1
0
mirror of https://github.com/RPCS3/llvm-mirror.git synced 2024-11-21 18:22:53 +01:00
llvm-mirror/unittests/IR/PassManagerTest.cpp
Arthur Eubanks b987f39d75 [NewPM] Hide pass manager debug logging behind -debug-pass-manager-verbose
Printing pass manager invocations is fairly verbose and not super
useful.

This allows us to remove DebugLogging from pass managers and PassBuilder
since all logging (aside from analysis managers) goes through
instrumentation now.

This has the downside of never being able to print the top level pass
manager via instrumentation, but that seems like a minor downside.

Reviewed By: ychen

Differential Revision: https://reviews.llvm.org/D101797
2021-05-07 21:51:47 -07:00

954 lines
36 KiB
C++

//===- llvm/unittest/IR/PassManager.cpp - PassManager tests ---------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "llvm/IR/PassManager.h"
#include "llvm/Analysis/AssumptionCache.h"
#include "llvm/Analysis/TargetTransformInfo.h"
#include "llvm/AsmParser/Parser.h"
#include "llvm/IR/Dominators.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/LLVMContext.h"
#include "llvm/IR/Module.h"
#include "llvm/IR/PassManagerImpl.h"
#include "llvm/Passes/StandardInstrumentations.h"
#include "llvm/Support/SourceMgr.h"
#include "llvm/Transforms/Scalar/SimplifyCFG.h"
#include "gtest/gtest.h"
using namespace llvm;
namespace {
class TestFunctionAnalysis : public AnalysisInfoMixin<TestFunctionAnalysis> {
public:
struct Result {
Result(int Count) : InstructionCount(Count) {}
int InstructionCount;
bool invalidate(Function &, const PreservedAnalyses &PA,
FunctionAnalysisManager::Invalidator &) {
// Check whether the analysis or all analyses on functions have been
// preserved.
auto PAC = PA.getChecker<TestFunctionAnalysis>();
return !(PAC.preserved() || PAC.preservedSet<AllAnalysesOn<Function>>());
}
};
TestFunctionAnalysis(int &Runs) : Runs(Runs) {}
/// Run the analysis pass over the function and return a result.
Result run(Function &F, FunctionAnalysisManager &AM) {
++Runs;
int Count = 0;
for (Function::iterator BBI = F.begin(), BBE = F.end(); BBI != BBE; ++BBI)
for (BasicBlock::iterator II = BBI->begin(), IE = BBI->end(); II != IE;
++II)
++Count;
return Result(Count);
}
private:
friend AnalysisInfoMixin<TestFunctionAnalysis>;
static AnalysisKey Key;
int &Runs;
};
AnalysisKey TestFunctionAnalysis::Key;
class TestModuleAnalysis : public AnalysisInfoMixin<TestModuleAnalysis> {
public:
struct Result {
Result(int Count) : FunctionCount(Count) {}
int FunctionCount;
bool invalidate(Module &, const PreservedAnalyses &PA,
ModuleAnalysisManager::Invalidator &) {
// Check whether the analysis or all analyses on modules have been
// preserved.
auto PAC = PA.getChecker<TestModuleAnalysis>();
return !(PAC.preserved() || PAC.preservedSet<AllAnalysesOn<Module>>());
}
};
TestModuleAnalysis(int &Runs) : Runs(Runs) {}
Result run(Module &M, ModuleAnalysisManager &AM) {
++Runs;
int Count = 0;
for (Module::iterator I = M.begin(), E = M.end(); I != E; ++I)
++Count;
return Result(Count);
}
private:
friend AnalysisInfoMixin<TestModuleAnalysis>;
static AnalysisKey Key;
int &Runs;
};
AnalysisKey TestModuleAnalysis::Key;
struct TestModulePass : PassInfoMixin<TestModulePass> {
TestModulePass(int &RunCount) : RunCount(RunCount) {}
PreservedAnalyses run(Module &M, ModuleAnalysisManager &) {
++RunCount;
return PreservedAnalyses::none();
}
int &RunCount;
};
struct TestPreservingModulePass : PassInfoMixin<TestPreservingModulePass> {
PreservedAnalyses run(Module &M, ModuleAnalysisManager &) {
return PreservedAnalyses::all();
}
};
struct TestFunctionPass : PassInfoMixin<TestFunctionPass> {
TestFunctionPass(int &RunCount, int &AnalyzedInstrCount,
int &AnalyzedFunctionCount, ModuleAnalysisManager &MAM,
bool OnlyUseCachedResults = false)
: RunCount(RunCount), AnalyzedInstrCount(AnalyzedInstrCount),
AnalyzedFunctionCount(AnalyzedFunctionCount), MAM(MAM),
OnlyUseCachedResults(OnlyUseCachedResults) {}
PreservedAnalyses run(Function &F, FunctionAnalysisManager &AM) {
++RunCount;
// Getting a cached result that isn't stateless through the proxy will
// trigger an assert:
// auto &ModuleProxy = AM.getResult<ModuleAnalysisManagerFunctionProxy>(F);
// Use MAM, for the purposes of this unittest.
if (TestModuleAnalysis::Result *TMA =
MAM.getCachedResult<TestModuleAnalysis>(*F.getParent())) {
AnalyzedFunctionCount += TMA->FunctionCount;
}
if (OnlyUseCachedResults) {
// Hack to force the use of the cached interface.
if (TestFunctionAnalysis::Result *AR =
AM.getCachedResult<TestFunctionAnalysis>(F))
AnalyzedInstrCount += AR->InstructionCount;
} else {
// Typical path just runs the analysis as needed.
TestFunctionAnalysis::Result &AR = AM.getResult<TestFunctionAnalysis>(F);
AnalyzedInstrCount += AR.InstructionCount;
}
return PreservedAnalyses::all();
}
int &RunCount;
int &AnalyzedInstrCount;
int &AnalyzedFunctionCount;
ModuleAnalysisManager &MAM;
bool OnlyUseCachedResults;
};
// A test function pass that invalidates all function analyses for a function
// with a specific name.
struct TestInvalidationFunctionPass
: PassInfoMixin<TestInvalidationFunctionPass> {
TestInvalidationFunctionPass(StringRef FunctionName) : Name(FunctionName) {}
PreservedAnalyses run(Function &F, FunctionAnalysisManager &AM) {
return F.getName() == Name ? PreservedAnalyses::none()
: PreservedAnalyses::all();
}
StringRef Name;
};
std::unique_ptr<Module> parseIR(LLVMContext &Context, const char *IR) {
SMDiagnostic Err;
return parseAssemblyString(IR, Err, Context);
}
class PassManagerTest : public ::testing::Test {
protected:
LLVMContext Context;
std::unique_ptr<Module> M;
public:
PassManagerTest()
: M(parseIR(Context, "define void @f() {\n"
"entry:\n"
" call void @g()\n"
" call void @h()\n"
" ret void\n"
"}\n"
"define void @g() {\n"
" ret void\n"
"}\n"
"define void @h() {\n"
" ret void\n"
"}\n")) {}
};
TEST(PreservedAnalysesTest, Basic) {
PreservedAnalyses PA1 = PreservedAnalyses();
{
auto PAC = PA1.getChecker<TestFunctionAnalysis>();
EXPECT_FALSE(PAC.preserved());
EXPECT_FALSE(PAC.preservedSet<AllAnalysesOn<Function>>());
}
{
auto PAC = PA1.getChecker<TestModuleAnalysis>();
EXPECT_FALSE(PAC.preserved());
EXPECT_FALSE(PAC.preservedSet<AllAnalysesOn<Module>>());
}
auto PA2 = PreservedAnalyses::none();
{
auto PAC = PA2.getChecker<TestFunctionAnalysis>();
EXPECT_FALSE(PAC.preserved());
EXPECT_FALSE(PAC.preservedSet<AllAnalysesOn<Function>>());
}
auto PA3 = PreservedAnalyses::all();
{
auto PAC = PA3.getChecker<TestFunctionAnalysis>();
EXPECT_TRUE(PAC.preserved());
EXPECT_TRUE(PAC.preservedSet<AllAnalysesOn<Function>>());
}
PreservedAnalyses PA4 = PA1;
{
auto PAC = PA4.getChecker<TestFunctionAnalysis>();
EXPECT_FALSE(PAC.preserved());
EXPECT_FALSE(PAC.preservedSet<AllAnalysesOn<Function>>());
}
PA4 = PA3;
{
auto PAC = PA4.getChecker<TestFunctionAnalysis>();
EXPECT_TRUE(PAC.preserved());
EXPECT_TRUE(PAC.preservedSet<AllAnalysesOn<Function>>());
}
PA4 = std::move(PA2);
{
auto PAC = PA4.getChecker<TestFunctionAnalysis>();
EXPECT_FALSE(PAC.preserved());
EXPECT_FALSE(PAC.preservedSet<AllAnalysesOn<Function>>());
}
auto PA5 = PreservedAnalyses::allInSet<AllAnalysesOn<Function>>();
{
auto PAC = PA5.getChecker<TestFunctionAnalysis>();
EXPECT_FALSE(PAC.preserved());
EXPECT_TRUE(PAC.preservedSet<AllAnalysesOn<Function>>());
EXPECT_FALSE(PAC.preservedSet<AllAnalysesOn<Module>>());
}
}
TEST(PreservedAnalysesTest, Preserve) {
auto PA = PreservedAnalyses::none();
PA.preserve<TestFunctionAnalysis>();
EXPECT_TRUE(PA.getChecker<TestFunctionAnalysis>().preserved());
EXPECT_FALSE(PA.getChecker<TestModuleAnalysis>().preserved());
PA.preserve<TestModuleAnalysis>();
EXPECT_TRUE(PA.getChecker<TestFunctionAnalysis>().preserved());
EXPECT_TRUE(PA.getChecker<TestModuleAnalysis>().preserved());
// Redundant calls are fine.
PA.preserve<TestFunctionAnalysis>();
EXPECT_TRUE(PA.getChecker<TestFunctionAnalysis>().preserved());
EXPECT_TRUE(PA.getChecker<TestModuleAnalysis>().preserved());
}
TEST(PreservedAnalysesTest, PreserveSets) {
auto PA = PreservedAnalyses::none();
PA.preserveSet<AllAnalysesOn<Function>>();
EXPECT_TRUE(PA.getChecker<TestFunctionAnalysis>()
.preservedSet<AllAnalysesOn<Function>>());
EXPECT_FALSE(PA.getChecker<TestModuleAnalysis>()
.preservedSet<AllAnalysesOn<Module>>());
PA.preserveSet<AllAnalysesOn<Module>>();
EXPECT_TRUE(PA.getChecker<TestFunctionAnalysis>()
.preservedSet<AllAnalysesOn<Function>>());
EXPECT_TRUE(PA.getChecker<TestModuleAnalysis>()
.preservedSet<AllAnalysesOn<Module>>());
// Mixing is fine.
PA.preserve<TestFunctionAnalysis>();
EXPECT_TRUE(PA.getChecker<TestFunctionAnalysis>()
.preservedSet<AllAnalysesOn<Function>>());
EXPECT_TRUE(PA.getChecker<TestModuleAnalysis>()
.preservedSet<AllAnalysesOn<Module>>());
// Redundant calls are fine.
PA.preserveSet<AllAnalysesOn<Module>>();
EXPECT_TRUE(PA.getChecker<TestFunctionAnalysis>()
.preservedSet<AllAnalysesOn<Function>>());
EXPECT_TRUE(PA.getChecker<TestModuleAnalysis>()
.preservedSet<AllAnalysesOn<Module>>());
}
TEST(PreservedAnalysisTest, Intersect) {
// Setup the initial sets.
auto PA1 = PreservedAnalyses::none();
PA1.preserve<TestFunctionAnalysis>();
PA1.preserveSet<AllAnalysesOn<Module>>();
auto PA2 = PreservedAnalyses::none();
PA2.preserve<TestFunctionAnalysis>();
PA2.preserveSet<AllAnalysesOn<Function>>();
PA2.preserve<TestModuleAnalysis>();
PA2.preserveSet<AllAnalysesOn<Module>>();
auto PA3 = PreservedAnalyses::none();
PA3.preserve<TestModuleAnalysis>();
PA3.preserveSet<AllAnalysesOn<Function>>();
// Self intersection is a no-op.
auto Intersected = PA1;
Intersected.intersect(PA1);
EXPECT_TRUE(Intersected.getChecker<TestFunctionAnalysis>().preserved());
EXPECT_FALSE(Intersected.getChecker<TestFunctionAnalysis>()
.preservedSet<AllAnalysesOn<Function>>());
EXPECT_FALSE(Intersected.getChecker<TestModuleAnalysis>().preserved());
EXPECT_TRUE(Intersected.getChecker<TestModuleAnalysis>()
.preservedSet<AllAnalysesOn<Module>>());
// Intersecting with all is a no-op.
Intersected.intersect(PreservedAnalyses::all());
EXPECT_TRUE(Intersected.getChecker<TestFunctionAnalysis>().preserved());
EXPECT_FALSE(Intersected.getChecker<TestFunctionAnalysis>()
.preservedSet<AllAnalysesOn<Function>>());
EXPECT_FALSE(Intersected.getChecker<TestModuleAnalysis>().preserved());
EXPECT_TRUE(Intersected.getChecker<TestModuleAnalysis>()
.preservedSet<AllAnalysesOn<Module>>());
// Intersecting a narrow set with a more broad set is the narrow set.
Intersected.intersect(PA2);
EXPECT_TRUE(Intersected.getChecker<TestFunctionAnalysis>().preserved());
EXPECT_FALSE(Intersected.getChecker<TestFunctionAnalysis>()
.preservedSet<AllAnalysesOn<Function>>());
EXPECT_FALSE(Intersected.getChecker<TestModuleAnalysis>().preserved());
EXPECT_TRUE(Intersected.getChecker<TestModuleAnalysis>()
.preservedSet<AllAnalysesOn<Module>>());
// Intersecting a broad set with a more narrow set is the narrow set.
Intersected = PA2;
Intersected.intersect(PA1);
EXPECT_TRUE(Intersected.getChecker<TestFunctionAnalysis>().preserved());
EXPECT_FALSE(Intersected.getChecker<TestFunctionAnalysis>()
.preservedSet<AllAnalysesOn<Function>>());
EXPECT_FALSE(Intersected.getChecker<TestModuleAnalysis>().preserved());
EXPECT_TRUE(Intersected.getChecker<TestModuleAnalysis>()
.preservedSet<AllAnalysesOn<Module>>());
// Intersecting with empty clears.
Intersected.intersect(PreservedAnalyses::none());
EXPECT_FALSE(Intersected.getChecker<TestFunctionAnalysis>().preserved());
EXPECT_FALSE(Intersected.getChecker<TestFunctionAnalysis>()
.preservedSet<AllAnalysesOn<Function>>());
EXPECT_FALSE(Intersected.getChecker<TestModuleAnalysis>().preserved());
EXPECT_FALSE(Intersected.getChecker<TestModuleAnalysis>()
.preservedSet<AllAnalysesOn<Module>>());
// Intersecting non-overlapping clears.
Intersected = PA1;
Intersected.intersect(PA3);
EXPECT_FALSE(Intersected.getChecker<TestFunctionAnalysis>().preserved());
EXPECT_FALSE(Intersected.getChecker<TestFunctionAnalysis>()
.preservedSet<AllAnalysesOn<Function>>());
EXPECT_FALSE(Intersected.getChecker<TestModuleAnalysis>().preserved());
EXPECT_FALSE(Intersected.getChecker<TestModuleAnalysis>()
.preservedSet<AllAnalysesOn<Module>>());
// Intersecting with moves works in when there is storage on both sides.
Intersected = PA1;
auto Tmp = PA2;
Intersected.intersect(std::move(Tmp));
EXPECT_TRUE(Intersected.getChecker<TestFunctionAnalysis>().preserved());
EXPECT_FALSE(Intersected.getChecker<TestFunctionAnalysis>()
.preservedSet<AllAnalysesOn<Function>>());
EXPECT_FALSE(Intersected.getChecker<TestModuleAnalysis>().preserved());
EXPECT_TRUE(Intersected.getChecker<TestModuleAnalysis>()
.preservedSet<AllAnalysesOn<Module>>());
// Intersecting with move works for incoming all and existing all.
auto Tmp2 = PreservedAnalyses::all();
Intersected.intersect(std::move(Tmp2));
EXPECT_TRUE(Intersected.getChecker<TestFunctionAnalysis>().preserved());
EXPECT_FALSE(Intersected.getChecker<TestFunctionAnalysis>()
.preservedSet<AllAnalysesOn<Function>>());
EXPECT_FALSE(Intersected.getChecker<TestModuleAnalysis>().preserved());
EXPECT_TRUE(Intersected.getChecker<TestModuleAnalysis>()
.preservedSet<AllAnalysesOn<Module>>());
Intersected = PreservedAnalyses::all();
auto Tmp3 = PA1;
Intersected.intersect(std::move(Tmp3));
EXPECT_TRUE(Intersected.getChecker<TestFunctionAnalysis>().preserved());
EXPECT_FALSE(Intersected.getChecker<TestFunctionAnalysis>()
.preservedSet<AllAnalysesOn<Function>>());
EXPECT_FALSE(Intersected.getChecker<TestModuleAnalysis>().preserved());
EXPECT_TRUE(Intersected.getChecker<TestModuleAnalysis>()
.preservedSet<AllAnalysesOn<Module>>());
}
TEST(PreservedAnalysisTest, Abandon) {
auto PA = PreservedAnalyses::none();
// We can abandon things after they are preserved.
PA.preserve<TestFunctionAnalysis>();
PA.abandon<TestFunctionAnalysis>();
EXPECT_FALSE(PA.getChecker<TestFunctionAnalysis>().preserved());
// Repeated is fine, and abandoning if they were never preserved is fine.
PA.abandon<TestFunctionAnalysis>();
EXPECT_FALSE(PA.getChecker<TestFunctionAnalysis>().preserved());
PA.abandon<TestModuleAnalysis>();
EXPECT_FALSE(PA.getChecker<TestModuleAnalysis>().preserved());
// Even if the sets are preserved, the abandoned analyses' checker won't
// return true for those sets.
PA.preserveSet<AllAnalysesOn<Function>>();
PA.preserveSet<AllAnalysesOn<Module>>();
EXPECT_FALSE(PA.getChecker<TestFunctionAnalysis>()
.preservedSet<AllAnalysesOn<Function>>());
EXPECT_FALSE(PA.getChecker<TestModuleAnalysis>()
.preservedSet<AllAnalysesOn<Module>>());
// But an arbitrary (opaque) analysis will still observe the sets as
// preserved. This also checks that we can use an explicit ID rather than
// a type.
AnalysisKey FakeKey, *FakeID = &FakeKey;
EXPECT_TRUE(PA.getChecker(FakeID).preservedSet<AllAnalysesOn<Function>>());
EXPECT_TRUE(PA.getChecker(FakeID).preservedSet<AllAnalysesOn<Module>>());
}
TEST_F(PassManagerTest, Basic) {
FunctionAnalysisManager FAM;
int FunctionAnalysisRuns = 0;
FAM.registerPass([&] { return TestFunctionAnalysis(FunctionAnalysisRuns); });
ModuleAnalysisManager MAM;
int ModuleAnalysisRuns = 0;
MAM.registerPass([&] { return TestModuleAnalysis(ModuleAnalysisRuns); });
MAM.registerPass([&] { return FunctionAnalysisManagerModuleProxy(FAM); });
FAM.registerPass([&] { return ModuleAnalysisManagerFunctionProxy(MAM); });
MAM.registerPass([&] { return PassInstrumentationAnalysis(); });
FAM.registerPass([&] { return PassInstrumentationAnalysis(); });
ModulePassManager MPM;
// Count the runs over a Function.
int FunctionPassRunCount1 = 0;
int AnalyzedInstrCount1 = 0;
int AnalyzedFunctionCount1 = 0;
{
// Pointless scoped copy to test move assignment.
ModulePassManager NestedMPM;
FunctionPassManager FPM;
{
// Pointless scope to test move assignment.
FunctionPassManager NestedFPM;
NestedFPM.addPass(TestFunctionPass(FunctionPassRunCount1,
AnalyzedInstrCount1,
AnalyzedFunctionCount1, MAM));
FPM = std::move(NestedFPM);
}
NestedMPM.addPass(createModuleToFunctionPassAdaptor(std::move(FPM)));
MPM = std::move(NestedMPM);
}
// Count the runs over a module.
int ModulePassRunCount = 0;
MPM.addPass(TestModulePass(ModulePassRunCount));
// Count the runs over a Function in a separate manager.
int FunctionPassRunCount2 = 0;
int AnalyzedInstrCount2 = 0;
int AnalyzedFunctionCount2 = 0;
{
FunctionPassManager FPM;
FPM.addPass(TestFunctionPass(FunctionPassRunCount2, AnalyzedInstrCount2,
AnalyzedFunctionCount2, MAM));
MPM.addPass(createModuleToFunctionPassAdaptor(std::move(FPM)));
}
// A third function pass manager but with only preserving intervening passes
// and with a function pass that invalidates exactly one analysis.
MPM.addPass(TestPreservingModulePass());
int FunctionPassRunCount3 = 0;
int AnalyzedInstrCount3 = 0;
int AnalyzedFunctionCount3 = 0;
{
FunctionPassManager FPM;
FPM.addPass(TestFunctionPass(FunctionPassRunCount3, AnalyzedInstrCount3,
AnalyzedFunctionCount3, MAM));
FPM.addPass(TestInvalidationFunctionPass("f"));
MPM.addPass(createModuleToFunctionPassAdaptor(std::move(FPM)));
}
// A fourth function pass manager but with only preserving intervening
// passes but triggering the module analysis.
MPM.addPass(RequireAnalysisPass<TestModuleAnalysis, Module>());
int FunctionPassRunCount4 = 0;
int AnalyzedInstrCount4 = 0;
int AnalyzedFunctionCount4 = 0;
{
FunctionPassManager FPM;
FPM.addPass(TestFunctionPass(FunctionPassRunCount4, AnalyzedInstrCount4,
AnalyzedFunctionCount4, MAM));
MPM.addPass(createModuleToFunctionPassAdaptor(std::move(FPM)));
}
// A fifth function pass manager which invalidates one function first but
// uses only cached results.
int FunctionPassRunCount5 = 0;
int AnalyzedInstrCount5 = 0;
int AnalyzedFunctionCount5 = 0;
{
FunctionPassManager FPM;
FPM.addPass(TestInvalidationFunctionPass("f"));
FPM.addPass(TestFunctionPass(FunctionPassRunCount5, AnalyzedInstrCount5,
AnalyzedFunctionCount5, MAM,
/*OnlyUseCachedResults=*/true));
MPM.addPass(createModuleToFunctionPassAdaptor(std::move(FPM)));
}
MPM.run(*M, MAM);
// Validate module pass counters.
EXPECT_EQ(1, ModulePassRunCount);
// Validate all function pass counter sets are the same.
EXPECT_EQ(3, FunctionPassRunCount1);
EXPECT_EQ(5, AnalyzedInstrCount1);
EXPECT_EQ(0, AnalyzedFunctionCount1);
EXPECT_EQ(3, FunctionPassRunCount2);
EXPECT_EQ(5, AnalyzedInstrCount2);
EXPECT_EQ(0, AnalyzedFunctionCount2);
EXPECT_EQ(3, FunctionPassRunCount3);
EXPECT_EQ(5, AnalyzedInstrCount3);
EXPECT_EQ(0, AnalyzedFunctionCount3);
EXPECT_EQ(3, FunctionPassRunCount4);
EXPECT_EQ(5, AnalyzedInstrCount4);
EXPECT_EQ(9, AnalyzedFunctionCount4);
EXPECT_EQ(3, FunctionPassRunCount5);
EXPECT_EQ(2, AnalyzedInstrCount5); // Only 'g' and 'h' were cached.
EXPECT_EQ(9, AnalyzedFunctionCount5);
// Validate the analysis counters:
// first run over 3 functions, then module pass invalidates
// second run over 3 functions, nothing invalidates
// third run over 0 functions, but 1 function invalidated
// fourth run over 1 function
// fifth run invalidates 1 function first, but runs over 0 functions
EXPECT_EQ(7, FunctionAnalysisRuns);
EXPECT_EQ(1, ModuleAnalysisRuns);
}
// A customized pass manager that passes extra arguments through the
// infrastructure.
typedef AnalysisManager<Function, int> CustomizedAnalysisManager;
typedef PassManager<Function, CustomizedAnalysisManager, int, int &>
CustomizedPassManager;
class CustomizedAnalysis : public AnalysisInfoMixin<CustomizedAnalysis> {
public:
struct Result {
Result(int I) : I(I) {}
int I;
};
Result run(Function &F, CustomizedAnalysisManager &AM, int I) {
return Result(I);
}
private:
friend AnalysisInfoMixin<CustomizedAnalysis>;
static AnalysisKey Key;
};
AnalysisKey CustomizedAnalysis::Key;
struct CustomizedPass : PassInfoMixin<CustomizedPass> {
std::function<void(CustomizedAnalysis::Result &, int &)> Callback;
template <typename CallbackT>
CustomizedPass(CallbackT Callback) : Callback(Callback) {}
PreservedAnalyses run(Function &F, CustomizedAnalysisManager &AM, int I,
int &O) {
Callback(AM.getResult<CustomizedAnalysis>(F, I), O);
return PreservedAnalyses::none();
}
};
TEST_F(PassManagerTest, CustomizedPassManagerArgs) {
CustomizedAnalysisManager AM;
AM.registerPass([&] { return CustomizedAnalysis(); });
PassInstrumentationCallbacks PIC;
AM.registerPass([&] { return PassInstrumentationAnalysis(&PIC); });
CustomizedPassManager PM;
// Add an instance of the customized pass that just accumulates the input
// after it is round-tripped through the analysis.
int Result = 0;
PM.addPass(
CustomizedPass([](CustomizedAnalysis::Result &R, int &O) { O += R.I; }));
// Run this over every function with the input of 42.
for (Function &F : *M)
PM.run(F, AM, 42, Result);
// And ensure that we accumulated the correct result.
EXPECT_EQ(42 * (int)M->size(), Result);
}
/// A test analysis pass which caches in its result another analysis pass and
/// uses it to serve queries. This requires the result to invalidate itself
/// when its dependency is invalidated.
struct TestIndirectFunctionAnalysis
: public AnalysisInfoMixin<TestIndirectFunctionAnalysis> {
struct Result {
Result(TestFunctionAnalysis::Result &FDep, TestModuleAnalysis::Result &MDep)
: FDep(FDep), MDep(MDep) {}
TestFunctionAnalysis::Result &FDep;
TestModuleAnalysis::Result &MDep;
bool invalidate(Function &F, const PreservedAnalyses &PA,
FunctionAnalysisManager::Invalidator &Inv) {
auto PAC = PA.getChecker<TestIndirectFunctionAnalysis>();
return !(PAC.preserved() ||
PAC.preservedSet<AllAnalysesOn<Function>>()) ||
Inv.invalidate<TestFunctionAnalysis>(F, PA);
}
};
TestIndirectFunctionAnalysis(int &Runs, ModuleAnalysisManager &MAM)
: Runs(Runs), MAM(MAM) {}
/// Run the analysis pass over the function and return a result.
Result run(Function &F, FunctionAnalysisManager &AM) {
++Runs;
auto &FDep = AM.getResult<TestFunctionAnalysis>(F);
auto &MAMProxy = AM.getResult<ModuleAnalysisManagerFunctionProxy>(F);
// For the test, we insist that the module analysis starts off in the
// cache. Getting a cached result that isn't stateless trigger an assert.
// Use MAM, for the purposes of this unittest.
auto &MDep = *MAM.getCachedResult<TestModuleAnalysis>(*F.getParent());
// And register the dependency as module analysis dependencies have to be
// pre-registered on the proxy.
MAMProxy.registerOuterAnalysisInvalidation<TestModuleAnalysis,
TestIndirectFunctionAnalysis>();
return Result(FDep, MDep);
}
private:
friend AnalysisInfoMixin<TestIndirectFunctionAnalysis>;
static AnalysisKey Key;
int &Runs;
ModuleAnalysisManager &MAM;
};
AnalysisKey TestIndirectFunctionAnalysis::Key;
/// A test analysis pass which chaches in its result the result from the above
/// indirect analysis pass.
///
/// This allows us to ensure that whenever an analysis pass is invalidated due
/// to dependencies (especially dependencies across IR units that trigger
/// asynchronous invalidation) we correctly detect that this may in turn cause
/// other analysis to be invalidated.
struct TestDoublyIndirectFunctionAnalysis
: public AnalysisInfoMixin<TestDoublyIndirectFunctionAnalysis> {
struct Result {
Result(TestIndirectFunctionAnalysis::Result &IDep) : IDep(IDep) {}
TestIndirectFunctionAnalysis::Result &IDep;
bool invalidate(Function &F, const PreservedAnalyses &PA,
FunctionAnalysisManager::Invalidator &Inv) {
auto PAC = PA.getChecker<TestDoublyIndirectFunctionAnalysis>();
return !(PAC.preserved() ||
PAC.preservedSet<AllAnalysesOn<Function>>()) ||
Inv.invalidate<TestIndirectFunctionAnalysis>(F, PA);
}
};
TestDoublyIndirectFunctionAnalysis(int &Runs) : Runs(Runs) {}
/// Run the analysis pass over the function and return a result.
Result run(Function &F, FunctionAnalysisManager &AM) {
++Runs;
auto &IDep = AM.getResult<TestIndirectFunctionAnalysis>(F);
return Result(IDep);
}
private:
friend AnalysisInfoMixin<TestDoublyIndirectFunctionAnalysis>;
static AnalysisKey Key;
int &Runs;
};
AnalysisKey TestDoublyIndirectFunctionAnalysis::Key;
struct LambdaPass : public PassInfoMixin<LambdaPass> {
using FuncT = std::function<PreservedAnalyses(Function &, FunctionAnalysisManager &)>;
LambdaPass(FuncT Func) : Func(std::move(Func)) {}
PreservedAnalyses run(Function &F, FunctionAnalysisManager &AM) {
return Func(F, AM);
}
FuncT Func;
};
TEST_F(PassManagerTest, IndirectAnalysisInvalidation) {
FunctionAnalysisManager FAM;
ModuleAnalysisManager MAM;
int FunctionAnalysisRuns = 0, ModuleAnalysisRuns = 0,
IndirectAnalysisRuns = 0, DoublyIndirectAnalysisRuns = 0;
FAM.registerPass([&] { return TestFunctionAnalysis(FunctionAnalysisRuns); });
FAM.registerPass(
[&] { return TestIndirectFunctionAnalysis(IndirectAnalysisRuns, MAM); });
FAM.registerPass([&] {
return TestDoublyIndirectFunctionAnalysis(DoublyIndirectAnalysisRuns);
});
MAM.registerPass([&] { return TestModuleAnalysis(ModuleAnalysisRuns); });
MAM.registerPass([&] { return FunctionAnalysisManagerModuleProxy(FAM); });
FAM.registerPass([&] { return ModuleAnalysisManagerFunctionProxy(MAM); });
PassInstrumentationCallbacks PIC;
MAM.registerPass([&] { return PassInstrumentationAnalysis(&PIC); });
FAM.registerPass([&] { return PassInstrumentationAnalysis(&PIC); });
int InstrCount = 0, FunctionCount = 0;
ModulePassManager MPM;
FunctionPassManager FPM;
// First just use the analysis to get the instruction count, and preserve
// everything.
FPM.addPass(LambdaPass([&](Function &F, FunctionAnalysisManager &AM) {
auto &DoublyIndirectResult =
AM.getResult<TestDoublyIndirectFunctionAnalysis>(F);
auto &IndirectResult = DoublyIndirectResult.IDep;
InstrCount += IndirectResult.FDep.InstructionCount;
FunctionCount += IndirectResult.MDep.FunctionCount;
return PreservedAnalyses::all();
}));
// Next, invalidate
// - both analyses for "f",
// - just the underlying (indirect) analysis for "g", and
// - just the direct analysis for "h".
FPM.addPass(LambdaPass([&](Function &F, FunctionAnalysisManager &AM) {
auto &DoublyIndirectResult =
AM.getResult<TestDoublyIndirectFunctionAnalysis>(F);
auto &IndirectResult = DoublyIndirectResult.IDep;
InstrCount += IndirectResult.FDep.InstructionCount;
FunctionCount += IndirectResult.MDep.FunctionCount;
auto PA = PreservedAnalyses::none();
if (F.getName() == "g")
PA.preserve<TestFunctionAnalysis>();
else if (F.getName() == "h")
PA.preserve<TestIndirectFunctionAnalysis>();
return PA;
}));
// Finally, use the analysis again on each function, forcing re-computation
// for all of them.
FPM.addPass(LambdaPass([&](Function &F, FunctionAnalysisManager &AM) {
auto &DoublyIndirectResult =
AM.getResult<TestDoublyIndirectFunctionAnalysis>(F);
auto &IndirectResult = DoublyIndirectResult.IDep;
InstrCount += IndirectResult.FDep.InstructionCount;
FunctionCount += IndirectResult.MDep.FunctionCount;
return PreservedAnalyses::all();
}));
// Create a second function pass manager. This will cause the module-level
// invalidation to occur, which will force yet another invalidation of the
// indirect function-level analysis as the module analysis it depends on gets
// invalidated.
FunctionPassManager FPM2;
FPM2.addPass(LambdaPass([&](Function &F, FunctionAnalysisManager &AM) {
auto &DoublyIndirectResult =
AM.getResult<TestDoublyIndirectFunctionAnalysis>(F);
auto &IndirectResult = DoublyIndirectResult.IDep;
InstrCount += IndirectResult.FDep.InstructionCount;
FunctionCount += IndirectResult.MDep.FunctionCount;
return PreservedAnalyses::all();
}));
// Add a requires pass to populate the module analysis and then our function
// pass pipeline.
MPM.addPass(RequireAnalysisPass<TestModuleAnalysis, Module>());
MPM.addPass(createModuleToFunctionPassAdaptor(std::move(FPM)));
// Now require the module analysis again (it will have been invalidated once)
// and then use it again from a function pass manager.
MPM.addPass(RequireAnalysisPass<TestModuleAnalysis, Module>());
MPM.addPass(createModuleToFunctionPassAdaptor(std::move(FPM2)));
MPM.run(*M, MAM);
// There are generally two possible runs for each of the three functions. But
// for one function, we only invalidate the indirect analysis so the base one
// only gets run five times.
EXPECT_EQ(5, FunctionAnalysisRuns);
// The module analysis pass should be run twice here.
EXPECT_EQ(2, ModuleAnalysisRuns);
// The indirect analysis is invalidated for each function (either directly or
// indirectly) and run twice for each.
EXPECT_EQ(9, IndirectAnalysisRuns);
EXPECT_EQ(9, DoublyIndirectAnalysisRuns);
// There are five instructions in the module and we add the count four
// times.
EXPECT_EQ(5 * 4, InstrCount);
// There are three functions and we count them four times for each of the
// three functions.
EXPECT_EQ(3 * 4 * 3, FunctionCount);
}
// Run SimplifyCFGPass that makes CFG changes and reports PreservedAnalyses
// without CFGAnalyses. So the CFGChecker does not complain.
TEST_F(PassManagerTest, FunctionPassCFGChecker) {
LLVMContext Context;
// SimplifyCFG changes this function to
// define void @foo {next: ret void}
auto M = parseIR(Context, "define void @foo() {\n"
" br label %next\n"
"next:\n"
" br label %exit\n"
"exit:\n"
" ret void\n"
"}\n");
auto *F = M->getFunction("foo");
FunctionAnalysisManager FAM;
FunctionPassManager FPM;
PassInstrumentationCallbacks PIC;
StandardInstrumentations SI(/*DebugLogging*/ true);
SI.registerCallbacks(PIC, &FAM);
FAM.registerPass([&] { return PassInstrumentationAnalysis(&PIC); });
FAM.registerPass([&] { return DominatorTreeAnalysis(); });
FAM.registerPass([&] { return AssumptionAnalysis(); });
FAM.registerPass([&] { return TargetIRAnalysis(); });
FPM.addPass(SimplifyCFGPass());
FPM.run(*F, FAM);
}
// FunctionPass that manually invalidates analyses and always returns
// PreservedAnalyses::all().
struct TestSimplifyCFGInvalidatingAnalysisPass
: PassInfoMixin<TestSimplifyCFGInvalidatingAnalysisPass> {
PreservedAnalyses run(Function &F, FunctionAnalysisManager &FAM) {
// Run SimplifyCFG and if it changes CFG then invalidate the CFG analysis.
// This allows to return PreserveAnalysis::all().
PreservedAnalyses PA = CFGSimplifier.run(F, FAM);
FAM.invalidate(F, PA);
return PreservedAnalyses::all();
}
SimplifyCFGPass CFGSimplifier;
};
// Run TestSimplifyCFGInvalidatingAnalysisPass which changes CFG by running
// SimplifyCFGPass then manually invalidates analyses and always returns
// PreservedAnalyses::all(). CFGChecker does not complain because it resets
// its saved CFG snapshot when the analyses are invalidated manually.
TEST_F(PassManagerTest, FunctionPassCFGCheckerInvalidateAnalysis) {
LLVMContext Context;
// SimplifyCFG changes this function to
// define void @foo {next: ret void}
auto M = parseIR(Context, "define void @foo() {\n"
" br label %next\n"
"next:\n"
" br label %exit\n"
"exit:\n"
" ret void\n"
"}\n");
auto *F = M->getFunction("foo");
FunctionAnalysisManager FAM;
FunctionPassManager FPM;
PassInstrumentationCallbacks PIC;
StandardInstrumentations SI(/*DebugLogging*/ true);
SI.registerCallbacks(PIC, &FAM);
FAM.registerPass([&] { return PassInstrumentationAnalysis(&PIC); });
FAM.registerPass([&] { return DominatorTreeAnalysis(); });
FAM.registerPass([&] { return AssumptionAnalysis(); });
FAM.registerPass([&] { return TargetIRAnalysis(); });
FPM.addPass(TestSimplifyCFGInvalidatingAnalysisPass());
FPM.run(*F, FAM);
}
// Wrap a FunctionPassManager running SimplifyCFG pass with another
// FunctionPassManager.
struct TestSimplifyCFGWrapperPass : PassInfoMixin<TestSimplifyCFGWrapperPass> {
TestSimplifyCFGWrapperPass(FunctionPassManager &InnerPM) : InnerPM(InnerPM) {}
PreservedAnalyses run(Function &F, FunctionAnalysisManager &FAM) {
// Here we simulate exactly what FunctionPassManager::run() does but
// instead of running all passes from InnerPM.Passes we run them in bulk
// by calling InnerPM.run().
PreservedAnalyses PA = PreservedAnalyses::all();
PassInstrumentation PI = FAM.getResult<PassInstrumentationAnalysis>(F);
if (!PI.runBeforePass<Function>(InnerPM, F))
return PreservedAnalyses::all();
PreservedAnalyses PassPA = InnerPM.run(F, FAM);
PI.runAfterPass(InnerPM, F, PassPA);
FAM.invalidate(F, PassPA);
PA.intersect(PassPA);
PA.preserveSet<AllAnalysesOn<Function>>();
return PA;
}
FunctionPassManager &InnerPM;
};
// Run TestSimplifyCFGWrapperPass which simulates behavior of
// FunctionPassManager::run() except that it runs all passes at once by calling
// an inner pass manager's passes with PassManager::run(). This is how one pass
// manager is expected to wrap another pass manager.
// SimplifyCFGPass, which is called by the inner pass manager, changes the CFG.
// The CFGChecker's AfterPassCallback, run right after SimplifyCFGPass, does not
// complain because CFGAnalyses is not in the PreservedAnalises set returned by
// SimplifyCFGPass. Then the CFG analysis is invalidated by the analysis manager
// according to the PreservedAnalises set. Further calls to CFGChecker's
// AfterPassCallback see that all analyses for the current function are
// preserved but there is no CFG snapshot available (i.e.
// AM.getCachedResult<PreservedCFGCheckerAnalysis>(F) returns nullptr).
TEST_F(PassManagerTest, FunctionPassCFGCheckerWrapped) {
LLVMContext Context;
// SimplifyCFG changes this function to
// define void @foo {next: ret void}
auto M = parseIR(Context, "define void @foo() {\n"
" br label %next\n"
"next:\n"
" br label %exit\n"
"exit:\n"
" ret void\n"
"}\n");
auto *F = M->getFunction("foo");
FunctionAnalysisManager FAM;
FunctionPassManager FPM;
PassInstrumentationCallbacks PIC;
StandardInstrumentations SI(/*DebugLogging*/ true);
SI.registerCallbacks(PIC, &FAM);
FAM.registerPass([&] { return PassInstrumentationAnalysis(&PIC); });
FAM.registerPass([&] { return DominatorTreeAnalysis(); });
FAM.registerPass([&] { return AssumptionAnalysis(); });
FAM.registerPass([&] { return TargetIRAnalysis(); });
FunctionPassManager InnerFPM;
InnerFPM.addPass(SimplifyCFGPass());
FPM.addPass(TestSimplifyCFGWrapperPass(InnerFPM));
FPM.run(*F, FAM);
}
}