mirror of
https://github.com/RPCS3/llvm-mirror.git
synced 2024-11-22 02:33:06 +01:00
677cf67de7
This was introduced in https://reviews.llvm.org/D89774, but I don't think it should be necessary. Reviewed By: TaWeiTu, aeubanks Differential Revision: https://reviews.llvm.org/D89843
246 lines
8.8 KiB
C++
246 lines
8.8 KiB
C++
//===- UnifyLoopExits.cpp - Redirect exiting edges to one block -*- C++ -*-===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// For each natural loop with multiple exit blocks, this pass creates a new
|
|
// block N such that all exiting blocks now branch to N, and then control flow
|
|
// is redistributed to all the original exit blocks.
|
|
//
|
|
// Limitation: This assumes that all terminators in the CFG are direct branches
|
|
// (the "br" instruction). The presence of any other control flow
|
|
// such as indirectbr, switch or callbr will cause an assert.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "llvm/Transforms/Utils/UnifyLoopExits.h"
|
|
#include "llvm/ADT/MapVector.h"
|
|
#include "llvm/Analysis/LoopInfo.h"
|
|
#include "llvm/IR/Dominators.h"
|
|
#include "llvm/InitializePasses.h"
|
|
#include "llvm/Transforms/Utils.h"
|
|
#include "llvm/Transforms/Utils/BasicBlockUtils.h"
|
|
|
|
#define DEBUG_TYPE "unify-loop-exits"
|
|
|
|
using namespace llvm;
|
|
|
|
namespace {
|
|
struct UnifyLoopExitsLegacyPass : public FunctionPass {
|
|
static char ID;
|
|
UnifyLoopExitsLegacyPass() : FunctionPass(ID) {
|
|
initializeUnifyLoopExitsLegacyPassPass(*PassRegistry::getPassRegistry());
|
|
}
|
|
|
|
void getAnalysisUsage(AnalysisUsage &AU) const override {
|
|
AU.addRequiredID(LowerSwitchID);
|
|
AU.addRequired<LoopInfoWrapperPass>();
|
|
AU.addRequired<DominatorTreeWrapperPass>();
|
|
AU.addPreservedID(LowerSwitchID);
|
|
AU.addPreserved<LoopInfoWrapperPass>();
|
|
AU.addPreserved<DominatorTreeWrapperPass>();
|
|
}
|
|
|
|
bool runOnFunction(Function &F) override;
|
|
};
|
|
} // namespace
|
|
|
|
char UnifyLoopExitsLegacyPass::ID = 0;
|
|
|
|
FunctionPass *llvm::createUnifyLoopExitsPass() {
|
|
return new UnifyLoopExitsLegacyPass();
|
|
}
|
|
|
|
INITIALIZE_PASS_BEGIN(UnifyLoopExitsLegacyPass, "unify-loop-exits",
|
|
"Fixup each natural loop to have a single exit block",
|
|
false /* Only looks at CFG */, false /* Analysis Pass */)
|
|
INITIALIZE_PASS_DEPENDENCY(LowerSwitchLegacyPass)
|
|
INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
|
|
INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
|
|
INITIALIZE_PASS_END(UnifyLoopExitsLegacyPass, "unify-loop-exits",
|
|
"Fixup each natural loop to have a single exit block",
|
|
false /* Only looks at CFG */, false /* Analysis Pass */)
|
|
|
|
// The current transform introduces new control flow paths which may break the
|
|
// SSA requirement that every def must dominate all its uses. For example,
|
|
// consider a value D defined inside the loop that is used by some instruction
|
|
// U outside the loop. It follows that D dominates U, since the original
|
|
// program has valid SSA form. After merging the exits, all paths from D to U
|
|
// now flow through the unified exit block. In addition, there may be other
|
|
// paths that do not pass through D, but now reach the unified exit
|
|
// block. Thus, D no longer dominates U.
|
|
//
|
|
// Restore the dominance by creating a phi for each such D at the new unified
|
|
// loop exit. But when doing this, ignore any uses U that are in the new unified
|
|
// loop exit, since those were introduced specially when the block was created.
|
|
//
|
|
// The use of SSAUpdater seems like overkill for this operation. The location
|
|
// for creating the new PHI is well-known, and also the set of incoming blocks
|
|
// to the new PHI.
|
|
static void restoreSSA(const DominatorTree &DT, const Loop *L,
|
|
const SetVector<BasicBlock *> &Incoming,
|
|
BasicBlock *LoopExitBlock) {
|
|
using InstVector = SmallVector<Instruction *, 8>;
|
|
using IIMap = MapVector<Instruction *, InstVector>;
|
|
IIMap ExternalUsers;
|
|
for (auto BB : L->blocks()) {
|
|
for (auto &I : *BB) {
|
|
for (auto &U : I.uses()) {
|
|
auto UserInst = cast<Instruction>(U.getUser());
|
|
auto UserBlock = UserInst->getParent();
|
|
if (UserBlock == LoopExitBlock)
|
|
continue;
|
|
if (L->contains(UserBlock))
|
|
continue;
|
|
LLVM_DEBUG(dbgs() << "added ext use for " << I.getName() << "("
|
|
<< BB->getName() << ")"
|
|
<< ": " << UserInst->getName() << "("
|
|
<< UserBlock->getName() << ")"
|
|
<< "\n");
|
|
ExternalUsers[&I].push_back(UserInst);
|
|
}
|
|
}
|
|
}
|
|
|
|
for (auto II : ExternalUsers) {
|
|
// For each Def used outside the loop, create NewPhi in
|
|
// LoopExitBlock. NewPhi receives Def only along exiting blocks that
|
|
// dominate it, while the remaining values are undefined since those paths
|
|
// didn't exist in the original CFG.
|
|
auto Def = II.first;
|
|
LLVM_DEBUG(dbgs() << "externally used: " << Def->getName() << "\n");
|
|
auto NewPhi = PHINode::Create(Def->getType(), Incoming.size(),
|
|
Def->getName() + ".moved",
|
|
LoopExitBlock->getTerminator());
|
|
for (auto In : Incoming) {
|
|
LLVM_DEBUG(dbgs() << "predecessor " << In->getName() << ": ");
|
|
if (Def->getParent() == In || DT.dominates(Def, In)) {
|
|
LLVM_DEBUG(dbgs() << "dominated\n");
|
|
NewPhi->addIncoming(Def, In);
|
|
} else {
|
|
LLVM_DEBUG(dbgs() << "not dominated\n");
|
|
NewPhi->addIncoming(UndefValue::get(Def->getType()), In);
|
|
}
|
|
}
|
|
|
|
LLVM_DEBUG(dbgs() << "external users:");
|
|
for (auto U : II.second) {
|
|
LLVM_DEBUG(dbgs() << " " << U->getName());
|
|
U->replaceUsesOfWith(Def, NewPhi);
|
|
}
|
|
LLVM_DEBUG(dbgs() << "\n");
|
|
}
|
|
}
|
|
|
|
static bool unifyLoopExits(DominatorTree &DT, LoopInfo &LI, Loop *L) {
|
|
// To unify the loop exits, we need a list of the exiting blocks as
|
|
// well as exit blocks. The functions for locating these lists both
|
|
// traverse the entire loop body. It is more efficient to first
|
|
// locate the exiting blocks and then examine their successors to
|
|
// locate the exit blocks.
|
|
SetVector<BasicBlock *> ExitingBlocks;
|
|
SetVector<BasicBlock *> Exits;
|
|
|
|
// We need SetVectors, but the Loop API takes a vector, so we use a temporary.
|
|
SmallVector<BasicBlock *, 8> Temp;
|
|
L->getExitingBlocks(Temp);
|
|
for (auto BB : Temp) {
|
|
ExitingBlocks.insert(BB);
|
|
for (auto S : successors(BB)) {
|
|
auto SL = LI.getLoopFor(S);
|
|
// A successor is not an exit if it is directly or indirectly in the
|
|
// current loop.
|
|
if (SL == L || L->contains(SL))
|
|
continue;
|
|
Exits.insert(S);
|
|
}
|
|
}
|
|
|
|
LLVM_DEBUG(
|
|
dbgs() << "Found exit blocks:";
|
|
for (auto Exit : Exits) {
|
|
dbgs() << " " << Exit->getName();
|
|
}
|
|
dbgs() << "\n";
|
|
|
|
dbgs() << "Found exiting blocks:";
|
|
for (auto EB : ExitingBlocks) {
|
|
dbgs() << " " << EB->getName();
|
|
}
|
|
dbgs() << "\n";);
|
|
|
|
if (Exits.size() <= 1) {
|
|
LLVM_DEBUG(dbgs() << "loop does not have multiple exits; nothing to do\n");
|
|
return false;
|
|
}
|
|
|
|
SmallVector<BasicBlock *, 8> GuardBlocks;
|
|
DomTreeUpdater DTU(DT, DomTreeUpdater::UpdateStrategy::Eager);
|
|
auto LoopExitBlock = CreateControlFlowHub(&DTU, GuardBlocks, ExitingBlocks,
|
|
Exits, "loop.exit");
|
|
|
|
restoreSSA(DT, L, ExitingBlocks, LoopExitBlock);
|
|
|
|
#if defined(EXPENSIVE_CHECKS)
|
|
assert(DT.verify(DominatorTree::VerificationLevel::Full));
|
|
#else
|
|
assert(DT.verify(DominatorTree::VerificationLevel::Fast));
|
|
#endif // EXPENSIVE_CHECKS
|
|
L->verifyLoop();
|
|
|
|
// The guard blocks were created outside the loop, so they need to become
|
|
// members of the parent loop.
|
|
if (auto ParentLoop = L->getParentLoop()) {
|
|
for (auto G : GuardBlocks) {
|
|
ParentLoop->addBasicBlockToLoop(G, LI);
|
|
}
|
|
ParentLoop->verifyLoop();
|
|
}
|
|
|
|
#if defined(EXPENSIVE_CHECKS)
|
|
LI.verify(DT);
|
|
#endif // EXPENSIVE_CHECKS
|
|
|
|
return true;
|
|
}
|
|
|
|
static bool runImpl(LoopInfo &LI, DominatorTree &DT) {
|
|
|
|
bool Changed = false;
|
|
auto Loops = LI.getLoopsInPreorder();
|
|
for (auto L : Loops) {
|
|
LLVM_DEBUG(dbgs() << "Loop: " << L->getHeader()->getName() << " (depth: "
|
|
<< LI.getLoopDepth(L->getHeader()) << ")\n");
|
|
Changed |= unifyLoopExits(DT, LI, L);
|
|
}
|
|
return Changed;
|
|
}
|
|
|
|
bool UnifyLoopExitsLegacyPass::runOnFunction(Function &F) {
|
|
LLVM_DEBUG(dbgs() << "===== Unifying loop exits in function " << F.getName()
|
|
<< "\n");
|
|
auto &LI = getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
|
|
auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree();
|
|
|
|
return runImpl(LI, DT);
|
|
}
|
|
|
|
namespace llvm {
|
|
|
|
PreservedAnalyses UnifyLoopExitsPass::run(Function &F,
|
|
FunctionAnalysisManager &AM) {
|
|
auto &LI = AM.getResult<LoopAnalysis>(F);
|
|
auto &DT = AM.getResult<DominatorTreeAnalysis>(F);
|
|
|
|
if (!runImpl(LI, DT))
|
|
return PreservedAnalyses::all();
|
|
PreservedAnalyses PA;
|
|
PA.preserve<LoopAnalysis>();
|
|
PA.preserve<DominatorTreeAnalysis>();
|
|
return PA;
|
|
}
|
|
} // namespace llvm
|