mirror of
https://github.com/RPCS3/llvm-mirror.git
synced 2024-11-25 04:02:41 +01:00
df8bbdf70e
This commit adjusts the order of two swappable if statements to make code cleaner. Reviewed By: lattner, nikic Differential Revision: https://reviews.llvm.org/D99648
625 lines
26 KiB
C++
625 lines
26 KiB
C++
#include "llvm/Transforms/Utils/VNCoercion.h"
|
|
#include "llvm/Analysis/ConstantFolding.h"
|
|
#include "llvm/Analysis/ValueTracking.h"
|
|
#include "llvm/IR/IRBuilder.h"
|
|
#include "llvm/Support/Debug.h"
|
|
|
|
#define DEBUG_TYPE "vncoerce"
|
|
|
|
namespace llvm {
|
|
namespace VNCoercion {
|
|
|
|
static bool isFirstClassAggregateOrScalableType(Type *Ty) {
|
|
return Ty->isStructTy() || Ty->isArrayTy() || isa<ScalableVectorType>(Ty);
|
|
}
|
|
|
|
/// Return true if coerceAvailableValueToLoadType will succeed.
|
|
bool canCoerceMustAliasedValueToLoad(Value *StoredVal, Type *LoadTy,
|
|
const DataLayout &DL) {
|
|
Type *StoredTy = StoredVal->getType();
|
|
|
|
if (StoredTy == LoadTy)
|
|
return true;
|
|
|
|
// If the loaded/stored value is a first class array/struct, or scalable type,
|
|
// don't try to transform them. We need to be able to bitcast to integer.
|
|
if (isFirstClassAggregateOrScalableType(LoadTy) ||
|
|
isFirstClassAggregateOrScalableType(StoredTy))
|
|
return false;
|
|
|
|
uint64_t StoreSize = DL.getTypeSizeInBits(StoredTy).getFixedSize();
|
|
|
|
// The store size must be byte-aligned to support future type casts.
|
|
if (llvm::alignTo(StoreSize, 8) != StoreSize)
|
|
return false;
|
|
|
|
// The store has to be at least as big as the load.
|
|
if (StoreSize < DL.getTypeSizeInBits(LoadTy).getFixedSize())
|
|
return false;
|
|
|
|
bool StoredNI = DL.isNonIntegralPointerType(StoredTy->getScalarType());
|
|
bool LoadNI = DL.isNonIntegralPointerType(LoadTy->getScalarType());
|
|
// Don't coerce non-integral pointers to integers or vice versa.
|
|
if (StoredNI != LoadNI) {
|
|
// As a special case, allow coercion of memset used to initialize
|
|
// an array w/null. Despite non-integral pointers not generally having a
|
|
// specific bit pattern, we do assume null is zero.
|
|
if (auto *CI = dyn_cast<Constant>(StoredVal))
|
|
return CI->isNullValue();
|
|
return false;
|
|
} else if (StoredNI && LoadNI &&
|
|
StoredTy->getPointerAddressSpace() !=
|
|
LoadTy->getPointerAddressSpace()) {
|
|
return false;
|
|
}
|
|
|
|
|
|
// The implementation below uses inttoptr for vectors of unequal size; we
|
|
// can't allow this for non integral pointers. We could teach it to extract
|
|
// exact subvectors if desired.
|
|
if (StoredNI && StoreSize != DL.getTypeSizeInBits(LoadTy).getFixedSize())
|
|
return false;
|
|
|
|
return true;
|
|
}
|
|
|
|
template <class T, class HelperClass>
|
|
static T *coerceAvailableValueToLoadTypeHelper(T *StoredVal, Type *LoadedTy,
|
|
HelperClass &Helper,
|
|
const DataLayout &DL) {
|
|
assert(canCoerceMustAliasedValueToLoad(StoredVal, LoadedTy, DL) &&
|
|
"precondition violation - materialization can't fail");
|
|
if (auto *C = dyn_cast<Constant>(StoredVal))
|
|
StoredVal = ConstantFoldConstant(C, DL);
|
|
|
|
// If this is already the right type, just return it.
|
|
Type *StoredValTy = StoredVal->getType();
|
|
|
|
uint64_t StoredValSize = DL.getTypeSizeInBits(StoredValTy).getFixedSize();
|
|
uint64_t LoadedValSize = DL.getTypeSizeInBits(LoadedTy).getFixedSize();
|
|
|
|
// If the store and reload are the same size, we can always reuse it.
|
|
if (StoredValSize == LoadedValSize) {
|
|
// Pointer to Pointer -> use bitcast.
|
|
if (StoredValTy->isPtrOrPtrVectorTy() && LoadedTy->isPtrOrPtrVectorTy()) {
|
|
StoredVal = Helper.CreateBitCast(StoredVal, LoadedTy);
|
|
} else {
|
|
// Convert source pointers to integers, which can be bitcast.
|
|
if (StoredValTy->isPtrOrPtrVectorTy()) {
|
|
StoredValTy = DL.getIntPtrType(StoredValTy);
|
|
StoredVal = Helper.CreatePtrToInt(StoredVal, StoredValTy);
|
|
}
|
|
|
|
Type *TypeToCastTo = LoadedTy;
|
|
if (TypeToCastTo->isPtrOrPtrVectorTy())
|
|
TypeToCastTo = DL.getIntPtrType(TypeToCastTo);
|
|
|
|
if (StoredValTy != TypeToCastTo)
|
|
StoredVal = Helper.CreateBitCast(StoredVal, TypeToCastTo);
|
|
|
|
// Cast to pointer if the load needs a pointer type.
|
|
if (LoadedTy->isPtrOrPtrVectorTy())
|
|
StoredVal = Helper.CreateIntToPtr(StoredVal, LoadedTy);
|
|
}
|
|
|
|
if (auto *C = dyn_cast<ConstantExpr>(StoredVal))
|
|
StoredVal = ConstantFoldConstant(C, DL);
|
|
|
|
return StoredVal;
|
|
}
|
|
// If the loaded value is smaller than the available value, then we can
|
|
// extract out a piece from it. If the available value is too small, then we
|
|
// can't do anything.
|
|
assert(StoredValSize >= LoadedValSize &&
|
|
"canCoerceMustAliasedValueToLoad fail");
|
|
|
|
// Convert source pointers to integers, which can be manipulated.
|
|
if (StoredValTy->isPtrOrPtrVectorTy()) {
|
|
StoredValTy = DL.getIntPtrType(StoredValTy);
|
|
StoredVal = Helper.CreatePtrToInt(StoredVal, StoredValTy);
|
|
}
|
|
|
|
// Convert vectors and fp to integer, which can be manipulated.
|
|
if (!StoredValTy->isIntegerTy()) {
|
|
StoredValTy = IntegerType::get(StoredValTy->getContext(), StoredValSize);
|
|
StoredVal = Helper.CreateBitCast(StoredVal, StoredValTy);
|
|
}
|
|
|
|
// If this is a big-endian system, we need to shift the value down to the low
|
|
// bits so that a truncate will work.
|
|
if (DL.isBigEndian()) {
|
|
uint64_t ShiftAmt = DL.getTypeStoreSizeInBits(StoredValTy).getFixedSize() -
|
|
DL.getTypeStoreSizeInBits(LoadedTy).getFixedSize();
|
|
StoredVal = Helper.CreateLShr(
|
|
StoredVal, ConstantInt::get(StoredVal->getType(), ShiftAmt));
|
|
}
|
|
|
|
// Truncate the integer to the right size now.
|
|
Type *NewIntTy = IntegerType::get(StoredValTy->getContext(), LoadedValSize);
|
|
StoredVal = Helper.CreateTruncOrBitCast(StoredVal, NewIntTy);
|
|
|
|
if (LoadedTy != NewIntTy) {
|
|
// If the result is a pointer, inttoptr.
|
|
if (LoadedTy->isPtrOrPtrVectorTy())
|
|
StoredVal = Helper.CreateIntToPtr(StoredVal, LoadedTy);
|
|
else
|
|
// Otherwise, bitcast.
|
|
StoredVal = Helper.CreateBitCast(StoredVal, LoadedTy);
|
|
}
|
|
|
|
if (auto *C = dyn_cast<Constant>(StoredVal))
|
|
StoredVal = ConstantFoldConstant(C, DL);
|
|
|
|
return StoredVal;
|
|
}
|
|
|
|
/// If we saw a store of a value to memory, and
|
|
/// then a load from a must-aliased pointer of a different type, try to coerce
|
|
/// the stored value. LoadedTy is the type of the load we want to replace.
|
|
/// IRB is IRBuilder used to insert new instructions.
|
|
///
|
|
/// If we can't do it, return null.
|
|
Value *coerceAvailableValueToLoadType(Value *StoredVal, Type *LoadedTy,
|
|
IRBuilderBase &IRB,
|
|
const DataLayout &DL) {
|
|
return coerceAvailableValueToLoadTypeHelper(StoredVal, LoadedTy, IRB, DL);
|
|
}
|
|
|
|
/// This function is called when we have a memdep query of a load that ends up
|
|
/// being a clobbering memory write (store, memset, memcpy, memmove). This
|
|
/// means that the write *may* provide bits used by the load but we can't be
|
|
/// sure because the pointers don't must-alias.
|
|
///
|
|
/// Check this case to see if there is anything more we can do before we give
|
|
/// up. This returns -1 if we have to give up, or a byte number in the stored
|
|
/// value of the piece that feeds the load.
|
|
static int analyzeLoadFromClobberingWrite(Type *LoadTy, Value *LoadPtr,
|
|
Value *WritePtr,
|
|
uint64_t WriteSizeInBits,
|
|
const DataLayout &DL) {
|
|
// If the loaded/stored value is a first class array/struct, or scalable type,
|
|
// don't try to transform them. We need to be able to bitcast to integer.
|
|
if (isFirstClassAggregateOrScalableType(LoadTy))
|
|
return -1;
|
|
|
|
int64_t StoreOffset = 0, LoadOffset = 0;
|
|
Value *StoreBase =
|
|
GetPointerBaseWithConstantOffset(WritePtr, StoreOffset, DL);
|
|
Value *LoadBase = GetPointerBaseWithConstantOffset(LoadPtr, LoadOffset, DL);
|
|
if (StoreBase != LoadBase)
|
|
return -1;
|
|
|
|
uint64_t LoadSize = DL.getTypeSizeInBits(LoadTy).getFixedSize();
|
|
|
|
if ((WriteSizeInBits & 7) | (LoadSize & 7))
|
|
return -1;
|
|
uint64_t StoreSize = WriteSizeInBits / 8; // Convert to bytes.
|
|
LoadSize /= 8;
|
|
|
|
// If the Load isn't completely contained within the stored bits, we don't
|
|
// have all the bits to feed it. We could do something crazy in the future
|
|
// (issue a smaller load then merge the bits in) but this seems unlikely to be
|
|
// valuable.
|
|
if (StoreOffset > LoadOffset ||
|
|
StoreOffset + StoreSize < LoadOffset + LoadSize)
|
|
return -1;
|
|
|
|
// If the load and store are to the exact same address, they should have been
|
|
// a must alias. AA must have gotten confused.
|
|
// FIXME: Study to see if/when this happens. One case is forwarding a memset
|
|
// to a load from the base of the memset.
|
|
|
|
// If the load and store don't overlap at all, the store doesn't provide
|
|
// anything to the load. In this case, they really don't alias at all, AA
|
|
// must have gotten confused. The if statement above ensure the condition
|
|
// that StoreOffset <= LoadOffset.
|
|
if (StoreOffset + int64_t(StoreSize) <= LoadOffset)
|
|
return -1;
|
|
|
|
// Okay, we can do this transformation. Return the number of bytes into the
|
|
// store that the load is.
|
|
return LoadOffset - StoreOffset;
|
|
}
|
|
|
|
/// This function is called when we have a
|
|
/// memdep query of a load that ends up being a clobbering store.
|
|
int analyzeLoadFromClobberingStore(Type *LoadTy, Value *LoadPtr,
|
|
StoreInst *DepSI, const DataLayout &DL) {
|
|
auto *StoredVal = DepSI->getValueOperand();
|
|
|
|
// Cannot handle reading from store of first-class aggregate or scalable type.
|
|
if (isFirstClassAggregateOrScalableType(StoredVal->getType()))
|
|
return -1;
|
|
|
|
if (!canCoerceMustAliasedValueToLoad(StoredVal, LoadTy, DL))
|
|
return -1;
|
|
|
|
Value *StorePtr = DepSI->getPointerOperand();
|
|
uint64_t StoreSize =
|
|
DL.getTypeSizeInBits(DepSI->getValueOperand()->getType()).getFixedSize();
|
|
return analyzeLoadFromClobberingWrite(LoadTy, LoadPtr, StorePtr, StoreSize,
|
|
DL);
|
|
}
|
|
|
|
/// Looks at a memory location for a load (specified by MemLocBase, Offs, and
|
|
/// Size) and compares it against a load.
|
|
///
|
|
/// If the specified load could be safely widened to a larger integer load
|
|
/// that is 1) still efficient, 2) safe for the target, and 3) would provide
|
|
/// the specified memory location value, then this function returns the size
|
|
/// in bytes of the load width to use. If not, this returns zero.
|
|
static unsigned getLoadLoadClobberFullWidthSize(const Value *MemLocBase,
|
|
int64_t MemLocOffs,
|
|
unsigned MemLocSize,
|
|
const LoadInst *LI) {
|
|
// We can only extend simple integer loads.
|
|
if (!isa<IntegerType>(LI->getType()) || !LI->isSimple())
|
|
return 0;
|
|
|
|
// Load widening is hostile to ThreadSanitizer: it may cause false positives
|
|
// or make the reports more cryptic (access sizes are wrong).
|
|
if (LI->getParent()->getParent()->hasFnAttribute(Attribute::SanitizeThread))
|
|
return 0;
|
|
|
|
const DataLayout &DL = LI->getModule()->getDataLayout();
|
|
|
|
// Get the base of this load.
|
|
int64_t LIOffs = 0;
|
|
const Value *LIBase =
|
|
GetPointerBaseWithConstantOffset(LI->getPointerOperand(), LIOffs, DL);
|
|
|
|
// If the two pointers are not based on the same pointer, we can't tell that
|
|
// they are related.
|
|
if (LIBase != MemLocBase)
|
|
return 0;
|
|
|
|
// Okay, the two values are based on the same pointer, but returned as
|
|
// no-alias. This happens when we have things like two byte loads at "P+1"
|
|
// and "P+3". Check to see if increasing the size of the "LI" load up to its
|
|
// alignment (or the largest native integer type) will allow us to load all
|
|
// the bits required by MemLoc.
|
|
|
|
// If MemLoc is before LI, then no widening of LI will help us out.
|
|
if (MemLocOffs < LIOffs)
|
|
return 0;
|
|
|
|
// Get the alignment of the load in bytes. We assume that it is safe to load
|
|
// any legal integer up to this size without a problem. For example, if we're
|
|
// looking at an i8 load on x86-32 that is known 1024 byte aligned, we can
|
|
// widen it up to an i32 load. If it is known 2-byte aligned, we can widen it
|
|
// to i16.
|
|
unsigned LoadAlign = LI->getAlignment();
|
|
|
|
int64_t MemLocEnd = MemLocOffs + MemLocSize;
|
|
|
|
// If no amount of rounding up will let MemLoc fit into LI, then bail out.
|
|
if (LIOffs + LoadAlign < MemLocEnd)
|
|
return 0;
|
|
|
|
// This is the size of the load to try. Start with the next larger power of
|
|
// two.
|
|
unsigned NewLoadByteSize = LI->getType()->getPrimitiveSizeInBits() / 8U;
|
|
NewLoadByteSize = NextPowerOf2(NewLoadByteSize);
|
|
|
|
while (true) {
|
|
// If this load size is bigger than our known alignment or would not fit
|
|
// into a native integer register, then we fail.
|
|
if (NewLoadByteSize > LoadAlign ||
|
|
!DL.fitsInLegalInteger(NewLoadByteSize * 8))
|
|
return 0;
|
|
|
|
if (LIOffs + NewLoadByteSize > MemLocEnd &&
|
|
(LI->getParent()->getParent()->hasFnAttribute(
|
|
Attribute::SanitizeAddress) ||
|
|
LI->getParent()->getParent()->hasFnAttribute(
|
|
Attribute::SanitizeHWAddress)))
|
|
// We will be reading past the location accessed by the original program.
|
|
// While this is safe in a regular build, Address Safety analysis tools
|
|
// may start reporting false warnings. So, don't do widening.
|
|
return 0;
|
|
|
|
// If a load of this width would include all of MemLoc, then we succeed.
|
|
if (LIOffs + NewLoadByteSize >= MemLocEnd)
|
|
return NewLoadByteSize;
|
|
|
|
NewLoadByteSize <<= 1;
|
|
}
|
|
}
|
|
|
|
/// This function is called when we have a
|
|
/// memdep query of a load that ends up being clobbered by another load. See if
|
|
/// the other load can feed into the second load.
|
|
int analyzeLoadFromClobberingLoad(Type *LoadTy, Value *LoadPtr, LoadInst *DepLI,
|
|
const DataLayout &DL) {
|
|
// Cannot handle reading from store of first-class aggregate yet.
|
|
if (DepLI->getType()->isStructTy() || DepLI->getType()->isArrayTy())
|
|
return -1;
|
|
|
|
if (!canCoerceMustAliasedValueToLoad(DepLI, LoadTy, DL))
|
|
return -1;
|
|
|
|
Value *DepPtr = DepLI->getPointerOperand();
|
|
uint64_t DepSize = DL.getTypeSizeInBits(DepLI->getType()).getFixedSize();
|
|
int R = analyzeLoadFromClobberingWrite(LoadTy, LoadPtr, DepPtr, DepSize, DL);
|
|
if (R != -1)
|
|
return R;
|
|
|
|
// If we have a load/load clobber an DepLI can be widened to cover this load,
|
|
// then we should widen it!
|
|
int64_t LoadOffs = 0;
|
|
const Value *LoadBase =
|
|
GetPointerBaseWithConstantOffset(LoadPtr, LoadOffs, DL);
|
|
unsigned LoadSize = DL.getTypeStoreSize(LoadTy).getFixedSize();
|
|
|
|
unsigned Size =
|
|
getLoadLoadClobberFullWidthSize(LoadBase, LoadOffs, LoadSize, DepLI);
|
|
if (Size == 0)
|
|
return -1;
|
|
|
|
// Check non-obvious conditions enforced by MDA which we rely on for being
|
|
// able to materialize this potentially available value
|
|
assert(DepLI->isSimple() && "Cannot widen volatile/atomic load!");
|
|
assert(DepLI->getType()->isIntegerTy() && "Can't widen non-integer load");
|
|
|
|
return analyzeLoadFromClobberingWrite(LoadTy, LoadPtr, DepPtr, Size * 8, DL);
|
|
}
|
|
|
|
int analyzeLoadFromClobberingMemInst(Type *LoadTy, Value *LoadPtr,
|
|
MemIntrinsic *MI, const DataLayout &DL) {
|
|
// If the mem operation is a non-constant size, we can't handle it.
|
|
ConstantInt *SizeCst = dyn_cast<ConstantInt>(MI->getLength());
|
|
if (!SizeCst)
|
|
return -1;
|
|
uint64_t MemSizeInBits = SizeCst->getZExtValue() * 8;
|
|
|
|
// If this is memset, we just need to see if the offset is valid in the size
|
|
// of the memset..
|
|
if (MI->getIntrinsicID() == Intrinsic::memset) {
|
|
if (DL.isNonIntegralPointerType(LoadTy->getScalarType())) {
|
|
auto *CI = dyn_cast<ConstantInt>(cast<MemSetInst>(MI)->getValue());
|
|
if (!CI || !CI->isZero())
|
|
return -1;
|
|
}
|
|
return analyzeLoadFromClobberingWrite(LoadTy, LoadPtr, MI->getDest(),
|
|
MemSizeInBits, DL);
|
|
}
|
|
|
|
// If we have a memcpy/memmove, the only case we can handle is if this is a
|
|
// copy from constant memory. In that case, we can read directly from the
|
|
// constant memory.
|
|
MemTransferInst *MTI = cast<MemTransferInst>(MI);
|
|
|
|
Constant *Src = dyn_cast<Constant>(MTI->getSource());
|
|
if (!Src)
|
|
return -1;
|
|
|
|
GlobalVariable *GV = dyn_cast<GlobalVariable>(getUnderlyingObject(Src));
|
|
if (!GV || !GV->isConstant() || !GV->hasDefinitiveInitializer())
|
|
return -1;
|
|
|
|
// See if the access is within the bounds of the transfer.
|
|
int Offset = analyzeLoadFromClobberingWrite(LoadTy, LoadPtr, MI->getDest(),
|
|
MemSizeInBits, DL);
|
|
if (Offset == -1)
|
|
return Offset;
|
|
|
|
unsigned AS = Src->getType()->getPointerAddressSpace();
|
|
// Otherwise, see if we can constant fold a load from the constant with the
|
|
// offset applied as appropriate.
|
|
if (Offset) {
|
|
Src = ConstantExpr::getBitCast(Src,
|
|
Type::getInt8PtrTy(Src->getContext(), AS));
|
|
Constant *OffsetCst =
|
|
ConstantInt::get(Type::getInt64Ty(Src->getContext()), (unsigned)Offset);
|
|
Src = ConstantExpr::getGetElementPtr(Type::getInt8Ty(Src->getContext()),
|
|
Src, OffsetCst);
|
|
}
|
|
Src = ConstantExpr::getBitCast(Src, PointerType::get(LoadTy, AS));
|
|
if (ConstantFoldLoadFromConstPtr(Src, LoadTy, DL))
|
|
return Offset;
|
|
return -1;
|
|
}
|
|
|
|
template <class T, class HelperClass>
|
|
static T *getStoreValueForLoadHelper(T *SrcVal, unsigned Offset, Type *LoadTy,
|
|
HelperClass &Helper,
|
|
const DataLayout &DL) {
|
|
LLVMContext &Ctx = SrcVal->getType()->getContext();
|
|
|
|
// If two pointers are in the same address space, they have the same size,
|
|
// so we don't need to do any truncation, etc. This avoids introducing
|
|
// ptrtoint instructions for pointers that may be non-integral.
|
|
if (SrcVal->getType()->isPointerTy() && LoadTy->isPointerTy() &&
|
|
cast<PointerType>(SrcVal->getType())->getAddressSpace() ==
|
|
cast<PointerType>(LoadTy)->getAddressSpace()) {
|
|
return SrcVal;
|
|
}
|
|
|
|
uint64_t StoreSize =
|
|
(DL.getTypeSizeInBits(SrcVal->getType()).getFixedSize() + 7) / 8;
|
|
uint64_t LoadSize = (DL.getTypeSizeInBits(LoadTy).getFixedSize() + 7) / 8;
|
|
// Compute which bits of the stored value are being used by the load. Convert
|
|
// to an integer type to start with.
|
|
if (SrcVal->getType()->isPtrOrPtrVectorTy())
|
|
SrcVal = Helper.CreatePtrToInt(SrcVal, DL.getIntPtrType(SrcVal->getType()));
|
|
if (!SrcVal->getType()->isIntegerTy())
|
|
SrcVal = Helper.CreateBitCast(SrcVal, IntegerType::get(Ctx, StoreSize * 8));
|
|
|
|
// Shift the bits to the least significant depending on endianness.
|
|
unsigned ShiftAmt;
|
|
if (DL.isLittleEndian())
|
|
ShiftAmt = Offset * 8;
|
|
else
|
|
ShiftAmt = (StoreSize - LoadSize - Offset) * 8;
|
|
if (ShiftAmt)
|
|
SrcVal = Helper.CreateLShr(SrcVal,
|
|
ConstantInt::get(SrcVal->getType(), ShiftAmt));
|
|
|
|
if (LoadSize != StoreSize)
|
|
SrcVal = Helper.CreateTruncOrBitCast(SrcVal,
|
|
IntegerType::get(Ctx, LoadSize * 8));
|
|
return SrcVal;
|
|
}
|
|
|
|
/// This function is called when we have a memdep query of a load that ends up
|
|
/// being a clobbering store. This means that the store provides bits used by
|
|
/// the load but the pointers don't must-alias. Check this case to see if
|
|
/// there is anything more we can do before we give up.
|
|
Value *getStoreValueForLoad(Value *SrcVal, unsigned Offset, Type *LoadTy,
|
|
Instruction *InsertPt, const DataLayout &DL) {
|
|
|
|
IRBuilder<> Builder(InsertPt);
|
|
SrcVal = getStoreValueForLoadHelper(SrcVal, Offset, LoadTy, Builder, DL);
|
|
return coerceAvailableValueToLoadTypeHelper(SrcVal, LoadTy, Builder, DL);
|
|
}
|
|
|
|
Constant *getConstantStoreValueForLoad(Constant *SrcVal, unsigned Offset,
|
|
Type *LoadTy, const DataLayout &DL) {
|
|
ConstantFolder F;
|
|
SrcVal = getStoreValueForLoadHelper(SrcVal, Offset, LoadTy, F, DL);
|
|
return coerceAvailableValueToLoadTypeHelper(SrcVal, LoadTy, F, DL);
|
|
}
|
|
|
|
/// This function is called when we have a memdep query of a load that ends up
|
|
/// being a clobbering load. This means that the load *may* provide bits used
|
|
/// by the load but we can't be sure because the pointers don't must-alias.
|
|
/// Check this case to see if there is anything more we can do before we give
|
|
/// up.
|
|
Value *getLoadValueForLoad(LoadInst *SrcVal, unsigned Offset, Type *LoadTy,
|
|
Instruction *InsertPt, const DataLayout &DL) {
|
|
// If Offset+LoadTy exceeds the size of SrcVal, then we must be wanting to
|
|
// widen SrcVal out to a larger load.
|
|
unsigned SrcValStoreSize =
|
|
DL.getTypeStoreSize(SrcVal->getType()).getFixedSize();
|
|
unsigned LoadSize = DL.getTypeStoreSize(LoadTy).getFixedSize();
|
|
if (Offset + LoadSize > SrcValStoreSize) {
|
|
assert(SrcVal->isSimple() && "Cannot widen volatile/atomic load!");
|
|
assert(SrcVal->getType()->isIntegerTy() && "Can't widen non-integer load");
|
|
// If we have a load/load clobber an DepLI can be widened to cover this
|
|
// load, then we should widen it to the next power of 2 size big enough!
|
|
unsigned NewLoadSize = Offset + LoadSize;
|
|
if (!isPowerOf2_32(NewLoadSize))
|
|
NewLoadSize = NextPowerOf2(NewLoadSize);
|
|
|
|
Value *PtrVal = SrcVal->getPointerOperand();
|
|
// Insert the new load after the old load. This ensures that subsequent
|
|
// memdep queries will find the new load. We can't easily remove the old
|
|
// load completely because it is already in the value numbering table.
|
|
IRBuilder<> Builder(SrcVal->getParent(), ++BasicBlock::iterator(SrcVal));
|
|
Type *DestTy = IntegerType::get(LoadTy->getContext(), NewLoadSize * 8);
|
|
Type *DestPTy =
|
|
PointerType::get(DestTy, PtrVal->getType()->getPointerAddressSpace());
|
|
Builder.SetCurrentDebugLocation(SrcVal->getDebugLoc());
|
|
PtrVal = Builder.CreateBitCast(PtrVal, DestPTy);
|
|
LoadInst *NewLoad = Builder.CreateLoad(DestTy, PtrVal);
|
|
NewLoad->takeName(SrcVal);
|
|
NewLoad->setAlignment(SrcVal->getAlign());
|
|
|
|
LLVM_DEBUG(dbgs() << "GVN WIDENED LOAD: " << *SrcVal << "\n");
|
|
LLVM_DEBUG(dbgs() << "TO: " << *NewLoad << "\n");
|
|
|
|
// Replace uses of the original load with the wider load. On a big endian
|
|
// system, we need to shift down to get the relevant bits.
|
|
Value *RV = NewLoad;
|
|
if (DL.isBigEndian())
|
|
RV = Builder.CreateLShr(RV, (NewLoadSize - SrcValStoreSize) * 8);
|
|
RV = Builder.CreateTrunc(RV, SrcVal->getType());
|
|
SrcVal->replaceAllUsesWith(RV);
|
|
|
|
SrcVal = NewLoad;
|
|
}
|
|
|
|
return getStoreValueForLoad(SrcVal, Offset, LoadTy, InsertPt, DL);
|
|
}
|
|
|
|
Constant *getConstantLoadValueForLoad(Constant *SrcVal, unsigned Offset,
|
|
Type *LoadTy, const DataLayout &DL) {
|
|
unsigned SrcValStoreSize =
|
|
DL.getTypeStoreSize(SrcVal->getType()).getFixedSize();
|
|
unsigned LoadSize = DL.getTypeStoreSize(LoadTy).getFixedSize();
|
|
if (Offset + LoadSize > SrcValStoreSize)
|
|
return nullptr;
|
|
return getConstantStoreValueForLoad(SrcVal, Offset, LoadTy, DL);
|
|
}
|
|
|
|
template <class T, class HelperClass>
|
|
T *getMemInstValueForLoadHelper(MemIntrinsic *SrcInst, unsigned Offset,
|
|
Type *LoadTy, HelperClass &Helper,
|
|
const DataLayout &DL) {
|
|
LLVMContext &Ctx = LoadTy->getContext();
|
|
uint64_t LoadSize = DL.getTypeSizeInBits(LoadTy).getFixedSize() / 8;
|
|
|
|
// We know that this method is only called when the mem transfer fully
|
|
// provides the bits for the load.
|
|
if (MemSetInst *MSI = dyn_cast<MemSetInst>(SrcInst)) {
|
|
// memset(P, 'x', 1234) -> splat('x'), even if x is a variable, and
|
|
// independently of what the offset is.
|
|
T *Val = cast<T>(MSI->getValue());
|
|
if (LoadSize != 1)
|
|
Val =
|
|
Helper.CreateZExtOrBitCast(Val, IntegerType::get(Ctx, LoadSize * 8));
|
|
T *OneElt = Val;
|
|
|
|
// Splat the value out to the right number of bits.
|
|
for (unsigned NumBytesSet = 1; NumBytesSet != LoadSize;) {
|
|
// If we can double the number of bytes set, do it.
|
|
if (NumBytesSet * 2 <= LoadSize) {
|
|
T *ShVal = Helper.CreateShl(
|
|
Val, ConstantInt::get(Val->getType(), NumBytesSet * 8));
|
|
Val = Helper.CreateOr(Val, ShVal);
|
|
NumBytesSet <<= 1;
|
|
continue;
|
|
}
|
|
|
|
// Otherwise insert one byte at a time.
|
|
T *ShVal = Helper.CreateShl(Val, ConstantInt::get(Val->getType(), 1 * 8));
|
|
Val = Helper.CreateOr(OneElt, ShVal);
|
|
++NumBytesSet;
|
|
}
|
|
|
|
return coerceAvailableValueToLoadTypeHelper(Val, LoadTy, Helper, DL);
|
|
}
|
|
|
|
// Otherwise, this is a memcpy/memmove from a constant global.
|
|
MemTransferInst *MTI = cast<MemTransferInst>(SrcInst);
|
|
Constant *Src = cast<Constant>(MTI->getSource());
|
|
|
|
unsigned AS = Src->getType()->getPointerAddressSpace();
|
|
// Otherwise, see if we can constant fold a load from the constant with the
|
|
// offset applied as appropriate.
|
|
if (Offset) {
|
|
Src = ConstantExpr::getBitCast(Src,
|
|
Type::getInt8PtrTy(Src->getContext(), AS));
|
|
Constant *OffsetCst =
|
|
ConstantInt::get(Type::getInt64Ty(Src->getContext()), (unsigned)Offset);
|
|
Src = ConstantExpr::getGetElementPtr(Type::getInt8Ty(Src->getContext()),
|
|
Src, OffsetCst);
|
|
}
|
|
Src = ConstantExpr::getBitCast(Src, PointerType::get(LoadTy, AS));
|
|
return ConstantFoldLoadFromConstPtr(Src, LoadTy, DL);
|
|
}
|
|
|
|
/// This function is called when we have a
|
|
/// memdep query of a load that ends up being a clobbering mem intrinsic.
|
|
Value *getMemInstValueForLoad(MemIntrinsic *SrcInst, unsigned Offset,
|
|
Type *LoadTy, Instruction *InsertPt,
|
|
const DataLayout &DL) {
|
|
IRBuilder<> Builder(InsertPt);
|
|
return getMemInstValueForLoadHelper<Value, IRBuilder<>>(SrcInst, Offset,
|
|
LoadTy, Builder, DL);
|
|
}
|
|
|
|
Constant *getConstantMemInstValueForLoad(MemIntrinsic *SrcInst, unsigned Offset,
|
|
Type *LoadTy, const DataLayout &DL) {
|
|
// The only case analyzeLoadFromClobberingMemInst cannot be converted to a
|
|
// constant is when it's a memset of a non-constant.
|
|
if (auto *MSI = dyn_cast<MemSetInst>(SrcInst))
|
|
if (!isa<Constant>(MSI->getValue()))
|
|
return nullptr;
|
|
ConstantFolder F;
|
|
return getMemInstValueForLoadHelper<Constant, ConstantFolder>(SrcInst, Offset,
|
|
LoadTy, F, DL);
|
|
}
|
|
} // namespace VNCoercion
|
|
} // namespace llvm
|