr(m_Value(Op0), m_Value(Op1)))
|
|
: match(I, m_LogicalAnd(m_Value(Op0), m_Value(Op1)))) {
|
|
if (Visited.insert(Op1).second)
|
|
DFT.push_back(Op1);
|
|
if (Visited.insert(Op0).second)
|
|
DFT.push_back(Op0);
|
|
|
|
continue;
|
|
}
|
|
|
|
// Try to match the current instruction
|
|
if (matchInstruction(I, isEQ))
|
|
// Match succeed, continue the loop
|
|
continue;
|
|
}
|
|
|
|
// One element of the sequence of || (or &&) could not be match as a
|
|
// comparison against the same value as the others.
|
|
// We allow only one "Extra" case to be checked before the switch
|
|
if (!Extra) {
|
|
Extra = V;
|
|
continue;
|
|
}
|
|
// Failed to parse a proper sequence, abort now
|
|
CompValue = nullptr;
|
|
break;
|
|
}
|
|
}
|
|
};
|
|
|
|
} // end anonymous namespace
|
|
|
|
static void EraseTerminatorAndDCECond(Instruction *TI,
|
|
MemorySSAUpdater *MSSAU = nullptr) {
|
|
Instruction *Cond = nullptr;
|
|
if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
|
|
Cond = dyn_cast<Instruction>(SI->getCondition());
|
|
} else if (BranchInst *BI = dyn_cast<BranchInst>(TI)) {
|
|
if (BI->isConditional())
|
|
Cond = dyn_cast<Instruction>(BI->getCondition());
|
|
} else if (IndirectBrInst *IBI = dyn_cast<IndirectBrInst>(TI)) {
|
|
Cond = dyn_cast<Instruction>(IBI->getAddress());
|
|
}
|
|
|
|
TI->eraseFromParent();
|
|
if (Cond)
|
|
RecursivelyDeleteTriviallyDeadInstructions(Cond, nullptr, MSSAU);
|
|
}
|
|
|
|
/// Return true if the specified terminator checks
|
|
/// to see if a value is equal to constant integer value.
|
|
Value *SimplifyCFGOpt::isValueEqualityComparison(Instruction *TI) {
|
|
Value *CV = nullptr;
|
|
if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
|
|
// Do not permit merging of large switch instructions into their
|
|
// predecessors unless there is only one predecessor.
|
|
if (!SI->getParent()->hasNPredecessorsOrMore(128 / SI->getNumSuccessors()))
|
|
CV = SI->getCondition();
|
|
} else if (BranchInst *BI = dyn_cast<BranchInst>(TI))
|
|
if (BI->isConditional() && BI->getCondition()->hasOneUse())
|
|
if (ICmpInst *ICI = dyn_cast<ICmpInst>(BI->getCondition())) {
|
|
if (ICI->isEquality() && GetConstantInt(ICI->getOperand(1), DL))
|
|
CV = ICI->getOperand(0);
|
|
}
|
|
|
|
// Unwrap any lossless ptrtoint cast.
|
|
if (CV) {
|
|
if (PtrToIntInst *PTII = dyn_cast<PtrToIntInst>(CV)) {
|
|
Value *Ptr = PTII->getPointerOperand();
|
|
if (PTII->getType() == DL.getIntPtrType(Ptr->getType()))
|
|
CV = Ptr;
|
|
}
|
|
}
|
|
return CV;
|
|
}
|
|
|
|
/// Given a value comparison instruction,
|
|
/// decode all of the 'cases' that it represents and return the 'default' block.
|
|
BasicBlock *SimplifyCFGOpt::GetValueEqualityComparisonCases(
|
|
Instruction *TI, std::vector<ValueEqualityComparisonCase> &Cases) {
|
|
if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
|
|
Cases.reserve(SI->getNumCases());
|
|
for (auto Case : SI->cases())
|
|
Cases.push_back(ValueEqualityComparisonCase(Case.getCaseValue(),
|
|
Case.getCaseSuccessor()));
|
|
return SI->getDefaultDest();
|
|
}
|
|
|
|
BranchInst *BI = cast<BranchInst>(TI);
|
|
ICmpInst *ICI = cast<ICmpInst>(BI->getCondition());
|
|
BasicBlock *Succ = BI->getSuccessor(ICI->getPredicate() == ICmpInst::ICMP_NE);
|
|
Cases.push_back(ValueEqualityComparisonCase(
|
|
GetConstantInt(ICI->getOperand(1), DL), Succ));
|
|
return BI->getSuccessor(ICI->getPredicate() == ICmpInst::ICMP_EQ);
|
|
}
|
|
|
|
/// Given a vector of bb/value pairs, remove any entries
|
|
/// in the list that match the specified block.
|
|
static void
|
|
EliminateBlockCases(BasicBlock *BB,
|
|
std::vector<ValueEqualityComparisonCase> &Cases) {
|
|
llvm::erase_value(Cases, BB);
|
|
}
|
|
|
|
/// Return true if there are any keys in C1 that exist in C2 as well.
|
|
static bool ValuesOverlap(std::vector<ValueEqualityComparisonCase> &C1,
|
|
std::vector<ValueEqualityComparisonCase> &C2) {
|
|
std::vector<ValueEqualityComparisonCase> *V1 = &C1, *V2 = &C2;
|
|
|
|
// Make V1 be smaller than V2.
|
|
if (V1->size() > V2->size())
|
|
std::swap(V1, V2);
|
|
|
|
if (V1->empty())
|
|
return false;
|
|
if (V1->size() == 1) {
|
|
// Just scan V2.
|
|
ConstantInt *TheVal = (*V1)[0].Value;
|
|
for (unsigned i = 0, e = V2->size(); i != e; ++i)
|
|
if (TheVal == (*V2)[i].Value)
|
|
return true;
|
|
}
|
|
|
|
// Otherwise, just sort both lists and compare element by element.
|
|
array_pod_sort(V1->begin(), V1->end());
|
|
array_pod_sort(V2->begin(), V2->end());
|
|
unsigned i1 = 0, i2 = 0, e1 = V1->size(), e2 = V2->size();
|
|
while (i1 != e1 && i2 != e2) {
|
|
if ((*V1)[i1].Value == (*V2)[i2].Value)
|
|
return true;
|
|
if ((*V1)[i1].Value < (*V2)[i2].Value)
|
|
++i1;
|
|
else
|
|
++i2;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
// Set branch weights on SwitchInst. This sets the metadata if there is at
|
|
// least one non-zero weight.
|
|
static void setBranchWeights(SwitchInst *SI, ArrayRef<uint32_t> Weights) {
|
|
// Check that there is at least one non-zero weight. Otherwise, pass
|
|
// nullptr to setMetadata which will erase the existing metadata.
|
|
MDNode *N = nullptr;
|
|
if (llvm::any_of(Weights, [](uint32_t W) { return W != 0; }))
|
|
N = MDBuilder(SI->getParent()->getContext()).createBranchWeights(Weights);
|
|
SI->setMetadata(LLVMContext::MD_prof, N);
|
|
}
|
|
|
|
// Similar to the above, but for branch and select instructions that take
|
|
// exactly 2 weights.
|
|
static void setBranchWeights(Instruction *I, uint32_t TrueWeight,
|
|
uint32_t FalseWeight) {
|
|
assert(isa<BranchInst>(I) || isa<SelectInst>(I));
|
|
// Check that there is at least one non-zero weight. Otherwise, pass
|
|
// nullptr to setMetadata which will erase the existing metadata.
|
|
MDNode *N = nullptr;
|
|
if (TrueWeight || FalseWeight)
|
|
N = MDBuilder(I->getParent()->getContext())
|
|
.createBranchWeights(TrueWeight, FalseWeight);
|
|
I->setMetadata(LLVMContext::MD_prof, N);
|
|
}
|
|
|
|
/// If TI is known to be a terminator instruction and its block is known to
|
|
/// only have a single predecessor block, check to see if that predecessor is
|
|
/// also a value comparison with the same value, and if that comparison
|
|
/// determines the outcome of this comparison. If so, simplify TI. This does a
|
|
/// very limited form of jump threading.
|
|
bool SimplifyCFGOpt::SimplifyEqualityComparisonWithOnlyPredecessor(
|
|
Instruction *TI, BasicBlock *Pred, IRBuilder<> &Builder) {
|
|
Value *PredVal = isValueEqualityComparison(Pred->getTerminator());
|
|
if (!PredVal)
|
|
return false; // Not a value comparison in predecessor.
|
|
|
|
Value *ThisVal = isValueEqualityComparison(TI);
|
|
assert(ThisVal && "This isn't a value comparison!!");
|
|
if (ThisVal != PredVal)
|
|
return false; // Different predicates.
|
|
|
|
// TODO: Preserve branch weight metadata, similarly to how
|
|
// FoldValueComparisonIntoPredecessors preserves it.
|
|
|
|
// Find out information about when control will move from Pred to TI's block.
|
|
std::vector<ValueEqualityComparisonCase> PredCases;
|
|
BasicBlock *PredDef =
|
|
GetValueEqualityComparisonCases(Pred->getTerminator(), PredCases);
|
|
EliminateBlockCases(PredDef, PredCases); // Remove default from cases.
|
|
|
|
// Find information about how control leaves this block.
|
|
std::vector<ValueEqualityComparisonCase> ThisCases;
|
|
BasicBlock *ThisDef = GetValueEqualityComparisonCases(TI, ThisCases);
|
|
EliminateBlockCases(ThisDef, ThisCases); // Remove default from cases.
|
|
|
|
// If TI's block is the default block from Pred's comparison, potentially
|
|
// simplify TI based on this knowledge.
|
|
if (PredDef == TI->getParent()) {
|
|
// If we are here, we know that the value is none of those cases listed in
|
|
// PredCases. If there are any cases in ThisCases that are in PredCases, we
|
|
// can simplify TI.
|
|
if (!ValuesOverlap(PredCases, ThisCases))
|
|
return false;
|
|
|
|
if (isa<BranchInst>(TI)) {
|
|
// Okay, one of the successors of this condbr is dead. Convert it to a
|
|
// uncond br.
|
|
assert(ThisCases.size() == 1 && "Branch can only have one case!");
|
|
// Insert the new branch.
|
|
Instruction *NI = Builder.CreateBr(ThisDef);
|
|
(void)NI;
|
|
|
|
// Remove PHI node entries for the dead edge.
|
|
ThisCases[0].Dest->removePredecessor(PredDef);
|
|
|
|
LLVM_DEBUG(dbgs() << "Threading pred instr: " << *Pred->getTerminator()
|
|
<< "Through successor TI: " << *TI << "Leaving: " << *NI
|
|
<< "\n");
|
|
|
|
EraseTerminatorAndDCECond(TI);
|
|
|
|
if (DTU)
|
|
DTU->applyUpdates(
|
|
{{DominatorTree::Delete, PredDef, ThisCases[0].Dest}});
|
|
|
|
return true;
|
|
}
|
|
|
|
SwitchInstProfUpdateWrapper SI = *cast<SwitchInst>(TI);
|
|
// Okay, TI has cases that are statically dead, prune them away.
|
|
SmallPtrSet<Constant *, 16> DeadCases;
|
|
for (unsigned i = 0, e = PredCases.size(); i != e; ++i)
|
|
DeadCases.insert(PredCases[i].Value);
|
|
|
|
LLVM_DEBUG(dbgs() << "Threading pred instr: " << *Pred->getTerminator()
|
|
<< "Through successor TI: " << *TI);
|
|
|
|
SmallDenseMap<BasicBlock *, int, 8> NumPerSuccessorCases;
|
|
for (SwitchInst::CaseIt i = SI->case_end(), e = SI->case_begin(); i != e;) {
|
|
--i;
|
|
auto *Successor = i->getCaseSuccessor();
|
|
if (DTU)
|
|
++NumPerSuccessorCases[Successor];
|
|
if (DeadCases.count(i->getCaseValue())) {
|
|
Successor->removePredecessor(PredDef);
|
|
SI.removeCase(i);
|
|
if (DTU)
|
|
--NumPerSuccessorCases[Successor];
|
|
}
|
|
}
|
|
|
|
if (DTU) {
|
|
std::vector<DominatorTree::UpdateType> Updates;
|
|
for (const std::pair<BasicBlock *, int> &I : NumPerSuccessorCases)
|
|
if (I.second == 0)
|
|
Updates.push_back({DominatorTree::Delete, PredDef, I.first});
|
|
DTU->applyUpdates(Updates);
|
|
}
|
|
|
|
LLVM_DEBUG(dbgs() << "Leaving: " << *TI << "\n");
|
|
return true;
|
|
}
|
|
|
|
// Otherwise, TI's block must correspond to some matched value. Find out
|
|
// which value (or set of values) this is.
|
|
ConstantInt *TIV = nullptr;
|
|
BasicBlock *TIBB = TI->getParent();
|
|
for (unsigned i = 0, e = PredCases.size(); i != e; ++i)
|
|
if (PredCases[i].Dest == TIBB) {
|
|
if (TIV)
|
|
return false; // Cannot handle multiple values coming to this block.
|
|
TIV = PredCases[i].Value;
|
|
}
|
|
assert(TIV && "No edge from pred to succ?");
|
|
|
|
// Okay, we found the one constant that our value can be if we get into TI's
|
|
// BB. Find out which successor will unconditionally be branched to.
|
|
BasicBlock *TheRealDest = nullptr;
|
|
for (unsigned i = 0, e = ThisCases.size(); i != e; ++i)
|
|
if (ThisCases[i].Value == TIV) {
|
|
TheRealDest = ThisCases[i].Dest;
|
|
break;
|
|
}
|
|
|
|
// If not handled by any explicit cases, it is handled by the default case.
|
|
if (!TheRealDest)
|
|
TheRealDest = ThisDef;
|
|
|
|
SmallPtrSet<BasicBlock *, 2> RemovedSuccs;
|
|
|
|
// Remove PHI node entries for dead edges.
|
|
BasicBlock *CheckEdge = TheRealDest;
|
|
for (BasicBlock *Succ : successors(TIBB))
|
|
if (Succ != CheckEdge) {
|
|
if (Succ != TheRealDest)
|
|
RemovedSuccs.insert(Succ);
|
|
Succ->removePredecessor(TIBB);
|
|
} else
|
|
CheckEdge = nullptr;
|
|
|
|
// Insert the new branch.
|
|
Instruction *NI = Builder.CreateBr(TheRealDest);
|
|
(void)NI;
|
|
|
|
LLVM_DEBUG(dbgs() << "Threading pred instr: " << *Pred->getTerminator()
|
|
<< "Through successor TI: " << *TI << "Leaving: " << *NI
|
|
<< "\n");
|
|
|
|
EraseTerminatorAndDCECond(TI);
|
|
if (DTU) {
|
|
SmallVector<DominatorTree::UpdateType, 2> Updates;
|
|
Updates.reserve(RemovedSuccs.size());
|
|
for (auto *RemovedSucc : RemovedSuccs)
|
|
Updates.push_back({DominatorTree::Delete, TIBB, RemovedSucc});
|
|
DTU->applyUpdates(Updates);
|
|
}
|
|
return true;
|
|
}
|
|
|
|
namespace {
|
|
|
|
/// This class implements a stable ordering of constant
|
|
/// integers that does not depend on their address. This is important for
|
|
/// applications that sort ConstantInt's to ensure uniqueness.
|
|
struct ConstantIntOrdering {
|
|
bool operator()(const ConstantInt *LHS, const ConstantInt *RHS) const {
|
|
return LHS->getValue().ult(RHS->getValue());
|
|
}
|
|
};
|
|
|
|
} // end anonymous namespace
|
|
|
|
static int ConstantIntSortPredicate(ConstantInt *const *P1,
|
|
ConstantInt *const *P2) {
|
|
const ConstantInt *LHS = *P1;
|
|
const ConstantInt *RHS = *P2;
|
|
if (LHS == RHS)
|
|
return 0;
|
|
return LHS->getValue().ult(RHS->getValue()) ? 1 : -1;
|
|
}
|
|
|
|
static inline bool HasBranchWeights(const Instruction *I) {
|
|
MDNode *ProfMD = I->getMetadata(LLVMContext::MD_prof);
|
|
if (ProfMD && ProfMD->getOperand(0))
|
|
if (MDString *MDS = dyn_cast<MDString>(ProfMD->getOperand(0)))
|
|
return MDS->getString().equals("branch_weights");
|
|
|
|
return false;
|
|
}
|
|
|
|
/// Get Weights of a given terminator, the default weight is at the front
|
|
/// of the vector. If TI is a conditional eq, we need to swap the branch-weight
|
|
/// metadata.
|
|
static void GetBranchWeights(Instruction *TI,
|
|
SmallVectorImpl<uint64_t> &Weights) {
|
|
MDNode *MD = TI->getMetadata(LLVMContext::MD_prof);
|
|
assert(MD);
|
|
for (unsigned i = 1, e = MD->getNumOperands(); i < e; ++i) {
|
|
ConstantInt *CI = mdconst::extract<ConstantInt>(MD->getOperand(i));
|
|
Weights.push_back(CI->getValue().getZExtValue());
|
|
}
|
|
|
|
// If TI is a conditional eq, the default case is the false case,
|
|
// and the corresponding branch-weight data is at index 2. We swap the
|
|
// default weight to be the first entry.
|
|
if (BranchInst *BI = dyn_cast<BranchInst>(TI)) {
|
|
assert(Weights.size() == 2);
|
|
ICmpInst *ICI = cast<ICmpInst>(BI->getCondition());
|
|
if (ICI->getPredicate() == ICmpInst::ICMP_EQ)
|
|
std::swap(Weights.front(), Weights.back());
|
|
}
|
|
}
|
|
|
|
/// Keep halving the weights until all can fit in uint32_t.
|
|
static void FitWeights(MutableArrayRef<uint64_t> Weights) {
|
|
uint64_t Max = *std::max_element(Weights.begin(), Weights.end());
|
|
if (Max > UINT_MAX) {
|
|
unsigned Offset = 32 - countLeadingZeros(Max);
|
|
for (uint64_t &I : Weights)
|
|
I >>= Offset;
|
|
}
|
|
}
|
|
|
|
static void CloneInstructionsIntoPredecessorBlockAndUpdateSSAUses(
|
|
BasicBlock *BB, BasicBlock *PredBlock, ValueToValueMapTy &VMap) {
|
|
Instruction *PTI = PredBlock->getTerminator();
|
|
|
|
// If we have bonus instructions, clone them into the predecessor block.
|
|
// Note that there may be multiple predecessor blocks, so we cannot move
|
|
// bonus instructions to a predecessor block.
|
|
for (Instruction &BonusInst : *BB) {
|
|
if (isa<DbgInfoIntrinsic>(BonusInst) || BonusInst.isTerminator())
|
|
continue;
|
|
|
|
Instruction *NewBonusInst = BonusInst.clone();
|
|
|
|
if (PTI->getDebugLoc() != NewBonusInst->getDebugLoc()) {
|
|
// Unless the instruction has the same !dbg location as the original
|
|
// branch, drop it. When we fold the bonus instructions we want to make
|
|
// sure we reset their debug locations in order to avoid stepping on
|
|
// dead code caused by folding dead branches.
|
|
NewBonusInst->setDebugLoc(DebugLoc());
|
|
}
|
|
|
|
RemapInstruction(NewBonusInst, VMap,
|
|
RF_NoModuleLevelChanges | RF_IgnoreMissingLocals);
|
|
VMap[&BonusInst] = NewBonusInst;
|
|
|
|
// If we moved a load, we cannot any longer claim any knowledge about
|
|
// its potential value. The previous information might have been valid
|
|
// only given the branch precondition.
|
|
// For an analogous reason, we must also drop all the metadata whose
|
|
// semantics we don't understand. We *can* preserve !annotation, because
|
|
// it is tied to the instruction itself, not the value or position.
|
|
// Similarly strip attributes on call parameters that may cause UB in
|
|
// location the call is moved to.
|
|
NewBonusInst->dropUndefImplyingAttrsAndUnknownMetadata(
|
|
LLVMContext::MD_annotation);
|
|
|
|
PredBlock->getInstList().insert(PTI->getIterator(), NewBonusInst);
|
|
NewBonusInst->takeName(&BonusInst);
|
|
BonusInst.setName(NewBonusInst->getName() + ".old");
|
|
|
|
// Update (liveout) uses of bonus instructions,
|
|
// now that the bonus instruction has been cloned into predecessor.
|
|
// Note that we expect to be in a block-closed SSA form for this to work!
|
|
for (Use &U : make_early_inc_range(BonusInst.uses())) {
|
|
auto *UI = cast<Instruction>(U.getUser());
|
|
auto *PN = dyn_cast<PHINode>(UI);
|
|
if (!PN) {
|
|
assert(UI->getParent() == BB && BonusInst.comesBefore(UI) &&
|
|
"If the user is not a PHI node, then it should be in the same "
|
|
"block as, and come after, the original bonus instruction.");
|
|
continue; // Keep using the original bonus instruction.
|
|
}
|
|
// Is this the block-closed SSA form PHI node?
|
|
if (PN->getIncomingBlock(U) == BB)
|
|
continue; // Great, keep using the original bonus instruction.
|
|
// The only other alternative is an "use" when coming from
|
|
// the predecessor block - here we should refer to the cloned bonus instr.
|
|
assert(PN->getIncomingBlock(U) == PredBlock &&
|
|
"Not in block-closed SSA form?");
|
|
U.set(NewBonusInst);
|
|
}
|
|
}
|
|
}
|
|
|
|
bool SimplifyCFGOpt::PerformValueComparisonIntoPredecessorFolding(
|
|
Instruction *TI, Value *&CV, Instruction *PTI, IRBuilder<> &Builder) {
|
|
BasicBlock *BB = TI->getParent();
|
|
BasicBlock *Pred = PTI->getParent();
|
|
|
|
SmallVector<DominatorTree::UpdateType, 32> Updates;
|
|
|
|
// Figure out which 'cases' to copy from SI to PSI.
|
|
std::vector<ValueEqualityComparisonCase> BBCases;
|
|
BasicBlock *BBDefault = GetValueEqualityComparisonCases(TI, BBCases);
|
|
|
|
std::vector<ValueEqualityComparisonCase> PredCases;
|
|
BasicBlock *PredDefault = GetValueEqualityComparisonCases(PTI, PredCases);
|
|
|
|
// Based on whether the default edge from PTI goes to BB or not, fill in
|
|
// PredCases and PredDefault with the new switch cases we would like to
|
|
// build.
|
|
SmallMapVector<BasicBlock *, int, 8> NewSuccessors;
|
|
|
|
// Update the branch weight metadata along the way
|
|
SmallVector<uint64_t, 8> Weights;
|
|
bool PredHasWeights = HasBranchWeights(PTI);
|
|
bool SuccHasWeights = HasBranchWeights(TI);
|
|
|
|
if (PredHasWeights) {
|
|
GetBranchWeights(PTI, Weights);
|
|
// branch-weight metadata is inconsistent here.
|
|
if (Weights.size() != 1 + PredCases.size())
|
|
PredHasWeights = SuccHasWeights = false;
|
|
} else if (SuccHasWeights)
|
|
// If there are no predecessor weights but there are successor weights,
|
|
// populate Weights with 1, which will later be scaled to the sum of
|
|
// successor's weights
|
|
Weights.assign(1 + PredCases.size(), 1);
|
|
|
|
SmallVector<uint64_t, 8> SuccWeights;
|
|
if (SuccHasWeights) {
|
|
GetBranchWeights(TI, SuccWeights);
|
|
// branch-weight metadata is inconsistent here.
|
|
if (SuccWeights.size() != 1 + BBCases.size())
|
|
PredHasWeights = SuccHasWeights = false;
|
|
} else if (PredHasWeights)
|
|
SuccWeights.assign(1 + BBCases.size(), 1);
|
|
|
|
if (PredDefault == BB) {
|
|
// If this is the default destination from PTI, only the edges in TI
|
|
// that don't occur in PTI, or that branch to BB will be activated.
|
|
std::set<ConstantInt *, ConstantIntOrdering> PTIHandled;
|
|
for (unsigned i = 0, e = PredCases.size(); i != e; ++i)
|
|
if (PredCases[i].Dest != BB)
|
|
PTIHandled.insert(PredCases[i].Value);
|
|
else {
|
|
// The default destination is BB, we don't need explicit targets.
|
|
std::swap(PredCases[i], PredCases.back());
|
|
|
|
if (PredHasWeights || SuccHasWeights) {
|
|
// Increase weight for the default case.
|
|
Weights[0] += Weights[i + 1];
|
|
std::swap(Weights[i + 1], Weights.back());
|
|
Weights.pop_back();
|
|
}
|
|
|
|
PredCases.pop_back();
|
|
--i;
|
|
--e;
|
|
}
|
|
|
|
// Reconstruct the new switch statement we will be building.
|
|
if (PredDefault != BBDefault) {
|
|
PredDefault->removePredecessor(Pred);
|
|
if (DTU && PredDefault != BB)
|
|
Updates.push_back({DominatorTree::Delete, Pred, PredDefault});
|
|
PredDefault = BBDefault;
|
|
++NewSuccessors[BBDefault];
|
|
}
|
|
|
|
unsigned CasesFromPred = Weights.size();
|
|
uint64_t ValidTotalSuccWeight = 0;
|
|
for (unsigned i = 0, e = BBCases.size(); i != e; ++i)
|
|
if (!PTIHandled.count(BBCases[i].Value) && BBCases[i].Dest != BBDefault) {
|
|
PredCases.push_back(BBCases[i]);
|
|
++NewSuccessors[BBCases[i].Dest];
|
|
if (SuccHasWeights || PredHasWeights) {
|
|
// The default weight is at index 0, so weight for the ith case
|
|
// should be at index i+1. Scale the cases from successor by
|
|
// PredDefaultWeight (Weights[0]).
|
|
Weights.push_back(Weights[0] * SuccWeights[i + 1]);
|
|
ValidTotalSuccWeight += SuccWeights[i + 1];
|
|
}
|
|
}
|
|
|
|
if (SuccHasWeights || PredHasWeights) {
|
|
ValidTotalSuccWeight += SuccWeights[0];
|
|
// Scale the cases from predecessor by ValidTotalSuccWeight.
|
|
for (unsigned i = 1; i < CasesFromPred; ++i)
|
|
Weights[i] *= ValidTotalSuccWeight;
|
|
// Scale the default weight by SuccDefaultWeight (SuccWeights[0]).
|
|
Weights[0] *= SuccWeights[0];
|
|
}
|
|
} else {
|
|
// If this is not the default destination from PSI, only the edges
|
|
// in SI that occur in PSI with a destination of BB will be
|
|
// activated.
|
|
std::set<ConstantInt *, ConstantIntOrdering> PTIHandled;
|
|
std::map<ConstantInt *, uint64_t> WeightsForHandled;
|
|
for (unsigned i = 0, e = PredCases.size(); i != e; ++i)
|
|
if (PredCases[i].Dest == BB) {
|
|
PTIHandled.insert(PredCases[i].Value);
|
|
|
|
if (PredHasWeights || SuccHasWeights) {
|
|
WeightsForHandled[PredCases[i].Value] = Weights[i + 1];
|
|
std::swap(Weights[i + 1], Weights.back());
|
|
Weights.pop_back();
|
|
}
|
|
|
|
std::swap(PredCases[i], PredCases.back());
|
|
PredCases.pop_back();
|
|
--i;
|
|
--e;
|
|
}
|
|
|
|
// Okay, now we know which constants were sent to BB from the
|
|
// predecessor. Figure out where they will all go now.
|
|
for (unsigned i = 0, e = BBCases.size(); i != e; ++i)
|
|
if (PTIHandled.count(BBCases[i].Value)) {
|
|
// If this is one we are capable of getting...
|
|
if (PredHasWeights || SuccHasWeights)
|
|
Weights.push_back(WeightsForHandled[BBCases[i].Value]);
|
|
PredCases.push_back(BBCases[i]);
|
|
++NewSuccessors[BBCases[i].Dest];
|
|
PTIHandled.erase(BBCases[i].Value); // This constant is taken care of
|
|
}
|
|
|
|
// If there are any constants vectored to BB that TI doesn't handle,
|
|
// they must go to the default destination of TI.
|
|
for (ConstantInt *I : PTIHandled) {
|
|
if (PredHasWeights || SuccHasWeights)
|
|
Weights.push_back(WeightsForHandled[I]);
|
|
PredCases.push_back(ValueEqualityComparisonCase(I, BBDefault));
|
|
++NewSuccessors[BBDefault];
|
|
}
|
|
}
|
|
|
|
// Okay, at this point, we know which new successor Pred will get. Make
|
|
// sure we update the number of entries in the PHI nodes for these
|
|
// successors.
|
|
SmallPtrSet<BasicBlock *, 2> SuccsOfPred;
|
|
if (DTU) {
|
|
SuccsOfPred = {succ_begin(Pred), succ_end(Pred)};
|
|
Updates.reserve(Updates.size() + NewSuccessors.size());
|
|
}
|
|
for (const std::pair<BasicBlock *, int /*Num*/> &NewSuccessor :
|
|
NewSuccessors) {
|
|
for (auto I : seq(0, NewSuccessor.second)) {
|
|
(void)I;
|
|
AddPredecessorToBlock(NewSuccessor.first, Pred, BB);
|
|
}
|
|
if (DTU && !SuccsOfPred.contains(NewSuccessor.first))
|
|
Updates.push_back({DominatorTree::Insert, Pred, NewSuccessor.first});
|
|
}
|
|
|
|
Builder.SetInsertPoint(PTI);
|
|
// Convert pointer to int before we switch.
|
|
if (CV->getType()->isPointerTy()) {
|
|
CV =
|
|
Builder.CreatePtrToInt(CV, DL.getIntPtrType(CV->getType()), "magicptr");
|
|
}
|
|
|
|
// Now that the successors are updated, create the new Switch instruction.
|
|
SwitchInst *NewSI = Builder.CreateSwitch(CV, PredDefault, PredCases.size());
|
|
NewSI->setDebugLoc(PTI->getDebugLoc());
|
|
for (ValueEqualityComparisonCase &V : PredCases)
|
|
NewSI->addCase(V.Value, V.Dest);
|
|
|
|
if (PredHasWeights || SuccHasWeights) {
|
|
// Halve the weights if any of them cannot fit in an uint32_t
|
|
FitWeights(Weights);
|
|
|
|
SmallVector<uint32_t, 8> MDWeights(Weights.begin(), Weights.end());
|
|
|
|
setBranchWeights(NewSI, MDWeights);
|
|
}
|
|
|
|
EraseTerminatorAndDCECond(PTI);
|
|
|
|
// Okay, last check. If BB is still a successor of PSI, then we must
|
|
// have an infinite loop case. If so, add an infinitely looping block
|
|
// to handle the case to preserve the behavior of the code.
|
|
BasicBlock *InfLoopBlock = nullptr;
|
|
for (unsigned i = 0, e = NewSI->getNumSuccessors(); i != e; ++i)
|
|
if (NewSI->getSuccessor(i) == BB) {
|
|
if (!InfLoopBlock) {
|
|
// Insert it at the end of the function, because it's either code,
|
|
// or it won't matter if it's hot. :)
|
|
InfLoopBlock =
|
|
BasicBlock::Create(BB->getContext(), "infloop", BB->getParent());
|
|
BranchInst::Create(InfLoopBlock, InfLoopBlock);
|
|
if (DTU)
|
|
Updates.push_back(
|
|
{DominatorTree::Insert, InfLoopBlock, InfLoopBlock});
|
|
}
|
|
NewSI->setSuccessor(i, InfLoopBlock);
|
|
}
|
|
|
|
if (DTU) {
|
|
if (InfLoopBlock)
|
|
Updates.push_back({DominatorTree::Insert, Pred, InfLoopBlock});
|
|
|
|
Updates.push_back({DominatorTree::Delete, Pred, BB});
|
|
|
|
DTU->applyUpdates(Updates);
|
|
}
|
|
|
|
++NumFoldValueComparisonIntoPredecessors;
|
|
return true;
|
|
}
|
|
|
|
/// The specified terminator is a value equality comparison instruction
|
|
/// (either a switch or a branch on "X == c").
|
|
/// See if any of the predecessors of the terminator block are value comparisons
|
|
/// on the same value. If so, and if safe to do so, fold them together.
|
|
bool SimplifyCFGOpt::FoldValueComparisonIntoPredecessors(Instruction *TI,
|
|
IRBuilder<> &Builder) {
|
|
BasicBlock *BB = TI->getParent();
|
|
Value *CV = isValueEqualityComparison(TI); // CondVal
|
|
assert(CV && "Not a comparison?");
|
|
|
|
bool Changed = false;
|
|
|
|
SmallSetVector<BasicBlock *, 16> Preds(pred_begin(BB), pred_end(BB));
|
|
while (!Preds.empty()) {
|
|
BasicBlock *Pred = Preds.pop_back_val();
|
|
Instruction *PTI = Pred->getTerminator();
|
|
|
|
// Don't try to fold into itself.
|
|
if (Pred == BB)
|
|
continue;
|
|
|
|
// See if the predecessor is a comparison with the same value.
|
|
Value *PCV = isValueEqualityComparison(PTI); // PredCondVal
|
|
if (PCV != CV)
|
|
continue;
|
|
|
|
SmallSetVector<BasicBlock *, 4> FailBlocks;
|
|
if (!SafeToMergeTerminators(TI, PTI, &FailBlocks)) {
|
|
for (auto *Succ : FailBlocks) {
|
|
if (!SplitBlockPredecessors(Succ, TI->getParent(), ".fold.split", DTU))
|
|
return false;
|
|
}
|
|
}
|
|
|
|
PerformValueComparisonIntoPredecessorFolding(TI, CV, PTI, Builder);
|
|
Changed = true;
|
|
}
|
|
return Changed;
|
|
}
|
|
|
|
// If we would need to insert a select that uses the value of this invoke
|
|
// (comments in HoistThenElseCodeToIf explain why we would need to do this), we
|
|
// can't hoist the invoke, as there is nowhere to put the select in this case.
|
|
static bool isSafeToHoistInvoke(BasicBlock *BB1, BasicBlock *BB2,
|
|
Instruction *I1, Instruction *I2) {
|
|
for (BasicBlock *Succ : successors(BB1)) {
|
|
for (const PHINode &PN : Succ->phis()) {
|
|
Value *BB1V = PN.getIncomingValueForBlock(BB1);
|
|
Value *BB2V = PN.getIncomingValueForBlock(BB2);
|
|
if (BB1V != BB2V && (BB1V == I1 || BB2V == I2)) {
|
|
return false;
|
|
}
|
|
}
|
|
}
|
|
return true;
|
|
}
|
|
|
|
static bool passingValueIsAlwaysUndefined(Value *V, Instruction *I, bool PtrValueMayBeModified = false);
|
|
|
|
/// Given a conditional branch that goes to BB1 and BB2, hoist any common code
|
|
/// in the two blocks up into the branch block. The caller of this function
|
|
/// guarantees that BI's block dominates BB1 and BB2. If EqTermsOnly is given,
|
|
/// only perform hoisting in case both blocks only contain a terminator. In that
|
|
/// case, only the original BI will be replaced and selects for PHIs are added.
|
|
bool SimplifyCFGOpt::HoistThenElseCodeToIf(BranchInst *BI,
|
|
const TargetTransformInfo &TTI,
|
|
bool EqTermsOnly) {
|
|
// This does very trivial matching, with limited scanning, to find identical
|
|
// instructions in the two blocks. In particular, we don't want to get into
|
|
// O(M*N) situations here where M and N are the sizes of BB1 and BB2. As
|
|
// such, we currently just scan for obviously identical instructions in an
|
|
// identical order.
|
|
BasicBlock *BB1 = BI->getSuccessor(0); // The true destination.
|
|
BasicBlock *BB2 = BI->getSuccessor(1); // The false destination
|
|
|
|
// If either of the blocks has it's address taken, then we can't do this fold,
|
|
// because the code we'd hoist would no longer run when we jump into the block
|
|
// by it's address.
|
|
if (BB1->hasAddressTaken() || BB2->hasAddressTaken())
|
|
return false;
|
|
|
|
BasicBlock::iterator BB1_Itr = BB1->begin();
|
|
BasicBlock::iterator BB2_Itr = BB2->begin();
|
|
|
|
Instruction *I1 = &*BB1_Itr++, *I2 = &*BB2_Itr++;
|
|
// Skip debug info if it is not identical.
|
|
DbgInfoIntrinsic *DBI1 = dyn_cast<DbgInfoIntrinsic>(I1);
|
|
DbgInfoIntrinsic *DBI2 = dyn_cast<DbgInfoIntrinsic>(I2);
|
|
if (!DBI1 || !DBI2 || !DBI1->isIdenticalToWhenDefined(DBI2)) {
|
|
while (isa<DbgInfoIntrinsic>(I1))
|
|
I1 = &*BB1_Itr++;
|
|
while (isa<DbgInfoIntrinsic>(I2))
|
|
I2 = &*BB2_Itr++;
|
|
}
|
|
// FIXME: Can we define a safety predicate for CallBr?
|
|
if (isa<PHINode>(I1) || !I1->isIdenticalToWhenDefined(I2) ||
|
|
(isa<InvokeInst>(I1) && !isSafeToHoistInvoke(BB1, BB2, I1, I2)) ||
|
|
isa<CallBrInst>(I1))
|
|
return false;
|
|
|
|
BasicBlock *BIParent = BI->getParent();
|
|
|
|
bool Changed = false;
|
|
|
|
auto _ = make_scope_exit([&]() {
|
|
if (Changed)
|
|
++NumHoistCommonCode;
|
|
});
|
|
|
|
// Check if only hoisting terminators is allowed. This does not add new
|
|
// instructions to the hoist location.
|
|
if (EqTermsOnly) {
|
|
// Skip any debug intrinsics, as they are free to hoist.
|
|
auto *I1NonDbg = &*skipDebugIntrinsics(I1->getIterator());
|
|
auto *I2NonDbg = &*skipDebugIntrinsics(I2->getIterator());
|
|
if (!I1NonDbg->isIdenticalToWhenDefined(I2NonDbg))
|
|
return false;
|
|
if (!I1NonDbg->isTerminator())
|
|
return false;
|
|
// Now we know that we only need to hoist debug instrinsics and the
|
|
// terminator. Let the loop below handle those 2 cases.
|
|
}
|
|
|
|
do {
|
|
// If we are hoisting the terminator instruction, don't move one (making a
|
|
// broken BB), instead clone it, and remove BI.
|
|
if (I1->isTerminator())
|
|
goto HoistTerminator;
|
|
|
|
// If we're going to hoist a call, make sure that the two instructions we're
|
|
// commoning/hoisting are both marked with musttail, or neither of them is
|
|
// marked as such. Otherwise, we might end up in a situation where we hoist
|
|
// from a block where the terminator is a `ret` to a block where the terminator
|
|
// is a `br`, and `musttail` calls expect to be followed by a return.
|
|
auto *C1 = dyn_cast<CallInst>(I1);
|
|
auto *C2 = dyn_cast<CallInst>(I2);
|
|
if (C1 && C2)
|
|
if (C1->isMustTailCall() != C2->isMustTailCall())
|
|
return Changed;
|
|
|
|
if (!TTI.isProfitableToHoist(I1) || !TTI.isProfitableToHoist(I2))
|
|
return Changed;
|
|
|
|
// If any of the two call sites has nomerge attribute, stop hoisting.
|
|
if (const auto *CB1 = dyn_cast<CallBase>(I1))
|
|
if (CB1->cannotMerge())
|
|
return Changed;
|
|
if (const auto *CB2 = dyn_cast<CallBase>(I2))
|
|
if (CB2->cannotMerge())
|
|
return Changed;
|
|
|
|
if (isa<DbgInfoIntrinsic>(I1) || isa<DbgInfoIntrinsic>(I2)) {
|
|
assert (isa<DbgInfoIntrinsic>(I1) && isa<DbgInfoIntrinsic>(I2));
|
|
// The debug location is an integral part of a debug info intrinsic
|
|
// and can't be separated from it or replaced. Instead of attempting
|
|
// to merge locations, simply hoist both copies of the intrinsic.
|
|
BIParent->getInstList().splice(BI->getIterator(),
|
|
BB1->getInstList(), I1);
|
|
BIParent->getInstList().splice(BI->getIterator(),
|
|
BB2->getInstList(), I2);
|
|
Changed = true;
|
|
} else {
|
|
// For a normal instruction, we just move one to right before the branch,
|
|
// then replace all uses of the other with the first. Finally, we remove
|
|
// the now redundant second instruction.
|
|
BIParent->getInstList().splice(BI->getIterator(),
|
|
BB1->getInstList(), I1);
|
|
if (!I2->use_empty())
|
|
I2->replaceAllUsesWith(I1);
|
|
I1->andIRFlags(I2);
|
|
unsigned KnownIDs[] = {LLVMContext::MD_tbaa,
|
|
LLVMContext::MD_range,
|
|
LLVMContext::MD_fpmath,
|
|
LLVMContext::MD_invariant_load,
|
|
LLVMContext::MD_nonnull,
|
|
LLVMContext::MD_invariant_group,
|
|
LLVMContext::MD_align,
|
|
LLVMContext::MD_dereferenceable,
|
|
LLVMContext::MD_dereferenceable_or_null,
|
|
LLVMContext::MD_mem_parallel_loop_access,
|
|
LLVMContext::MD_access_group,
|
|
LLVMContext::MD_preserve_access_index};
|
|
combineMetadata(I1, I2, KnownIDs, true);
|
|
|
|
// I1 and I2 are being combined into a single instruction. Its debug
|
|
// location is the merged locations of the original instructions.
|
|
I1->applyMergedLocation(I1->getDebugLoc(), I2->getDebugLoc());
|
|
|
|
I2->eraseFromParent();
|
|
Changed = true;
|
|
}
|
|
++NumHoistCommonInstrs;
|
|
|
|
I1 = &*BB1_Itr++;
|
|
I2 = &*BB2_Itr++;
|
|
// Skip debug info if it is not identical.
|
|
DbgInfoIntrinsic *DBI1 = dyn_cast<DbgInfoIntrinsic>(I1);
|
|
DbgInfoIntrinsic *DBI2 = dyn_cast<DbgInfoIntrinsic>(I2);
|
|
if (!DBI1 || !DBI2 || !DBI1->isIdenticalToWhenDefined(DBI2)) {
|
|
while (isa<DbgInfoIntrinsic>(I1))
|
|
I1 = &*BB1_Itr++;
|
|
while (isa<DbgInfoIntrinsic>(I2))
|
|
I2 = &*BB2_Itr++;
|
|
}
|
|
} while (I1->isIdenticalToWhenDefined(I2));
|
|
|
|
return true;
|
|
|
|
HoistTerminator:
|
|
// It may not be possible to hoist an invoke.
|
|
// FIXME: Can we define a safety predicate for CallBr?
|
|
if (isa<InvokeInst>(I1) && !isSafeToHoistInvoke(BB1, BB2, I1, I2))
|
|
return Changed;
|
|
|
|
// TODO: callbr hoisting currently disabled pending further study.
|
|
if (isa<CallBrInst>(I1))
|
|
return Changed;
|
|
|
|
for (BasicBlock *Succ : successors(BB1)) {
|
|
for (PHINode &PN : Succ->phis()) {
|
|
Value *BB1V = PN.getIncomingValueForBlock(BB1);
|
|
Value *BB2V = PN.getIncomingValueForBlock(BB2);
|
|
if (BB1V == BB2V)
|
|
continue;
|
|
|
|
// Check for passingValueIsAlwaysUndefined here because we would rather
|
|
// eliminate undefined control flow then converting it to a select.
|
|
if (passingValueIsAlwaysUndefined(BB1V, &PN) ||
|
|
passingValueIsAlwaysUndefined(BB2V, &PN))
|
|
return Changed;
|
|
|
|
if (isa<ConstantExpr>(BB1V) && !isSafeToSpeculativelyExecute(BB1V))
|
|
return Changed;
|
|
if (isa<ConstantExpr>(BB2V) && !isSafeToSpeculativelyExecute(BB2V))
|
|
return Changed;
|
|
}
|
|
}
|
|
|
|
// Okay, it is safe to hoist the terminator.
|
|
Instruction *NT = I1->clone();
|
|
BIParent->getInstList().insert(BI->getIterator(), NT);
|
|
if (!NT->getType()->isVoidTy()) {
|
|
I1->replaceAllUsesWith(NT);
|
|
I2->replaceAllUsesWith(NT);
|
|
NT->takeName(I1);
|
|
}
|
|
Changed = true;
|
|
++NumHoistCommonInstrs;
|
|
|
|
// Ensure terminator gets a debug location, even an unknown one, in case
|
|
// it involves inlinable calls.
|
|
NT->applyMergedLocation(I1->getDebugLoc(), I2->getDebugLoc());
|
|
|
|
// PHIs created below will adopt NT's merged DebugLoc.
|
|
IRBuilder<NoFolder> Builder(NT);
|
|
|
|
// Hoisting one of the terminators from our successor is a great thing.
|
|
// Unfortunately, the successors of the if/else blocks may have PHI nodes in
|
|
// them. If they do, all PHI entries for BB1/BB2 must agree for all PHI
|
|
// nodes, so we insert select instruction to compute the final result.
|
|
std::map<std::pair<Value *, Value *>, SelectInst *> InsertedSelects;
|
|
for (BasicBlock *Succ : successors(BB1)) {
|
|
for (PHINode &PN : Succ->phis()) {
|
|
Value *BB1V = PN.getIncomingValueForBlock(BB1);
|
|
Value *BB2V = PN.getIncomingValueForBlock(BB2);
|
|
if (BB1V == BB2V)
|
|
continue;
|
|
|
|
// These values do not agree. Insert a select instruction before NT
|
|
// that determines the right value.
|
|
SelectInst *&SI = InsertedSelects[std::make_pair(BB1V, BB2V)];
|
|
if (!SI) {
|
|
// Propagate fast-math-flags from phi node to its replacement select.
|
|
IRBuilder<>::FastMathFlagGuard FMFGuard(Builder);
|
|
if (isa<FPMathOperator>(PN))
|
|
Builder.setFastMathFlags(PN.getFastMathFlags());
|
|
|
|
SI = cast<SelectInst>(
|
|
Builder.CreateSelect(BI->getCondition(), BB1V, BB2V,
|
|
BB1V->getName() + "." + BB2V->getName(), BI));
|
|
}
|
|
|
|
// Make the PHI node use the select for all incoming values for BB1/BB2
|
|
for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i)
|
|
if (PN.getIncomingBlock(i) == BB1 || PN.getIncomingBlock(i) == BB2)
|
|
PN.setIncomingValue(i, SI);
|
|
}
|
|
}
|
|
|
|
SmallVector<DominatorTree::UpdateType, 4> Updates;
|
|
|
|
// Update any PHI nodes in our new successors.
|
|
for (BasicBlock *Succ : successors(BB1)) {
|
|
AddPredecessorToBlock(Succ, BIParent, BB1);
|
|
if (DTU)
|
|
Updates.push_back({DominatorTree::Insert, BIParent, Succ});
|
|
}
|
|
|
|
if (DTU)
|
|
for (BasicBlock *Succ : successors(BI))
|
|
Updates.push_back({DominatorTree::Delete, BIParent, Succ});
|
|
|
|
EraseTerminatorAndDCECond(BI);
|
|
if (DTU)
|
|
DTU->applyUpdates(Updates);
|
|
return Changed;
|
|
}
|
|
|
|
// Check lifetime markers.
|
|
static bool isLifeTimeMarker(const Instruction *I) {
|
|
if (auto II = dyn_cast<IntrinsicInst>(I)) {
|
|
switch (II->getIntrinsicID()) {
|
|
default:
|
|
break;
|
|
case Intrinsic::lifetime_start:
|
|
case Intrinsic::lifetime_end:
|
|
return true;
|
|
}
|
|
}
|
|
return false;
|
|
}
|
|
|
|
// TODO: Refine this. This should avoid cases like turning constant memcpy sizes
|
|
// into variables.
|
|
static bool replacingOperandWithVariableIsCheap(const Instruction *I,
|
|
int OpIdx) {
|
|
return !isa<IntrinsicInst>(I);
|
|
}
|
|
|
|
// All instructions in Insts belong to different blocks that all unconditionally
|
|
// branch to a common successor. Analyze each instruction and return true if it
|
|
// would be possible to sink them into their successor, creating one common
|
|
// instruction instead. For every value that would be required to be provided by
|
|
// PHI node (because an operand varies in each input block), add to PHIOperands.
|
|
static bool canSinkInstructions(
|
|
ArrayRef<Instruction *> Insts,
|
|
DenseMap<Instruction *, SmallVector<Value *, 4>> &PHIOperands) {
|
|
// Prune out obviously bad instructions to move. Each instruction must have
|
|
// exactly zero or one use, and we check later that use is by a single, common
|
|
// PHI instruction in the successor.
|
|
bool HasUse = !Insts.front()->user_empty();
|
|
for (auto *I : Insts) {
|
|
// These instructions may change or break semantics if moved.
|
|
if (isa<PHINode>(I) || I->isEHPad() || isa<AllocaInst>(I) ||
|
|
I->getType()->isTokenTy())
|
|
return false;
|
|
|
|
// Do not try to sink an instruction in an infinite loop - it can cause
|
|
// this algorithm to infinite loop.
|
|
if (I->getParent()->getSingleSuccessor() == I->getParent())
|
|
return false;
|
|
|
|
// Conservatively return false if I is an inline-asm instruction. Sinking
|
|
// and merging inline-asm instructions can potentially create arguments
|
|
// that cannot satisfy the inline-asm constraints.
|
|
// If the instruction has nomerge attribute, return false.
|
|
if (const auto *C = dyn_cast<CallBase>(I))
|
|
if (C->isInlineAsm() || C->cannotMerge())
|
|
return false;
|
|
|
|
// Each instruction must have zero or one use.
|
|
if (HasUse && !I->hasOneUse())
|
|
return false;
|
|
if (!HasUse && !I->user_empty())
|
|
return false;
|
|
}
|
|
|
|
const Instruction *I0 = Insts.front();
|
|
for (auto *I : Insts)
|
|
if (!I->isSameOperationAs(I0))
|
|
return false;
|
|
|
|
// All instructions in Insts are known to be the same opcode. If they have a
|
|
// use, check that the only user is a PHI or in the same block as the
|
|
// instruction, because if a user is in the same block as an instruction we're
|
|
// contemplating sinking, it must already be determined to be sinkable.
|
|
if (HasUse) {
|
|
auto *PNUse = dyn_cast<PHINode>(*I0->user_begin());
|
|
auto *Succ = I0->getParent()->getTerminator()->getSuccessor(0);
|
|
if (!all_of(Insts, [&PNUse,&Succ](const Instruction *I) -> bool {
|
|
auto *U = cast<Instruction>(*I->user_begin());
|
|
return (PNUse &&
|
|
PNUse->getParent() == Succ &&
|
|
PNUse->getIncomingValueForBlock(I->getParent()) == I) ||
|
|
U->getParent() == I->getParent();
|
|
}))
|
|
return false;
|
|
}
|
|
|
|
// Because SROA can't handle speculating stores of selects, try not to sink
|
|
// loads, stores or lifetime markers of allocas when we'd have to create a
|
|
// PHI for the address operand. Also, because it is likely that loads or
|
|
// stores of allocas will disappear when Mem2Reg/SROA is run, don't sink
|
|
// them.
|
|
// This can cause code churn which can have unintended consequences down
|
|
// the line - see https://llvm.org/bugs/show_bug.cgi?id=30244.
|
|
// FIXME: This is a workaround for a deficiency in SROA - see
|
|
// https://llvm.org/bugs/show_bug.cgi?id=30188
|
|
if (isa<StoreInst>(I0) && any_of(Insts, [](const Instruction *I) {
|
|
return isa<AllocaInst>(I->getOperand(1)->stripPointerCasts());
|
|
}))
|
|
return false;
|
|
if (isa<LoadInst>(I0) && any_of(Insts, [](const Instruction *I) {
|
|
return isa<AllocaInst>(I->getOperand(0)->stripPointerCasts());
|
|
}))
|
|
return false;
|
|
if (isLifeTimeMarker(I0) && any_of(Insts, [](const Instruction *I) {
|
|
return isa<AllocaInst>(I->getOperand(1)->stripPointerCasts());
|
|
}))
|
|
return false;
|
|
|
|
// For calls to be sinkable, they must all be indirect, or have same callee.
|
|
// I.e. if we have two direct calls to different callees, we don't want to
|
|
// turn that into an indirect call. Likewise, if we have an indirect call,
|
|
// and a direct call, we don't actually want to have a single indirect call.
|
|
if (isa<CallBase>(I0)) {
|
|
auto IsIndirectCall = [](const Instruction *I) {
|
|
return cast<CallBase>(I)->isIndirectCall();
|
|
};
|
|
bool HaveIndirectCalls = any_of(Insts, IsIndirectCall);
|
|
bool AllCallsAreIndirect = all_of(Insts, IsIndirectCall);
|
|
if (HaveIndirectCalls) {
|
|
if (!AllCallsAreIndirect)
|
|
return false;
|
|
} else {
|
|
// All callees must be identical.
|
|
Value *Callee = nullptr;
|
|
for (const Instruction *I : Insts) {
|
|
Value *CurrCallee = cast<CallBase>(I)->getCalledOperand();
|
|
if (!Callee)
|
|
Callee = CurrCallee;
|
|
else if (Callee != CurrCallee)
|
|
return false;
|
|
}
|
|
}
|
|
}
|
|
|
|
for (unsigned OI = 0, OE = I0->getNumOperands(); OI != OE; ++OI) {
|
|
Value *Op = I0->getOperand(OI);
|
|
if (Op->getType()->isTokenTy())
|
|
// Don't touch any operand of token type.
|
|
return false;
|
|
|
|
auto SameAsI0 = [&I0, OI](const Instruction *I) {
|
|
assert(I->getNumOperands() == I0->getNumOperands());
|
|
return I->getOperand(OI) == I0->getOperand(OI);
|
|
};
|
|
if (!all_of(Insts, SameAsI0)) {
|
|
if ((isa<Constant>(Op) && !replacingOperandWithVariableIsCheap(I0, OI)) ||
|
|
!canReplaceOperandWithVariable(I0, OI))
|
|
// We can't create a PHI from this GEP.
|
|
return false;
|
|
for (auto *I : Insts)
|
|
PHIOperands[I].push_back(I->getOperand(OI));
|
|
}
|
|
}
|
|
return true;
|
|
}
|
|
|
|
// Assuming canSinkInstructions(Blocks) has returned true, sink the last
|
|
// instruction of every block in Blocks to their common successor, commoning
|
|
// into one instruction.
|
|
static bool sinkLastInstruction(ArrayRef<BasicBlock*> Blocks) {
|
|
auto *BBEnd = Blocks[0]->getTerminator()->getSuccessor(0);
|
|
|
|
// canSinkInstructions returning true guarantees that every block has at
|
|
// least one non-terminator instruction.
|
|
SmallVector<Instruction*,4> Insts;
|
|
for (auto *BB : Blocks) {
|
|
Instruction *I = BB->getTerminator();
|
|
do {
|
|
I = I->getPrevNode();
|
|
} while (isa<DbgInfoIntrinsic>(I) && I != &BB->front());
|
|
if (!isa<DbgInfoIntrinsic>(I))
|
|
Insts.push_back(I);
|
|
}
|
|
|
|
// The only checking we need to do now is that all users of all instructions
|
|
// are the same PHI node. canSinkInstructions should have checked this but
|
|
// it is slightly over-aggressive - it gets confused by commutative
|
|
// instructions so double-check it here.
|
|
Instruction *I0 = Insts.front();
|
|
if (!I0->user_empty()) {
|
|
auto *PNUse = dyn_cast<PHINode>(*I0->user_begin());
|
|
if (!all_of(Insts, [&PNUse](const Instruction *I) -> bool {
|
|
auto *U = cast<Instruction>(*I->user_begin());
|
|
return U == PNUse;
|
|
}))
|
|
return false;
|
|
}
|
|
|
|
// We don't need to do any more checking here; canSinkInstructions should
|
|
// have done it all for us.
|
|
SmallVector<Value*, 4> NewOperands;
|
|
for (unsigned O = 0, E = I0->getNumOperands(); O != E; ++O) {
|
|
// This check is different to that in canSinkInstructions. There, we
|
|
// cared about the global view once simplifycfg (and instcombine) have
|
|
// completed - it takes into account PHIs that become trivially
|
|
// simplifiable. However here we need a more local view; if an operand
|
|
// differs we create a PHI and rely on instcombine to clean up the very
|
|
// small mess we may make.
|
|
bool NeedPHI = any_of(Insts, [&I0, O](const Instruction *I) {
|
|
return I->getOperand(O) != I0->getOperand(O);
|
|
});
|
|
if (!NeedPHI) {
|
|
NewOperands.push_back(I0->getOperand(O));
|
|
continue;
|
|
}
|
|
|
|
// Create a new PHI in the successor block and populate it.
|
|
auto *Op = I0->getOperand(O);
|
|
assert(!Op->getType()->isTokenTy() && "Can't PHI tokens!");
|
|
auto *PN = PHINode::Create(Op->getType(), Insts.size(),
|
|
Op->getName() + ".sink", &BBEnd->front());
|
|
for (auto *I : Insts)
|
|
PN->addIncoming(I->getOperand(O), I->getParent());
|
|
NewOperands.push_back(PN);
|
|
}
|
|
|
|
// Arbitrarily use I0 as the new "common" instruction; remap its operands
|
|
// and move it to the start of the successor block.
|
|
for (unsigned O = 0, E = I0->getNumOperands(); O != E; ++O)
|
|
I0->getOperandUse(O).set(NewOperands[O]);
|
|
I0->moveBefore(&*BBEnd->getFirstInsertionPt());
|
|
|
|
// Update metadata and IR flags, and merge debug locations.
|
|
for (auto *I : Insts)
|
|
if (I != I0) {
|
|
// The debug location for the "common" instruction is the merged locations
|
|
// of all the commoned instructions. We start with the original location
|
|
// of the "common" instruction and iteratively merge each location in the
|
|
// loop below.
|
|
// This is an N-way merge, which will be inefficient if I0 is a CallInst.
|
|
// However, as N-way merge for CallInst is rare, so we use simplified API
|
|
// instead of using complex API for N-way merge.
|
|
I0->applyMergedLocation(I0->getDebugLoc(), I->getDebugLoc());
|
|
combineMetadataForCSE(I0, I, true);
|
|
I0->andIRFlags(I);
|
|
}
|
|
|
|
if (!I0->user_empty()) {
|
|
// canSinkLastInstruction checked that all instructions were used by
|
|
// one and only one PHI node. Find that now, RAUW it to our common
|
|
// instruction and nuke it.
|
|
auto *PN = cast<PHINode>(*I0->user_begin());
|
|
PN->replaceAllUsesWith(I0);
|
|
PN->eraseFromParent();
|
|
}
|
|
|
|
// Finally nuke all instructions apart from the common instruction.
|
|
for (auto *I : Insts)
|
|
if (I != I0)
|
|
I->eraseFromParent();
|
|
|
|
return true;
|
|
}
|
|
|
|
namespace {
|
|
|
|
// LockstepReverseIterator - Iterates through instructions
|
|
// in a set of blocks in reverse order from the first non-terminator.
|
|
// For example (assume all blocks have size n):
|
|
// LockstepReverseIterator I([B1, B2, B3]);
|
|
// *I-- = [B1[n], B2[n], B3[n]];
|
|
// *I-- = [B1[n-1], B2[n-1], B3[n-1]];
|
|
// *I-- = [B1[n-2], B2[n-2], B3[n-2]];
|
|
// ...
|
|
class LockstepReverseIterator {
|
|
ArrayRef<BasicBlock*> Blocks;
|
|
SmallVector<Instruction*,4> Insts;
|
|
bool Fail;
|
|
|
|
public:
|
|
LockstepReverseIterator(ArrayRef<BasicBlock*> Blocks) : Blocks(Blocks) {
|
|
reset();
|
|
}
|
|
|
|
void reset() {
|
|
Fail = false;
|
|
Insts.clear();
|
|
for (auto *BB : Blocks) {
|
|
Instruction *Inst = BB->getTerminator();
|
|
for (Inst = Inst->getPrevNode(); Inst && isa<DbgInfoIntrinsic>(Inst);)
|
|
Inst = Inst->getPrevNode();
|
|
if (!Inst) {
|
|
// Block wasn't big enough.
|
|
Fail = true;
|
|
return;
|
|
}
|
|
Insts.push_back(Inst);
|
|
}
|
|
}
|
|
|
|
bool isValid() const {
|
|
return !Fail;
|
|
}
|
|
|
|
void operator--() {
|
|
if (Fail)
|
|
return;
|
|
for (auto *&Inst : Insts) {
|
|
for (Inst = Inst->getPrevNode(); Inst && isa<DbgInfoIntrinsic>(Inst);)
|
|
Inst = Inst->getPrevNode();
|
|
// Already at beginning of block.
|
|
if (!Inst) {
|
|
Fail = true;
|
|
return;
|
|
}
|
|
}
|
|
}
|
|
|
|
void operator++() {
|
|
if (Fail)
|
|
return;
|
|
for (auto *&Inst : Insts) {
|
|
for (Inst = Inst->getNextNode(); Inst && isa<DbgInfoIntrinsic>(Inst);)
|
|
Inst = Inst->getNextNode();
|
|
// Already at end of block.
|
|
if (!Inst) {
|
|
Fail = true;
|
|
return;
|
|
}
|
|
}
|
|
}
|
|
|
|
ArrayRef<Instruction*> operator * () const {
|
|
return Insts;
|
|
}
|
|
};
|
|
|
|
} // end anonymous namespace
|
|
|
|
/// Check whether BB's predecessors end with unconditional branches. If it is
|
|
/// true, sink any common code from the predecessors to BB.
|
|
static bool SinkCommonCodeFromPredecessors(BasicBlock *BB,
|
|
DomTreeUpdater *DTU) {
|
|
// We support two situations:
|
|
// (1) all incoming arcs are unconditional
|
|
// (2) there are non-unconditional incoming arcs
|
|
//
|
|
// (2) is very common in switch defaults and
|
|
// else-if patterns;
|
|
//
|
|
// if (a) f(1);
|
|
// else if (b) f(2);
|
|
//
|
|
// produces:
|
|
//
|
|
// [if]
|
|
// / \
|
|
// [f(1)] [if]
|
|
// | | \
|
|
// | | |
|
|
// | [f(2)]|
|
|
// \ | /
|
|
// [ end ]
|
|
//
|
|
// [end] has two unconditional predecessor arcs and one conditional. The
|
|
// conditional refers to the implicit empty 'else' arc. This conditional
|
|
// arc can also be caused by an empty default block in a switch.
|
|
//
|
|
// In this case, we attempt to sink code from all *unconditional* arcs.
|
|
// If we can sink instructions from these arcs (determined during the scan
|
|
// phase below) we insert a common successor for all unconditional arcs and
|
|
// connect that to [end], to enable sinking:
|
|
//
|
|
// [if]
|
|
// / \
|
|
// [x(1)] [if]
|
|
// | | \
|
|
// | | \
|
|
// | [x(2)] |
|
|
// \ / |
|
|
// [sink.split] |
|
|
// \ /
|
|
// [ end ]
|
|
//
|
|
SmallVector<BasicBlock*,4> UnconditionalPreds;
|
|
bool HaveNonUnconditionalPredecessors = false;
|
|
for (auto *PredBB : predecessors(BB)) {
|
|
auto *PredBr = dyn_cast<BranchInst>(PredBB->getTerminator());
|
|
if (PredBr && PredBr->isUnconditional())
|
|
UnconditionalPreds.push_back(PredBB);
|
|
else
|
|
HaveNonUnconditionalPredecessors = true;
|
|
}
|
|
if (UnconditionalPreds.size() < 2)
|
|
return false;
|
|
|
|
// We take a two-step approach to tail sinking. First we scan from the end of
|
|
// each block upwards in lockstep. If the n'th instruction from the end of each
|
|
// block can be sunk, those instructions are added to ValuesToSink and we
|
|
// carry on. If we can sink an instruction but need to PHI-merge some operands
|
|
// (because they're not identical in each instruction) we add these to
|
|
// PHIOperands.
|
|
int ScanIdx = 0;
|
|
SmallPtrSet<Value*,4> InstructionsToSink;
|
|
DenseMap<Instruction*, SmallVector<Value*,4>> PHIOperands;
|
|
LockstepReverseIterator LRI(UnconditionalPreds);
|
|
while (LRI.isValid() &&
|
|
canSinkInstructions(*LRI, PHIOperands)) {
|
|
LLVM_DEBUG(dbgs() << "SINK: instruction can be sunk: " << *(*LRI)[0]
|
|
<< "\n");
|
|
InstructionsToSink.insert((*LRI).begin(), (*LRI).end());
|
|
++ScanIdx;
|
|
--LRI;
|
|
}
|
|
|
|
// If no instructions can be sunk, early-return.
|
|
if (ScanIdx == 0)
|
|
return false;
|
|
|
|
// Okay, we *could* sink last ScanIdx instructions. But how many can we
|
|
// actually sink before encountering instruction that is unprofitable to sink?
|
|
auto ProfitableToSinkInstruction = [&](LockstepReverseIterator &LRI) {
|
|
unsigned NumPHIdValues = 0;
|
|
for (auto *I : *LRI)
|
|
for (auto *V : PHIOperands[I]) {
|
|
if (InstructionsToSink.count(V) == 0)
|
|
++NumPHIdValues;
|
|
// FIXME: this check is overly optimistic. We may end up not sinking
|
|
// said instruction, due to the very same profitability check.
|
|
// See @creating_too_many_phis in sink-common-code.ll.
|
|
}
|
|
LLVM_DEBUG(dbgs() << "SINK: #phid values: " << NumPHIdValues << "\n");
|
|
unsigned NumPHIInsts = NumPHIdValues / UnconditionalPreds.size();
|
|
if ((NumPHIdValues % UnconditionalPreds.size()) != 0)
|
|
NumPHIInsts++;
|
|
|
|
return NumPHIInsts <= 1;
|
|
};
|
|
|
|
// We've determined that we are going to sink last ScanIdx instructions,
|
|
// and recorded them in InstructionsToSink. Now, some instructions may be
|
|
// unprofitable to sink. But that determination depends on the instructions
|
|
// that we are going to sink.
|
|
|
|
// First, forward scan: find the first instruction unprofitable to sink,
|
|
// recording all the ones that are profitable to sink.
|
|
// FIXME: would it be better, after we detect that not all are profitable.
|
|
// to either record the profitable ones, or erase the unprofitable ones?
|
|
// Maybe we need to choose (at runtime) the one that will touch least instrs?
|
|
LRI.reset();
|
|
int Idx = 0;
|
|
SmallPtrSet<Value *, 4> InstructionsProfitableToSink;
|
|
while (Idx < ScanIdx) {
|
|
if (!ProfitableToSinkInstruction(LRI)) {
|
|
// Too many PHIs would be created.
|
|
LLVM_DEBUG(
|
|
dbgs() << "SINK: stopping here, too many PHIs would be created!\n");
|
|
break;
|
|
}
|
|
InstructionsProfitableToSink.insert((*LRI).begin(), (*LRI).end());
|
|
--LRI;
|
|
++Idx;
|
|
}
|
|
|
|
// If no instructions can be sunk, early-return.
|
|
if (Idx == 0)
|
|
return false;
|
|
|
|
// Did we determine that (only) some instructions are unprofitable to sink?
|
|
if (Idx < ScanIdx) {
|
|
// Okay, some instructions are unprofitable.
|
|
ScanIdx = Idx;
|
|
InstructionsToSink = InstructionsProfitableToSink;
|
|
|
|
// But, that may make other instructions unprofitable, too.
|
|
// So, do a backward scan, do any earlier instructions become unprofitable?
|
|
assert(!ProfitableToSinkInstruction(LRI) &&
|
|
"We already know that the last instruction is unprofitable to sink");
|
|
++LRI;
|
|
--Idx;
|
|
while (Idx >= 0) {
|
|
// If we detect that an instruction becomes unprofitable to sink,
|
|
// all earlier instructions won't be sunk either,
|
|
// so preemptively keep InstructionsProfitableToSink in sync.
|
|
// FIXME: is this the most performant approach?
|
|
for (auto *I : *LRI)
|
|
InstructionsProfitableToSink.erase(I);
|
|
if (!ProfitableToSinkInstruction(LRI)) {
|
|
// Everything starting with this instruction won't be sunk.
|
|
ScanIdx = Idx;
|
|
InstructionsToSink = InstructionsProfitableToSink;
|
|
}
|
|
++LRI;
|
|
--Idx;
|
|
}
|
|
}
|
|
|
|
// If no instructions can be sunk, early-return.
|
|
if (ScanIdx == 0)
|
|
return false;
|
|
|
|
bool Changed = false;
|
|
|
|
if (HaveNonUnconditionalPredecessors) {
|
|
// It is always legal to sink common instructions from unconditional
|
|
// predecessors. However, if not all predecessors are unconditional,
|
|
// this transformation might be pessimizing. So as a rule of thumb,
|
|
// don't do it unless we'd sink at least one non-speculatable instruction.
|
|
// See https://bugs.llvm.org/show_bug.cgi?id=30244
|
|
LRI.reset();
|
|
int Idx = 0;
|
|
bool Profitable = false;
|
|
while (Idx < ScanIdx) {
|
|
if (!isSafeToSpeculativelyExecute((*LRI)[0])) {
|
|
Profitable = true;
|
|
break;
|
|
}
|
|
--LRI;
|
|
++Idx;
|
|
}
|
|
if (!Profitable)
|
|
return false;
|
|
|
|
LLVM_DEBUG(dbgs() << "SINK: Splitting edge\n");
|
|
// We have a conditional edge and we're going to sink some instructions.
|
|
// Insert a new block postdominating all blocks we're going to sink from.
|
|
if (!SplitBlockPredecessors(BB, UnconditionalPreds, ".sink.split", DTU))
|
|
// Edges couldn't be split.
|
|
return false;
|
|
Changed = true;
|
|
}
|
|
|
|
// Now that we've analyzed all potential sinking candidates, perform the
|
|
// actual sink. We iteratively sink the last non-terminator of the source
|
|
// blocks into their common successor unless doing so would require too
|
|
// many PHI instructions to be generated (currently only one PHI is allowed
|
|
// per sunk instruction).
|
|
//
|
|
// We can use InstructionsToSink to discount values needing PHI-merging that will
|
|
// actually be sunk in a later iteration. This allows us to be more
|
|
// aggressive in what we sink. This does allow a false positive where we
|
|
// sink presuming a later value will also be sunk, but stop half way through
|
|
// and never actually sink it which means we produce more PHIs than intended.
|
|
// This is unlikely in practice though.
|
|
int SinkIdx = 0;
|
|
for (; SinkIdx != ScanIdx; ++SinkIdx) {
|
|
LLVM_DEBUG(dbgs() << "SINK: Sink: "
|
|
<< *UnconditionalPreds[0]->getTerminator()->getPrevNode()
|
|
<< "\n");
|
|
|
|
// Because we've sunk every instruction in turn, the current instruction to
|
|
// sink is always at index 0.
|
|
LRI.reset();
|
|
|
|
if (!sinkLastInstruction(UnconditionalPreds)) {
|
|
LLVM_DEBUG(
|
|
dbgs()
|
|
<< "SINK: stopping here, failed to actually sink instruction!\n");
|
|
break;
|
|
}
|
|
|
|
NumSinkCommonInstrs++;
|
|
Changed = true;
|
|
}
|
|
if (SinkIdx != 0)
|
|
++NumSinkCommonCode;
|
|
return Changed;
|
|
}
|
|
|
|
/// Determine if we can hoist sink a sole store instruction out of a
|
|
/// conditional block.
|
|
///
|
|
/// We are looking for code like the following:
|
|
/// BrBB:
|
|
/// store i32 %add, i32* %arrayidx2
|
|
/// ... // No other stores or function calls (we could be calling a memory
|
|
/// ... // function).
|
|
/// %cmp = icmp ult %x, %y
|
|
/// br i1 %cmp, label %EndBB, label %ThenBB
|
|
/// ThenBB:
|
|
/// store i32 %add5, i32* %arrayidx2
|
|
/// br label EndBB
|
|
/// EndBB:
|
|
/// ...
|
|
/// We are going to transform this into:
|
|
/// BrBB:
|
|
/// store i32 %add, i32* %arrayidx2
|
|
/// ... //
|
|
/// %cmp = icmp ult %x, %y
|
|
/// %add.add5 = select i1 %cmp, i32 %add, %add5
|
|
/// store i32 %add.add5, i32* %arrayidx2
|
|
/// ...
|
|
///
|
|
/// \return The pointer to the value of the previous store if the store can be
|
|
/// hoisted into the predecessor block. 0 otherwise.
|
|
static Value *isSafeToSpeculateStore(Instruction *I, BasicBlock *BrBB,
|
|
BasicBlock *StoreBB, BasicBlock *EndBB) {
|
|
StoreInst *StoreToHoist = dyn_cast<StoreInst>(I);
|
|
if (!StoreToHoist)
|
|
return nullptr;
|
|
|
|
// Volatile or atomic.
|
|
if (!StoreToHoist->isSimple())
|
|
return nullptr;
|
|
|
|
Value *StorePtr = StoreToHoist->getPointerOperand();
|
|
Type *StoreTy = StoreToHoist->getValueOperand()->getType();
|
|
|
|
// Look for a store to the same pointer in BrBB.
|
|
unsigned MaxNumInstToLookAt = 9;
|
|
// Skip pseudo probe intrinsic calls which are not really killing any memory
|
|
// accesses.
|
|
for (Instruction &CurI : reverse(BrBB->instructionsWithoutDebug(true))) {
|
|
if (!MaxNumInstToLookAt)
|
|
break;
|
|
--MaxNumInstToLookAt;
|
|
|
|
// Could be calling an instruction that affects memory like free().
|
|
if (CurI.mayWriteToMemory() && !isa<StoreInst>(CurI))
|
|
return nullptr;
|
|
|
|
if (auto *SI = dyn_cast<StoreInst>(&CurI)) {
|
|
// Found the previous store to same location and type. Make sure it is
|
|
// simple, to avoid introducing a spurious non-atomic write after an
|
|
// atomic write.
|
|
if (SI->getPointerOperand() == StorePtr &&
|
|
SI->getValueOperand()->getType() == StoreTy && SI->isSimple())
|
|
// Found the previous store, return its value operand.
|
|
return SI->getValueOperand();
|
|
return nullptr; // Unknown store.
|
|
}
|
|
}
|
|
|
|
return nullptr;
|
|
}
|
|
|
|
/// Estimate the cost of the insertion(s) and check that the PHI nodes can be
|
|
/// converted to selects.
|
|
static bool validateAndCostRequiredSelects(BasicBlock *BB, BasicBlock *ThenBB,
|
|
BasicBlock *EndBB,
|
|
unsigned &SpeculatedInstructions,
|
|
InstructionCost &Cost,
|
|
const TargetTransformInfo &TTI) {
|
|
TargetTransformInfo::TargetCostKind CostKind =
|
|
BB->getParent()->hasMinSize()
|
|
? TargetTransformInfo::TCK_CodeSize
|
|
: TargetTransformInfo::TCK_SizeAndLatency;
|
|
|
|
bool HaveRewritablePHIs = false;
|
|
for (PHINode &PN : EndBB->phis()) {
|
|
Value *OrigV = PN.getIncomingValueForBlock(BB);
|
|
Value *ThenV = PN.getIncomingValueForBlock(ThenBB);
|
|
|
|
// FIXME: Try to remove some of the duplication with HoistThenElseCodeToIf.
|
|
// Skip PHIs which are trivial.
|
|
if (ThenV == OrigV)
|
|
continue;
|
|
|
|
Cost += TTI.getCmpSelInstrCost(Instruction::Select, PN.getType(), nullptr,
|
|
CmpInst::BAD_ICMP_PREDICATE, CostKind);
|
|
|
|
// Don't convert to selects if we could remove undefined behavior instead.
|
|
if (passingValueIsAlwaysUndefined(OrigV, &PN) ||
|
|
passingValueIsAlwaysUndefined(ThenV, &PN))
|
|
return false;
|
|
|
|
HaveRewritablePHIs = true;
|
|
ConstantExpr *OrigCE = dyn_cast<ConstantExpr>(OrigV);
|
|
ConstantExpr *ThenCE = dyn_cast<ConstantExpr>(ThenV);
|
|
if (!OrigCE && !ThenCE)
|
|
continue; // Known safe and cheap.
|
|
|
|
if ((ThenCE && !isSafeToSpeculativelyExecute(ThenCE)) ||
|
|
(OrigCE && !isSafeToSpeculativelyExecute(OrigCE)))
|
|
return false;
|
|
InstructionCost OrigCost = OrigCE ? computeSpeculationCost(OrigCE, TTI) : 0;
|
|
InstructionCost ThenCost = ThenCE ? computeSpeculationCost(ThenCE, TTI) : 0;
|
|
InstructionCost MaxCost =
|
|
2 * PHINodeFoldingThreshold * TargetTransformInfo::TCC_Basic;
|
|
if (OrigCost + ThenCost > MaxCost)
|
|
return false;
|
|
|
|
// Account for the cost of an unfolded ConstantExpr which could end up
|
|
// getting expanded into Instructions.
|
|
// FIXME: This doesn't account for how many operations are combined in the
|
|
// constant expression.
|
|
++SpeculatedInstructions;
|
|
if (SpeculatedInstructions > 1)
|
|
return false;
|
|
}
|
|
|
|
return HaveRewritablePHIs;
|
|
}
|
|
|
|
/// Speculate a conditional basic block flattening the CFG.
|
|
///
|
|
/// Note that this is a very risky transform currently. Speculating
|
|
/// instructions like this is most often not desirable. Instead, there is an MI
|
|
/// pass which can do it with full awareness of the resource constraints.
|
|
/// However, some cases are "obvious" and we should do directly. An example of
|
|
/// this is speculating a single, reasonably cheap instruction.
|
|
///
|
|
/// There is only one distinct advantage to flattening the CFG at the IR level:
|
|
/// it makes very common but simplistic optimizations such as are common in
|
|
/// instcombine and the DAG combiner more powerful by removing CFG edges and
|
|
/// modeling their effects with easier to reason about SSA value graphs.
|
|
///
|
|
///
|
|
/// An illustration of this transform is turning this IR:
|
|
/// \code
|
|
/// BB:
|
|
/// %cmp = icmp ult %x, %y
|
|
/// br i1 %cmp, label %EndBB, label %ThenBB
|
|
/// ThenBB:
|
|
/// %sub = sub %x, %y
|
|
/// br label BB2
|
|
/// EndBB:
|
|
/// %phi = phi [ %sub, %ThenBB ], [ 0, %EndBB ]
|
|
/// ...
|
|
/// \endcode
|
|
///
|
|
/// Into this IR:
|
|
/// \code
|
|
/// BB:
|
|
/// %cmp = icmp ult %x, %y
|
|
/// %sub = sub %x, %y
|
|
/// %cond = select i1 %cmp, 0, %sub
|
|
/// ...
|
|
/// \endcode
|
|
///
|
|
/// \returns true if the conditional block is removed.
|
|
bool SimplifyCFGOpt::SpeculativelyExecuteBB(BranchInst *BI, BasicBlock *ThenBB,
|
|
const TargetTransformInfo &TTI) {
|
|
// Be conservative for now. FP select instruction can often be expensive.
|
|
Value *BrCond = BI->getCondition();
|
|
if (isa<FCmpInst>(BrCond))
|
|
return false;
|
|
|
|
BasicBlock *BB = BI->getParent();
|
|
BasicBlock *EndBB = ThenBB->getTerminator()->getSuccessor(0);
|
|
InstructionCost Budget =
|
|
PHINodeFoldingThreshold * TargetTransformInfo::TCC_Basic;
|
|
|
|
// If ThenBB is actually on the false edge of the conditional branch, remember
|
|
// to swap the select operands later.
|
|
bool Invert = false;
|
|
if (ThenBB != BI->getSuccessor(0)) {
|
|
assert(ThenBB == BI->getSuccessor(1) && "No edge from 'if' block?");
|
|
Invert = true;
|
|
}
|
|
assert(EndBB == BI->getSuccessor(!Invert) && "No edge from to end block");
|
|
|
|
// If the branch is non-unpredictable, and is predicted to *not* branch to
|
|
// the `then` block, then avoid speculating it.
|
|
if (!BI->getMetadata(LLVMContext::MD_unpredictable)) {
|
|
uint64_t TWeight, FWeight;
|
|
if (BI->extractProfMetadata(TWeight, FWeight) && (TWeight + FWeight) != 0) {
|
|
uint64_t EndWeight = Invert ? TWeight : FWeight;
|
|
BranchProbability BIEndProb =
|
|
BranchProbability::getBranchProbability(EndWeight, TWeight + FWeight);
|
|
BranchProbability Likely = TTI.getPredictableBranchThreshold();
|
|
if (BIEndProb >= Likely)
|
|
return false;
|
|
}
|
|
}
|
|
|
|
// Keep a count of how many times instructions are used within ThenBB when
|
|
// they are candidates for sinking into ThenBB. Specifically:
|
|
// - They are defined in BB, and
|
|
// - They have no side effects, and
|
|
// - All of their uses are in ThenBB.
|
|
SmallDenseMap<Instruction *, unsigned, 4> SinkCandidateUseCounts;
|
|
|
|
SmallVector<Instruction *, 4> SpeculatedDbgIntrinsics;
|
|
|
|
unsigned SpeculatedInstructions = 0;
|
|
Value *SpeculatedStoreValue = nullptr;
|
|
StoreInst *SpeculatedStore = nullptr;
|
|
for (BasicBlock::iterator BBI = ThenBB->begin(),
|
|
BBE = std::prev(ThenBB->end());
|
|
BBI != BBE; ++BBI) {
|
|
Instruction *I = &*BBI;
|
|
// Skip debug info.
|
|
if (isa<DbgInfoIntrinsic>(I)) {
|
|
SpeculatedDbgIntrinsics.push_back(I);
|
|
continue;
|
|
}
|
|
|
|
// Skip pseudo probes. The consequence is we lose track of the branch
|
|
// probability for ThenBB, which is fine since the optimization here takes
|
|
// place regardless of the branch probability.
|
|
if (isa<PseudoProbeInst>(I)) {
|
|
// The probe should be deleted so that it will not be over-counted when
|
|
// the samples collected on the non-conditional path are counted towards
|
|
// the conditional path. We leave it for the counts inference algorithm to
|
|
// figure out a proper count for an unknown probe.
|
|
SpeculatedDbgIntrinsics.push_back(I);
|
|
continue;
|
|
}
|
|
|
|
// Only speculatively execute a single instruction (not counting the
|
|
// terminator) for now.
|
|
++SpeculatedInstructions;
|
|
if (SpeculatedInstructions > 1)
|
|
return false;
|
|
|
|
// Don't hoist the instruction if it's unsafe or expensive.
|
|
if (!isSafeToSpeculativelyExecute(I) &&
|
|
!(HoistCondStores && (SpeculatedStoreValue = isSafeToSpeculateStore(
|
|
I, BB, ThenBB, EndBB))))
|
|
return false;
|
|
if (!SpeculatedStoreValue &&
|
|
computeSpeculationCost(I, TTI) >
|
|
PHINodeFoldingThreshold * TargetTransformInfo::TCC_Basic)
|
|
return false;
|
|
|
|
// Store the store speculation candidate.
|
|
if (SpeculatedStoreValue)
|
|
SpeculatedStore = cast<StoreInst>(I);
|
|
|
|
// Do not hoist the instruction if any of its operands are defined but not
|
|
// used in BB. The transformation will prevent the operand from
|
|
// being sunk into the use block.
|
|
for (Use &Op : I->operands()) {
|
|
Instruction *OpI = dyn_cast<Instruction>(Op);
|
|
if (!OpI || OpI->getParent() != BB || OpI->mayHaveSideEffects())
|
|
continue; // Not a candidate for sinking.
|
|
|
|
++SinkCandidateUseCounts[OpI];
|
|
}
|
|
}
|
|
|
|
// Consider any sink candidates which are only used in ThenBB as costs for
|
|
// speculation. Note, while we iterate over a DenseMap here, we are summing
|
|
// and so iteration order isn't significant.
|
|
for (SmallDenseMap<Instruction *, unsigned, 4>::iterator
|
|
I = SinkCandidateUseCounts.begin(),
|
|
E = SinkCandidateUseCounts.end();
|
|
I != E; ++I)
|
|
if (I->first->hasNUses(I->second)) {
|
|
++SpeculatedInstructions;
|
|
if (SpeculatedInstructions > 1)
|
|
return false;
|
|
}
|
|
|
|
// Check that we can insert the selects and that it's not too expensive to do
|
|
// so.
|
|
bool Convert = SpeculatedStore != nullptr;
|
|
InstructionCost Cost = 0;
|
|
Convert |= validateAndCostRequiredSelects(BB, ThenBB, EndBB,
|
|
SpeculatedInstructions,
|
|
Cost, TTI);
|
|
if (!Convert || Cost > Budget)
|
|
return false;
|
|
|
|
// If we get here, we can hoist the instruction and if-convert.
|
|
LLVM_DEBUG(dbgs() << "SPECULATIVELY EXECUTING BB" << *ThenBB << "\n";);
|
|
|
|
// Insert a select of the value of the speculated store.
|
|
if (SpeculatedStoreValue) {
|
|
IRBuilder<NoFolder> Builder(BI);
|
|
Value *TrueV = SpeculatedStore->getValueOperand();
|
|
Value *FalseV = SpeculatedStoreValue;
|
|
if (Invert)
|
|
std::swap(TrueV, FalseV);
|
|
Value *S = Builder.CreateSelect(
|
|
BrCond, TrueV, FalseV, "spec.store.select", BI);
|
|
SpeculatedStore->setOperand(0, S);
|
|
SpeculatedStore->applyMergedLocation(BI->getDebugLoc(),
|
|
SpeculatedStore->getDebugLoc());
|
|
}
|
|
|
|
// Metadata can be dependent on the condition we are hoisting above.
|
|
// Conservatively strip all metadata on the instruction. Drop the debug loc
|
|
// to avoid making it appear as if the condition is a constant, which would
|
|
// be misleading while debugging.
|
|
// Similarly strip attributes that maybe dependent on condition we are
|
|
// hoisting above.
|
|
for (auto &I : *ThenBB) {
|
|
if (!SpeculatedStoreValue || &I != SpeculatedStore)
|
|
I.setDebugLoc(DebugLoc());
|
|
I.dropUndefImplyingAttrsAndUnknownMetadata();
|
|
}
|
|
|
|
// Hoist the instructions.
|
|
BB->getInstList().splice(BI->getIterator(), ThenBB->getInstList(),
|
|
ThenBB->begin(), std::prev(ThenBB->end()));
|
|
|
|
// Insert selects and rewrite the PHI operands.
|
|
IRBuilder<NoFolder> Builder(BI);
|
|
for (PHINode &PN : EndBB->phis()) {
|
|
unsigned OrigI = PN.getBasicBlockIndex(BB);
|
|
unsigned ThenI = PN.getBasicBlockIndex(ThenBB);
|
|
Value *OrigV = PN.getIncomingValue(OrigI);
|
|
Value *ThenV = PN.getIncomingValue(ThenI);
|
|
|
|
// Skip PHIs which are trivial.
|
|
if (OrigV == ThenV)
|
|
continue;
|
|
|
|
// Create a select whose true value is the speculatively executed value and
|
|
// false value is the pre-existing value. Swap them if the branch
|
|
// destinations were inverted.
|
|
Value *TrueV = ThenV, *FalseV = OrigV;
|
|
if (Invert)
|
|
std::swap(TrueV, FalseV);
|
|
Value *V = Builder.CreateSelect(BrCond, TrueV, FalseV, "spec.select", BI);
|
|
PN.setIncomingValue(OrigI, V);
|
|
PN.setIncomingValue(ThenI, V);
|
|
}
|
|
|
|
// Remove speculated dbg intrinsics.
|
|
// FIXME: Is it possible to do this in a more elegant way? Moving/merging the
|
|
// dbg value for the different flows and inserting it after the select.
|
|
for (Instruction *I : SpeculatedDbgIntrinsics)
|
|
I->eraseFromParent();
|
|
|
|
++NumSpeculations;
|
|
return true;
|
|
}
|
|
|
|
/// Return true if we can thread a branch across this block.
|
|
static bool BlockIsSimpleEnoughToThreadThrough(BasicBlock *BB) {
|
|
int Size = 0;
|
|
|
|
SmallPtrSet<const Value *, 32> EphValues;
|
|
auto IsEphemeral = [&](const Value *V) {
|
|
if (isa<AssumeInst>(V))
|
|
return true;
|
|
return isSafeToSpeculativelyExecute(V) &&
|
|
all_of(V->users(),
|
|
[&](const User *U) { return EphValues.count(U); });
|
|
};
|
|
|
|
// Walk the loop in reverse so that we can identify ephemeral values properly
|
|
// (values only feeding assumes).
|
|
for (Instruction &I : reverse(BB->instructionsWithoutDebug())) {
|
|
// Can't fold blocks that contain noduplicate or convergent calls.
|
|
if (CallInst *CI = dyn_cast<CallInst>(&I))
|
|
if (CI->cannotDuplicate() || CI->isConvergent())
|
|
return false;
|
|
|
|
// Ignore ephemeral values which are deleted during codegen.
|
|
if (IsEphemeral(&I))
|
|
EphValues.insert(&I);
|
|
// We will delete Phis while threading, so Phis should not be accounted in
|
|
// block's size.
|
|
else if (!isa<PHINode>(I)) {
|
|
if (Size++ > MaxSmallBlockSize)
|
|
return false; // Don't clone large BB's.
|
|
}
|
|
|
|
// We can only support instructions that do not define values that are
|
|
// live outside of the current basic block.
|
|
for (User *U : I.users()) {
|
|
Instruction *UI = cast<Instruction>(U);
|
|
if (UI->getParent() != BB || isa<PHINode>(UI))
|
|
return false;
|
|
}
|
|
|
|
// Looks ok, continue checking.
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
/// If we have a conditional branch on a PHI node value that is defined in the
|
|
/// same block as the branch and if any PHI entries are constants, thread edges
|
|
/// corresponding to that entry to be branches to their ultimate destination.
|
|
static bool FoldCondBranchOnPHI(BranchInst *BI, DomTreeUpdater *DTU,
|
|
const DataLayout &DL, AssumptionCache *AC) {
|
|
BasicBlock *BB = BI->getParent();
|
|
PHINode *PN = dyn_cast<PHINode>(BI->getCondition());
|
|
// NOTE: we currently cannot transform this case if the PHI node is used
|
|
// outside of the block.
|
|
if (!PN || PN->getParent() != BB || !PN->hasOneUse())
|
|
return false;
|
|
|
|
// Degenerate case of a single entry PHI.
|
|
if (PN->getNumIncomingValues() == 1) {
|
|
FoldSingleEntryPHINodes(PN->getParent());
|
|
return true;
|
|
}
|
|
|
|
// Now we know that this block has multiple preds and two succs.
|
|
if (!BlockIsSimpleEnoughToThreadThrough(BB))
|
|
return false;
|
|
|
|
// Okay, this is a simple enough basic block. See if any phi values are
|
|
// constants.
|
|
for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
|
|
ConstantInt *CB = dyn_cast<ConstantInt>(PN->getIncomingValue(i));
|
|
if (!CB || !CB->getType()->isIntegerTy(1))
|
|
continue;
|
|
|
|
// Okay, we now know that all edges from PredBB should be revectored to
|
|
// branch to RealDest.
|
|
BasicBlock *PredBB = PN->getIncomingBlock(i);
|
|
BasicBlock *RealDest = BI->getSuccessor(!CB->getZExtValue());
|
|
|
|
if (RealDest == BB)
|
|
continue; // Skip self loops.
|
|
// Skip if the predecessor's terminator is an indirect branch.
|
|
if (isa<IndirectBrInst>(PredBB->getTerminator()))
|
|
continue;
|
|
|
|
SmallVector<DominatorTree::UpdateType, 3> Updates;
|
|
|
|
// The dest block might have PHI nodes, other predecessors and other
|
|
// difficult cases. Instead of being smart about this, just insert a new
|
|
// block that jumps to the destination block, effectively splitting
|
|
// the edge we are about to create.
|
|
BasicBlock *EdgeBB =
|
|
BasicBlock::Create(BB->getContext(), RealDest->getName() + ".critedge",
|
|
RealDest->getParent(), RealDest);
|
|
BranchInst *CritEdgeBranch = BranchInst::Create(RealDest, EdgeBB);
|
|
if (DTU)
|
|
Updates.push_back({DominatorTree::Insert, EdgeBB, RealDest});
|
|
CritEdgeBranch->setDebugLoc(BI->getDebugLoc());
|
|
|
|
// Update PHI nodes.
|
|
AddPredecessorToBlock(RealDest, EdgeBB, BB);
|
|
|
|
// BB may have instructions that are being threaded over. Clone these
|
|
// instructions into EdgeBB. We know that there will be no uses of the
|
|
// cloned instructions outside of EdgeBB.
|
|
BasicBlock::iterator InsertPt = EdgeBB->begin();
|
|
DenseMap<Value *, Value *> TranslateMap; // Track translated values.
|
|
for (BasicBlock::iterator BBI = BB->begin(); &*BBI != BI; ++BBI) {
|
|
if (PHINode *PN = dyn_cast<PHINode>(BBI)) {
|
|
TranslateMap[PN] = PN->getIncomingValueForBlock(PredBB);
|
|
continue;
|
|
}
|
|
// Clone the instruction.
|
|
Instruction *N = BBI->clone();
|
|
if (BBI->hasName())
|
|
N->setName(BBI->getName() + ".c");
|
|
|
|
// Update operands due to translation.
|
|
for (Use &Op : N->operands()) {
|
|
DenseMap<Value *, Value *>::iterator PI = TranslateMap.find(Op);
|
|
if (PI != TranslateMap.end())
|
|
Op = PI->second;
|
|
}
|
|
|
|
// Check for trivial simplification.
|
|
if (Value *V = SimplifyInstruction(N, {DL, nullptr, nullptr, AC})) {
|
|
if (!BBI->use_empty())
|
|
TranslateMap[&*BBI] = V;
|
|
if (!N->mayHaveSideEffects()) {
|
|
N->deleteValue(); // Instruction folded away, don't need actual inst
|
|
N = nullptr;
|
|
}
|
|
} else {
|
|
if (!BBI->use_empty())
|
|
TranslateMap[&*BBI] = N;
|
|
}
|
|
if (N) {
|
|
// Insert the new instruction into its new home.
|
|
EdgeBB->getInstList().insert(InsertPt, N);
|
|
|
|
// Register the new instruction with the assumption cache if necessary.
|
|
if (auto *Assume = dyn_cast<AssumeInst>(N))
|
|
if (AC)
|
|
AC->registerAssumption(Assume);
|
|
}
|
|
}
|
|
|
|
// Loop over all of the edges from PredBB to BB, changing them to branch
|
|
// to EdgeBB instead.
|
|
Instruction *PredBBTI = PredBB->getTerminator();
|
|
for (unsigned i = 0, e = PredBBTI->getNumSuccessors(); i != e; ++i)
|
|
if (PredBBTI->getSuccessor(i) == BB) {
|
|
BB->removePredecessor(PredBB);
|
|
PredBBTI->setSuccessor(i, EdgeBB);
|
|
}
|
|
|
|
if (DTU) {
|
|
Updates.push_back({DominatorTree::Insert, PredBB, EdgeBB});
|
|
Updates.push_back({DominatorTree::Delete, PredBB, BB});
|
|
|
|
DTU->applyUpdates(Updates);
|
|
}
|
|
|
|
// Recurse, simplifying any other constants.
|
|
return FoldCondBranchOnPHI(BI, DTU, DL, AC) || true;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
/// Given a BB that starts with the specified two-entry PHI node,
|
|
/// see if we can eliminate it.
|
|
static bool FoldTwoEntryPHINode(PHINode *PN, const TargetTransformInfo &TTI,
|
|
DomTreeUpdater *DTU, const DataLayout &DL) {
|
|
// Ok, this is a two entry PHI node. Check to see if this is a simple "if
|
|
// statement", which has a very simple dominance structure. Basically, we
|
|
// are trying to find the condition that is being branched on, which
|
|
// subsequently causes this merge to happen. We really want control
|
|
// dependence information for this check, but simplifycfg can't keep it up
|
|
// to date, and this catches most of the cases we care about anyway.
|
|
BasicBlock *BB = PN->getParent();
|
|
|
|
BasicBlock *IfTrue, *IfFalse;
|
|
BranchInst *DomBI = GetIfCondition(BB, IfTrue, IfFalse);
|
|
if (!DomBI)
|
|
return false;
|
|
Value *IfCond = DomBI->getCondition();
|
|
// Don't bother if the branch will be constant folded trivially.
|
|
if (isa<ConstantInt>(IfCond))
|
|
return false;
|
|
|
|
BasicBlock *DomBlock = DomBI->getParent();
|
|
SmallVector<BasicBlock *, 2> IfBlocks;
|
|
llvm::copy_if(
|
|
PN->blocks(), std::back_inserter(IfBlocks), [](BasicBlock *IfBlock) {
|
|
return cast<BranchInst>(IfBlock->getTerminator())->isUnconditional();
|
|
});
|
|
assert((IfBlocks.size() == 1 || IfBlocks.size() == 2) &&
|
|
"Will have either one or two blocks to speculate.");
|
|
|
|
// If the branch is non-unpredictable, see if we either predictably jump to
|
|
// the merge bb (if we have only a single 'then' block), or if we predictably
|
|
// jump to one specific 'then' block (if we have two of them).
|
|
// It isn't beneficial to speculatively execute the code
|
|
// from the block that we know is predictably not entered.
|
|
if (!DomBI->getMetadata(LLVMContext::MD_unpredictable)) {
|
|
uint64_t TWeight, FWeight;
|
|
if (DomBI->extractProfMetadata(TWeight, FWeight) &&
|
|
(TWeight + FWeight) != 0) {
|
|
BranchProbability BITrueProb =
|
|
BranchProbability::getBranchProbability(TWeight, TWeight + FWeight);
|
|
BranchProbability Likely = TTI.getPredictableBranchThreshold();
|
|
BranchProbability BIFalseProb = BITrueProb.getCompl();
|
|
if (IfBlocks.size() == 1) {
|
|
BranchProbability BIBBProb =
|
|
DomBI->getSuccessor(0) == BB ? BITrueProb : BIFalseProb;
|
|
if (BIBBProb >= Likely)
|
|
return false;
|
|
} else {
|
|
if (BITrueProb >= Likely || BIFalseProb >= Likely)
|
|
return false;
|
|
}
|
|
}
|
|
}
|
|
|
|
// Don't try to fold an unreachable block. For example, the phi node itself
|
|
// can't be the candidate if-condition for a select that we want to form.
|
|
if (auto *IfCondPhiInst = dyn_cast<PHINode>(IfCond))
|
|
if (IfCondPhiInst->getParent() == BB)
|
|
return false;
|
|
|
|
// Okay, we found that we can merge this two-entry phi node into a select.
|
|
// Doing so would require us to fold *all* two entry phi nodes in this block.
|
|
// At some point this becomes non-profitable (particularly if the target
|
|
// doesn't support cmov's). Only do this transformation if there are two or
|
|
// fewer PHI nodes in this block.
|
|
unsigned NumPhis = 0;
|
|
for (BasicBlock::iterator I = BB->begin(); isa<PHINode>(I); ++NumPhis, ++I)
|
|
if (NumPhis > 2)
|
|
return false;
|
|
|
|
// Loop over the PHI's seeing if we can promote them all to select
|
|
// instructions. While we are at it, keep track of the instructions
|
|
// that need to be moved to the dominating block.
|
|
SmallPtrSet<Instruction *, 4> AggressiveInsts;
|
|
InstructionCost Cost = 0;
|
|
InstructionCost Budget =
|
|
TwoEntryPHINodeFoldingThreshold * TargetTransformInfo::TCC_Basic;
|
|
|
|
bool Changed = false;
|
|
for (BasicBlock::iterator II = BB->begin(); isa<PHINode>(II);) {
|
|
PHINode *PN = cast<PHINode>(II++);
|
|
if (Value *V = SimplifyInstruction(PN, {DL, PN})) {
|
|
PN->replaceAllUsesWith(V);
|
|
PN->eraseFromParent();
|
|
Changed = true;
|
|
continue;
|
|
}
|
|
|
|
if (!dominatesMergePoint(PN->getIncomingValue(0), BB, AggressiveInsts,
|
|
Cost, Budget, TTI) ||
|
|
!dominatesMergePoint(PN->getIncomingValue(1), BB, AggressiveInsts,
|
|
Cost, Budget, TTI))
|
|
return Changed;
|
|
}
|
|
|
|
// If we folded the first phi, PN dangles at this point. Refresh it. If
|
|
// we ran out of PHIs then we simplified them all.
|
|
PN = dyn_cast<PHINode>(BB->begin());
|
|
if (!PN)
|
|
return true;
|
|
|
|
// Return true if at least one of these is a 'not', and another is either
|
|
// a 'not' too, or a constant.
|
|
auto CanHoistNotFromBothValues = [](Value *V0, Value *V1) {
|
|
if (!match(V0, m_Not(m_Value())))
|
|
std::swap(V0, V1);
|
|
auto Invertible = m_CombineOr(m_Not(m_Value()), m_AnyIntegralConstant());
|
|
return match(V0, m_Not(m_Value())) && match(V1, Invertible);
|
|
};
|
|
|
|
// Don't fold i1 branches on PHIs which contain binary operators or
|
|
// (possibly inverted) select form of or/ands, unless one of
|
|
// the incoming values is an 'not' and another one is freely invertible.
|
|
// These can often be turned into switches and other things.
|
|
auto IsBinOpOrAnd = [](Value *V) {
|
|
return match(
|
|
V, m_CombineOr(
|
|
m_BinOp(),
|
|
m_CombineOr(m_Select(m_Value(), m_ImmConstant(), m_Value()),
|
|
m_Select(m_Value(), m_Value(), m_ImmConstant()))));
|
|
};
|
|
if (PN->getType()->isIntegerTy(1) &&
|
|
(IsBinOpOrAnd(PN->getIncomingValue(0)) ||
|
|
IsBinOpOrAnd(PN->getIncomingValue(1)) || IsBinOpOrAnd(IfCond)) &&
|
|
!CanHoistNotFromBothValues(PN->getIncomingValue(0),
|
|
PN->getIncomingValue(1)))
|
|
return Changed;
|
|
|
|
// If all PHI nodes are promotable, check to make sure that all instructions
|
|
// in the predecessor blocks can be promoted as well. If not, we won't be able
|
|
// to get rid of the control flow, so it's not worth promoting to select
|
|
// instructions.
|
|
for (BasicBlock *IfBlock : IfBlocks)
|
|
for (BasicBlock::iterator I = IfBlock->begin(); !I->isTerminator(); ++I)
|
|
if (!AggressiveInsts.count(&*I) && !isa<DbgInfoIntrinsic>(I) &&
|
|
!isa<PseudoProbeInst>(I)) {
|
|
// This is not an aggressive instruction that we can promote.
|
|
// Because of this, we won't be able to get rid of the control flow, so
|
|
// the xform is not worth it.
|
|
return Changed;
|
|
}
|
|
|
|
// If either of the blocks has it's address taken, we can't do this fold.
|
|
if (any_of(IfBlocks,
|
|
[](BasicBlock *IfBlock) { return IfBlock->hasAddressTaken(); }))
|
|
return Changed;
|
|
|
|
LLVM_DEBUG(dbgs() << "FOUND IF CONDITION! " << *IfCond
|
|
<< " T: " << IfTrue->getName()
|
|
<< " F: " << IfFalse->getName() << "\n");
|
|
|
|
// If we can still promote the PHI nodes after this gauntlet of tests,
|
|
// do all of the PHI's now.
|
|
|
|
// Move all 'aggressive' instructions, which are defined in the
|
|
// conditional parts of the if's up to the dominating block.
|
|
for (BasicBlock *IfBlock : IfBlocks)
|
|
hoistAllInstructionsInto(DomBlock, DomBI, IfBlock);
|
|
|
|
IRBuilder<NoFolder> Builder(DomBI);
|
|
// Propagate fast-math-flags from phi nodes to replacement selects.
|
|
IRBuilder<>::FastMathFlagGuard FMFGuard(Builder);
|
|
while (PHINode *PN = dyn_cast<PHINode>(BB->begin())) {
|
|
if (isa<FPMathOperator>(PN))
|
|
Builder.setFastMathFlags(PN->getFastMathFlags());
|
|
|
|
// Change the PHI node into a select instruction.
|
|
Value *TrueVal = PN->getIncomingValueForBlock(IfTrue);
|
|
Value *FalseVal = PN->getIncomingValueForBlock(IfFalse);
|
|
|
|
Value *Sel = Builder.CreateSelect(IfCond, TrueVal, FalseVal, "", DomBI);
|
|
PN->replaceAllUsesWith(Sel);
|
|
Sel->takeName(PN);
|
|
PN->eraseFromParent();
|
|
}
|
|
|
|
// At this point, all IfBlocks are empty, so our if statement
|
|
// has been flattened. Change DomBlock to jump directly to our new block to
|
|
// avoid other simplifycfg's kicking in on the diamond.
|
|
Builder.CreateBr(BB);
|
|
|
|
SmallVector<DominatorTree::UpdateType, 3> Updates;
|
|
if (DTU) {
|
|
Updates.push_back({DominatorTree::Insert, DomBlock, BB});
|
|
for (auto *Successor : successors(DomBlock))
|
|
Updates.push_back({DominatorTree::Delete, DomBlock, Successor});
|
|
}
|
|
|
|
DomBI->eraseFromParent();
|
|
if (DTU)
|
|
DTU->applyUpdates(Updates);
|
|
|
|
return true;
|
|
}
|
|
|
|
static Value *createLogicalOp(IRBuilderBase &Builder,
|
|
Instruction::BinaryOps Opc, Value *LHS,
|
|
Value *RHS, const Twine &Name = "") {
|
|
// Try to relax logical op to binary op.
|
|
if (impliesPoison(RHS, LHS))
|
|
return Builder.CreateBinOp(Opc, LHS, RHS, Name);
|
|
if (Opc == Instruction::And)
|
|
return Builder.CreateLogicalAnd(LHS, RHS, Name);
|
|
if (Opc == Instruction::Or)
|
|
return Builder.CreateLogicalOr(LHS, RHS, Name);
|
|
llvm_unreachable("Invalid logical opcode");
|
|
}
|
|
|
|
/// Return true if either PBI or BI has branch weight available, and store
|
|
/// the weights in {Pred|Succ}{True|False}Weight. If one of PBI and BI does
|
|
/// not have branch weight, use 1:1 as its weight.
|
|
static bool extractPredSuccWeights(BranchInst *PBI, BranchInst *BI,
|
|
uint64_t &PredTrueWeight,
|
|
uint64_t &PredFalseWeight,
|
|
uint64_t &SuccTrueWeight,
|
|
uint64_t &SuccFalseWeight) {
|
|
bool PredHasWeights =
|
|
PBI->extractProfMetadata(PredTrueWeight, PredFalseWeight);
|
|
bool SuccHasWeights =
|
|
BI->extractProfMetadata(SuccTrueWeight, SuccFalseWeight);
|
|
if (PredHasWeights || SuccHasWeights) {
|
|
if (!PredHasWeights)
|
|
PredTrueWeight = PredFalseWeight = 1;
|
|
if (!SuccHasWeights)
|
|
SuccTrueWeight = SuccFalseWeight = 1;
|
|
return true;
|
|
} else {
|
|
return false;
|
|
}
|
|
}
|
|
|
|
/// Determine if the two branches share a common destination and deduce a glue
|
|
/// that joins the branches' conditions to arrive at the common destination if
|
|
/// that would be profitable.
|
|
static Optional<std::pair<Instruction::BinaryOps, bool>>
|
|
shouldFoldCondBranchesToCommonDestination(BranchInst *BI, BranchInst *PBI,
|
|
const TargetTransformInfo *TTI) {
|
|
assert(BI && PBI && BI->isConditional() && PBI->isConditional() &&
|
|
"Both blocks must end with a conditional branches.");
|
|
assert(is_contained(predecessors(BI->getParent()), PBI->getParent()) &&
|
|
"PredBB must be a predecessor of BB.");
|
|
|
|
// We have the potential to fold the conditions together, but if the
|
|
// predecessor branch is predictable, we may not want to merge them.
|
|
uint64_t PTWeight, PFWeight;
|
|
BranchProbability PBITrueProb, Likely;
|
|
if (TTI && !PBI->getMetadata(LLVMContext::MD_unpredictable) &&
|
|
PBI->extractProfMetadata(PTWeight, PFWeight) &&
|
|
(PTWeight + PFWeight) != 0) {
|
|
PBITrueProb =
|
|
BranchProbability::getBranchProbability(PTWeight, PTWeight + PFWeight);
|
|
Likely = TTI->getPredictableBranchThreshold();
|
|
}
|
|
|
|
if (PBI->getSuccessor(0) == BI->getSuccessor(0)) {
|
|
// Speculate the 2nd condition unless the 1st is probably true.
|
|
if (PBITrueProb.isUnknown() || PBITrueProb < Likely)
|
|
return {{Instruction::Or, false}};
|
|
} else if (PBI->getSuccessor(1) == BI->getSuccessor(1)) {
|
|
// Speculate the 2nd condition unless the 1st is probably false.
|
|
if (PBITrueProb.isUnknown() || PBITrueProb.getCompl() < Likely)
|
|
return {{Instruction::And, false}};
|
|
} else if (PBI->getSuccessor(0) == BI->getSuccessor(1)) {
|
|
// Speculate the 2nd condition unless the 1st is probably true.
|
|
if (PBITrueProb.isUnknown() || PBITrueProb < Likely)
|
|
return {{Instruction::And, true}};
|
|
} else if (PBI->getSuccessor(1) == BI->getSuccessor(0)) {
|
|
// Speculate the 2nd condition unless the 1st is probably false.
|
|
if (PBITrueProb.isUnknown() || PBITrueProb.getCompl() < Likely)
|
|
return {{Instruction::Or, true}};
|
|
}
|
|
return None;
|
|
}
|
|
|
|
static bool performBranchToCommonDestFolding(BranchInst *BI, BranchInst *PBI,
|
|
DomTreeUpdater *DTU,
|
|
MemorySSAUpdater *MSSAU,
|
|
const TargetTransformInfo *TTI) {
|
|
BasicBlock *BB = BI->getParent();
|
|
BasicBlock *PredBlock = PBI->getParent();
|
|
|
|
// Determine if the two branches share a common destination.
|
|
Instruction::BinaryOps Opc;
|
|
bool InvertPredCond;
|
|
std::tie(Opc, InvertPredCond) =
|
|
*shouldFoldCondBranchesToCommonDestination(BI, PBI, TTI);
|
|
|
|
LLVM_DEBUG(dbgs() << "FOLDING BRANCH TO COMMON DEST:\n" << *PBI << *BB);
|
|
|
|
IRBuilder<> Builder(PBI);
|
|
// The builder is used to create instructions to eliminate the branch in BB.
|
|
// If BB's terminator has !annotation metadata, add it to the new
|
|
// instructions.
|
|
Builder.CollectMetadataToCopy(BB->getTerminator(),
|
|
{LLVMContext::MD_annotation});
|
|
|
|
// If we need to invert the condition in the pred block to match, do so now.
|
|
if (InvertPredCond) {
|
|
Value *NewCond = PBI->getCondition();
|
|
if (NewCond->hasOneUse() && isa<CmpInst>(NewCond)) {
|
|
CmpInst *CI = cast<CmpInst>(NewCond);
|
|
CI->setPredicate(CI->getInversePredicate());
|
|
} else {
|
|
NewCond =
|
|
Builder.CreateNot(NewCond, PBI->getCondition()->getName() + ".not");
|
|
}
|
|
|
|
PBI->setCondition(NewCond);
|
|
PBI->swapSuccessors();
|
|
}
|
|
|
|
BasicBlock *UniqueSucc =
|
|
PBI->getSuccessor(0) == BB ? BI->getSuccessor(0) : BI->getSuccessor(1);
|
|
|
|
// Before cloning instructions, notify the successor basic block that it
|
|
// is about to have a new predecessor. This will update PHI nodes,
|
|
// which will allow us to update live-out uses of bonus instructions.
|
|
AddPredecessorToBlock(UniqueSucc, PredBlock, BB, MSSAU);
|
|
|
|
// Try to update branch weights.
|
|
uint64_t PredTrueWeight, PredFalseWeight, SuccTrueWeight, SuccFalseWeight;
|
|
if (extractPredSuccWeights(PBI, BI, PredTrueWeight, PredFalseWeight,
|
|
SuccTrueWeight, SuccFalseWeight)) {
|
|
SmallVector<uint64_t, 8> NewWeights;
|
|
|
|
if (PBI->getSuccessor(0) == BB) {
|
|
// PBI: br i1 %x, BB, FalseDest
|
|
// BI: br i1 %y, UniqueSucc, FalseDest
|
|
// TrueWeight is TrueWeight for PBI * TrueWeight for BI.
|
|
NewWeights.push_back(PredTrueWeight * SuccTrueWeight);
|
|
// FalseWeight is FalseWeight for PBI * TotalWeight for BI +
|
|
// TrueWeight for PBI * FalseWeight for BI.
|
|
// We assume that total weights of a BranchInst can fit into 32 bits.
|
|
// Therefore, we will not have overflow using 64-bit arithmetic.
|
|
NewWeights.push_back(PredFalseWeight *
|
|
(SuccFalseWeight + SuccTrueWeight) +
|
|
PredTrueWeight * SuccFalseWeight);
|
|
} else {
|
|
// PBI: br i1 %x, TrueDest, BB
|
|
// BI: br i1 %y, TrueDest, UniqueSucc
|
|
// TrueWeight is TrueWeight for PBI * TotalWeight for BI +
|
|
// FalseWeight for PBI * TrueWeight for BI.
|
|
NewWeights.push_back(PredTrueWeight * (SuccFalseWeight + SuccTrueWeight) +
|
|
PredFalseWeight * SuccTrueWeight);
|
|
// FalseWeight is FalseWeight for PBI * FalseWeight for BI.
|
|
NewWeights.push_back(PredFalseWeight * SuccFalseWeight);
|
|
}
|
|
|
|
// Halve the weights if any of them cannot fit in an uint32_t
|
|
FitWeights(NewWeights);
|
|
|
|
SmallVector<uint32_t, 8> MDWeights(NewWeights.begin(), NewWeights.end());
|
|
setBranchWeights(PBI, MDWeights[0], MDWeights[1]);
|
|
|
|
// TODO: If BB is reachable from all paths through PredBlock, then we
|
|
// could replace PBI's branch probabilities with BI's.
|
|
} else
|
|
PBI->setMetadata(LLVMContext::MD_prof, nullptr);
|
|
|
|
// Now, update the CFG.
|
|
PBI->setSuccessor(PBI->getSuccessor(0) != BB, UniqueSucc);
|
|
|
|
if (DTU)
|
|
DTU->applyUpdates({{DominatorTree::Insert, PredBlock, UniqueSucc},
|
|
{DominatorTree::Delete, PredBlock, BB}});
|
|
|
|
// If BI was a loop latch, it may have had associated loop metadata.
|
|
// We need to copy it to the new latch, that is, PBI.
|
|
if (MDNode *LoopMD = BI->getMetadata(LLVMContext::MD_loop))
|
|
PBI->setMetadata(LLVMContext::MD_loop, LoopMD);
|
|
|
|
ValueToValueMapTy VMap; // maps original values to cloned values
|
|
CloneInstructionsIntoPredecessorBlockAndUpdateSSAUses(BB, PredBlock, VMap);
|
|
|
|
// Now that the Cond was cloned into the predecessor basic block,
|
|
// or/and the two conditions together.
|
|
Value *BICond = VMap[BI->getCondition()];
|
|
PBI->setCondition(
|
|
createLogicalOp(Builder, Opc, PBI->getCondition(), BICond, "or.cond"));
|
|
|
|
// Copy any debug value intrinsics into the end of PredBlock.
|
|
for (Instruction &I : *BB) {
|
|
if (isa<DbgInfoIntrinsic>(I)) {
|
|
Instruction *NewI = I.clone();
|
|
RemapInstruction(NewI, VMap,
|
|
RF_NoModuleLevelChanges | RF_IgnoreMissingLocals);
|
|
NewI->insertBefore(PBI);
|
|
}
|
|
}
|
|
|
|
++NumFoldBranchToCommonDest;
|
|
return true;
|
|
}
|
|
|
|
/// If this basic block is simple enough, and if a predecessor branches to us
|
|
/// and one of our successors, fold the block into the predecessor and use
|
|
/// logical operations to pick the right destination.
|
|
bool llvm::FoldBranchToCommonDest(BranchInst *BI, DomTreeUpdater *DTU,
|
|
MemorySSAUpdater *MSSAU,
|
|
const TargetTransformInfo *TTI,
|
|
unsigned BonusInstThreshold) {
|
|
// If this block ends with an unconditional branch,
|
|
// let SpeculativelyExecuteBB() deal with it.
|
|
if (!BI->isConditional())
|
|
return false;
|
|
|
|
BasicBlock *BB = BI->getParent();
|
|
TargetTransformInfo::TargetCostKind CostKind =
|
|
BB->getParent()->hasMinSize() ? TargetTransformInfo::TCK_CodeSize
|
|
: TargetTransformInfo::TCK_SizeAndLatency;
|
|
|
|
Instruction *Cond = dyn_cast<Instruction>(BI->getCondition());
|
|
|
|
if (!Cond || (!isa<CmpInst>(Cond) && !isa<BinaryOperator>(Cond)) ||
|
|
Cond->getParent() != BB || !Cond->hasOneUse())
|
|
return false;
|
|
|
|
// Cond is known to be a compare or binary operator. Check to make sure that
|
|
// neither operand is a potentially-trapping constant expression.
|
|
if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Cond->getOperand(0)))
|
|
if (CE->canTrap())
|
|
return false;
|
|
if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Cond->getOperand(1)))
|
|
if (CE->canTrap())
|
|
return false;
|
|
|
|
// Finally, don't infinitely unroll conditional loops.
|
|
if (is_contained(successors(BB), BB))
|
|
return false;
|
|
|
|
// With which predecessors will we want to deal with?
|
|
SmallVector<BasicBlock *, 8> Preds;
|
|
for (BasicBlock *PredBlock : predecessors(BB)) {
|
|
BranchInst *PBI = dyn_cast<BranchInst>(PredBlock->getTerminator());
|
|
|
|
// Check that we have two conditional branches. If there is a PHI node in
|
|
// the common successor, verify that the same value flows in from both
|
|
// blocks.
|
|
if (!PBI || PBI->isUnconditional() || !SafeToMergeTerminators(BI, PBI))
|
|
continue;
|
|
|
|
// Determine if the two branches share a common destination.
|
|
Instruction::BinaryOps Opc;
|
|
bool InvertPredCond;
|
|
if (auto Recipe = shouldFoldCondBranchesToCommonDestination(BI, PBI, TTI))
|
|
std::tie(Opc, InvertPredCond) = *Recipe;
|
|
else
|
|
continue;
|
|
|
|
// Check the cost of inserting the necessary logic before performing the
|
|
// transformation.
|
|
if (TTI) {
|
|
Type *Ty = BI->getCondition()->getType();
|
|
InstructionCost Cost = TTI->getArithmeticInstrCost(Opc, Ty, CostKind);
|
|
if (InvertPredCond && (!PBI->getCondition()->hasOneUse() ||
|
|
!isa<CmpInst>(PBI->getCondition())))
|
|
Cost += TTI->getArithmeticInstrCost(Instruction::Xor, Ty, CostKind);
|
|
|
|
if (Cost > BranchFoldThreshold)
|
|
continue;
|
|
}
|
|
|
|
// Ok, we do want to deal with this predecessor. Record it.
|
|
Preds.emplace_back(PredBlock);
|
|
}
|
|
|
|
// If there aren't any predecessors into which we can fold,
|
|
// don't bother checking the cost.
|
|
if (Preds.empty())
|
|
return false;
|
|
|
|
// Only allow this transformation if computing the condition doesn't involve
|
|
// too many instructions and these involved instructions can be executed
|
|
// unconditionally. We denote all involved instructions except the condition
|
|
// as "bonus instructions", and only allow this transformation when the
|
|
// number of the bonus instructions we'll need to create when cloning into
|
|
// each predecessor does not exceed a certain threshold.
|
|
unsigned NumBonusInsts = 0;
|
|
const unsigned PredCount = Preds.size();
|
|
for (Instruction &I : *BB) {
|
|
// Don't check the branch condition comparison itself.
|
|
if (&I == Cond)
|
|
continue;
|
|
// Ignore dbg intrinsics, and the terminator.
|
|
if (isa<DbgInfoIntrinsic>(I) || isa<BranchInst>(I))
|
|
continue;
|
|
// I must be safe to execute unconditionally.
|
|
if (!isSafeToSpeculativelyExecute(&I))
|
|
return false;
|
|
|
|
// Account for the cost of duplicating this instruction into each
|
|
// predecessor.
|
|
NumBonusInsts += PredCount;
|
|
// Early exits once we reach the limit.
|
|
if (NumBonusInsts > BonusInstThreshold)
|
|
return false;
|
|
|
|
auto IsBCSSAUse = [BB, &I](Use &U) {
|
|
auto *UI = cast<Instruction>(U.getUser());
|
|
if (auto *PN = dyn_cast<PHINode>(UI))
|
|
return PN->getIncomingBlock(U) == BB;
|
|
return UI->getParent() == BB && I.comesBefore(UI);
|
|
};
|
|
|
|
// Does this instruction require rewriting of uses?
|
|
if (!all_of(I.uses(), IsBCSSAUse))
|
|
return false;
|
|
}
|
|
|
|
// Ok, we have the budget. Perform the transformation.
|
|
for (BasicBlock *PredBlock : Preds) {
|
|
auto *PBI = cast<BranchInst>(PredBlock->getTerminator());
|
|
return performBranchToCommonDestFolding(BI, PBI, DTU, MSSAU, TTI);
|
|
}
|
|
return false;
|
|
}
|
|
|
|
// If there is only one store in BB1 and BB2, return it, otherwise return
|
|
// nullptr.
|
|
static StoreInst *findUniqueStoreInBlocks(BasicBlock *BB1, BasicBlock *BB2) {
|
|
StoreInst *S = nullptr;
|
|
for (auto *BB : {BB1, BB2}) {
|
|
if (!BB)
|
|
continue;
|
|
for (auto &I : *BB)
|
|
if (auto *SI = dyn_cast<StoreInst>(&I)) {
|
|
if (S)
|
|
// Multiple stores seen.
|
|
return nullptr;
|
|
else
|
|
S = SI;
|
|
}
|
|
}
|
|
return S;
|
|
}
|
|
|
|
static Value *ensureValueAvailableInSuccessor(Value *V, BasicBlock *BB,
|
|
Value *AlternativeV = nullptr) {
|
|
// PHI is going to be a PHI node that allows the value V that is defined in
|
|
// BB to be referenced in BB's only successor.
|
|
//
|
|
// If AlternativeV is nullptr, the only value we care about in PHI is V. It
|
|
// doesn't matter to us what the other operand is (it'll never get used). We
|
|
// could just create a new PHI with an undef incoming value, but that could
|
|
// increase register pressure if EarlyCSE/InstCombine can't fold it with some
|
|
// other PHI. So here we directly look for some PHI in BB's successor with V
|
|
// as an incoming operand. If we find one, we use it, else we create a new
|
|
// one.
|
|
//
|
|
// If AlternativeV is not nullptr, we care about both incoming values in PHI.
|
|
// PHI must be exactly: phi <ty> [ %BB, %V ], [ %OtherBB, %AlternativeV]
|
|
// where OtherBB is the single other predecessor of BB's only successor.
|
|
PHINode *PHI = nullptr;
|
|
BasicBlock *Succ = BB->getSingleSuccessor();
|
|
|
|
for (auto I = Succ->begin(); isa<PHINode>(I); ++I)
|
|
if (cast<PHINode>(I)->getIncomingValueForBlock(BB) == V) {
|
|
PHI = cast<PHINode>(I);
|
|
if (!AlternativeV)
|
|
break;
|
|
|
|
assert(Succ->hasNPredecessors(2));
|
|
auto PredI = pred_begin(Succ);
|
|
BasicBlock *OtherPredBB = *PredI == BB ? *++PredI : *PredI;
|
|
if (PHI->getIncomingValueForBlock(OtherPredBB) == AlternativeV)
|
|
break;
|
|
PHI = nullptr;
|
|
}
|
|
if (PHI)
|
|
return PHI;
|
|
|
|
// If V is not an instruction defined in BB, just return it.
|
|
if (!AlternativeV &&
|
|
(!isa<Instruction>(V) || cast<Instruction>(V)->getParent() != BB))
|
|
return V;
|
|
|
|
PHI = PHINode::Create(V->getType(), 2, "simplifycfg.merge", &Succ->front());
|
|
PHI->addIncoming(V, BB);
|
|
for (BasicBlock *PredBB : predecessors(Succ))
|
|
if (PredBB != BB)
|
|
PHI->addIncoming(
|
|
AlternativeV ? AlternativeV : UndefValue::get(V->getType()), PredBB);
|
|
return PHI;
|
|
}
|
|
|
|
static bool mergeConditionalStoreToAddress(
|
|
BasicBlock *PTB, BasicBlock *PFB, BasicBlock *QTB, BasicBlock *QFB,
|
|
BasicBlock *PostBB, Value *Address, bool InvertPCond, bool InvertQCond,
|
|
DomTreeUpdater *DTU, const DataLayout &DL, const TargetTransformInfo &TTI) {
|
|
// For every pointer, there must be exactly two stores, one coming from
|
|
// PTB or PFB, and the other from QTB or QFB. We don't support more than one
|
|
// store (to any address) in PTB,PFB or QTB,QFB.
|
|
// FIXME: We could relax this restriction with a bit more work and performance
|
|
// testing.
|
|
StoreInst *PStore = findUniqueStoreInBlocks(PTB, PFB);
|
|
StoreInst *QStore = findUniqueStoreInBlocks(QTB, QFB);
|
|
if (!PStore || !QStore)
|
|
return false;
|
|
|
|
// Now check the stores are compatible.
|
|
if (!QStore->isUnordered() || !PStore->isUnordered())
|
|
return false;
|
|
|
|
// Check that sinking the store won't cause program behavior changes. Sinking
|
|
// the store out of the Q blocks won't change any behavior as we're sinking
|
|
// from a block to its unconditional successor. But we're moving a store from
|
|
// the P blocks down through the middle block (QBI) and past both QFB and QTB.
|
|
// So we need to check that there are no aliasing loads or stores in
|
|
// QBI, QTB and QFB. We also need to check there are no conflicting memory
|
|
// operations between PStore and the end of its parent block.
|
|
//
|
|
// The ideal way to do this is to query AliasAnalysis, but we don't
|
|
// preserve AA currently so that is dangerous. Be super safe and just
|
|
// check there are no other memory operations at all.
|
|
for (auto &I : *QFB->getSinglePredecessor())
|
|
if (I.mayReadOrWriteMemory())
|
|
return false;
|
|
for (auto &I : *QFB)
|
|
if (&I != QStore && I.mayReadOrWriteMemory())
|
|
return false;
|
|
if (QTB)
|
|
for (auto &I : *QTB)
|
|
if (&I != QStore && I.mayReadOrWriteMemory())
|
|
return false;
|
|
for (auto I = BasicBlock::iterator(PStore), E = PStore->getParent()->end();
|
|
I != E; ++I)
|
|
if (&*I != PStore && I->mayReadOrWriteMemory())
|
|
return false;
|
|
|
|
// If we're not in aggressive mode, we only optimize if we have some
|
|
// confidence that by optimizing we'll allow P and/or Q to be if-converted.
|
|
auto IsWorthwhile = [&](BasicBlock *BB, ArrayRef<StoreInst *> FreeStores) {
|
|
if (!BB)
|
|
return true;
|
|
// Heuristic: if the block can be if-converted/phi-folded and the
|
|
// instructions inside are all cheap (arithmetic/GEPs), it's worthwhile to
|
|
// thread this store.
|
|
InstructionCost Cost = 0;
|
|
InstructionCost Budget =
|
|
PHINodeFoldingThreshold * TargetTransformInfo::TCC_Basic;
|
|
for (auto &I : BB->instructionsWithoutDebug()) {
|
|
// Consider terminator instruction to be free.
|
|
if (I.isTerminator())
|
|
continue;
|
|
// If this is one the stores that we want to speculate out of this BB,
|
|
// then don't count it's cost, consider it to be free.
|
|
if (auto *S = dyn_cast<StoreInst>(&I))
|
|
if (llvm::find(FreeStores, S))
|
|
continue;
|
|
// Else, we have a white-list of instructions that we are ak speculating.
|
|
if (!isa<BinaryOperator>(I) && !isa<GetElementPtrInst>(I))
|
|
return false; // Not in white-list - not worthwhile folding.
|
|
// And finally, if this is a non-free instruction that we are okay
|
|
// speculating, ensure that we consider the speculation budget.
|
|
Cost += TTI.getUserCost(&I, TargetTransformInfo::TCK_SizeAndLatency);
|
|
if (Cost > Budget)
|
|
return false; // Eagerly refuse to fold as soon as we're out of budget.
|
|
}
|
|
assert(Cost <= Budget &&
|
|
"When we run out of budget we will eagerly return from within the "
|
|
"per-instruction loop.");
|
|
return true;
|
|
};
|
|
|
|
const std::array<StoreInst *, 2> FreeStores = {PStore, QStore};
|
|
if (!MergeCondStoresAggressively &&
|
|
(!IsWorthwhile(PTB, FreeStores) || !IsWorthwhile(PFB, FreeStores) ||
|
|
!IsWorthwhile(QTB, FreeStores) || !IsWorthwhile(QFB, FreeStores)))
|
|
return false;
|
|
|
|
// If PostBB has more than two predecessors, we need to split it so we can
|
|
// sink the store.
|
|
if (std::next(pred_begin(PostBB), 2) != pred_end(PostBB)) {
|
|
// We know that QFB's only successor is PostBB. And QFB has a single
|
|
// predecessor. If QTB exists, then its only successor is also PostBB.
|
|
// If QTB does not exist, then QFB's only predecessor has a conditional
|
|
// branch to QFB and PostBB.
|
|
BasicBlock *TruePred = QTB ? QTB : QFB->getSinglePredecessor();
|
|
BasicBlock *NewBB =
|
|
SplitBlockPredecessors(PostBB, {QFB, TruePred}, "condstore.split", DTU);
|
|
if (!NewBB)
|
|
return false;
|
|
PostBB = NewBB;
|
|
}
|
|
|
|
// OK, we're going to sink the stores to PostBB. The store has to be
|
|
// conditional though, so first create the predicate.
|
|
Value *PCond = cast<BranchInst>(PFB->getSinglePredecessor()->getTerminator())
|
|
->getCondition();
|
|
Value *QCond = cast<BranchInst>(QFB->getSinglePredecessor()->getTerminator())
|
|
->getCondition();
|
|
|
|
Value *PPHI = ensureValueAvailableInSuccessor(PStore->getValueOperand(),
|
|
PStore->getParent());
|
|
Value *QPHI = ensureValueAvailableInSuccessor(QStore->getValueOperand(),
|
|
QStore->getParent(), PPHI);
|
|
|
|
IRBuilder<> QB(&*PostBB->getFirstInsertionPt());
|
|
|
|
Value *PPred = PStore->getParent() == PTB ? PCond : QB.CreateNot(PCond);
|
|
Value *QPred = QStore->getParent() == QTB ? QCond : QB.CreateNot(QCond);
|
|
|
|
if (InvertPCond)
|
|
PPred = QB.CreateNot(PPred);
|
|
if (InvertQCond)
|
|
QPred = QB.CreateNot(QPred);
|
|
Value *CombinedPred = QB.CreateOr(PPred, QPred);
|
|
|
|
auto *T = SplitBlockAndInsertIfThen(CombinedPred, &*QB.GetInsertPoint(),
|
|
/*Unreachable=*/false,
|
|
/*BranchWeights=*/nullptr, DTU);
|
|
QB.SetInsertPoint(T);
|
|
StoreInst *SI = cast<StoreInst>(QB.CreateStore(QPHI, Address));
|
|
AAMDNodes AAMD;
|
|
PStore->getAAMetadata(AAMD, /*Merge=*/false);
|
|
PStore->getAAMetadata(AAMD, /*Merge=*/true);
|
|
SI->setAAMetadata(AAMD);
|
|
// Choose the minimum alignment. If we could prove both stores execute, we
|
|
// could use biggest one. In this case, though, we only know that one of the
|
|
// stores executes. And we don't know it's safe to take the alignment from a
|
|
// store that doesn't execute.
|
|
SI->setAlignment(std::min(PStore->getAlign(), QStore->getAlign()));
|
|
|
|
QStore->eraseFromParent();
|
|
PStore->eraseFromParent();
|
|
|
|
return true;
|
|
}
|
|
|
|
static bool mergeConditionalStores(BranchInst *PBI, BranchInst *QBI,
|
|
DomTreeUpdater *DTU, const DataLayout &DL,
|
|
const TargetTransformInfo &TTI) {
|
|
// The intention here is to find diamonds or triangles (see below) where each
|
|
// conditional block contains a store to the same address. Both of these
|
|
// stores are conditional, so they can't be unconditionally sunk. But it may
|
|
// be profitable to speculatively sink the stores into one merged store at the
|
|
// end, and predicate the merged store on the union of the two conditions of
|
|
// PBI and QBI.
|
|
//
|
|
// This can reduce the number of stores executed if both of the conditions are
|
|
// true, and can allow the blocks to become small enough to be if-converted.
|
|
// This optimization will also chain, so that ladders of test-and-set
|
|
// sequences can be if-converted away.
|
|
//
|
|
// We only deal with simple diamonds or triangles:
|
|
//
|
|
// PBI or PBI or a combination of the two
|
|
// / \ | \
|
|
// PTB PFB | PFB
|
|
// \ / | /
|
|
// QBI QBI
|
|
// / \ | \
|
|
// QTB QFB | QFB
|
|
// \ / | /
|
|
// PostBB PostBB
|
|
//
|
|
// We model triangles as a type of diamond with a nullptr "true" block.
|
|
// Triangles are canonicalized so that the fallthrough edge is represented by
|
|
// a true condition, as in the diagram above.
|
|
BasicBlock *PTB = PBI->getSuccessor(0);
|
|
BasicBlock *PFB = PBI->getSuccessor(1);
|
|
BasicBlock *QTB = QBI->getSuccessor(0);
|
|
BasicBlock *QFB = QBI->getSuccessor(1);
|
|
BasicBlock *PostBB = QFB->getSingleSuccessor();
|
|
|
|
// Make sure we have a good guess for PostBB. If QTB's only successor is
|
|
// QFB, then QFB is a better PostBB.
|
|
if (QTB->getSingleSuccessor() == QFB)
|
|
PostBB = QFB;
|
|
|
|
// If we couldn't find a good PostBB, stop.
|
|
if (!PostBB)
|
|
return false;
|
|
|
|
bool InvertPCond = false, InvertQCond = false;
|
|
// Canonicalize fallthroughs to the true branches.
|
|
if (PFB == QBI->getParent()) {
|
|
std::swap(PFB, PTB);
|
|
InvertPCond = true;
|
|
}
|
|
if (QFB == PostBB) {
|
|
std::swap(QFB, QTB);
|
|
InvertQCond = true;
|
|
}
|
|
|
|
// From this point on we can assume PTB or QTB may be fallthroughs but PFB
|
|
// and QFB may not. Model fallthroughs as a nullptr block.
|
|
if (PTB == QBI->getParent())
|
|
PTB = nullptr;
|
|
if (QTB == PostBB)
|
|
QTB = nullptr;
|
|
|
|
// Legality bailouts. We must have at least the non-fallthrough blocks and
|
|
// the post-dominating block, and the non-fallthroughs must only have one
|
|
// predecessor.
|
|
auto HasOnePredAndOneSucc = [](BasicBlock *BB, BasicBlock *P, BasicBlock *S) {
|
|
return BB->getSinglePredecessor() == P && BB->getSingleSuccessor() == S;
|
|
};
|
|
if (!HasOnePredAndOneSucc(PFB, PBI->getParent(), QBI->getParent()) ||
|
|
!HasOnePredAndOneSucc(QFB, QBI->getParent(), PostBB))
|
|
return false;
|
|
if ((PTB && !HasOnePredAndOneSucc(PTB, PBI->getParent(), QBI->getParent())) ||
|
|
(QTB && !HasOnePredAndOneSucc(QTB, QBI->getParent(), PostBB)))
|
|
return false;
|
|
if (!QBI->getParent()->hasNUses(2))
|
|
return false;
|
|
|
|
// OK, this is a sequence of two diamonds or triangles.
|
|
// Check if there are stores in PTB or PFB that are repeated in QTB or QFB.
|
|
SmallPtrSet<Value *, 4> PStoreAddresses, QStoreAddresses;
|
|
for (auto *BB : {PTB, PFB}) {
|
|
if (!BB)
|
|
continue;
|
|
for (auto &I : *BB)
|
|
if (StoreInst *SI = dyn_cast<StoreInst>(&I))
|
|
PStoreAddresses.insert(SI->getPointerOperand());
|
|
}
|
|
for (auto *BB : {QTB, QFB}) {
|
|
if (!BB)
|
|
continue;
|
|
for (auto &I : *BB)
|
|
if (StoreInst *SI = dyn_cast<StoreInst>(&I))
|
|
QStoreAddresses.insert(SI->getPointerOperand());
|
|
}
|
|
|
|
set_intersect(PStoreAddresses, QStoreAddresses);
|
|
// set_intersect mutates PStoreAddresses in place. Rename it here to make it
|
|
// clear what it contains.
|
|
auto &CommonAddresses = PStoreAddresses;
|
|
|
|
bool Changed = false;
|
|
for (auto *Address : CommonAddresses)
|
|
Changed |=
|
|
mergeConditionalStoreToAddress(PTB, PFB, QTB, QFB, PostBB, Address,
|
|
InvertPCond, InvertQCond, DTU, DL, TTI);
|
|
return Changed;
|
|
}
|
|
|
|
/// If the previous block ended with a widenable branch, determine if reusing
|
|
/// the target block is profitable and legal. This will have the effect of
|
|
/// "widening" PBI, but doesn't require us to reason about hosting safety.
|
|
static bool tryWidenCondBranchToCondBranch(BranchInst *PBI, BranchInst *BI,
|
|
DomTreeUpdater *DTU) {
|
|
// TODO: This can be generalized in two important ways:
|
|
// 1) We can allow phi nodes in IfFalseBB and simply reuse all the input
|
|
// values from the PBI edge.
|
|
// 2) We can sink side effecting instructions into BI's fallthrough
|
|
// successor provided they doesn't contribute to computation of
|
|
// BI's condition.
|
|
Value *CondWB, *WC;
|
|
BasicBlock *IfTrueBB, *IfFalseBB;
|
|
if (!parseWidenableBranch(PBI, CondWB, WC, IfTrueBB, IfFalseBB) ||
|
|
IfTrueBB != BI->getParent() || !BI->getParent()->getSinglePredecessor())
|
|
return false;
|
|
if (!IfFalseBB->phis().empty())
|
|
return false; // TODO
|
|
// Use lambda to lazily compute expensive condition after cheap ones.
|
|
auto NoSideEffects = [](BasicBlock &BB) {
|
|
return !llvm::any_of(BB, [](const Instruction &I) {
|
|
return I.mayWriteToMemory() || I.mayHaveSideEffects();
|
|
});
|
|
};
|
|
if (BI->getSuccessor(1) != IfFalseBB && // no inf looping
|
|
BI->getSuccessor(1)->getTerminatingDeoptimizeCall() && // profitability
|
|
NoSideEffects(*BI->getParent())) {
|
|
auto *OldSuccessor = BI->getSuccessor(1);
|
|
OldSuccessor->removePredecessor(BI->getParent());
|
|
BI->setSuccessor(1, IfFalseBB);
|
|
if (DTU)
|
|
DTU->applyUpdates(
|
|
{{DominatorTree::Insert, BI->getParent(), IfFalseBB},
|
|
{DominatorTree::Delete, BI->getParent(), OldSuccessor}});
|
|
return true;
|
|
}
|
|
if (BI->getSuccessor(0) != IfFalseBB && // no inf looping
|
|
BI->getSuccessor(0)->getTerminatingDeoptimizeCall() && // profitability
|
|
NoSideEffects(*BI->getParent())) {
|
|
auto *OldSuccessor = BI->getSuccessor(0);
|
|
OldSuccessor->removePredecessor(BI->getParent());
|
|
BI->setSuccessor(0, IfFalseBB);
|
|
if (DTU)
|
|
DTU->applyUpdates(
|
|
{{DominatorTree::Insert, BI->getParent(), IfFalseBB},
|
|
{DominatorTree::Delete, BI->getParent(), OldSuccessor}});
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
/// If we have a conditional branch as a predecessor of another block,
|
|
/// this function tries to simplify it. We know
|
|
/// that PBI and BI are both conditional branches, and BI is in one of the
|
|
/// successor blocks of PBI - PBI branches to BI.
|
|
static bool SimplifyCondBranchToCondBranch(BranchInst *PBI, BranchInst *BI,
|
|
DomTreeUpdater *DTU,
|
|
const DataLayout &DL,
|
|
const TargetTransformInfo &TTI) {
|
|
assert(PBI->isConditional() && BI->isConditional());
|
|
BasicBlock *BB = BI->getParent();
|
|
|
|
// If this block ends with a branch instruction, and if there is a
|
|
// predecessor that ends on a branch of the same condition, make
|
|
// this conditional branch redundant.
|
|
if (PBI->getCondition() == BI->getCondition() &&
|
|
PBI->getSuccessor(0) != PBI->getSuccessor(1)) {
|
|
// Okay, the outcome of this conditional branch is statically
|
|
// knowable. If this block had a single pred, handle specially.
|
|
if (BB->getSinglePredecessor()) {
|
|
// Turn this into a branch on constant.
|
|
bool CondIsTrue = PBI->getSuccessor(0) == BB;
|
|
BI->setCondition(
|
|
ConstantInt::get(Type::getInt1Ty(BB->getContext()), CondIsTrue));
|
|
return true; // Nuke the branch on constant.
|
|
}
|
|
|
|
// Otherwise, if there are multiple predecessors, insert a PHI that merges
|
|
// in the constant and simplify the block result. Subsequent passes of
|
|
// simplifycfg will thread the block.
|
|
if (BlockIsSimpleEnoughToThreadThrough(BB)) {
|
|
pred_iterator PB = pred_begin(BB), PE = pred_end(BB);
|
|
PHINode *NewPN = PHINode::Create(
|
|
Type::getInt1Ty(BB->getContext()), std::distance(PB, PE),
|
|
BI->getCondition()->getName() + ".pr", &BB->front());
|
|
// Okay, we're going to insert the PHI node. Since PBI is not the only
|
|
// predecessor, compute the PHI'd conditional value for all of the preds.
|
|
// Any predecessor where the condition is not computable we keep symbolic.
|
|
for (pred_iterator PI = PB; PI != PE; ++PI) {
|
|
BasicBlock *P = *PI;
|
|
if ((PBI = dyn_cast<BranchInst>(P->getTerminator())) && PBI != BI &&
|
|
PBI->isConditional() && PBI->getCondition() == BI->getCondition() &&
|
|
PBI->getSuccessor(0) != PBI->getSuccessor(1)) {
|
|
bool CondIsTrue = PBI->getSuccessor(0) == BB;
|
|
NewPN->addIncoming(
|
|
ConstantInt::get(Type::getInt1Ty(BB->getContext()), CondIsTrue),
|
|
P);
|
|
} else {
|
|
NewPN->addIncoming(BI->getCondition(), P);
|
|
}
|
|
}
|
|
|
|
BI->setCondition(NewPN);
|
|
return true;
|
|
}
|
|
}
|
|
|
|
// If the previous block ended with a widenable branch, determine if reusing
|
|
// the target block is profitable and legal. This will have the effect of
|
|
// "widening" PBI, but doesn't require us to reason about hosting safety.
|
|
if (tryWidenCondBranchToCondBranch(PBI, BI, DTU))
|
|
return true;
|
|
|
|
if (auto *CE = dyn_cast<ConstantExpr>(BI->getCondition()))
|
|
if (CE->canTrap())
|
|
return false;
|
|
|
|
// If both branches are conditional and both contain stores to the same
|
|
// address, remove the stores from the conditionals and create a conditional
|
|
// merged store at the end.
|
|
if (MergeCondStores && mergeConditionalStores(PBI, BI, DTU, DL, TTI))
|
|
return true;
|
|
|
|
// If this is a conditional branch in an empty block, and if any
|
|
// predecessors are a conditional branch to one of our destinations,
|
|
// fold the conditions into logical ops and one cond br.
|
|
|
|
// Ignore dbg intrinsics.
|
|
if (&*BB->instructionsWithoutDebug().begin() != BI)
|
|
return false;
|
|
|
|
int PBIOp, BIOp;
|
|
if (PBI->getSuccessor(0) == BI->getSuccessor(0)) {
|
|
PBIOp = 0;
|
|
BIOp = 0;
|
|
} else if (PBI->getSuccessor(0) == BI->getSuccessor(1)) {
|
|
PBIOp = 0;
|
|
BIOp = 1;
|
|
} else if (PBI->getSuccessor(1) == BI->getSuccessor(0)) {
|
|
PBIOp = 1;
|
|
BIOp = 0;
|
|
} else if (PBI->getSuccessor(1) == BI->getSuccessor(1)) {
|
|
PBIOp = 1;
|
|
BIOp = 1;
|
|
} else {
|
|
return false;
|
|
}
|
|
|
|
// Check to make sure that the other destination of this branch
|
|
// isn't BB itself. If so, this is an infinite loop that will
|
|
// keep getting unwound.
|
|
if (PBI->getSuccessor(PBIOp) == BB)
|
|
return false;
|
|
|
|
// Do not perform this transformation if it would require
|
|
// insertion of a large number of select instructions. For targets
|
|
// without predication/cmovs, this is a big pessimization.
|
|
|
|
// Also do not perform this transformation if any phi node in the common
|
|
// destination block can trap when reached by BB or PBB (PR17073). In that
|
|
// case, it would be unsafe to hoist the operation into a select instruction.
|
|
|
|
BasicBlock *CommonDest = PBI->getSuccessor(PBIOp);
|
|
BasicBlock *RemovedDest = PBI->getSuccessor(PBIOp ^ 1);
|
|
unsigned NumPhis = 0;
|
|
for (BasicBlock::iterator II = CommonDest->begin(); isa<PHINode>(II);
|
|
++II, ++NumPhis) {
|
|
if (NumPhis > 2) // Disable this xform.
|
|
return false;
|
|
|
|
PHINode *PN = cast<PHINode>(II);
|
|
Value *BIV = PN->getIncomingValueForBlock(BB);
|
|
if (ConstantExpr *CE = dyn_cast<ConstantExpr>(BIV))
|
|
if (CE->canTrap())
|
|
return false;
|
|
|
|
unsigned PBBIdx = PN->getBasicBlockIndex(PBI->getParent());
|
|
Value *PBIV = PN->getIncomingValue(PBBIdx);
|
|
if (ConstantExpr *CE = dyn_cast<ConstantExpr>(PBIV))
|
|
if (CE->canTrap())
|
|
return false;
|
|
}
|
|
|
|
// Finally, if everything is ok, fold the branches to logical ops.
|
|
BasicBlock *OtherDest = BI->getSuccessor(BIOp ^ 1);
|
|
|
|
LLVM_DEBUG(dbgs() << "FOLDING BRs:" << *PBI->getParent()
|
|
<< "AND: " << *BI->getParent());
|
|
|
|
SmallVector<DominatorTree::UpdateType, 5> Updates;
|
|
|
|
// If OtherDest *is* BB, then BB is a basic block with a single conditional
|
|
// branch in it, where one edge (OtherDest) goes back to itself but the other
|
|
// exits. We don't *know* that the program avoids the infinite loop
|
|
// (even though that seems likely). If we do this xform naively, we'll end up
|
|
// recursively unpeeling the loop. Since we know that (after the xform is
|
|
// done) that the block *is* infinite if reached, we just make it an obviously
|
|
// infinite loop with no cond branch.
|
|
if (OtherDest == BB) {
|
|
// Insert it at the end of the function, because it's either code,
|
|
// or it won't matter if it's hot. :)
|
|
BasicBlock *InfLoopBlock =
|
|
BasicBlock::Create(BB->getContext(), "infloop", BB->getParent());
|
|
BranchInst::Create(InfLoopBlock, InfLoopBlock);
|
|
if (DTU)
|
|
Updates.push_back({DominatorTree::Insert, InfLoopBlock, InfLoopBlock});
|
|
OtherDest = InfLoopBlock;
|
|
}
|
|
|
|
LLVM_DEBUG(dbgs() << *PBI->getParent()->getParent());
|
|
|
|
// BI may have other predecessors. Because of this, we leave
|
|
// it alone, but modify PBI.
|
|
|
|
// Make sure we get to CommonDest on True&True directions.
|
|
Value *PBICond = PBI->getCondition();
|
|
IRBuilder<NoFolder> Builder(PBI);
|
|
if (PBIOp)
|
|
PBICond = Builder.CreateNot(PBICond, PBICond->getName() + ".not");
|
|
|
|
Value *BICond = BI->getCondition();
|
|
if (BIOp)
|
|
BICond = Builder.CreateNot(BICond, BICond->getName() + ".not");
|
|
|
|
// Merge the conditions.
|
|
Value *Cond =
|
|
createLogicalOp(Builder, Instruction::Or, PBICond, BICond, "brmerge");
|
|
|
|
// Modify PBI to branch on the new condition to the new dests.
|
|
PBI->setCondition(Cond);
|
|
PBI->setSuccessor(0, CommonDest);
|
|
PBI->setSuccessor(1, OtherDest);
|
|
|
|
if (DTU) {
|
|
Updates.push_back({DominatorTree::Insert, PBI->getParent(), OtherDest});
|
|
Updates.push_back({DominatorTree::Delete, PBI->getParent(), RemovedDest});
|
|
|
|
DTU->applyUpdates(Updates);
|
|
}
|
|
|
|
// Update branch weight for PBI.
|
|
uint64_t PredTrueWeight, PredFalseWeight, SuccTrueWeight, SuccFalseWeight;
|
|
uint64_t PredCommon, PredOther, SuccCommon, SuccOther;
|
|
bool HasWeights =
|
|
extractPredSuccWeights(PBI, BI, PredTrueWeight, PredFalseWeight,
|
|
SuccTrueWeight, SuccFalseWeight);
|
|
if (HasWeights) {
|
|
PredCommon = PBIOp ? PredFalseWeight : PredTrueWeight;
|
|
PredOther = PBIOp ? PredTrueWeight : PredFalseWeight;
|
|
SuccCommon = BIOp ? SuccFalseWeight : SuccTrueWeight;
|
|
SuccOther = BIOp ? SuccTrueWeight : SuccFalseWeight;
|
|
// The weight to CommonDest should be PredCommon * SuccTotal +
|
|
// PredOther * SuccCommon.
|
|
// The weight to OtherDest should be PredOther * SuccOther.
|
|
uint64_t NewWeights[2] = {PredCommon * (SuccCommon + SuccOther) +
|
|
PredOther * SuccCommon,
|
|
PredOther * SuccOther};
|
|
// Halve the weights if any of them cannot fit in an uint32_t
|
|
FitWeights(NewWeights);
|
|
|
|
setBranchWeights(PBI, NewWeights[0], NewWeights[1]);
|
|
}
|
|
|
|
// OtherDest may have phi nodes. If so, add an entry from PBI's
|
|
// block that are identical to the entries for BI's block.
|
|
AddPredecessorToBlock(OtherDest, PBI->getParent(), BB);
|
|
|
|
// We know that the CommonDest already had an edge from PBI to
|
|
// it. If it has PHIs though, the PHIs may have different
|
|
// entries for BB and PBI's BB. If so, insert a select to make
|
|
// them agree.
|
|
for (PHINode &PN : CommonDest->phis()) {
|
|
Value *BIV = PN.getIncomingValueForBlock(BB);
|
|
unsigned PBBIdx = PN.getBasicBlockIndex(PBI->getParent());
|
|
Value *PBIV = PN.getIncomingValue(PBBIdx);
|
|
if (BIV != PBIV) {
|
|
// Insert a select in PBI to pick the right value.
|
|
SelectInst *NV = cast<SelectInst>(
|
|
Builder.CreateSelect(PBICond, PBIV, BIV, PBIV->getName() + ".mux"));
|
|
PN.setIncomingValue(PBBIdx, NV);
|
|
// Although the select has the same condition as PBI, the original branch
|
|
// weights for PBI do not apply to the new select because the select's
|
|
// 'logical' edges are incoming edges of the phi that is eliminated, not
|
|
// the outgoing edges of PBI.
|
|
if (HasWeights) {
|
|
uint64_t PredCommon = PBIOp ? PredFalseWeight : PredTrueWeight;
|
|
uint64_t PredOther = PBIOp ? PredTrueWeight : PredFalseWeight;
|
|
uint64_t SuccCommon = BIOp ? SuccFalseWeight : SuccTrueWeight;
|
|
uint64_t SuccOther = BIOp ? SuccTrueWeight : SuccFalseWeight;
|
|
// The weight to PredCommonDest should be PredCommon * SuccTotal.
|
|
// The weight to PredOtherDest should be PredOther * SuccCommon.
|
|
uint64_t NewWeights[2] = {PredCommon * (SuccCommon + SuccOther),
|
|
PredOther * SuccCommon};
|
|
|
|
FitWeights(NewWeights);
|
|
|
|
setBranchWeights(NV, NewWeights[0], NewWeights[1]);
|
|
}
|
|
}
|
|
}
|
|
|
|
LLVM_DEBUG(dbgs() << "INTO: " << *PBI->getParent());
|
|
LLVM_DEBUG(dbgs() << *PBI->getParent()->getParent());
|
|
|
|
// This basic block is probably dead. We know it has at least
|
|
// one fewer predecessor.
|
|
return true;
|
|
}
|
|
|
|
// Simplifies a terminator by replacing it with a branch to TrueBB if Cond is
|
|
// true or to FalseBB if Cond is false.
|
|
// Takes care of updating the successors and removing the old terminator.
|
|
// Also makes sure not to introduce new successors by assuming that edges to
|
|
// non-successor TrueBBs and FalseBBs aren't reachable.
|
|
bool SimplifyCFGOpt::SimplifyTerminatorOnSelect(Instruction *OldTerm,
|
|
Value *Cond, BasicBlock *TrueBB,
|
|
BasicBlock *FalseBB,
|
|
uint32_t TrueWeight,
|
|
uint32_t FalseWeight) {
|
|
auto *BB = OldTerm->getParent();
|
|
// Remove any superfluous successor edges from the CFG.
|
|
// First, figure out which successors to preserve.
|
|
// If TrueBB and FalseBB are equal, only try to preserve one copy of that
|
|
// successor.
|
|
BasicBlock *KeepEdge1 = TrueBB;
|
|
BasicBlock *KeepEdge2 = TrueBB != FalseBB ? FalseBB : nullptr;
|
|
|
|
SmallPtrSet<BasicBlock *, 2> RemovedSuccessors;
|
|
|
|
// Then remove the rest.
|
|
for (BasicBlock *Succ : successors(OldTerm)) {
|
|
// Make sure only to keep exactly one copy of each edge.
|
|
if (Succ == KeepEdge1)
|
|
KeepEdge1 = nullptr;
|
|
else if (Succ == KeepEdge2)
|
|
KeepEdge2 = nullptr;
|
|
else {
|
|
Succ->removePredecessor(BB,
|
|
/*KeepOneInputPHIs=*/true);
|
|
|
|
if (Succ != TrueBB && Succ != FalseBB)
|
|
RemovedSuccessors.insert(Succ);
|
|
}
|
|
}
|
|
|
|
IRBuilder<> Builder(OldTerm);
|
|
Builder.SetCurrentDebugLocation(OldTerm->getDebugLoc());
|
|
|
|
// Insert an appropriate new terminator.
|
|
if (!KeepEdge1 && !KeepEdge2) {
|
|
if (TrueBB == FalseBB) {
|
|
// We were only looking for one successor, and it was present.
|
|
// Create an unconditional branch to it.
|
|
Builder.CreateBr(TrueBB);
|
|
} else {
|
|
// We found both of the successors we were looking for.
|
|
// Create a conditional branch sharing the condition of the select.
|
|
BranchInst *NewBI = Builder.CreateCondBr(Cond, TrueBB, FalseBB);
|
|
if (TrueWeight != FalseWeight)
|
|
setBranchWeights(NewBI, TrueWeight, FalseWeight);
|
|
}
|
|
} else if (KeepEdge1 && (KeepEdge2 || TrueBB == FalseBB)) {
|
|
// Neither of the selected blocks were successors, so this
|
|
// terminator must be unreachable.
|
|
new UnreachableInst(OldTerm->getContext(), OldTerm);
|
|
} else {
|
|
// One of the selected values was a successor, but the other wasn't.
|
|
// Insert an unconditional branch to the one that was found;
|
|
// the edge to the one that wasn't must be unreachable.
|
|
if (!KeepEdge1) {
|
|
// Only TrueBB was found.
|
|
Builder.CreateBr(TrueBB);
|
|
} else {
|
|
// Only FalseBB was found.
|
|
Builder.CreateBr(FalseBB);
|
|
}
|
|
}
|
|
|
|
EraseTerminatorAndDCECond(OldTerm);
|
|
|
|
if (DTU) {
|
|
SmallVector<DominatorTree::UpdateType, 2> Updates;
|
|
Updates.reserve(RemovedSuccessors.size());
|
|
for (auto *RemovedSuccessor : RemovedSuccessors)
|
|
Updates.push_back({DominatorTree::Delete, BB, RemovedSuccessor});
|
|
DTU->applyUpdates(Updates);
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
// Replaces
|
|
// (switch (select cond, X, Y)) on constant X, Y
|
|
// with a branch - conditional if X and Y lead to distinct BBs,
|
|
// unconditional otherwise.
|
|
bool SimplifyCFGOpt::SimplifySwitchOnSelect(SwitchInst *SI,
|
|
SelectInst *Select) {
|
|
// Check for constant integer values in the select.
|
|
ConstantInt *TrueVal = dyn_cast<ConstantInt>(Select->getTrueValue());
|
|
ConstantInt *FalseVal = dyn_cast<ConstantInt>(Select->getFalseValue());
|
|
if (!TrueVal || !FalseVal)
|
|
return false;
|
|
|
|
// Find the relevant condition and destinations.
|
|
Value *Condition = Select->getCondition();
|
|
BasicBlock *TrueBB = SI->findCaseValue(TrueVal)->getCaseSuccessor();
|
|
BasicBlock *FalseBB = SI->findCaseValue(FalseVal)->getCaseSuccessor();
|
|
|
|
// Get weight for TrueBB and FalseBB.
|
|
uint32_t TrueWeight = 0, FalseWeight = 0;
|
|
SmallVector<uint64_t, 8> Weights;
|
|
bool HasWeights = HasBranchWeights(SI);
|
|
if (HasWeights) {
|
|
GetBranchWeights(SI, Weights);
|
|
if (Weights.size() == 1 + SI->getNumCases()) {
|
|
TrueWeight =
|
|
(uint32_t)Weights[SI->findCaseValue(TrueVal)->getSuccessorIndex()];
|
|
FalseWeight =
|
|
(uint32_t)Weights[SI->findCaseValue(FalseVal)->getSuccessorIndex()];
|
|
}
|
|
}
|
|
|
|
// Perform the actual simplification.
|
|
return SimplifyTerminatorOnSelect(SI, Condition, TrueBB, FalseBB, TrueWeight,
|
|
FalseWeight);
|
|
}
|
|
|
|
// Replaces
|
|
// (indirectbr (select cond, blockaddress(@fn, BlockA),
|
|
// blockaddress(@fn, BlockB)))
|
|
// with
|
|
// (br cond, BlockA, BlockB).
|
|
bool SimplifyCFGOpt::SimplifyIndirectBrOnSelect(IndirectBrInst *IBI,
|
|
SelectInst *SI) {
|
|
// Check that both operands of the select are block addresses.
|
|
BlockAddress *TBA = dyn_cast<BlockAddress>(SI->getTrueValue());
|
|
BlockAddress *FBA = dyn_cast<BlockAddress>(SI->getFalseValue());
|
|
if (!TBA || !FBA)
|
|
return false;
|
|
|
|
// Extract the actual blocks.
|
|
BasicBlock *TrueBB = TBA->getBasicBlock();
|
|
BasicBlock *FalseBB = FBA->getBasicBlock();
|
|
|
|
// Perform the actual simplification.
|
|
return SimplifyTerminatorOnSelect(IBI, SI->getCondition(), TrueBB, FalseBB, 0,
|
|
0);
|
|
}
|
|
|
|
/// This is called when we find an icmp instruction
|
|
/// (a seteq/setne with a constant) as the only instruction in a
|
|
/// block that ends with an uncond branch. We are looking for a very specific
|
|
/// pattern that occurs when "A == 1 || A == 2 || A == 3" gets simplified. In
|
|
/// this case, we merge the first two "or's of icmp" into a switch, but then the
|
|
/// default value goes to an uncond block with a seteq in it, we get something
|
|
/// like:
|
|
///
|
|
/// switch i8 %A, label %DEFAULT [ i8 1, label %end i8 2, label %end ]
|
|
/// DEFAULT:
|
|
/// %tmp = icmp eq i8 %A, 92
|
|
/// br label %end
|
|
/// end:
|
|
/// ... = phi i1 [ true, %entry ], [ %tmp, %DEFAULT ], [ true, %entry ]
|
|
///
|
|
/// We prefer to split the edge to 'end' so that there is a true/false entry to
|
|
/// the PHI, merging the third icmp into the switch.
|
|
bool SimplifyCFGOpt::tryToSimplifyUncondBranchWithICmpInIt(
|
|
ICmpInst *ICI, IRBuilder<> &Builder) {
|
|
BasicBlock *BB = ICI->getParent();
|
|
|
|
// If the block has any PHIs in it or the icmp has multiple uses, it is too
|
|
// complex.
|
|
if (isa<PHINode>(BB->begin()) || !ICI->hasOneUse())
|
|
return false;
|
|
|
|
Value *V = ICI->getOperand(0);
|
|
ConstantInt *Cst = cast<ConstantInt>(ICI->getOperand(1));
|
|
|
|
// The pattern we're looking for is where our only predecessor is a switch on
|
|
// 'V' and this block is the default case for the switch. In this case we can
|
|
// fold the compared value into the switch to simplify things.
|
|
BasicBlock *Pred = BB->getSinglePredecessor();
|
|
if (!Pred || !isa<SwitchInst>(Pred->getTerminator()))
|
|
return false;
|
|
|
|
SwitchInst *SI = cast<SwitchInst>(Pred->getTerminator());
|
|
if (SI->getCondition() != V)
|
|
return false;
|
|
|
|
// If BB is reachable on a non-default case, then we simply know the value of
|
|
// V in this block. Substitute it and constant fold the icmp instruction
|
|
// away.
|
|
if (SI->getDefaultDest() != BB) {
|
|
ConstantInt *VVal = SI->findCaseDest(BB);
|
|
assert(VVal && "Should have a unique destination value");
|
|
ICI->setOperand(0, VVal);
|
|
|
|
if (Value *V = SimplifyInstruction(ICI, {DL, ICI})) {
|
|
ICI->replaceAllUsesWith(V);
|
|
ICI->eraseFromParent();
|
|
}
|
|
// BB is now empty, so it is likely to simplify away.
|
|
return requestResimplify();
|
|
}
|
|
|
|
// Ok, the block is reachable from the default dest. If the constant we're
|
|
// comparing exists in one of the other edges, then we can constant fold ICI
|
|
// and zap it.
|
|
if (SI->findCaseValue(Cst) != SI->case_default()) {
|
|
Value *V;
|
|
if (ICI->getPredicate() == ICmpInst::ICMP_EQ)
|
|
V = ConstantInt::getFalse(BB->getContext());
|
|
else
|
|
V = ConstantInt::getTrue(BB->getContext());
|
|
|
|
ICI->replaceAllUsesWith(V);
|
|
ICI->eraseFromParent();
|
|
// BB is now empty, so it is likely to simplify away.
|
|
return requestResimplify();
|
|
}
|
|
|
|
// The use of the icmp has to be in the 'end' block, by the only PHI node in
|
|
// the block.
|
|
BasicBlock *SuccBlock = BB->getTerminator()->getSuccessor(0);
|
|
PHINode *PHIUse = dyn_cast<PHINode>(ICI->user_back());
|
|
if (PHIUse == nullptr || PHIUse != &SuccBlock->front() ||
|
|
isa<PHINode>(++BasicBlock::iterator(PHIUse)))
|
|
return false;
|
|
|
|
// If the icmp is a SETEQ, then the default dest gets false, the new edge gets
|
|
// true in the PHI.
|
|
Constant *DefaultCst = ConstantInt::getTrue(BB->getContext());
|
|
Constant *NewCst = ConstantInt::getFalse(BB->getContext());
|
|
|
|
if (ICI->getPredicate() == ICmpInst::ICMP_EQ)
|
|
std::swap(DefaultCst, NewCst);
|
|
|
|
// Replace ICI (which is used by the PHI for the default value) with true or
|
|
// false depending on if it is EQ or NE.
|
|
ICI->replaceAllUsesWith(DefaultCst);
|
|
ICI->eraseFromParent();
|
|
|
|
SmallVector<DominatorTree::UpdateType, 2> Updates;
|
|
|
|
// Okay, the switch goes to this block on a default value. Add an edge from
|
|
// the switch to the merge point on the compared value.
|
|
BasicBlock *NewBB =
|
|
BasicBlock::Create(BB->getContext(), "switch.edge", BB->getParent(), BB);
|
|
{
|
|
SwitchInstProfUpdateWrapper SIW(*SI);
|
|
auto W0 = SIW.getSuccessorWeight(0);
|
|
SwitchInstProfUpdateWrapper::CaseWeightOpt NewW;
|
|
if (W0) {
|
|
NewW = ((uint64_t(*W0) + 1) >> 1);
|
|
SIW.setSuccessorWeight(0, *NewW);
|
|
}
|
|
SIW.addCase(Cst, NewBB, NewW);
|
|
if (DTU)
|
|
Updates.push_back({DominatorTree::Insert, Pred, NewBB});
|
|
}
|
|
|
|
// NewBB branches to the phi block, add the uncond branch and the phi entry.
|
|
Builder.SetInsertPoint(NewBB);
|
|
Builder.SetCurrentDebugLocation(SI->getDebugLoc());
|
|
Builder.CreateBr(SuccBlock);
|
|
PHIUse->addIncoming(NewCst, NewBB);
|
|
if (DTU) {
|
|
Updates.push_back({DominatorTree::Insert, NewBB, SuccBlock});
|
|
DTU->applyUpdates(Updates);
|
|
}
|
|
return true;
|
|
}
|
|
|
|
/// The specified branch is a conditional branch.
|
|
/// Check to see if it is branching on an or/and chain of icmp instructions, and
|
|
/// fold it into a switch instruction if so.
|
|
bool SimplifyCFGOpt::SimplifyBranchOnICmpChain(BranchInst *BI,
|
|
IRBuilder<> &Builder,
|
|
const DataLayout &DL) {
|
|
Instruction *Cond = dyn_cast<Instruction>(BI->getCondition());
|
|
if (!Cond)
|
|
return false;
|
|
|
|
// Change br (X == 0 | X == 1), T, F into a switch instruction.
|
|
// If this is a bunch of seteq's or'd together, or if it's a bunch of
|
|
// 'setne's and'ed together, collect them.
|
|
|
|
// Try to gather values from a chain of and/or to be turned into a switch
|
|
ConstantComparesGatherer ConstantCompare(Cond, DL);
|
|
// Unpack the result
|
|
SmallVectorImpl<ConstantInt *> &Values = ConstantCompare.Vals;
|
|
Value *CompVal = ConstantCompare.CompValue;
|
|
unsigned UsedICmps = ConstantCompare.UsedICmps;
|
|
Value *ExtraCase = ConstantCompare.Extra;
|
|
|
|
// If we didn't have a multiply compared value, fail.
|
|
if (!CompVal)
|
|
return false;
|
|
|
|
// Avoid turning single icmps into a switch.
|
|
if (UsedICmps <= 1)
|
|
return false;
|
|
|
|
bool TrueWhenEqual = match(Cond, m_LogicalOr(m_Value(), m_Value()));
|
|
|
|
// There might be duplicate constants in the list, which the switch
|
|
// instruction can't handle, remove them now.
|
|
array_pod_sort(Values.begin(), Values.end(), ConstantIntSortPredicate);
|
|
Values.erase(std::unique(Values.begin(), Values.end()), Values.end());
|
|
|
|
// If Extra was used, we require at least two switch values to do the
|
|
// transformation. A switch with one value is just a conditional branch.
|
|
if (ExtraCase && Values.size() < 2)
|
|
return false;
|
|
|
|
// TODO: Preserve branch weight metadata, similarly to how
|
|
// FoldValueComparisonIntoPredecessors preserves it.
|
|
|
|
// Figure out which block is which destination.
|
|
BasicBlock *DefaultBB = BI->getSuccessor(1);
|
|
BasicBlock *EdgeBB = BI->getSuccessor(0);
|
|
if (!TrueWhenEqual)
|
|
std::swap(DefaultBB, EdgeBB);
|
|
|
|
BasicBlock *BB = BI->getParent();
|
|
|
|
LLVM_DEBUG(dbgs() << "Converting 'icmp' chain with " << Values.size()
|
|
<< " cases into SWITCH. BB is:\n"
|
|
<< *BB);
|
|
|
|
SmallVector<DominatorTree::UpdateType, 2> Updates;
|
|
|
|
// If there are any extra values that couldn't be folded into the switch
|
|
// then we evaluate them with an explicit branch first. Split the block
|
|
// right before the condbr to handle it.
|
|
if (ExtraCase) {
|
|
BasicBlock *NewBB = SplitBlock(BB, BI, DTU, /*LI=*/nullptr,
|
|
/*MSSAU=*/nullptr, "switch.early.test");
|
|
|
|
// Remove the uncond branch added to the old block.
|
|
Instruction *OldTI = BB->getTerminator();
|
|
Builder.SetInsertPoint(OldTI);
|
|
|
|
// There can be an unintended UB if extra values are Poison. Before the
|
|
// transformation, extra values may not be evaluated according to the
|
|
// condition, and it will not raise UB. But after transformation, we are
|
|
// evaluating extra values before checking the condition, and it will raise
|
|
// UB. It can be solved by adding freeze instruction to extra values.
|
|
AssumptionCache *AC = Options.AC;
|
|
|
|
if (!isGuaranteedNotToBeUndefOrPoison(ExtraCase, AC, BI, nullptr))
|
|
ExtraCase = Builder.CreateFreeze(ExtraCase);
|
|
|
|
if (TrueWhenEqual)
|
|
Builder.CreateCondBr(ExtraCase, EdgeBB, NewBB);
|
|
else
|
|
Builder.CreateCondBr(ExtraCase, NewBB, EdgeBB);
|
|
|
|
OldTI->eraseFromParent();
|
|
|
|
if (DTU)
|
|
Updates.push_back({DominatorTree::Insert, BB, EdgeBB});
|
|
|
|
// If there are PHI nodes in EdgeBB, then we need to add a new entry to them
|
|
// for the edge we just added.
|
|
AddPredecessorToBlock(EdgeBB, BB, NewBB);
|
|
|
|
LLVM_DEBUG(dbgs() << " ** 'icmp' chain unhandled condition: " << *ExtraCase
|
|
<< "\nEXTRABB = " << *BB);
|
|
BB = NewBB;
|
|
}
|
|
|
|
Builder.SetInsertPoint(BI);
|
|
// Convert pointer to int before we switch.
|
|
if (CompVal->getType()->isPointerTy()) {
|
|
CompVal = Builder.CreatePtrToInt(
|
|
CompVal, DL.getIntPtrType(CompVal->getType()), "magicptr");
|
|
}
|
|
|
|
// Create the new switch instruction now.
|
|
SwitchInst *New = Builder.CreateSwitch(CompVal, DefaultBB, Values.size());
|
|
|
|
// Add all of the 'cases' to the switch instruction.
|
|
for (unsigned i = 0, e = Values.size(); i != e; ++i)
|
|
New->addCase(Values[i], EdgeBB);
|
|
|
|
// We added edges from PI to the EdgeBB. As such, if there were any
|
|
// PHI nodes in EdgeBB, they need entries to be added corresponding to
|
|
// the number of edges added.
|
|
for (BasicBlock::iterator BBI = EdgeBB->begin(); isa<PHINode>(BBI); ++BBI) {
|
|
PHINode *PN = cast<PHINode>(BBI);
|
|
Value *InVal = PN->getIncomingValueForBlock(BB);
|
|
for (unsigned i = 0, e = Values.size() - 1; i != e; ++i)
|
|
PN->addIncoming(InVal, BB);
|
|
}
|
|
|
|
// Erase the old branch instruction.
|
|
EraseTerminatorAndDCECond(BI);
|
|
if (DTU)
|
|
DTU->applyUpdates(Updates);
|
|
|
|
LLVM_DEBUG(dbgs() << " ** 'icmp' chain result is:\n" << *BB << '\n');
|
|
return true;
|
|
}
|
|
|
|
bool SimplifyCFGOpt::simplifyResume(ResumeInst *RI, IRBuilder<> &Builder) {
|
|
if (isa<PHINode>(RI->getValue()))
|
|
return simplifyCommonResume(RI);
|
|
else if (isa<LandingPadInst>(RI->getParent()->getFirstNonPHI()) &&
|
|
RI->getValue() == RI->getParent()->getFirstNonPHI())
|
|
// The resume must unwind the exception that caused control to branch here.
|
|
return simplifySingleResume(RI);
|
|
|
|
return false;
|
|
}
|
|
|
|
// Check if cleanup block is empty
|
|
static bool isCleanupBlockEmpty(iterator_range<BasicBlock::iterator> R) {
|
|
for (Instruction &I : R) {
|
|
auto *II = dyn_cast<IntrinsicInst>(&I);
|
|
if (!II)
|
|
return false;
|
|
|
|
Intrinsic::ID IntrinsicID = II->getIntrinsicID();
|
|
switch (IntrinsicID) {
|
|
case Intrinsic::dbg_declare:
|
|
case Intrinsic::dbg_value:
|
|
case Intrinsic::dbg_label:
|
|
case Intrinsic::lifetime_end:
|
|
break;
|
|
default:
|
|
return false;
|
|
}
|
|
}
|
|
return true;
|
|
}
|
|
|
|
// Simplify resume that is shared by several landing pads (phi of landing pad).
|
|
bool SimplifyCFGOpt::simplifyCommonResume(ResumeInst *RI) {
|
|
BasicBlock *BB = RI->getParent();
|
|
|
|
// Check that there are no other instructions except for debug and lifetime
|
|
// intrinsics between the phi's and resume instruction.
|
|
if (!isCleanupBlockEmpty(
|
|
make_range(RI->getParent()->getFirstNonPHI(), BB->getTerminator())))
|
|
return false;
|
|
|
|
SmallSetVector<BasicBlock *, 4> TrivialUnwindBlocks;
|
|
auto *PhiLPInst = cast<PHINode>(RI->getValue());
|
|
|
|
// Check incoming blocks to see if any of them are trivial.
|
|
for (unsigned Idx = 0, End = PhiLPInst->getNumIncomingValues(); Idx != End;
|
|
Idx++) {
|
|
auto *IncomingBB = PhiLPInst->getIncomingBlock(Idx);
|
|
auto *IncomingValue = PhiLPInst->getIncomingValue(Idx);
|
|
|
|
// If the block has other successors, we can not delete it because
|
|
// it has other dependents.
|
|
if (IncomingBB->getUniqueSuccessor() != BB)
|
|
continue;
|
|
|
|
auto *LandingPad = dyn_cast<LandingPadInst>(IncomingBB->getFirstNonPHI());
|
|
// Not the landing pad that caused the control to branch here.
|
|
if (IncomingValue != LandingPad)
|
|
continue;
|
|
|
|
if (isCleanupBlockEmpty(
|
|
make_range(LandingPad->getNextNode(), IncomingBB->getTerminator())))
|
|
TrivialUnwindBlocks.insert(IncomingBB);
|
|
}
|
|
|
|
// If no trivial unwind blocks, don't do any simplifications.
|
|
if (TrivialUnwindBlocks.empty())
|
|
return false;
|
|
|
|
// Turn all invokes that unwind here into calls.
|
|
for (auto *TrivialBB : TrivialUnwindBlocks) {
|
|
// Blocks that will be simplified should be removed from the phi node.
|
|
// Note there could be multiple edges to the resume block, and we need
|
|
// to remove them all.
|
|
while (PhiLPInst->getBasicBlockIndex(TrivialBB) != -1)
|
|
BB->removePredecessor(TrivialBB, true);
|
|
|
|
for (BasicBlock *Pred :
|
|
llvm::make_early_inc_range(predecessors(TrivialBB))) {
|
|
removeUnwindEdge(Pred, DTU);
|
|
++NumInvokes;
|
|
}
|
|
|
|
// In each SimplifyCFG run, only the current processed block can be erased.
|
|
// Otherwise, it will break the iteration of SimplifyCFG pass. So instead
|
|
// of erasing TrivialBB, we only remove the branch to the common resume
|
|
// block so that we can later erase the resume block since it has no
|
|
// predecessors.
|
|
TrivialBB->getTerminator()->eraseFromParent();
|
|
new UnreachableInst(RI->getContext(), TrivialBB);
|
|
if (DTU)
|
|
DTU->applyUpdates({{DominatorTree::Delete, TrivialBB, BB}});
|
|
}
|
|
|
|
// Delete the resume block if all its predecessors have been removed.
|
|
if (pred_empty(BB))
|
|
DeleteDeadBlock(BB, DTU);
|
|
|
|
return !TrivialUnwindBlocks.empty();
|
|
}
|
|
|
|
// Simplify resume that is only used by a single (non-phi) landing pad.
|
|
bool SimplifyCFGOpt::simplifySingleResume(ResumeInst *RI) {
|
|
BasicBlock *BB = RI->getParent();
|
|
auto *LPInst = cast<LandingPadInst>(BB->getFirstNonPHI());
|
|
assert(RI->getValue() == LPInst &&
|
|
"Resume must unwind the exception that caused control to here");
|
|
|
|
// Check that there are no other instructions except for debug intrinsics.
|
|
if (!isCleanupBlockEmpty(
|
|
make_range<Instruction *>(LPInst->getNextNode(), RI)))
|
|
return false;
|
|
|
|
// Turn all invokes that unwind here into calls and delete the basic block.
|
|
for (BasicBlock *Pred : llvm::make_early_inc_range(predecessors(BB))) {
|
|
removeUnwindEdge(Pred, DTU);
|
|
++NumInvokes;
|
|
}
|
|
|
|
// The landingpad is now unreachable. Zap it.
|
|
DeleteDeadBlock(BB, DTU);
|
|
return true;
|
|
}
|
|
|
|
static bool removeEmptyCleanup(CleanupReturnInst *RI, DomTreeUpdater *DTU) {
|
|
// If this is a trivial cleanup pad that executes no instructions, it can be
|
|
// eliminated. If the cleanup pad continues to the caller, any predecessor
|
|
// that is an EH pad will be updated to continue to the caller and any
|
|
// predecessor that terminates with an invoke instruction will have its invoke
|
|
// instruction converted to a call instruction. If the cleanup pad being
|
|
// simplified does not continue to the caller, each predecessor will be
|
|
// updated to continue to the unwind destination of the cleanup pad being
|
|
// simplified.
|
|
BasicBlock *BB = RI->getParent();
|
|
CleanupPadInst *CPInst = RI->getCleanupPad();
|
|
if (CPInst->getParent() != BB)
|
|
// This isn't an empty cleanup.
|
|
return false;
|
|
|
|
// We cannot kill the pad if it has multiple uses. This typically arises
|
|
// from unreachable basic blocks.
|
|
if (!CPInst->hasOneUse())
|
|
return false;
|
|
|
|
// Check that there are no other instructions except for benign intrinsics.
|
|
if (!isCleanupBlockEmpty(
|
|
make_range<Instruction *>(CPInst->getNextNode(), RI)))
|
|
return false;
|
|
|
|
// If the cleanup return we are simplifying unwinds to the caller, this will
|
|
// set UnwindDest to nullptr.
|
|
BasicBlock *UnwindDest = RI->getUnwindDest();
|
|
Instruction *DestEHPad = UnwindDest ? UnwindDest->getFirstNonPHI() : nullptr;
|
|
|
|
// We're about to remove BB from the control flow. Before we do, sink any
|
|
// PHINodes into the unwind destination. Doing this before changing the
|
|
// control flow avoids some potentially slow checks, since we can currently
|
|
// be certain that UnwindDest and BB have no common predecessors (since they
|
|
// are both EH pads).
|
|
if (UnwindDest) {
|
|
// First, go through the PHI nodes in UnwindDest and update any nodes that
|
|
// reference the block we are removing
|
|
for (PHINode &DestPN : UnwindDest->phis()) {
|
|
int Idx = DestPN.getBasicBlockIndex(BB);
|
|
// Since BB unwinds to UnwindDest, it has to be in the PHI node.
|
|
assert(Idx != -1);
|
|
// This PHI node has an incoming value that corresponds to a control
|
|
// path through the cleanup pad we are removing. If the incoming
|
|
// value is in the cleanup pad, it must be a PHINode (because we
|
|
// verified above that the block is otherwise empty). Otherwise, the
|
|
// value is either a constant or a value that dominates the cleanup
|
|
// pad being removed.
|
|
//
|
|
// Because BB and UnwindDest are both EH pads, all of their
|
|
// predecessors must unwind to these blocks, and since no instruction
|
|
// can have multiple unwind destinations, there will be no overlap in
|
|
// incoming blocks between SrcPN and DestPN.
|
|
Value *SrcVal = DestPN.getIncomingValue(Idx);
|
|
PHINode *SrcPN = dyn_cast<PHINode>(SrcVal);
|
|
|
|
bool NeedPHITranslation = SrcPN && SrcPN->getParent() == BB;
|
|
for (auto *Pred : predecessors(BB)) {
|
|
Value *Incoming =
|
|
NeedPHITranslation ? SrcPN->getIncomingValueForBlock(Pred) : SrcVal;
|
|
DestPN.addIncoming(Incoming, Pred);
|
|
}
|
|
}
|
|
|
|
// Sink any remaining PHI nodes directly into UnwindDest.
|
|
Instruction *InsertPt = DestEHPad;
|
|
for (PHINode &PN : make_early_inc_range(BB->phis())) {
|
|
if (PN.use_empty() || !PN.isUsedOutsideOfBlock(BB))
|
|
// If the PHI node has no uses or all of its uses are in this basic
|
|
// block (meaning they are debug or lifetime intrinsics), just leave
|
|
// it. It will be erased when we erase BB below.
|
|
continue;
|
|
|
|
// Otherwise, sink this PHI node into UnwindDest.
|
|
// Any predecessors to UnwindDest which are not already represented
|
|
// must be back edges which inherit the value from the path through
|
|
// BB. In this case, the PHI value must reference itself.
|
|
for (auto *pred : predecessors(UnwindDest))
|
|
if (pred != BB)
|
|
PN.addIncoming(&PN, pred);
|
|
PN.moveBefore(InsertPt);
|
|
// Also, add a dummy incoming value for the original BB itself,
|
|
// so that the PHI is well-formed until we drop said predecessor.
|
|
PN.addIncoming(UndefValue::get(PN.getType()), BB);
|
|
}
|
|
}
|
|
|
|
std::vector<DominatorTree::UpdateType> Updates;
|
|
|
|
// We use make_early_inc_range here because we will remove all predecessors.
|
|
for (BasicBlock *PredBB : llvm::make_early_inc_range(predecessors(BB))) {
|
|
if (UnwindDest == nullptr) {
|
|
if (DTU) {
|
|
DTU->applyUpdates(Updates);
|
|
Updates.clear();
|
|
}
|
|
removeUnwindEdge(PredBB, DTU);
|
|
++NumInvokes;
|
|
} else {
|
|
BB->removePredecessor(PredBB);
|
|
Instruction *TI = PredBB->getTerminator();
|
|
TI->replaceUsesOfWith(BB, UnwindDest);
|
|
if (DTU) {
|
|
Updates.push_back({DominatorTree::Insert, PredBB, UnwindDest});
|
|
Updates.push_back({DominatorTree::Delete, PredBB, BB});
|
|
}
|
|
}
|
|
}
|
|
|
|
if (DTU)
|
|
DTU->applyUpdates(Updates);
|
|
|
|
DeleteDeadBlock(BB, DTU);
|
|
|
|
return true;
|
|
}
|
|
|
|
// Try to merge two cleanuppads together.
|
|
static bool mergeCleanupPad(CleanupReturnInst *RI) {
|
|
// Skip any cleanuprets which unwind to caller, there is nothing to merge
|
|
// with.
|
|
BasicBlock *UnwindDest = RI->getUnwindDest();
|
|
if (!UnwindDest)
|
|
return false;
|
|
|
|
// This cleanupret isn't the only predecessor of this cleanuppad, it wouldn't
|
|
// be safe to merge without code duplication.
|
|
if (UnwindDest->getSinglePredecessor() != RI->getParent())
|
|
return false;
|
|
|
|
// Verify that our cleanuppad's unwind destination is another cleanuppad.
|
|
auto *SuccessorCleanupPad = dyn_cast<CleanupPadInst>(&UnwindDest->front());
|
|
if (!SuccessorCleanupPad)
|
|
return false;
|
|
|
|
CleanupPadInst *PredecessorCleanupPad = RI->getCleanupPad();
|
|
// Replace any uses of the successor cleanupad with the predecessor pad
|
|
// The only cleanuppad uses should be this cleanupret, it's cleanupret and
|
|
// funclet bundle operands.
|
|
SuccessorCleanupPad->replaceAllUsesWith(PredecessorCleanupPad);
|
|
// Remove the old cleanuppad.
|
|
SuccessorCleanupPad->eraseFromParent();
|
|
// Now, we simply replace the cleanupret with a branch to the unwind
|
|
// destination.
|
|
BranchInst::Create(UnwindDest, RI->getParent());
|
|
RI->eraseFromParent();
|
|
|
|
return true;
|
|
}
|
|
|
|
bool SimplifyCFGOpt::simplifyCleanupReturn(CleanupReturnInst *RI) {
|
|
// It is possible to transiantly have an undef cleanuppad operand because we
|
|
// have deleted some, but not all, dead blocks.
|
|
// Eventually, this block will be deleted.
|
|
if (isa<UndefValue>(RI->getOperand(0)))
|
|
return false;
|
|
|
|
if (mergeCleanupPad(RI))
|
|
return true;
|
|
|
|
if (removeEmptyCleanup(RI, DTU))
|
|
return true;
|
|
|
|
return false;
|
|
}
|
|
|
|
// WARNING: keep in sync with InstCombinerImpl::visitUnreachableInst()!
|
|
bool SimplifyCFGOpt::simplifyUnreachable(UnreachableInst *UI) {
|
|
BasicBlock *BB = UI->getParent();
|
|
|
|
bool Changed = false;
|
|
|
|
// If there are any instructions immediately before the unreachable that can
|
|
// be removed, do so.
|
|
while (UI->getIterator() != BB->begin()) {
|
|
BasicBlock::iterator BBI = UI->getIterator();
|
|
--BBI;
|
|
|
|
if (!isGuaranteedToTransferExecutionToSuccessor(&*BBI))
|
|
break; // Can not drop any more instructions. We're done here.
|
|
// Otherwise, this instruction can be freely erased,
|
|
// even if it is not side-effect free.
|
|
|
|
// Note that deleting EH's here is in fact okay, although it involves a bit
|
|
// of subtle reasoning. If this inst is an EH, all the predecessors of this
|
|
// block will be the unwind edges of Invoke/CatchSwitch/CleanupReturn,
|
|
// and we can therefore guarantee this block will be erased.
|
|
|
|
// Delete this instruction (any uses are guaranteed to be dead)
|
|
BBI->replaceAllUsesWith(PoisonValue::get(BBI->getType()));
|
|
BBI->eraseFromParent();
|
|
Changed = true;
|
|
}
|
|
|
|
// If the unreachable instruction is the first in the block, take a gander
|
|
// at all of the predecessors of this instruction, and simplify them.
|
|
if (&BB->front() != UI)
|
|
return Changed;
|
|
|
|
std::vector<DominatorTree::UpdateType> Updates;
|
|
|
|
SmallSetVector<BasicBlock *, 8> Preds(pred_begin(BB), pred_end(BB));
|
|
for (unsigned i = 0, e = Preds.size(); i != e; ++i) {
|
|
auto *Predecessor = Preds[i];
|
|
Instruction *TI = Predecessor->getTerminator();
|
|
IRBuilder<> Builder(TI);
|
|
if (auto *BI = dyn_cast<BranchInst>(TI)) {
|
|
// We could either have a proper unconditional branch,
|
|
// or a degenerate conditional branch with matching destinations.
|
|
if (all_of(BI->successors(),
|
|
[BB](auto *Successor) { return Successor == BB; })) {
|
|
new UnreachableInst(TI->getContext(), TI);
|
|
TI->eraseFromParent();
|
|
Changed = true;
|
|
} else {
|
|
assert(BI->isConditional() && "Can't get here with an uncond branch.");
|
|
Value* Cond = BI->getCondition();
|
|
assert(BI->getSuccessor(0) != BI->getSuccessor(1) &&
|
|
"The destinations are guaranteed to be different here.");
|
|
if (BI->getSuccessor(0) == BB) {
|
|
Builder.CreateAssumption(Builder.CreateNot(Cond));
|
|
Builder.CreateBr(BI->getSuccessor(1));
|
|
} else {
|
|
assert(BI->getSuccessor(1) == BB && "Incorrect CFG");
|
|
Builder.CreateAssumption(Cond);
|
|
Builder.CreateBr(BI->getSuccessor(0));
|
|
}
|
|
EraseTerminatorAndDCECond(BI);
|
|
Changed = true;
|
|
}
|
|
if (DTU)
|
|
Updates.push_back({DominatorTree::Delete, Predecessor, BB});
|
|
} else if (auto *SI = dyn_cast<SwitchInst>(TI)) {
|
|
SwitchInstProfUpdateWrapper SU(*SI);
|
|
for (auto i = SU->case_begin(), e = SU->case_end(); i != e;) {
|
|
if (i->getCaseSuccessor() != BB) {
|
|
++i;
|
|
continue;
|
|
}
|
|
BB->removePredecessor(SU->getParent());
|
|
i = SU.removeCase(i);
|
|
e = SU->case_end();
|
|
Changed = true;
|
|
}
|
|
// Note that the default destination can't be removed!
|
|
if (DTU && SI->getDefaultDest() != BB)
|
|
Updates.push_back({DominatorTree::Delete, Predecessor, BB});
|
|
} else if (auto *II = dyn_cast<InvokeInst>(TI)) {
|
|
if (II->getUnwindDest() == BB) {
|
|
if (DTU) {
|
|
DTU->applyUpdates(Updates);
|
|
Updates.clear();
|
|
}
|
|
removeUnwindEdge(TI->getParent(), DTU);
|
|
Changed = true;
|
|
}
|
|
} else if (auto *CSI = dyn_cast<CatchSwitchInst>(TI)) {
|
|
if (CSI->getUnwindDest() == BB) {
|
|
if (DTU) {
|
|
DTU->applyUpdates(Updates);
|
|
Updates.clear();
|
|
}
|
|
removeUnwindEdge(TI->getParent(), DTU);
|
|
Changed = true;
|
|
continue;
|
|
}
|
|
|
|
for (CatchSwitchInst::handler_iterator I = CSI->handler_begin(),
|
|
E = CSI->handler_end();
|
|
I != E; ++I) {
|
|
if (*I == BB) {
|
|
CSI->removeHandler(I);
|
|
--I;
|
|
--E;
|
|
Changed = true;
|
|
}
|
|
}
|
|
if (DTU)
|
|
Updates.push_back({DominatorTree::Delete, Predecessor, BB});
|
|
if (CSI->getNumHandlers() == 0) {
|
|
if (CSI->hasUnwindDest()) {
|
|
// Redirect all predecessors of the block containing CatchSwitchInst
|
|
// to instead branch to the CatchSwitchInst's unwind destination.
|
|
if (DTU) {
|
|
for (auto *PredecessorOfPredecessor : predecessors(Predecessor)) {
|
|
Updates.push_back({DominatorTree::Insert,
|
|
PredecessorOfPredecessor,
|
|
CSI->getUnwindDest()});
|
|
Updates.push_back({DominatorTree::Delete,
|
|
PredecessorOfPredecessor, Predecessor});
|
|
}
|
|
}
|
|
Predecessor->replaceAllUsesWith(CSI->getUnwindDest());
|
|
} else {
|
|
// Rewrite all preds to unwind to caller (or from invoke to call).
|
|
if (DTU) {
|
|
DTU->applyUpdates(Updates);
|
|
Updates.clear();
|
|
}
|
|
SmallVector<BasicBlock *, 8> EHPreds(predecessors(Predecessor));
|
|
for (BasicBlock *EHPred : EHPreds)
|
|
removeUnwindEdge(EHPred, DTU);
|
|
}
|
|
// The catchswitch is no longer reachable.
|
|
new UnreachableInst(CSI->getContext(), CSI);
|
|
CSI->eraseFromParent();
|
|
Changed = true;
|
|
}
|
|
} else if (auto *CRI = dyn_cast<CleanupReturnInst>(TI)) {
|
|
(void)CRI;
|
|
assert(CRI->hasUnwindDest() && CRI->getUnwindDest() == BB &&
|
|
"Expected to always have an unwind to BB.");
|
|
if (DTU)
|
|
Updates.push_back({DominatorTree::Delete, Predecessor, BB});
|
|
new UnreachableInst(TI->getContext(), TI);
|
|
TI->eraseFromParent();
|
|
Changed = true;
|
|
}
|
|
}
|
|
|
|
if (DTU)
|
|
DTU->applyUpdates(Updates);
|
|
|
|
// If this block is now dead, remove it.
|
|
if (pred_empty(BB) && BB != &BB->getParent()->getEntryBlock()) {
|
|
DeleteDeadBlock(BB, DTU);
|
|
return true;
|
|
}
|
|
|
|
return Changed;
|
|
}
|
|
|
|
static bool CasesAreContiguous(SmallVectorImpl<ConstantInt *> &Cases) {
|
|
assert(Cases.size() >= 1);
|
|
|
|
array_pod_sort(Cases.begin(), Cases.end(), ConstantIntSortPredicate);
|
|
for (size_t I = 1, E = Cases.size(); I != E; ++I) {
|
|
if (Cases[I - 1]->getValue() != Cases[I]->getValue() + 1)
|
|
return false;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
static void createUnreachableSwitchDefault(SwitchInst *Switch,
|
|
DomTreeUpdater *DTU) {
|
|
LLVM_DEBUG(dbgs() << "SimplifyCFG: switch default is dead.\n");
|
|
auto *BB = Switch->getParent();
|
|
BasicBlock *NewDefaultBlock = SplitBlockPredecessors(
|
|
Switch->getDefaultDest(), Switch->getParent(), "", DTU);
|
|
auto *OrigDefaultBlock = Switch->getDefaultDest();
|
|
Switch->setDefaultDest(&*NewDefaultBlock);
|
|
if (DTU)
|
|
DTU->applyUpdates({{DominatorTree::Insert, BB, &*NewDefaultBlock},
|
|
{DominatorTree::Delete, BB, OrigDefaultBlock}});
|
|
SplitBlock(&*NewDefaultBlock, &NewDefaultBlock->front(), DTU);
|
|
SmallVector<DominatorTree::UpdateType, 2> Updates;
|
|
if (DTU)
|
|
for (auto *Successor : successors(NewDefaultBlock))
|
|
Updates.push_back({DominatorTree::Delete, NewDefaultBlock, Successor});
|
|
auto *NewTerminator = NewDefaultBlock->getTerminator();
|
|
new UnreachableInst(Switch->getContext(), NewTerminator);
|
|
EraseTerminatorAndDCECond(NewTerminator);
|
|
if (DTU)
|
|
DTU->applyUpdates(Updates);
|
|
}
|
|
|
|
/// Turn a switch with two reachable destinations into an integer range
|
|
/// comparison and branch.
|
|
bool SimplifyCFGOpt::TurnSwitchRangeIntoICmp(SwitchInst *SI,
|
|
IRBuilder<> &Builder) {
|
|
assert(SI->getNumCases() > 1 && "Degenerate switch?");
|
|
|
|
bool HasDefault =
|
|
!isa<UnreachableInst>(SI->getDefaultDest()->getFirstNonPHIOrDbg());
|
|
|
|
auto *BB = SI->getParent();
|
|
|
|
// Partition the cases into two sets with different destinations.
|
|
BasicBlock *DestA = HasDefault ? SI->getDefaultDest() : nullptr;
|
|
BasicBlock *DestB = nullptr;
|
|
SmallVector<ConstantInt *, 16> CasesA;
|
|
SmallVector<ConstantInt *, 16> CasesB;
|
|
|
|
for (auto Case : SI->cases()) {
|
|
BasicBlock *Dest = Case.getCaseSuccessor();
|
|
if (!DestA)
|
|
DestA = Dest;
|
|
if (Dest == DestA) {
|
|
CasesA.push_back(Case.getCaseValue());
|
|
continue;
|
|
}
|
|
if (!DestB)
|
|
DestB = Dest;
|
|
if (Dest == DestB) {
|
|
CasesB.push_back(Case.getCaseValue());
|
|
continue;
|
|
}
|
|
return false; // More than two destinations.
|
|
}
|
|
|
|
assert(DestA && DestB &&
|
|
"Single-destination switch should have been folded.");
|
|
assert(DestA != DestB);
|
|
assert(DestB != SI->getDefaultDest());
|
|
assert(!CasesB.empty() && "There must be non-default cases.");
|
|
assert(!CasesA.empty() || HasDefault);
|
|
|
|
// Figure out if one of the sets of cases form a contiguous range.
|
|
SmallVectorImpl<ConstantInt *> *ContiguousCases = nullptr;
|
|
BasicBlock *ContiguousDest = nullptr;
|
|
BasicBlock *OtherDest = nullptr;
|
|
if (!CasesA.empty() && CasesAreContiguous(CasesA)) {
|
|
ContiguousCases = &CasesA;
|
|
ContiguousDest = DestA;
|
|
OtherDest = DestB;
|
|
} else if (CasesAreContiguous(CasesB)) {
|
|
ContiguousCases = &CasesB;
|
|
ContiguousDest = DestB;
|
|
OtherDest = DestA;
|
|
} else
|
|
return false;
|
|
|
|
// Start building the compare and branch.
|
|
|
|
Constant *Offset = ConstantExpr::getNeg(ContiguousCases->back());
|
|
Constant *NumCases =
|
|
ConstantInt::get(Offset->getType(), ContiguousCases->size());
|
|
|
|
Value *Sub = SI->getCondition();
|
|
if (!Offset->isNullValue())
|
|
Sub = Builder.CreateAdd(Sub, Offset, Sub->getName() + ".off");
|
|
|
|
Value *Cmp;
|
|
// If NumCases overflowed, then all possible values jump to the successor.
|
|
if (NumCases->isNullValue() && !ContiguousCases->empty())
|
|
Cmp = ConstantInt::getTrue(SI->getContext());
|
|
else
|
|
Cmp = Builder.CreateICmpULT(Sub, NumCases, "switch");
|
|
BranchInst *NewBI = Builder.CreateCondBr(Cmp, ContiguousDest, OtherDest);
|
|
|
|
// Update weight for the newly-created conditional branch.
|
|
if (HasBranchWeights(SI)) {
|
|
SmallVector<uint64_t, 8> Weights;
|
|
GetBranchWeights(SI, Weights);
|
|
if (Weights.size() == 1 + SI->getNumCases()) {
|
|
uint64_t TrueWeight = 0;
|
|
uint64_t FalseWeight = 0;
|
|
for (size_t I = 0, E = Weights.size(); I != E; ++I) {
|
|
if (SI->getSuccessor(I) == ContiguousDest)
|
|
TrueWeight += Weights[I];
|
|
else
|
|
FalseWeight += Weights[I];
|
|
}
|
|
while (TrueWeight > UINT32_MAX || FalseWeight > UINT32_MAX) {
|
|
TrueWeight /= 2;
|
|
FalseWeight /= 2;
|
|
}
|
|
setBranchWeights(NewBI, TrueWeight, FalseWeight);
|
|
}
|
|
}
|
|
|
|
// Prune obsolete incoming values off the successors' PHI nodes.
|
|
for (auto BBI = ContiguousDest->begin(); isa<PHINode>(BBI); ++BBI) {
|
|
unsigned PreviousEdges = ContiguousCases->size();
|
|
if (ContiguousDest == SI->getDefaultDest())
|
|
++PreviousEdges;
|
|
for (unsigned I = 0, E = PreviousEdges - 1; I != E; ++I)
|
|
cast<PHINode>(BBI)->removeIncomingValue(SI->getParent());
|
|
}
|
|
for (auto BBI = OtherDest->begin(); isa<PHINode>(BBI); ++BBI) {
|
|
unsigned PreviousEdges = SI->getNumCases() - ContiguousCases->size();
|
|
if (OtherDest == SI->getDefaultDest())
|
|
++PreviousEdges;
|
|
for (unsigned I = 0, E = PreviousEdges - 1; I != E; ++I)
|
|
cast<PHINode>(BBI)->removeIncomingValue(SI->getParent());
|
|
}
|
|
|
|
// Clean up the default block - it may have phis or other instructions before
|
|
// the unreachable terminator.
|
|
if (!HasDefault)
|
|
createUnreachableSwitchDefault(SI, DTU);
|
|
|
|
auto *UnreachableDefault = SI->getDefaultDest();
|
|
|
|
// Drop the switch.
|
|
SI->eraseFromParent();
|
|
|
|
if (!HasDefault && DTU)
|
|
DTU->applyUpdates({{DominatorTree::Delete, BB, UnreachableDefault}});
|
|
|
|
return true;
|
|
}
|
|
|
|
/// Compute masked bits for the condition of a switch
|
|
/// and use it to remove dead cases.
|
|
static bool eliminateDeadSwitchCases(SwitchInst *SI, DomTreeUpdater *DTU,
|
|
AssumptionCache *AC,
|
|
const DataLayout &DL) {
|
|
Value *Cond = SI->getCondition();
|
|
unsigned Bits = Cond->getType()->getIntegerBitWidth();
|
|
KnownBits Known = computeKnownBits(Cond, DL, 0, AC, SI);
|
|
|
|
// We can also eliminate cases by determining that their values are outside of
|
|
// the limited range of the condition based on how many significant (non-sign)
|
|
// bits are in the condition value.
|
|
unsigned ExtraSignBits = ComputeNumSignBits(Cond, DL, 0, AC, SI) - 1;
|
|
unsigned MaxSignificantBitsInCond = Bits - ExtraSignBits;
|
|
|
|
// Gather dead cases.
|
|
SmallVector<ConstantInt *, 8> DeadCases;
|
|
SmallDenseMap<BasicBlock *, int, 8> NumPerSuccessorCases;
|
|
for (auto &Case : SI->cases()) {
|
|
auto *Successor = Case.getCaseSuccessor();
|
|
if (DTU)
|
|
++NumPerSuccessorCases[Successor];
|
|
const APInt &CaseVal = Case.getCaseValue()->getValue();
|
|
if (Known.Zero.intersects(CaseVal) || !Known.One.isSubsetOf(CaseVal) ||
|
|
(CaseVal.getMinSignedBits() > MaxSignificantBitsInCond)) {
|
|
DeadCases.push_back(Case.getCaseValue());
|
|
if (DTU)
|
|
--NumPerSuccessorCases[Successor];
|
|
LLVM_DEBUG(dbgs() << "SimplifyCFG: switch case " << CaseVal
|
|
<< " is dead.\n");
|
|
}
|
|
}
|
|
|
|
// If we can prove that the cases must cover all possible values, the
|
|
// default destination becomes dead and we can remove it. If we know some
|
|
// of the bits in the value, we can use that to more precisely compute the
|
|
// number of possible unique case values.
|
|
bool HasDefault =
|
|
!isa<UnreachableInst>(SI->getDefaultDest()->getFirstNonPHIOrDbg());
|
|
const unsigned NumUnknownBits =
|
|
Bits - (Known.Zero | Known.One).countPopulation();
|
|
assert(NumUnknownBits <= Bits);
|
|
if (HasDefault && DeadCases.empty() &&
|
|
NumUnknownBits < 64 /* avoid overflow */ &&
|
|
SI->getNumCases() == (1ULL << NumUnknownBits)) {
|
|
createUnreachableSwitchDefault(SI, DTU);
|
|
return true;
|
|
}
|
|
|
|
if (DeadCases.empty())
|
|
return false;
|
|
|
|
SwitchInstProfUpdateWrapper SIW(*SI);
|
|
for (ConstantInt *DeadCase : DeadCases) {
|
|
SwitchInst::CaseIt CaseI = SI->findCaseValue(DeadCase);
|
|
assert(CaseI != SI->case_default() &&
|
|
"Case was not found. Probably mistake in DeadCases forming.");
|
|
// Prune unused values from PHI nodes.
|
|
CaseI->getCaseSuccessor()->removePredecessor(SI->getParent());
|
|
SIW.removeCase(CaseI);
|
|
}
|
|
|
|
if (DTU) {
|
|
std::vector<DominatorTree::UpdateType> Updates;
|
|
for (const std::pair<BasicBlock *, int> &I : NumPerSuccessorCases)
|
|
if (I.second == 0)
|
|
Updates.push_back({DominatorTree::Delete, SI->getParent(), I.first});
|
|
DTU->applyUpdates(Updates);
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
/// If BB would be eligible for simplification by
|
|
/// TryToSimplifyUncondBranchFromEmptyBlock (i.e. it is empty and terminated
|
|
/// by an unconditional branch), look at the phi node for BB in the successor
|
|
/// block and see if the incoming value is equal to CaseValue. If so, return
|
|
/// the phi node, and set PhiIndex to BB's index in the phi node.
|
|
static PHINode *FindPHIForConditionForwarding(ConstantInt *CaseValue,
|
|
BasicBlock *BB, int *PhiIndex) {
|
|
if (BB->getFirstNonPHIOrDbg() != BB->getTerminator())
|
|
return nullptr; // BB must be empty to be a candidate for simplification.
|
|
if (!BB->getSinglePredecessor())
|
|
return nullptr; // BB must be dominated by the switch.
|
|
|
|
BranchInst *Branch = dyn_cast<BranchInst>(BB->getTerminator());
|
|
if (!Branch || !Branch->isUnconditional())
|
|
return nullptr; // Terminator must be unconditional branch.
|
|
|
|
BasicBlock *Succ = Branch->getSuccessor(0);
|
|
|
|
for (PHINode &PHI : Succ->phis()) {
|
|
int Idx = PHI.getBasicBlockIndex(BB);
|
|
assert(Idx >= 0 && "PHI has no entry for predecessor?");
|
|
|
|
Value *InValue = PHI.getIncomingValue(Idx);
|
|
if (InValue != CaseValue)
|
|
continue;
|
|
|
|
*PhiIndex = Idx;
|
|
return &PHI;
|
|
}
|
|
|
|
return nullptr;
|
|
}
|
|
|
|
/// Try to forward the condition of a switch instruction to a phi node
|
|
/// dominated by the switch, if that would mean that some of the destination
|
|
/// blocks of the switch can be folded away. Return true if a change is made.
|
|
static bool ForwardSwitchConditionToPHI(SwitchInst *SI) {
|
|
using ForwardingNodesMap = DenseMap<PHINode *, SmallVector<int, 4>>;
|
|
|
|
ForwardingNodesMap ForwardingNodes;
|
|
BasicBlock *SwitchBlock = SI->getParent();
|
|
bool Changed = false;
|
|
for (auto &Case : SI->cases()) {
|
|
ConstantInt *CaseValue = Case.getCaseValue();
|
|
BasicBlock *CaseDest = Case.getCaseSuccessor();
|
|
|
|
// Replace phi operands in successor blocks that are using the constant case
|
|
// value rather than the switch condition variable:
|
|
// switchbb:
|
|
// switch i32 %x, label %default [
|
|
// i32 17, label %succ
|
|
// ...
|
|
// succ:
|
|
// %r = phi i32 ... [ 17, %switchbb ] ...
|
|
// -->
|
|
// %r = phi i32 ... [ %x, %switchbb ] ...
|
|
|
|
for (PHINode &Phi : CaseDest->phis()) {
|
|
// This only works if there is exactly 1 incoming edge from the switch to
|
|
// a phi. If there is >1, that means multiple cases of the switch map to 1
|
|
// value in the phi, and that phi value is not the switch condition. Thus,
|
|
// this transform would not make sense (the phi would be invalid because
|
|
// a phi can't have different incoming values from the same block).
|
|
int SwitchBBIdx = Phi.getBasicBlockIndex(SwitchBlock);
|
|
if (Phi.getIncomingValue(SwitchBBIdx) == CaseValue &&
|
|
count(Phi.blocks(), SwitchBlock) == 1) {
|
|
Phi.setIncomingValue(SwitchBBIdx, SI->getCondition());
|
|
Changed = true;
|
|
}
|
|
}
|
|
|
|
// Collect phi nodes that are indirectly using this switch's case constants.
|
|
int PhiIdx;
|
|
if (auto *Phi = FindPHIForConditionForwarding(CaseValue, CaseDest, &PhiIdx))
|
|
ForwardingNodes[Phi].push_back(PhiIdx);
|
|
}
|
|
|
|
for (auto &ForwardingNode : ForwardingNodes) {
|
|
PHINode *Phi = ForwardingNode.first;
|
|
SmallVectorImpl<int> &Indexes = ForwardingNode.second;
|
|
if (Indexes.size() < 2)
|
|
continue;
|
|
|
|
for (int Index : Indexes)
|
|
Phi->setIncomingValue(Index, SI->getCondition());
|
|
Changed = true;
|
|
}
|
|
|
|
return Changed;
|
|
}
|
|
|
|
/// Return true if the backend will be able to handle
|
|
/// initializing an array of constants like C.
|
|
static bool ValidLookupTableConstant(Constant *C, const TargetTransformInfo &TTI) {
|
|
if (C->isThreadDependent())
|
|
return false;
|
|
if (C->isDLLImportDependent())
|
|
return false;
|
|
|
|
if (!isa<ConstantFP>(C) && !isa<ConstantInt>(C) &&
|
|
!isa<ConstantPointerNull>(C) && !isa<GlobalValue>(C) &&
|
|
!isa<UndefValue>(C) && !isa<ConstantExpr>(C))
|
|
return false;
|
|
|
|
if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
|
|
if (!CE->isGEPWithNoNotionalOverIndexing())
|
|
return false;
|
|
if (!ValidLookupTableConstant(CE->getOperand(0), TTI))
|
|
return false;
|
|
}
|
|
|
|
if (!TTI.shouldBuildLookupTablesForConstant(C))
|
|
return false;
|
|
|
|
return true;
|
|
}
|
|
|
|
/// If V is a Constant, return it. Otherwise, try to look up
|
|
/// its constant value in ConstantPool, returning 0 if it's not there.
|
|
static Constant *
|
|
LookupConstant(Value *V,
|
|
const SmallDenseMap<Value *, Constant *> &ConstantPool) {
|
|
if (Constant *C = dyn_cast<Constant>(V))
|
|
return C;
|
|
return ConstantPool.lookup(V);
|
|
}
|
|
|
|
/// Try to fold instruction I into a constant. This works for
|
|
/// simple instructions such as binary operations where both operands are
|
|
/// constant or can be replaced by constants from the ConstantPool. Returns the
|
|
/// resulting constant on success, 0 otherwise.
|
|
static Constant *
|
|
ConstantFold(Instruction *I, const DataLayout &DL,
|
|
const SmallDenseMap<Value *, Constant *> &ConstantPool) {
|
|
if (SelectInst *Select = dyn_cast<SelectInst>(I)) {
|
|
Constant *A = LookupConstant(Select->getCondition(), ConstantPool);
|
|
if (!A)
|
|
return nullptr;
|
|
if (A->isAllOnesValue())
|
|
return LookupConstant(Select->getTrueValue(), ConstantPool);
|
|
if (A->isNullValue())
|
|
return LookupConstant(Select->getFalseValue(), ConstantPool);
|
|
return nullptr;
|
|
}
|
|
|
|
SmallVector<Constant *, 4> COps;
|
|
for (unsigned N = 0, E = I->getNumOperands(); N != E; ++N) {
|
|
if (Constant *A = LookupConstant(I->getOperand(N), ConstantPool))
|
|
COps.push_back(A);
|
|
else
|
|
return nullptr;
|
|
}
|
|
|
|
if (CmpInst *Cmp = dyn_cast<CmpInst>(I)) {
|
|
return ConstantFoldCompareInstOperands(Cmp->getPredicate(), COps[0],
|
|
COps[1], DL);
|
|
}
|
|
|
|
return ConstantFoldInstOperands(I, COps, DL);
|
|
}
|
|
|
|
/// Try to determine the resulting constant values in phi nodes
|
|
/// at the common destination basic block, *CommonDest, for one of the case
|
|
/// destionations CaseDest corresponding to value CaseVal (0 for the default
|
|
/// case), of a switch instruction SI.
|
|
static bool
|
|
GetCaseResults(SwitchInst *SI, ConstantInt *CaseVal, BasicBlock *CaseDest,
|
|
BasicBlock **CommonDest,
|
|
SmallVectorImpl<std::pair<PHINode *, Constant *>> &Res,
|
|
const DataLayout &DL, const TargetTransformInfo &TTI) {
|
|
// The block from which we enter the common destination.
|
|
BasicBlock *Pred = SI->getParent();
|
|
|
|
// If CaseDest is empty except for some side-effect free instructions through
|
|
// which we can constant-propagate the CaseVal, continue to its successor.
|
|
SmallDenseMap<Value *, Constant *> ConstantPool;
|
|
ConstantPool.insert(std::make_pair(SI->getCondition(), CaseVal));
|
|
for (Instruction &I :CaseDest->instructionsWithoutDebug()) {
|
|
if (I.isTerminator()) {
|
|
// If the terminator is a simple branch, continue to the next block.
|
|
if (I.getNumSuccessors() != 1 || I.isExceptionalTerminator())
|
|
return false;
|
|
Pred = CaseDest;
|
|
CaseDest = I.getSuccessor(0);
|
|
} else if (Constant *C = ConstantFold(&I, DL, ConstantPool)) {
|
|
// Instruction is side-effect free and constant.
|
|
|
|
// If the instruction has uses outside this block or a phi node slot for
|
|
// the block, it is not safe to bypass the instruction since it would then
|
|
// no longer dominate all its uses.
|
|
for (auto &Use : I.uses()) {
|
|
User *User = Use.getUser();
|
|
if (Instruction *I = dyn_cast<Instruction>(User))
|
|
if (I->getParent() == CaseDest)
|
|
continue;
|
|
if (PHINode *Phi = dyn_cast<PHINode>(User))
|
|
if (Phi->getIncomingBlock(Use) == CaseDest)
|
|
continue;
|
|
return false;
|
|
}
|
|
|
|
ConstantPool.insert(std::make_pair(&I, C));
|
|
} else {
|
|
break;
|
|
}
|
|
}
|
|
|
|
// If we did not have a CommonDest before, use the current one.
|
|
if (!*CommonDest)
|
|
*CommonDest = CaseDest;
|
|
// If the destination isn't the common one, abort.
|
|
if (CaseDest != *CommonDest)
|
|
return false;
|
|
|
|
// Get the values for this case from phi nodes in the destination block.
|
|
for (PHINode &PHI : (*CommonDest)->phis()) {
|
|
int Idx = PHI.getBasicBlockIndex(Pred);
|
|
if (Idx == -1)
|
|
continue;
|
|
|
|
Constant *ConstVal =
|
|
LookupConstant(PHI.getIncomingValue(Idx), ConstantPool);
|
|
if (!ConstVal)
|
|
return false;
|
|
|
|
// Be conservative about which kinds of constants we support.
|
|
if (!ValidLookupTableConstant(ConstVal, TTI))
|
|
return false;
|
|
|
|
Res.push_back(std::make_pair(&PHI, ConstVal));
|
|
}
|
|
|
|
return Res.size() > 0;
|
|
}
|
|
|
|
// Helper function used to add CaseVal to the list of cases that generate
|
|
// Result. Returns the updated number of cases that generate this result.
|
|
static uintptr_t MapCaseToResult(ConstantInt *CaseVal,
|
|
SwitchCaseResultVectorTy &UniqueResults,
|
|
Constant *Result) {
|
|
for (auto &I : UniqueResults) {
|
|
if (I.first == Result) {
|
|
I.second.push_back(CaseVal);
|
|
return I.second.size();
|
|
}
|
|
}
|
|
UniqueResults.push_back(
|
|
std::make_pair(Result, SmallVector<ConstantInt *, 4>(1, CaseVal)));
|
|
return 1;
|
|
}
|
|
|
|
// Helper function that initializes a map containing
|
|
// results for the PHI node of the common destination block for a switch
|
|
// instruction. Returns false if multiple PHI nodes have been found or if
|
|
// there is not a common destination block for the switch.
|
|
static bool
|
|
InitializeUniqueCases(SwitchInst *SI, PHINode *&PHI, BasicBlock *&CommonDest,
|
|
SwitchCaseResultVectorTy &UniqueResults,
|
|
Constant *&DefaultResult, const DataLayout &DL,
|
|
const TargetTransformInfo &TTI,
|
|
uintptr_t MaxUniqueResults, uintptr_t MaxCasesPerResult) {
|
|
for (auto &I : SI->cases()) {
|
|
ConstantInt *CaseVal = I.getCaseValue();
|
|
|
|
// Resulting value at phi nodes for this case value.
|
|
SwitchCaseResultsTy Results;
|
|
if (!GetCaseResults(SI, CaseVal, I.getCaseSuccessor(), &CommonDest, Results,
|
|
DL, TTI))
|
|
return false;
|
|
|
|
// Only one value per case is permitted.
|
|
if (Results.size() > 1)
|
|
return false;
|
|
|
|
// Add the case->result mapping to UniqueResults.
|
|
const uintptr_t NumCasesForResult =
|
|
MapCaseToResult(CaseVal, UniqueResults, Results.begin()->second);
|
|
|
|
// Early out if there are too many cases for this result.
|
|
if (NumCasesForResult > MaxCasesPerResult)
|
|
return false;
|
|
|
|
// Early out if there are too many unique results.
|
|
if (UniqueResults.size() > MaxUniqueResults)
|
|
return false;
|
|
|
|
// Check the PHI consistency.
|
|
if (!PHI)
|
|
PHI = Results[0].first;
|
|
else if (PHI != Results[0].first)
|
|
return false;
|
|
}
|
|
// Find the default result value.
|
|
SmallVector<std::pair<PHINode *, Constant *>, 1> DefaultResults;
|
|
BasicBlock *DefaultDest = SI->getDefaultDest();
|
|
GetCaseResults(SI, nullptr, SI->getDefaultDest(), &CommonDest, DefaultResults,
|
|
DL, TTI);
|
|
// If the default value is not found abort unless the default destination
|
|
// is unreachable.
|
|
DefaultResult =
|
|
DefaultResults.size() == 1 ? DefaultResults.begin()->second : nullptr;
|
|
if ((!DefaultResult &&
|
|
!isa<UnreachableInst>(DefaultDest->getFirstNonPHIOrDbg())))
|
|
return false;
|
|
|
|
return true;
|
|
}
|
|
|
|
// Helper function that checks if it is possible to transform a switch with only
|
|
// two cases (or two cases + default) that produces a result into a select.
|
|
// Example:
|
|
// switch (a) {
|
|
// case 10: %0 = icmp eq i32 %a, 10
|
|
// return 10; %1 = select i1 %0, i32 10, i32 4
|
|
// case 20: ----> %2 = icmp eq i32 %a, 20
|
|
// return 2; %3 = select i1 %2, i32 2, i32 %1
|
|
// default:
|
|
// return 4;
|
|
// }
|
|
static Value *ConvertTwoCaseSwitch(const SwitchCaseResultVectorTy &ResultVector,
|
|
Constant *DefaultResult, Value *Condition,
|
|
IRBuilder<> &Builder) {
|
|
// If we are selecting between only two cases transform into a simple
|
|
// select or a two-way select if default is possible.
|
|
if (ResultVector.size() == 2 && ResultVector[0].second.size() == 1 &&
|
|
ResultVector[1].second.size() == 1) {
|
|
ConstantInt *const FirstCase = ResultVector[0].second[0];
|
|
ConstantInt *const SecondCase = ResultVector[1].second[0];
|
|
|
|
bool DefaultCanTrigger = DefaultResult;
|
|
Value *SelectValue = ResultVector[1].first;
|
|
if (DefaultCanTrigger) {
|
|
Value *const ValueCompare =
|
|
Builder.CreateICmpEQ(Condition, SecondCase, "switch.selectcmp");
|
|
SelectValue = Builder.CreateSelect(ValueCompare, ResultVector[1].first,
|
|
DefaultResult, "switch.select");
|
|
}
|
|
Value *const ValueCompare =
|
|
Builder.CreateICmpEQ(Condition, FirstCase, "switch.selectcmp");
|
|
return Builder.CreateSelect(ValueCompare, ResultVector[0].first,
|
|
SelectValue, "switch.select");
|
|
}
|
|
|
|
// Handle the degenerate case where two cases have the same value.
|
|
if (ResultVector.size() == 1 && ResultVector[0].second.size() == 2 &&
|
|
DefaultResult) {
|
|
Value *Cmp1 = Builder.CreateICmpEQ(
|
|
Condition, ResultVector[0].second[0], "switch.selectcmp.case1");
|
|
Value *Cmp2 = Builder.CreateICmpEQ(
|
|
Condition, ResultVector[0].second[1], "switch.selectcmp.case2");
|
|
Value *Cmp = Builder.CreateOr(Cmp1, Cmp2, "switch.selectcmp");
|
|
return Builder.CreateSelect(Cmp, ResultVector[0].first, DefaultResult);
|
|
}
|
|
|
|
return nullptr;
|
|
}
|
|
|
|
// Helper function to cleanup a switch instruction that has been converted into
|
|
// a select, fixing up PHI nodes and basic blocks.
|
|
static void RemoveSwitchAfterSelectConversion(SwitchInst *SI, PHINode *PHI,
|
|
Value *SelectValue,
|
|
IRBuilder<> &Builder,
|
|
DomTreeUpdater *DTU) {
|
|
std::vector<DominatorTree::UpdateType> Updates;
|
|
|
|
BasicBlock *SelectBB = SI->getParent();
|
|
BasicBlock *DestBB = PHI->getParent();
|
|
|
|
if (DTU && !is_contained(predecessors(DestBB), SelectBB))
|
|
Updates.push_back({DominatorTree::Insert, SelectBB, DestBB});
|
|
Builder.CreateBr(DestBB);
|
|
|
|
// Remove the switch.
|
|
|
|
while (PHI->getBasicBlockIndex(SelectBB) >= 0)
|
|
PHI->removeIncomingValue(SelectBB);
|
|
PHI->addIncoming(SelectValue, SelectBB);
|
|
|
|
SmallPtrSet<BasicBlock *, 4> RemovedSuccessors;
|
|
for (unsigned i = 0, e = SI->getNumSuccessors(); i < e; ++i) {
|
|
BasicBlock *Succ = SI->getSuccessor(i);
|
|
|
|
if (Succ == DestBB)
|
|
continue;
|
|
Succ->removePredecessor(SelectBB);
|
|
if (DTU && RemovedSuccessors.insert(Succ).second)
|
|
Updates.push_back({DominatorTree::Delete, SelectBB, Succ});
|
|
}
|
|
SI->eraseFromParent();
|
|
if (DTU)
|
|
DTU->applyUpdates(Updates);
|
|
}
|
|
|
|
/// If the switch is only used to initialize one or more
|
|
/// phi nodes in a common successor block with only two different
|
|
/// constant values, replace the switch with select.
|
|
static bool switchToSelect(SwitchInst *SI, IRBuilder<> &Builder,
|
|
DomTreeUpdater *DTU, const DataLayout &DL,
|
|
const TargetTransformInfo &TTI) {
|
|
Value *const Cond = SI->getCondition();
|
|
PHINode *PHI = nullptr;
|
|
BasicBlock *CommonDest = nullptr;
|
|
Constant *DefaultResult;
|
|
SwitchCaseResultVectorTy UniqueResults;
|
|
// Collect all the cases that will deliver the same value from the switch.
|
|
if (!InitializeUniqueCases(SI, PHI, CommonDest, UniqueResults, DefaultResult,
|
|
DL, TTI, /*MaxUniqueResults*/2,
|
|
/*MaxCasesPerResult*/2))
|
|
return false;
|
|
assert(PHI != nullptr && "PHI for value select not found");
|
|
|
|
Builder.SetInsertPoint(SI);
|
|
Value *SelectValue =
|
|
ConvertTwoCaseSwitch(UniqueResults, DefaultResult, Cond, Builder);
|
|
if (SelectValue) {
|
|
RemoveSwitchAfterSelectConversion(SI, PHI, SelectValue, Builder, DTU);
|
|
return true;
|
|
}
|
|
// The switch couldn't be converted into a select.
|
|
return false;
|
|
}
|
|
|
|
namespace {
|
|
|
|
/// This class represents a lookup table that can be used to replace a switch.
|
|
class SwitchLookupTable {
|
|
public:
|
|
/// Create a lookup table to use as a switch replacement with the contents
|
|
/// of Values, using DefaultValue to fill any holes in the table.
|
|
SwitchLookupTable(
|
|
Module &M, uint64_t TableSize, ConstantInt *Offset,
|
|
const SmallVectorImpl<std::pair<ConstantInt *, Constant *>> &Values,
|
|
Constant *DefaultValue, const DataLayout &DL, const StringRef &FuncName);
|
|
|
|
/// Build instructions with Builder to retrieve the value at
|
|
/// the position given by Index in the lookup table.
|
|
Value *BuildLookup(Value *Index, IRBuilder<> &Builder);
|
|
|
|
/// Return true if a table with TableSize elements of
|
|
/// type ElementType would fit in a target-legal register.
|
|
static bool WouldFitInRegister(const DataLayout &DL, uint64_t TableSize,
|
|
Type *ElementType);
|
|
|
|
private:
|
|
// Depending on the contents of the table, it can be represented in
|
|
// different ways.
|
|
enum {
|
|
// For tables where each element contains the same value, we just have to
|
|
// store that single value and return it for each lookup.
|
|
SingleValueKind,
|
|
|
|
// For tables where there is a linear relationship between table index
|
|
// and values. We calculate the result with a simple multiplication
|
|
// and addition instead of a table lookup.
|
|
LinearMapKind,
|
|
|
|
// For small tables with integer elements, we can pack them into a bitmap
|
|
// that fits into a target-legal register. Values are retrieved by
|
|
// shift and mask operations.
|
|
BitMapKind,
|
|
|
|
// The table is stored as an array of values. Values are retrieved by load
|
|
// instructions from the table.
|
|
ArrayKind
|
|
} Kind;
|
|
|
|
// For SingleValueKind, this is the single value.
|
|
Constant *SingleValue = nullptr;
|
|
|
|
// For BitMapKind, this is the bitmap.
|
|
ConstantInt *BitMap = nullptr;
|
|
IntegerType *BitMapElementTy = nullptr;
|
|
|
|
// For LinearMapKind, these are the constants used to derive the value.
|
|
ConstantInt *LinearOffset = nullptr;
|
|
ConstantInt *LinearMultiplier = nullptr;
|
|
|
|
// For ArrayKind, this is the array.
|
|
GlobalVariable *Array = nullptr;
|
|
};
|
|
|
|
} // end anonymous namespace
|
|
|
|
SwitchLookupTable::SwitchLookupTable(
|
|
Module &M, uint64_t TableSize, ConstantInt *Offset,
|
|
const SmallVectorImpl<std::pair<ConstantInt *, Constant *>> &Values,
|
|
Constant *DefaultValue, const DataLayout &DL, const StringRef &FuncName) {
|
|
assert(Values.size() && "Can't build lookup table without values!");
|
|
assert(TableSize >= Values.size() && "Can't fit values in table!");
|
|
|
|
// If all values in the table are equal, this is that value.
|
|
SingleValue = Values.begin()->second;
|
|
|
|
Type *ValueType = Values.begin()->second->getType();
|
|
|
|
// Build up the table contents.
|
|
SmallVector<Constant *, 64> TableContents(TableSize);
|
|
for (size_t I = 0, E = Values.size(); I != E; ++I) {
|
|
ConstantInt *CaseVal = Values[I].first;
|
|
Constant *CaseRes = Values[I].second;
|
|
assert(CaseRes->getType() == ValueType);
|
|
|
|
uint64_t Idx = (CaseVal->getValue() - Offset->getValue()).getLimitedValue();
|
|
TableContents[Idx] = CaseRes;
|
|
|
|
if (CaseRes != SingleValue)
|
|
SingleValue = nullptr;
|
|
}
|
|
|
|
// Fill in any holes in the table with the default result.
|
|
if (Values.size() < TableSize) {
|
|
assert(DefaultValue &&
|
|
"Need a default value to fill the lookup table holes.");
|
|
assert(DefaultValue->getType() == ValueType);
|
|
for (uint64_t I = 0; I < TableSize; ++I) {
|
|
if (!TableContents[I])
|
|
TableContents[I] = DefaultValue;
|
|
}
|
|
|
|
if (DefaultValue != SingleValue)
|
|
SingleValue = nullptr;
|
|
}
|
|
|
|
// If each element in the table contains the same value, we only need to store
|
|
// that single value.
|
|
if (SingleValue) {
|
|
Kind = SingleValueKind;
|
|
return;
|
|
}
|
|
|
|
// Check if we can derive the value with a linear transformation from the
|
|
// table index.
|
|
if (isa<IntegerType>(ValueType)) {
|
|
bool LinearMappingPossible = true;
|
|
APInt PrevVal;
|
|
APInt DistToPrev;
|
|
assert(TableSize >= 2 && "Should be a SingleValue table.");
|
|
// Check if there is the same distance between two consecutive values.
|
|
for (uint64_t I = 0; I < TableSize; ++I) {
|
|
ConstantInt *ConstVal = dyn_cast<ConstantInt>(TableContents[I]);
|
|
if (!ConstVal) {
|
|
// This is an undef. We could deal with it, but undefs in lookup tables
|
|
// are very seldom. It's probably not worth the additional complexity.
|
|
LinearMappingPossible = false;
|
|
break;
|
|
}
|
|
const APInt &Val = ConstVal->getValue();
|
|
if (I != 0) {
|
|
APInt Dist = Val - PrevVal;
|
|
if (I == 1) {
|
|
DistToPrev = Dist;
|
|
} else if (Dist != DistToPrev) {
|
|
LinearMappingPossible = false;
|
|
break;
|
|
}
|
|
}
|
|
PrevVal = Val;
|
|
}
|
|
if (LinearMappingPossible) {
|
|
LinearOffset = cast<ConstantInt>(TableContents[0]);
|
|
LinearMultiplier = ConstantInt::get(M.getContext(), DistToPrev);
|
|
Kind = LinearMapKind;
|
|
++NumLinearMaps;
|
|
return;
|
|
}
|
|
}
|
|
|
|
// If the type is integer and the table fits in a register, build a bitmap.
|
|
if (WouldFitInRegister(DL, TableSize, ValueType)) {
|
|
IntegerType *IT = cast<IntegerType>(ValueType);
|
|
APInt TableInt(TableSize * IT->getBitWidth(), 0);
|
|
for (uint64_t I = TableSize; I > 0; --I) {
|
|
TableInt <<= IT->getBitWidth();
|
|
// Insert values into the bitmap. Undef values are set to zero.
|
|
if (!isa<UndefValue>(TableContents[I - 1])) {
|
|
ConstantInt *Val = cast<ConstantInt>(TableContents[I - 1]);
|
|
TableInt |= Val->getValue().zext(TableInt.getBitWidth());
|
|
}
|
|
}
|
|
BitMap = ConstantInt::get(M.getContext(), TableInt);
|
|
BitMapElementTy = IT;
|
|
Kind = BitMapKind;
|
|
++NumBitMaps;
|
|
return;
|
|
}
|
|
|
|
// Store the table in an array.
|
|
ArrayType *ArrayTy = ArrayType::get(ValueType, TableSize);
|
|
Constant *Initializer = ConstantArray::get(ArrayTy, TableContents);
|
|
|
|
Array = new GlobalVariable(M, ArrayTy, /*isConstant=*/true,
|
|
GlobalVariable::PrivateLinkage, Initializer,
|
|
"switch.table." + FuncName);
|
|
Array->setUnnamedAddr(GlobalValue::UnnamedAddr::Global);
|
|
// Set the alignment to that of an array items. We will be only loading one
|
|
// value out of it.
|
|
Array->setAlignment(Align(DL.getPrefTypeAlignment(ValueType)));
|
|
Kind = ArrayKind;
|
|
}
|
|
|
|
Value *SwitchLookupTable::BuildLookup(Value *Index, IRBuilder<> &Builder) {
|
|
switch (Kind) {
|
|
case SingleValueKind:
|
|
return SingleValue;
|
|
case LinearMapKind: {
|
|
// Derive the result value from the input value.
|
|
Value *Result = Builder.CreateIntCast(Index, LinearMultiplier->getType(),
|
|
false, "switch.idx.cast");
|
|
if (!LinearMultiplier->isOne())
|
|
Result = Builder.CreateMul(Result, LinearMultiplier, "switch.idx.mult");
|
|
if (!LinearOffset->isZero())
|
|
Result = Builder.CreateAdd(Result, LinearOffset, "switch.offset");
|
|
return Result;
|
|
}
|
|
case BitMapKind: {
|
|
// Type of the bitmap (e.g. i59).
|
|
IntegerType *MapTy = BitMap->getType();
|
|
|
|
// Cast Index to the same type as the bitmap.
|
|
// Note: The Index is <= the number of elements in the table, so
|
|
// truncating it to the width of the bitmask is safe.
|
|
Value *ShiftAmt = Builder.CreateZExtOrTrunc(Index, MapTy, "switch.cast");
|
|
|
|
// Multiply the shift amount by the element width.
|
|
ShiftAmt = Builder.CreateMul(
|
|
ShiftAmt, ConstantInt::get(MapTy, BitMapElementTy->getBitWidth()),
|
|
"switch.shiftamt");
|
|
|
|
// Shift down.
|
|
Value *DownShifted =
|
|
Builder.CreateLShr(BitMap, ShiftAmt, "switch.downshift");
|
|
// Mask off.
|
|
return Builder.CreateTrunc(DownShifted, BitMapElementTy, "switch.masked");
|
|
}
|
|
case ArrayKind: {
|
|
// Make sure the table index will not overflow when treated as signed.
|
|
IntegerType *IT = cast<IntegerType>(Index->getType());
|
|
uint64_t TableSize =
|
|
Array->getInitializer()->getType()->getArrayNumElements();
|
|
if (TableSize > (1ULL << (IT->getBitWidth() - 1)))
|
|
Index = Builder.CreateZExt(
|
|
Index, IntegerType::get(IT->getContext(), IT->getBitWidth() + 1),
|
|
"switch.tableidx.zext");
|
|
|
|
Value *GEPIndices[] = {Builder.getInt32(0), Index};
|
|
Value *GEP = Builder.CreateInBoundsGEP(Array->getValueType(), Array,
|
|
GEPIndices, "switch.gep");
|
|
return Builder.CreateLoad(
|
|
cast<ArrayType>(Array->getValueType())->getElementType(), GEP,
|
|
"switch.load");
|
|
}
|
|
}
|
|
llvm_unreachable("Unknown lookup table kind!");
|
|
}
|
|
|
|
bool SwitchLookupTable::WouldFitInRegister(const DataLayout &DL,
|
|
uint64_t TableSize,
|
|
Type *ElementType) {
|
|
auto *IT = dyn_cast<IntegerType>(ElementType);
|
|
if (!IT)
|
|
return false;
|
|
// FIXME: If the type is wider than it needs to be, e.g. i8 but all values
|
|
// are <= 15, we could try to narrow the type.
|
|
|
|
// Avoid overflow, fitsInLegalInteger uses unsigned int for the width.
|
|
if (TableSize >= UINT_MAX / IT->getBitWidth())
|
|
return false;
|
|
return DL.fitsInLegalInteger(TableSize * IT->getBitWidth());
|
|
}
|
|
|
|
/// Determine whether a lookup table should be built for this switch, based on
|
|
/// the number of cases, size of the table, and the types of the results.
|
|
static bool
|
|
ShouldBuildLookupTable(SwitchInst *SI, uint64_t TableSize,
|
|
const TargetTransformInfo &TTI, const DataLayout &DL,
|
|
const SmallDenseMap<PHINode *, Type *> &ResultTypes) {
|
|
if (SI->getNumCases() > TableSize || TableSize >= UINT64_MAX / 10)
|
|
return false; // TableSize overflowed, or mul below might overflow.
|
|
|
|
bool AllTablesFitInRegister = true;
|
|
bool HasIllegalType = false;
|
|
for (const auto &I : ResultTypes) {
|
|
Type *Ty = I.second;
|
|
|
|
// Saturate this flag to true.
|
|
HasIllegalType = HasIllegalType || !TTI.isTypeLegal(Ty);
|
|
|
|
// Saturate this flag to false.
|
|
AllTablesFitInRegister =
|
|
AllTablesFitInRegister &&
|
|
SwitchLookupTable::WouldFitInRegister(DL, TableSize, Ty);
|
|
|
|
// If both flags saturate, we're done. NOTE: This *only* works with
|
|
// saturating flags, and all flags have to saturate first due to the
|
|
// non-deterministic behavior of iterating over a dense map.
|
|
if (HasIllegalType && !AllTablesFitInRegister)
|
|
break;
|
|
}
|
|
|
|
// If each table would fit in a register, we should build it anyway.
|
|
if (AllTablesFitInRegister)
|
|
return true;
|
|
|
|
// Don't build a table that doesn't fit in-register if it has illegal types.
|
|
if (HasIllegalType)
|
|
return false;
|
|
|
|
// The table density should be at least 40%. This is the same criterion as for
|
|
// jump tables, see SelectionDAGBuilder::handleJTSwitchCase.
|
|
// FIXME: Find the best cut-off.
|
|
return SI->getNumCases() * 10 >= TableSize * 4;
|
|
}
|
|
|
|
/// Try to reuse the switch table index compare. Following pattern:
|
|
/// \code
|
|
/// if (idx < tablesize)
|
|
/// r = table[idx]; // table does not contain default_value
|
|
/// else
|
|
/// r = default_value;
|
|
/// if (r != default_value)
|
|
/// ...
|
|
/// \endcode
|
|
/// Is optimized to:
|
|
/// \code
|
|
/// cond = idx < tablesize;
|
|
/// if (cond)
|
|
/// r = table[idx];
|
|
/// else
|
|
/// r = default_value;
|
|
/// if (cond)
|
|
/// ...
|
|
/// \endcode
|
|
/// Jump threading will then eliminate the second if(cond).
|
|
static void reuseTableCompare(
|
|
User *PhiUser, BasicBlock *PhiBlock, BranchInst *RangeCheckBranch,
|
|
Constant *DefaultValue,
|
|
const SmallVectorImpl<std::pair<ConstantInt *, Constant *>> &Values) {
|
|
ICmpInst *CmpInst = dyn_cast<ICmpInst>(PhiUser);
|
|
if (!CmpInst)
|
|
return;
|
|
|
|
// We require that the compare is in the same block as the phi so that jump
|
|
// threading can do its work afterwards.
|
|
if (CmpInst->getParent() != PhiBlock)
|
|
return;
|
|
|
|
Constant *CmpOp1 = dyn_cast<Constant>(CmpInst->getOperand(1));
|
|
if (!CmpOp1)
|
|
return;
|
|
|
|
Value *RangeCmp = RangeCheckBranch->getCondition();
|
|
Constant *TrueConst = ConstantInt::getTrue(RangeCmp->getType());
|
|
Constant *FalseConst = ConstantInt::getFalse(RangeCmp->getType());
|
|
|
|
// Check if the compare with the default value is constant true or false.
|
|
Constant *DefaultConst = ConstantExpr::getICmp(CmpInst->getPredicate(),
|
|
DefaultValue, CmpOp1, true);
|
|
if (DefaultConst != TrueConst && DefaultConst != FalseConst)
|
|
return;
|
|
|
|
// Check if the compare with the case values is distinct from the default
|
|
// compare result.
|
|
for (auto ValuePair : Values) {
|
|
Constant *CaseConst = ConstantExpr::getICmp(CmpInst->getPredicate(),
|
|
ValuePair.second, CmpOp1, true);
|
|
if (!CaseConst || CaseConst == DefaultConst || isa<UndefValue>(CaseConst))
|
|
return;
|
|
assert((CaseConst == TrueConst || CaseConst == FalseConst) &&
|
|
"Expect true or false as compare result.");
|
|
}
|
|
|
|
// Check if the branch instruction dominates the phi node. It's a simple
|
|
// dominance check, but sufficient for our needs.
|
|
// Although this check is invariant in the calling loops, it's better to do it
|
|
// at this late stage. Practically we do it at most once for a switch.
|
|
BasicBlock *BranchBlock = RangeCheckBranch->getParent();
|
|
for (BasicBlock *Pred : predecessors(PhiBlock)) {
|
|
if (Pred != BranchBlock && Pred->getUniquePredecessor() != BranchBlock)
|
|
return;
|
|
}
|
|
|
|
if (DefaultConst == FalseConst) {
|
|
// The compare yields the same result. We can replace it.
|
|
CmpInst->replaceAllUsesWith(RangeCmp);
|
|
++NumTableCmpReuses;
|
|
} else {
|
|
// The compare yields the same result, just inverted. We can replace it.
|
|
Value *InvertedTableCmp = BinaryOperator::CreateXor(
|
|
RangeCmp, ConstantInt::get(RangeCmp->getType(), 1), "inverted.cmp",
|
|
RangeCheckBranch);
|
|
CmpInst->replaceAllUsesWith(InvertedTableCmp);
|
|
++NumTableCmpReuses;
|
|
}
|
|
}
|
|
|
|
/// If the switch is only used to initialize one or more phi nodes in a common
|
|
/// successor block with different constant values, replace the switch with
|
|
/// lookup tables.
|
|
static bool SwitchToLookupTable(SwitchInst *SI, IRBuilder<> &Builder,
|
|
DomTreeUpdater *DTU, const DataLayout &DL,
|
|
const TargetTransformInfo &TTI) {
|
|
assert(SI->getNumCases() > 1 && "Degenerate switch?");
|
|
|
|
BasicBlock *BB = SI->getParent();
|
|
Function *Fn = BB->getParent();
|
|
// Only build lookup table when we have a target that supports it or the
|
|
// attribute is not set.
|
|
if (!TTI.shouldBuildLookupTables() ||
|
|
(Fn->getFnAttribute("no-jump-tables").getValueAsBool()))
|
|
return false;
|
|
|
|
// FIXME: If the switch is too sparse for a lookup table, perhaps we could
|
|
// split off a dense part and build a lookup table for that.
|
|
|
|
// FIXME: This creates arrays of GEPs to constant strings, which means each
|
|
// GEP needs a runtime relocation in PIC code. We should just build one big
|
|
// string and lookup indices into that.
|
|
|
|
// Ignore switches with less than three cases. Lookup tables will not make
|
|
// them faster, so we don't analyze them.
|
|
if (SI->getNumCases() < 3)
|
|
return false;
|
|
|
|
// Figure out the corresponding result for each case value and phi node in the
|
|
// common destination, as well as the min and max case values.
|
|
assert(!SI->cases().empty());
|
|
SwitchInst::CaseIt CI = SI->case_begin();
|
|
ConstantInt *MinCaseVal = CI->getCaseValue();
|
|
ConstantInt *MaxCaseVal = CI->getCaseValue();
|
|
|
|
BasicBlock *CommonDest = nullptr;
|
|
|
|
using ResultListTy = SmallVector<std::pair<ConstantInt *, Constant *>, 4>;
|
|
SmallDenseMap<PHINode *, ResultListTy> ResultLists;
|
|
|
|
SmallDenseMap<PHINode *, Constant *> DefaultResults;
|
|
SmallDenseMap<PHINode *, Type *> ResultTypes;
|
|
SmallVector<PHINode *, 4> PHIs;
|
|
|
|
for (SwitchInst::CaseIt E = SI->case_end(); CI != E; ++CI) {
|
|
ConstantInt *CaseVal = CI->getCaseValue();
|
|
if (CaseVal->getValue().slt(MinCaseVal->getValue()))
|
|
MinCaseVal = CaseVal;
|
|
if (CaseVal->getValue().sgt(MaxCaseVal->getValue()))
|
|
MaxCaseVal = CaseVal;
|
|
|
|
// Resulting value at phi nodes for this case value.
|
|
using ResultsTy = SmallVector<std::pair<PHINode *, Constant *>, 4>;
|
|
ResultsTy Results;
|
|
if (!GetCaseResults(SI, CaseVal, CI->getCaseSuccessor(), &CommonDest,
|
|
Results, DL, TTI))
|
|
return false;
|
|
|
|
// Append the result from this case to the list for each phi.
|
|
for (const auto &I : Results) {
|
|
PHINode *PHI = I.first;
|
|
Constant *Value = I.second;
|
|
if (!ResultLists.count(PHI))
|
|
PHIs.push_back(PHI);
|
|
ResultLists[PHI].push_back(std::make_pair(CaseVal, Value));
|
|
}
|
|
}
|
|
|
|
// Keep track of the result types.
|
|
for (PHINode *PHI : PHIs) {
|
|
ResultTypes[PHI] = ResultLists[PHI][0].second->getType();
|
|
}
|
|
|
|
uint64_t NumResults = ResultLists[PHIs[0]].size();
|
|
APInt RangeSpread = MaxCaseVal->getValue() - MinCaseVal->getValue();
|
|
uint64_t TableSize = RangeSpread.getLimitedValue() + 1;
|
|
bool TableHasHoles = (NumResults < TableSize);
|
|
|
|
// If the table has holes, we need a constant result for the default case
|
|
// or a bitmask that fits in a register.
|
|
SmallVector<std::pair<PHINode *, Constant *>, 4> DefaultResultsList;
|
|
bool HasDefaultResults =
|
|
GetCaseResults(SI, nullptr, SI->getDefaultDest(), &CommonDest,
|
|
DefaultResultsList, DL, TTI);
|
|
|
|
bool NeedMask = (TableHasHoles && !HasDefaultResults);
|
|
if (NeedMask) {
|
|
// As an extra penalty for the validity test we require more cases.
|
|
if (SI->getNumCases() < 4) // FIXME: Find best threshold value (benchmark).
|
|
return false;
|
|
if (!DL.fitsInLegalInteger(TableSize))
|
|
return false;
|
|
}
|
|
|
|
for (const auto &I : DefaultResultsList) {
|
|
PHINode *PHI = I.first;
|
|
Constant *Result = I.second;
|
|
DefaultResults[PHI] = Result;
|
|
}
|
|
|
|
if (!ShouldBuildLookupTable(SI, TableSize, TTI, DL, ResultTypes))
|
|
return false;
|
|
|
|
std::vector<DominatorTree::UpdateType> Updates;
|
|
|
|
// Create the BB that does the lookups.
|
|
Module &Mod = *CommonDest->getParent()->getParent();
|
|
BasicBlock *LookupBB = BasicBlock::Create(
|
|
Mod.getContext(), "switch.lookup", CommonDest->getParent(), CommonDest);
|
|
|
|
// Compute the table index value.
|
|
Builder.SetInsertPoint(SI);
|
|
Value *TableIndex;
|
|
if (MinCaseVal->isNullValue())
|
|
TableIndex = SI->getCondition();
|
|
else
|
|
TableIndex = Builder.CreateSub(SI->getCondition(), MinCaseVal,
|
|
"switch.tableidx");
|
|
|
|
// Compute the maximum table size representable by the integer type we are
|
|
// switching upon.
|
|
unsigned CaseSize = MinCaseVal->getType()->getPrimitiveSizeInBits();
|
|
uint64_t MaxTableSize = CaseSize > 63 ? UINT64_MAX : 1ULL << CaseSize;
|
|
assert(MaxTableSize >= TableSize &&
|
|
"It is impossible for a switch to have more entries than the max "
|
|
"representable value of its input integer type's size.");
|
|
|
|
// If the default destination is unreachable, or if the lookup table covers
|
|
// all values of the conditional variable, branch directly to the lookup table
|
|
// BB. Otherwise, check that the condition is within the case range.
|
|
const bool DefaultIsReachable =
|
|
!isa<UnreachableInst>(SI->getDefaultDest()->getFirstNonPHIOrDbg());
|
|
const bool GeneratingCoveredLookupTable = (MaxTableSize == TableSize);
|
|
BranchInst *RangeCheckBranch = nullptr;
|
|
|
|
if (!DefaultIsReachable || GeneratingCoveredLookupTable) {
|
|
Builder.CreateBr(LookupBB);
|
|
if (DTU)
|
|
Updates.push_back({DominatorTree::Insert, BB, LookupBB});
|
|
// Note: We call removeProdecessor later since we need to be able to get the
|
|
// PHI value for the default case in case we're using a bit mask.
|
|
} else {
|
|
Value *Cmp = Builder.CreateICmpULT(
|
|
TableIndex, ConstantInt::get(MinCaseVal->getType(), TableSize));
|
|
RangeCheckBranch =
|
|
Builder.CreateCondBr(Cmp, LookupBB, SI->getDefaultDest());
|
|
if (DTU)
|
|
Updates.push_back({DominatorTree::Insert, BB, LookupBB});
|
|
}
|
|
|
|
// Populate the BB that does the lookups.
|
|
Builder.SetInsertPoint(LookupBB);
|
|
|
|
if (NeedMask) {
|
|
// Before doing the lookup, we do the hole check. The LookupBB is therefore
|
|
// re-purposed to do the hole check, and we create a new LookupBB.
|
|
BasicBlock *MaskBB = LookupBB;
|
|
MaskBB->setName("switch.hole_check");
|
|
LookupBB = BasicBlock::Create(Mod.getContext(), "switch.lookup",
|
|
CommonDest->getParent(), CommonDest);
|
|
|
|
// Make the mask's bitwidth at least 8-bit and a power-of-2 to avoid
|
|
// unnecessary illegal types.
|
|
uint64_t TableSizePowOf2 = NextPowerOf2(std::max(7ULL, TableSize - 1ULL));
|
|
APInt MaskInt(TableSizePowOf2, 0);
|
|
APInt One(TableSizePowOf2, 1);
|
|
// Build bitmask; fill in a 1 bit for every case.
|
|
const ResultListTy &ResultList = ResultLists[PHIs[0]];
|
|
for (size_t I = 0, E = ResultList.size(); I != E; ++I) {
|
|
uint64_t Idx = (ResultList[I].first->getValue() - MinCaseVal->getValue())
|
|
.getLimitedValue();
|
|
MaskInt |= One << Idx;
|
|
}
|
|
ConstantInt *TableMask = ConstantInt::get(Mod.getContext(), MaskInt);
|
|
|
|
// Get the TableIndex'th bit of the bitmask.
|
|
// If this bit is 0 (meaning hole) jump to the default destination,
|
|
// else continue with table lookup.
|
|
IntegerType *MapTy = TableMask->getType();
|
|
Value *MaskIndex =
|
|
Builder.CreateZExtOrTrunc(TableIndex, MapTy, "switch.maskindex");
|
|
Value *Shifted = Builder.CreateLShr(TableMask, MaskIndex, "switch.shifted");
|
|
Value *LoBit = Builder.CreateTrunc(
|
|
Shifted, Type::getInt1Ty(Mod.getContext()), "switch.lobit");
|
|
Builder.CreateCondBr(LoBit, LookupBB, SI->getDefaultDest());
|
|
if (DTU) {
|
|
Updates.push_back({DominatorTree::Insert, MaskBB, LookupBB});
|
|
Updates.push_back({DominatorTree::Insert, MaskBB, SI->getDefaultDest()});
|
|
}
|
|
Builder.SetInsertPoint(LookupBB);
|
|
AddPredecessorToBlock(SI->getDefaultDest(), MaskBB, BB);
|
|
}
|
|
|
|
if (!DefaultIsReachable || GeneratingCoveredLookupTable) {
|
|
// We cached PHINodes in PHIs. To avoid accessing deleted PHINodes later,
|
|
// do not delete PHINodes here.
|
|
SI->getDefaultDest()->removePredecessor(BB,
|
|
/*KeepOneInputPHIs=*/true);
|
|
if (DTU)
|
|
Updates.push_back({DominatorTree::Delete, BB, SI->getDefaultDest()});
|
|
}
|
|
|
|
for (PHINode *PHI : PHIs) {
|
|
const ResultListTy &ResultList = ResultLists[PHI];
|
|
|
|
// If using a bitmask, use any value to fill the lookup table holes.
|
|
Constant *DV = NeedMask ? ResultLists[PHI][0].second : DefaultResults[PHI];
|
|
StringRef FuncName = Fn->getName();
|
|
SwitchLookupTable Table(Mod, TableSize, MinCaseVal, ResultList, DV, DL,
|
|
FuncName);
|
|
|
|
Value *Result = Table.BuildLookup(TableIndex, Builder);
|
|
|
|
// Do a small peephole optimization: re-use the switch table compare if
|
|
// possible.
|
|
if (!TableHasHoles && HasDefaultResults && RangeCheckBranch) {
|
|
BasicBlock *PhiBlock = PHI->getParent();
|
|
// Search for compare instructions which use the phi.
|
|
for (auto *User : PHI->users()) {
|
|
reuseTableCompare(User, PhiBlock, RangeCheckBranch, DV, ResultList);
|
|
}
|
|
}
|
|
|
|
PHI->addIncoming(Result, LookupBB);
|
|
}
|
|
|
|
Builder.CreateBr(CommonDest);
|
|
if (DTU)
|
|
Updates.push_back({DominatorTree::Insert, LookupBB, CommonDest});
|
|
|
|
// Remove the switch.
|
|
SmallPtrSet<BasicBlock *, 8> RemovedSuccessors;
|
|
for (unsigned i = 0, e = SI->getNumSuccessors(); i < e; ++i) {
|
|
BasicBlock *Succ = SI->getSuccessor(i);
|
|
|
|
if (Succ == SI->getDefaultDest())
|
|
continue;
|
|
Succ->removePredecessor(BB);
|
|
RemovedSuccessors.insert(Succ);
|
|
}
|
|
SI->eraseFromParent();
|
|
|
|
if (DTU) {
|
|
for (BasicBlock *RemovedSuccessor : RemovedSuccessors)
|
|
Updates.push_back({DominatorTree::Delete, BB, RemovedSuccessor});
|
|
DTU->applyUpdates(Updates);
|
|
}
|
|
|
|
++NumLookupTables;
|
|
if (NeedMask)
|
|
++NumLookupTablesHoles;
|
|
return true;
|
|
}
|
|
|
|
static bool isSwitchDense(ArrayRef<int64_t> Values) {
|
|
// See also SelectionDAGBuilder::isDense(), which this function was based on.
|
|
uint64_t Diff = (uint64_t)Values.back() - (uint64_t)Values.front();
|
|
uint64_t Range = Diff + 1;
|
|
uint64_t NumCases = Values.size();
|
|
// 40% is the default density for building a jump table in optsize/minsize mode.
|
|
uint64_t MinDensity = 40;
|
|
|
|
return NumCases * 100 >= Range * MinDensity;
|
|
}
|
|
|
|
/// Try to transform a switch that has "holes" in it to a contiguous sequence
|
|
/// of cases.
|
|
///
|
|
/// A switch such as: switch(i) {case 5: case 9: case 13: case 17:} can be
|
|
/// range-reduced to: switch ((i-5) / 4) {case 0: case 1: case 2: case 3:}.
|
|
///
|
|
/// This converts a sparse switch into a dense switch which allows better
|
|
/// lowering and could also allow transforming into a lookup table.
|
|
static bool ReduceSwitchRange(SwitchInst *SI, IRBuilder<> &Builder,
|
|
const DataLayout &DL,
|
|
const TargetTransformInfo &TTI) {
|
|
auto *CondTy = cast<IntegerType>(SI->getCondition()->getType());
|
|
if (CondTy->getIntegerBitWidth() > 64 ||
|
|
!DL.fitsInLegalInteger(CondTy->getIntegerBitWidth()))
|
|
return false;
|
|
// Only bother with this optimization if there are more than 3 switch cases;
|
|
// SDAG will only bother creating jump tables for 4 or more cases.
|
|
if (SI->getNumCases() < 4)
|
|
return false;
|
|
|
|
// This transform is agnostic to the signedness of the input or case values. We
|
|
// can treat the case values as signed or unsigned. We can optimize more common
|
|
// cases such as a sequence crossing zero {-4,0,4,8} if we interpret case values
|
|
// as signed.
|
|
SmallVector<int64_t,4> Values;
|
|
for (auto &C : SI->cases())
|
|
Values.push_back(C.getCaseValue()->getValue().getSExtValue());
|
|
llvm::sort(Values);
|
|
|
|
// If the switch is already dense, there's nothing useful to do here.
|
|
if (isSwitchDense(Values))
|
|
return false;
|
|
|
|
// First, transform the values such that they start at zero and ascend.
|
|
int64_t Base = Values[0];
|
|
for (auto &V : Values)
|
|
V -= (uint64_t)(Base);
|
|
|
|
// Now we have signed numbers that have been shifted so that, given enough
|
|
// precision, there are no negative values. Since the rest of the transform
|
|
// is bitwise only, we switch now to an unsigned representation.
|
|
|
|
// This transform can be done speculatively because it is so cheap - it
|
|
// results in a single rotate operation being inserted.
|
|
// FIXME: It's possible that optimizing a switch on powers of two might also
|
|
// be beneficial - flag values are often powers of two and we could use a CLZ
|
|
// as the key function.
|
|
|
|
// countTrailingZeros(0) returns 64. As Values is guaranteed to have more than
|
|
// one element and LLVM disallows duplicate cases, Shift is guaranteed to be
|
|
// less than 64.
|
|
unsigned Shift = 64;
|
|
for (auto &V : Values)
|
|
Shift = std::min(Shift, countTrailingZeros((uint64_t)V));
|
|
assert(Shift < 64);
|
|
if (Shift > 0)
|
|
for (auto &V : Values)
|
|
V = (int64_t)((uint64_t)V >> Shift);
|
|
|
|
if (!isSwitchDense(Values))
|
|
// Transform didn't create a dense switch.
|
|
return false;
|
|
|
|
// The obvious transform is to shift the switch condition right and emit a
|
|
// check that the condition actually cleanly divided by GCD, i.e.
|
|
// C & (1 << Shift - 1) == 0
|
|
// inserting a new CFG edge to handle the case where it didn't divide cleanly.
|
|
//
|
|
// A cheaper way of doing this is a simple ROTR(C, Shift). This performs the
|
|
// shift and puts the shifted-off bits in the uppermost bits. If any of these
|
|
// are nonzero then the switch condition will be very large and will hit the
|
|
// default case.
|
|
|
|
auto *Ty = cast<IntegerType>(SI->getCondition()->getType());
|
|
Builder.SetInsertPoint(SI);
|
|
auto *ShiftC = ConstantInt::get(Ty, Shift);
|
|
auto *Sub = Builder.CreateSub(SI->getCondition(), ConstantInt::get(Ty, Base));
|
|
auto *LShr = Builder.CreateLShr(Sub, ShiftC);
|
|
auto *Shl = Builder.CreateShl(Sub, Ty->getBitWidth() - Shift);
|
|
auto *Rot = Builder.CreateOr(LShr, Shl);
|
|
SI->replaceUsesOfWith(SI->getCondition(), Rot);
|
|
|
|
for (auto Case : SI->cases()) {
|
|
auto *Orig = Case.getCaseValue();
|
|
auto Sub = Orig->getValue() - APInt(Ty->getBitWidth(), Base);
|
|
Case.setValue(
|
|
cast<ConstantInt>(ConstantInt::get(Ty, Sub.lshr(ShiftC->getValue()))));
|
|
}
|
|
return true;
|
|
}
|
|
|
|
bool SimplifyCFGOpt::simplifySwitch(SwitchInst *SI, IRBuilder<> &Builder) {
|
|
BasicBlock *BB = SI->getParent();
|
|
|
|
if (isValueEqualityComparison(SI)) {
|
|
// If we only have one predecessor, and if it is a branch on this value,
|
|
// see if that predecessor totally determines the outcome of this switch.
|
|
if (BasicBlock *OnlyPred = BB->getSinglePredecessor())
|
|
if (SimplifyEqualityComparisonWithOnlyPredecessor(SI, OnlyPred, Builder))
|
|
return requestResimplify();
|
|
|
|
Value *Cond = SI->getCondition();
|
|
if (SelectInst *Select = dyn_cast<SelectInst>(Cond))
|
|
if (SimplifySwitchOnSelect(SI, Select))
|
|
return requestResimplify();
|
|
|
|
// If the block only contains the switch, see if we can fold the block
|
|
// away into any preds.
|
|
if (SI == &*BB->instructionsWithoutDebug().begin())
|
|
if (FoldValueComparisonIntoPredecessors(SI, Builder))
|
|
return requestResimplify();
|
|
}
|
|
|
|
// Try to transform the switch into an icmp and a branch.
|
|
if (TurnSwitchRangeIntoICmp(SI, Builder))
|
|
return requestResimplify();
|
|
|
|
// Remove unreachable cases.
|
|
if (eliminateDeadSwitchCases(SI, DTU, Options.AC, DL))
|
|
return requestResimplify();
|
|
|
|
if (switchToSelect(SI, Builder, DTU, DL, TTI))
|
|
return requestResimplify();
|
|
|
|
if (Options.ForwardSwitchCondToPhi && ForwardSwitchConditionToPHI(SI))
|
|
return requestResimplify();
|
|
|
|
// The conversion from switch to lookup tables results in difficult-to-analyze
|
|
// code and makes pruning branches much harder. This is a problem if the
|
|
// switch expression itself can still be restricted as a result of inlining or
|
|
// CVP. Therefore, only apply this transformation during late stages of the
|
|
// optimisation pipeline.
|
|
if (Options.ConvertSwitchToLookupTable &&
|
|
SwitchToLookupTable(SI, Builder, DTU, DL, TTI))
|
|
return requestResimplify();
|
|
|
|
if (ReduceSwitchRange(SI, Builder, DL, TTI))
|
|
return requestResimplify();
|
|
|
|
return false;
|
|
}
|
|
|
|
bool SimplifyCFGOpt::simplifyIndirectBr(IndirectBrInst *IBI) {
|
|
BasicBlock *BB = IBI->getParent();
|
|
bool Changed = false;
|
|
|
|
// Eliminate redundant destinations.
|
|
SmallPtrSet<Value *, 8> Succs;
|
|
SmallPtrSet<BasicBlock *, 8> RemovedSuccs;
|
|
for (unsigned i = 0, e = IBI->getNumDestinations(); i != e; ++i) {
|
|
BasicBlock *Dest = IBI->getDestination(i);
|
|
if (!Dest->hasAddressTaken() || !Succs.insert(Dest).second) {
|
|
if (!Dest->hasAddressTaken())
|
|
RemovedSuccs.insert(Dest);
|
|
Dest->removePredecessor(BB);
|
|
IBI->removeDestination(i);
|
|
--i;
|
|
--e;
|
|
Changed = true;
|
|
}
|
|
}
|
|
|
|
if (DTU) {
|
|
std::vector<DominatorTree::UpdateType> Updates;
|
|
Updates.reserve(RemovedSuccs.size());
|
|
for (auto *RemovedSucc : RemovedSuccs)
|
|
Updates.push_back({DominatorTree::Delete, BB, RemovedSucc});
|
|
DTU->applyUpdates(Updates);
|
|
}
|
|
|
|
if (IBI->getNumDestinations() == 0) {
|
|
// If the indirectbr has no successors, change it to unreachable.
|
|
new UnreachableInst(IBI->getContext(), IBI);
|
|
EraseTerminatorAndDCECond(IBI);
|
|
return true;
|
|
}
|
|
|
|
if (IBI->getNumDestinations() == 1) {
|
|
// If the indirectbr has one successor, change it to a direct branch.
|
|
BranchInst::Create(IBI->getDestination(0), IBI);
|
|
EraseTerminatorAndDCECond(IBI);
|
|
return true;
|
|
}
|
|
|
|
if (SelectInst *SI = dyn_cast<SelectInst>(IBI->getAddress())) {
|
|
if (SimplifyIndirectBrOnSelect(IBI, SI))
|
|
return requestResimplify();
|
|
}
|
|
return Changed;
|
|
}
|
|
|
|
/// Given an block with only a single landing pad and a unconditional branch
|
|
/// try to find another basic block which this one can be merged with. This
|
|
/// handles cases where we have multiple invokes with unique landing pads, but
|
|
/// a shared handler.
|
|
///
|
|
/// We specifically choose to not worry about merging non-empty blocks
|
|
/// here. That is a PRE/scheduling problem and is best solved elsewhere. In
|
|
/// practice, the optimizer produces empty landing pad blocks quite frequently
|
|
/// when dealing with exception dense code. (see: instcombine, gvn, if-else
|
|
/// sinking in this file)
|
|
///
|
|
/// This is primarily a code size optimization. We need to avoid performing
|
|
/// any transform which might inhibit optimization (such as our ability to
|
|
/// specialize a particular handler via tail commoning). We do this by not
|
|
/// merging any blocks which require us to introduce a phi. Since the same
|
|
/// values are flowing through both blocks, we don't lose any ability to
|
|
/// specialize. If anything, we make such specialization more likely.
|
|
///
|
|
/// TODO - This transformation could remove entries from a phi in the target
|
|
/// block when the inputs in the phi are the same for the two blocks being
|
|
/// merged. In some cases, this could result in removal of the PHI entirely.
|
|
static bool TryToMergeLandingPad(LandingPadInst *LPad, BranchInst *BI,
|
|
BasicBlock *BB, DomTreeUpdater *DTU) {
|
|
auto Succ = BB->getUniqueSuccessor();
|
|
assert(Succ);
|
|
// If there's a phi in the successor block, we'd likely have to introduce
|
|
// a phi into the merged landing pad block.
|
|
if (isa<PHINode>(*Succ->begin()))
|
|
return false;
|
|
|
|
for (BasicBlock *OtherPred : predecessors(Succ)) {
|
|
if (BB == OtherPred)
|
|
continue;
|
|
BasicBlock::iterator I = OtherPred->begin();
|
|
LandingPadInst *LPad2 = dyn_cast<LandingPadInst>(I);
|
|
if (!LPad2 || !LPad2->isIdenticalTo(LPad))
|
|
continue;
|
|
for (++I; isa<DbgInfoIntrinsic>(I); ++I)
|
|
;
|
|
BranchInst *BI2 = dyn_cast<BranchInst>(I);
|
|
if (!BI2 || !BI2->isIdenticalTo(BI))
|
|
continue;
|
|
|
|
std::vector<DominatorTree::UpdateType> Updates;
|
|
|
|
// We've found an identical block. Update our predecessors to take that
|
|
// path instead and make ourselves dead.
|
|
SmallPtrSet<BasicBlock *, 16> Preds(pred_begin(BB), pred_end(BB));
|
|
for (BasicBlock *Pred : Preds) {
|
|
InvokeInst *II = cast<InvokeInst>(Pred->getTerminator());
|
|
assert(II->getNormalDest() != BB && II->getUnwindDest() == BB &&
|
|
"unexpected successor");
|
|
II->setUnwindDest(OtherPred);
|
|
if (DTU) {
|
|
Updates.push_back({DominatorTree::Insert, Pred, OtherPred});
|
|
Updates.push_back({DominatorTree::Delete, Pred, BB});
|
|
}
|
|
}
|
|
|
|
// The debug info in OtherPred doesn't cover the merged control flow that
|
|
// used to go through BB. We need to delete it or update it.
|
|
for (auto I = OtherPred->begin(), E = OtherPred->end(); I != E;) {
|
|
Instruction &Inst = *I;
|
|
I++;
|
|
if (isa<DbgInfoIntrinsic>(Inst))
|
|
Inst.eraseFromParent();
|
|
}
|
|
|
|
SmallPtrSet<BasicBlock *, 16> Succs(succ_begin(BB), succ_end(BB));
|
|
for (BasicBlock *Succ : Succs) {
|
|
Succ->removePredecessor(BB);
|
|
if (DTU)
|
|
Updates.push_back({DominatorTree::Delete, BB, Succ});
|
|
}
|
|
|
|
IRBuilder<> Builder(BI);
|
|
Builder.CreateUnreachable();
|
|
BI->eraseFromParent();
|
|
if (DTU)
|
|
DTU->applyUpdates(Updates);
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
bool SimplifyCFGOpt::simplifyBranch(BranchInst *Branch, IRBuilder<> &Builder) {
|
|
return Branch->isUnconditional() ? simplifyUncondBranch(Branch, Builder)
|
|
: simplifyCondBranch(Branch, Builder);
|
|
}
|
|
|
|
bool SimplifyCFGOpt::simplifyUncondBranch(BranchInst *BI,
|
|
IRBuilder<> &Builder) {
|
|
BasicBlock *BB = BI->getParent();
|
|
BasicBlock *Succ = BI->getSuccessor(0);
|
|
|
|
// If the Terminator is the only non-phi instruction, simplify the block.
|
|
// If LoopHeader is provided, check if the block or its successor is a loop
|
|
// header. (This is for early invocations before loop simplify and
|
|
// vectorization to keep canonical loop forms for nested loops. These blocks
|
|
// can be eliminated when the pass is invoked later in the back-end.)
|
|
// Note that if BB has only one predecessor then we do not introduce new
|
|
// backedge, so we can eliminate BB.
|
|
bool NeedCanonicalLoop =
|
|
Options.NeedCanonicalLoop &&
|
|
(!LoopHeaders.empty() && BB->hasNPredecessorsOrMore(2) &&
|
|
(is_contained(LoopHeaders, BB) || is_contained(LoopHeaders, Succ)));
|
|
BasicBlock::iterator I = BB->getFirstNonPHIOrDbg(true)->getIterator();
|
|
if (I->isTerminator() && BB != &BB->getParent()->getEntryBlock() &&
|
|
!NeedCanonicalLoop && TryToSimplifyUncondBranchFromEmptyBlock(BB, DTU))
|
|
return true;
|
|
|
|
// If the only instruction in the block is a seteq/setne comparison against a
|
|
// constant, try to simplify the block.
|
|
if (ICmpInst *ICI = dyn_cast<ICmpInst>(I))
|
|
if (ICI->isEquality() && isa<ConstantInt>(ICI->getOperand(1))) {
|
|
for (++I; isa<DbgInfoIntrinsic>(I); ++I)
|
|
;
|
|
if (I->isTerminator() &&
|
|
tryToSimplifyUncondBranchWithICmpInIt(ICI, Builder))
|
|
return true;
|
|
}
|
|
|
|
// See if we can merge an empty landing pad block with another which is
|
|
// equivalent.
|
|
if (LandingPadInst *LPad = dyn_cast<LandingPadInst>(I)) {
|
|
for (++I; isa<DbgInfoIntrinsic>(I); ++I)
|
|
;
|
|
if (I->isTerminator() && TryToMergeLandingPad(LPad, BI, BB, DTU))
|
|
return true;
|
|
}
|
|
|
|
// If this basic block is ONLY a compare and a branch, and if a predecessor
|
|
// branches to us and our successor, fold the comparison into the
|
|
// predecessor and use logical operations to update the incoming value
|
|
// for PHI nodes in common successor.
|
|
if (FoldBranchToCommonDest(BI, DTU, /*MSSAU=*/nullptr, &TTI,
|
|
Options.BonusInstThreshold))
|
|
return requestResimplify();
|
|
return false;
|
|
}
|
|
|
|
static BasicBlock *allPredecessorsComeFromSameSource(BasicBlock *BB) {
|
|
BasicBlock *PredPred = nullptr;
|
|
for (auto *P : predecessors(BB)) {
|
|
BasicBlock *PPred = P->getSinglePredecessor();
|
|
if (!PPred || (PredPred && PredPred != PPred))
|
|
return nullptr;
|
|
PredPred = PPred;
|
|
}
|
|
return PredPred;
|
|
}
|
|
|
|
bool SimplifyCFGOpt::simplifyCondBranch(BranchInst *BI, IRBuilder<> &Builder) {
|
|
BasicBlock *BB = BI->getParent();
|
|
if (!Options.SimplifyCondBranch)
|
|
return false;
|
|
|
|
// Conditional branch
|
|
if (isValueEqualityComparison(BI)) {
|
|
// If we only have one predecessor, and if it is a branch on this value,
|
|
// see if that predecessor totally determines the outcome of this
|
|
// switch.
|
|
if (BasicBlock *OnlyPred = BB->getSinglePredecessor())
|
|
if (SimplifyEqualityComparisonWithOnlyPredecessor(BI, OnlyPred, Builder))
|
|
return requestResimplify();
|
|
|
|
// This block must be empty, except for the setcond inst, if it exists.
|
|
// Ignore dbg and pseudo intrinsics.
|
|
auto I = BB->instructionsWithoutDebug(true).begin();
|
|
if (&*I == BI) {
|
|
if (FoldValueComparisonIntoPredecessors(BI, Builder))
|
|
return requestResimplify();
|
|
} else if (&*I == cast<Instruction>(BI->getCondition())) {
|
|
++I;
|
|
if (&*I == BI && FoldValueComparisonIntoPredecessors(BI, Builder))
|
|
return requestResimplify();
|
|
}
|
|
}
|
|
|
|
// Try to turn "br (X == 0 | X == 1), T, F" into a switch instruction.
|
|
if (SimplifyBranchOnICmpChain(BI, Builder, DL))
|
|
return true;
|
|
|
|
// If this basic block has dominating predecessor blocks and the dominating
|
|
// blocks' conditions imply BI's condition, we know the direction of BI.
|
|
Optional<bool> Imp = isImpliedByDomCondition(BI->getCondition(), BI, DL);
|
|
if (Imp) {
|
|
// Turn this into a branch on constant.
|
|
auto *OldCond = BI->getCondition();
|
|
ConstantInt *TorF = *Imp ? ConstantInt::getTrue(BB->getContext())
|
|
: ConstantInt::getFalse(BB->getContext());
|
|
BI->setCondition(TorF);
|
|
RecursivelyDeleteTriviallyDeadInstructions(OldCond);
|
|
return requestResimplify();
|
|
}
|
|
|
|
// If this basic block is ONLY a compare and a branch, and if a predecessor
|
|
// branches to us and one of our successors, fold the comparison into the
|
|
// predecessor and use logical operations to pick the right destination.
|
|
if (FoldBranchToCommonDest(BI, DTU, /*MSSAU=*/nullptr, &TTI,
|
|
Options.BonusInstThreshold))
|
|
return requestResimplify();
|
|
|
|
// We have a conditional branch to two blocks that are only reachable
|
|
// from BI. We know that the condbr dominates the two blocks, so see if
|
|
// there is any identical code in the "then" and "else" blocks. If so, we
|
|
// can hoist it up to the branching block.
|
|
if (BI->getSuccessor(0)->getSinglePredecessor()) {
|
|
if (BI->getSuccessor(1)->getSinglePredecessor()) {
|
|
if (HoistCommon &&
|
|
HoistThenElseCodeToIf(BI, TTI, !Options.HoistCommonInsts))
|
|
return requestResimplify();
|
|
} else {
|
|
// If Successor #1 has multiple preds, we may be able to conditionally
|
|
// execute Successor #0 if it branches to Successor #1.
|
|
Instruction *Succ0TI = BI->getSuccessor(0)->getTerminator();
|
|
if (Succ0TI->getNumSuccessors() == 1 &&
|
|
Succ0TI->getSuccessor(0) == BI->getSuccessor(1))
|
|
if (SpeculativelyExecuteBB(BI, BI->getSuccessor(0), TTI))
|
|
return requestResimplify();
|
|
}
|
|
} else if (BI->getSuccessor(1)->getSinglePredecessor()) {
|
|
// If Successor #0 has multiple preds, we may be able to conditionally
|
|
// execute Successor #1 if it branches to Successor #0.
|
|
Instruction *Succ1TI = BI->getSuccessor(1)->getTerminator();
|
|
if (Succ1TI->getNumSuccessors() == 1 &&
|
|
Succ1TI->getSuccessor(0) == BI->getSuccessor(0))
|
|
if (SpeculativelyExecuteBB(BI, BI->getSuccessor(1), TTI))
|
|
return requestResimplify();
|
|
}
|
|
|
|
// If this is a branch on a phi node in the current block, thread control
|
|
// through this block if any PHI node entries are constants.
|
|
if (PHINode *PN = dyn_cast<PHINode>(BI->getCondition()))
|
|
if (PN->getParent() == BI->getParent())
|
|
if (FoldCondBranchOnPHI(BI, DTU, DL, Options.AC))
|
|
return requestResimplify();
|
|
|
|
// Scan predecessor blocks for conditional branches.
|
|
for (BasicBlock *Pred : predecessors(BB))
|
|
if (BranchInst *PBI = dyn_cast<BranchInst>(Pred->getTerminator()))
|
|
if (PBI != BI && PBI->isConditional())
|
|
if (SimplifyCondBranchToCondBranch(PBI, BI, DTU, DL, TTI))
|
|
return requestResimplify();
|
|
|
|
// Look for diamond patterns.
|
|
if (MergeCondStores)
|
|
if (BasicBlock *PrevBB = allPredecessorsComeFromSameSource(BB))
|
|
if (BranchInst *PBI = dyn_cast<BranchInst>(PrevBB->getTerminator()))
|
|
if (PBI != BI && PBI->isConditional())
|
|
if (mergeConditionalStores(PBI, BI, DTU, DL, TTI))
|
|
return requestResimplify();
|
|
|
|
return false;
|
|
}
|
|
|
|
/// Check if passing a value to an instruction will cause undefined behavior.
|
|
static bool passingValueIsAlwaysUndefined(Value *V, Instruction *I, bool PtrValueMayBeModified) {
|
|
Constant *C = dyn_cast<Constant>(V);
|
|
if (!C)
|
|
return false;
|
|
|
|
if (I->use_empty())
|
|
return false;
|
|
|
|
if (C->isNullValue() || isa<UndefValue>(C)) {
|
|
// Only look at the first use, avoid hurting compile time with long uselists
|
|
User *Use = *I->user_begin();
|
|
|
|
// Now make sure that there are no instructions in between that can alter
|
|
// control flow (eg. calls)
|
|
for (BasicBlock::iterator
|
|
i = ++BasicBlock::iterator(I),
|
|
UI = BasicBlock::iterator(dyn_cast<Instruction>(Use));
|
|
i != UI; ++i) {
|
|
if (i == I->getParent()->end())
|
|
return false;
|
|
if (!isGuaranteedToTransferExecutionToSuccessor(&*i))
|
|
return false;
|
|
}
|
|
|
|
// Look through GEPs. A load from a GEP derived from NULL is still undefined
|
|
if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Use))
|
|
if (GEP->getPointerOperand() == I) {
|
|
if (!GEP->isInBounds() || !GEP->hasAllZeroIndices())
|
|
PtrValueMayBeModified = true;
|
|
return passingValueIsAlwaysUndefined(V, GEP, PtrValueMayBeModified);
|
|
}
|
|
|
|
// Look through bitcasts.
|
|
if (BitCastInst *BC = dyn_cast<BitCastInst>(Use))
|
|
return passingValueIsAlwaysUndefined(V, BC, PtrValueMayBeModified);
|
|
|
|
// Load from null is undefined.
|
|
if (LoadInst *LI = dyn_cast<LoadInst>(Use))
|
|
if (!LI->isVolatile())
|
|
return !NullPointerIsDefined(LI->getFunction(),
|
|
LI->getPointerAddressSpace());
|
|
|
|
// Store to null is undefined.
|
|
if (StoreInst *SI = dyn_cast<StoreInst>(Use))
|
|
if (!SI->isVolatile())
|
|
return (!NullPointerIsDefined(SI->getFunction(),
|
|
SI->getPointerAddressSpace())) &&
|
|
SI->getPointerOperand() == I;
|
|
|
|
if (auto *CB = dyn_cast<CallBase>(Use)) {
|
|
if (C->isNullValue() && NullPointerIsDefined(CB->getFunction()))
|
|
return false;
|
|
// A call to null is undefined.
|
|
if (CB->getCalledOperand() == I)
|
|
return true;
|
|
|
|
if (C->isNullValue()) {
|
|
for (const llvm::Use &Arg : CB->args())
|
|
if (Arg == I) {
|
|
unsigned ArgIdx = CB->getArgOperandNo(&Arg);
|
|
if (CB->isPassingUndefUB(ArgIdx) &&
|
|
CB->paramHasAttr(ArgIdx, Attribute::NonNull)) {
|
|
// Passing null to a nonnnull+noundef argument is undefined.
|
|
return !PtrValueMayBeModified;
|
|
}
|
|
}
|
|
} else if (isa<UndefValue>(C)) {
|
|
// Passing undef to a noundef argument is undefined.
|
|
for (const llvm::Use &Arg : CB->args())
|
|
if (Arg == I) {
|
|
unsigned ArgIdx = CB->getArgOperandNo(&Arg);
|
|
if (CB->isPassingUndefUB(ArgIdx)) {
|
|
// Passing undef to a noundef argument is undefined.
|
|
return true;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
return false;
|
|
}
|
|
|
|
/// If BB has an incoming value that will always trigger undefined behavior
|
|
/// (eg. null pointer dereference), remove the branch leading here.
|
|
static bool removeUndefIntroducingPredecessor(BasicBlock *BB,
|
|
DomTreeUpdater *DTU) {
|
|
for (PHINode &PHI : BB->phis())
|
|
for (unsigned i = 0, e = PHI.getNumIncomingValues(); i != e; ++i)
|
|
if (passingValueIsAlwaysUndefined(PHI.getIncomingValue(i), &PHI)) {
|
|
BasicBlock *Predecessor = PHI.getIncomingBlock(i);
|
|
Instruction *T = Predecessor->getTerminator();
|
|
IRBuilder<> Builder(T);
|
|
if (BranchInst *BI = dyn_cast<BranchInst>(T)) {
|
|
BB->removePredecessor(Predecessor);
|
|
// Turn uncoditional branches into unreachables and remove the dead
|
|
// destination from conditional branches.
|
|
if (BI->isUnconditional())
|
|
Builder.CreateUnreachable();
|
|
else
|
|
Builder.CreateBr(BI->getSuccessor(0) == BB ? BI->getSuccessor(1)
|
|
: BI->getSuccessor(0));
|
|
BI->eraseFromParent();
|
|
if (DTU)
|
|
DTU->applyUpdates({{DominatorTree::Delete, Predecessor, BB}});
|
|
return true;
|
|
}
|
|
// TODO: SwitchInst.
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
bool SimplifyCFGOpt::simplifyOnceImpl(BasicBlock *BB) {
|
|
bool Changed = false;
|
|
|
|
assert(BB && BB->getParent() && "Block not embedded in function!");
|
|
assert(BB->getTerminator() && "Degenerate basic block encountered!");
|
|
|
|
// Remove basic blocks that have no predecessors (except the entry block)...
|
|
// or that just have themself as a predecessor. These are unreachable.
|
|
if ((pred_empty(BB) && BB != &BB->getParent()->getEntryBlock()) ||
|
|
BB->getSinglePredecessor() == BB) {
|
|
LLVM_DEBUG(dbgs() << "Removing BB: \n" << *BB);
|
|
DeleteDeadBlock(BB, DTU);
|
|
return true;
|
|
}
|
|
|
|
// Check to see if we can constant propagate this terminator instruction
|
|
// away...
|
|
Changed |= ConstantFoldTerminator(BB, /*DeleteDeadConditions=*/true,
|
|
/*TLI=*/nullptr, DTU);
|
|
|
|
// Check for and eliminate duplicate PHI nodes in this block.
|
|
Changed |= EliminateDuplicatePHINodes(BB);
|
|
|
|
// Check for and remove branches that will always cause undefined behavior.
|
|
Changed |= removeUndefIntroducingPredecessor(BB, DTU);
|
|
|
|
// Merge basic blocks into their predecessor if there is only one distinct
|
|
// pred, and if there is only one distinct successor of the predecessor, and
|
|
// if there are no PHI nodes.
|
|
if (MergeBlockIntoPredecessor(BB, DTU))
|
|
return true;
|
|
|
|
if (SinkCommon && Options.SinkCommonInsts)
|
|
if (SinkCommonCodeFromPredecessors(BB, DTU)) {
|
|
// SinkCommonCodeFromPredecessors() does not automatically CSE PHI's,
|
|
// so we may now how duplicate PHI's.
|
|
// Let's rerun EliminateDuplicatePHINodes() first,
|
|
// before FoldTwoEntryPHINode() potentially converts them into select's,
|
|
// after which we'd need a whole EarlyCSE pass run to cleanup them.
|
|
return true;
|
|
}
|
|
|
|
IRBuilder<> Builder(BB);
|
|
|
|
if (Options.FoldTwoEntryPHINode) {
|
|
// If there is a trivial two-entry PHI node in this basic block, and we can
|
|
// eliminate it, do so now.
|
|
if (auto *PN = dyn_cast<PHINode>(BB->begin()))
|
|
if (PN->getNumIncomingValues() == 2)
|
|
Changed |= FoldTwoEntryPHINode(PN, TTI, DTU, DL);
|
|
}
|
|
|
|
Instruction *Terminator = BB->getTerminator();
|
|
Builder.SetInsertPoint(Terminator);
|
|
switch (Terminator->getOpcode()) {
|
|
case Instruction::Br:
|
|
Changed |= simplifyBranch(cast<BranchInst>(Terminator), Builder);
|
|
break;
|
|
case Instruction::Resume:
|
|
Changed |= simplifyResume(cast<ResumeInst>(Terminator), Builder);
|
|
break;
|
|
case Instruction::CleanupRet:
|
|
Changed |= simplifyCleanupReturn(cast<CleanupReturnInst>(Terminator));
|
|
break;
|
|
case Instruction::Switch:
|
|
Changed |= simplifySwitch(cast<SwitchInst>(Terminator), Builder);
|
|
break;
|
|
case Instruction::Unreachable:
|
|
Changed |= simplifyUnreachable(cast<UnreachableInst>(Terminator));
|
|
break;
|
|
case Instruction::IndirectBr:
|
|
Changed |= simplifyIndirectBr(cast<IndirectBrInst>(Terminator));
|
|
break;
|
|
}
|
|
|
|
return Changed;
|
|
}
|
|
|
|
bool SimplifyCFGOpt::simplifyOnce(BasicBlock *BB) {
|
|
bool Changed = simplifyOnceImpl(BB);
|
|
|
|
return Changed;
|
|
}
|
|
|
|
bool SimplifyCFGOpt::run(BasicBlock *BB) {
|
|
bool Changed = false;
|
|
|
|
// Repeated simplify BB as long as resimplification is requested.
|
|
do {
|
|
Resimplify = false;
|
|
|
|
// Perform one round of simplifcation. Resimplify flag will be set if
|
|
// another iteration is requested.
|
|
Changed |= simplifyOnce(BB);
|
|
} while (Resimplify);
|
|
|
|
return Changed;
|
|
}
|
|
|
|
bool llvm::simplifyCFG(BasicBlock *BB, const TargetTransformInfo &TTI,
|
|
DomTreeUpdater *DTU, const SimplifyCFGOptions &Options,
|
|
ArrayRef<WeakVH> LoopHeaders) {
|
|
return SimplifyCFGOpt(TTI, DTU, BB->getModule()->getDataLayout(), LoopHeaders,
|
|
Options)
|
|
.run(BB);
|
|
}
|