1
0
mirror of https://github.com/RPCS3/llvm-mirror.git synced 2024-10-22 04:22:57 +02:00
llvm-mirror/include/llvm/Analysis/CallGraph.h
Chandler Carruth ae65e281f3 Update the file headers across all of the LLVM projects in the monorepo
to reflect the new license.

We understand that people may be surprised that we're moving the header
entirely to discuss the new license. We checked this carefully with the
Foundation's lawyer and we believe this is the correct approach.

Essentially, all code in the project is now made available by the LLVM
project under our new license, so you will see that the license headers
include that license only. Some of our contributors have contributed
code under our old license, and accordingly, we have retained a copy of
our old license notice in the top-level files in each project and
repository.

llvm-svn: 351636
2019-01-19 08:50:56 +00:00

509 lines
18 KiB
C++

//===- CallGraph.h - Build a Module's call graph ----------------*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
/// \file
///
/// This file provides interfaces used to build and manipulate a call graph,
/// which is a very useful tool for interprocedural optimization.
///
/// Every function in a module is represented as a node in the call graph. The
/// callgraph node keeps track of which functions are called by the function
/// corresponding to the node.
///
/// A call graph may contain nodes where the function that they correspond to
/// is null. These 'external' nodes are used to represent control flow that is
/// not represented (or analyzable) in the module. In particular, this
/// analysis builds one external node such that:
/// 1. All functions in the module without internal linkage will have edges
/// from this external node, indicating that they could be called by
/// functions outside of the module.
/// 2. All functions whose address is used for something more than a direct
/// call, for example being stored into a memory location will also have
/// an edge from this external node. Since they may be called by an
/// unknown caller later, they must be tracked as such.
///
/// There is a second external node added for calls that leave this module.
/// Functions have a call edge to the external node iff:
/// 1. The function is external, reflecting the fact that they could call
/// anything without internal linkage or that has its address taken.
/// 2. The function contains an indirect function call.
///
/// As an extension in the future, there may be multiple nodes with a null
/// function. These will be used when we can prove (through pointer analysis)
/// that an indirect call site can call only a specific set of functions.
///
/// Because of these properties, the CallGraph captures a conservative superset
/// of all of the caller-callee relationships, which is useful for
/// transformations.
///
//===----------------------------------------------------------------------===//
#ifndef LLVM_ANALYSIS_CALLGRAPH_H
#define LLVM_ANALYSIS_CALLGRAPH_H
#include "llvm/ADT/GraphTraits.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/IR/CallSite.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/Intrinsics.h"
#include "llvm/IR/PassManager.h"
#include "llvm/IR/ValueHandle.h"
#include "llvm/Pass.h"
#include <cassert>
#include <map>
#include <memory>
#include <utility>
#include <vector>
namespace llvm {
class CallGraphNode;
class Module;
class raw_ostream;
/// The basic data container for the call graph of a \c Module of IR.
///
/// This class exposes both the interface to the call graph for a module of IR.
///
/// The core call graph itself can also be updated to reflect changes to the IR.
class CallGraph {
Module &M;
using FunctionMapTy =
std::map<const Function *, std::unique_ptr<CallGraphNode>>;
/// A map from \c Function* to \c CallGraphNode*.
FunctionMapTy FunctionMap;
/// This node has edges to all external functions and those internal
/// functions that have their address taken.
CallGraphNode *ExternalCallingNode;
/// This node has edges to it from all functions making indirect calls
/// or calling an external function.
std::unique_ptr<CallGraphNode> CallsExternalNode;
/// Replace the function represented by this node by another.
///
/// This does not rescan the body of the function, so it is suitable when
/// splicing the body of one function to another while also updating all
/// callers from the old function to the new.
void spliceFunction(const Function *From, const Function *To);
/// Add a function to the call graph, and link the node to all of the
/// functions that it calls.
void addToCallGraph(Function *F);
public:
explicit CallGraph(Module &M);
CallGraph(CallGraph &&Arg);
~CallGraph();
void print(raw_ostream &OS) const;
void dump() const;
using iterator = FunctionMapTy::iterator;
using const_iterator = FunctionMapTy::const_iterator;
/// Returns the module the call graph corresponds to.
Module &getModule() const { return M; }
inline iterator begin() { return FunctionMap.begin(); }
inline iterator end() { return FunctionMap.end(); }
inline const_iterator begin() const { return FunctionMap.begin(); }
inline const_iterator end() const { return FunctionMap.end(); }
/// Returns the call graph node for the provided function.
inline const CallGraphNode *operator[](const Function *F) const {
const_iterator I = FunctionMap.find(F);
assert(I != FunctionMap.end() && "Function not in callgraph!");
return I->second.get();
}
/// Returns the call graph node for the provided function.
inline CallGraphNode *operator[](const Function *F) {
const_iterator I = FunctionMap.find(F);
assert(I != FunctionMap.end() && "Function not in callgraph!");
return I->second.get();
}
/// Returns the \c CallGraphNode which is used to represent
/// undetermined calls into the callgraph.
CallGraphNode *getExternalCallingNode() const { return ExternalCallingNode; }
CallGraphNode *getCallsExternalNode() const {
return CallsExternalNode.get();
}
//===---------------------------------------------------------------------
// Functions to keep a call graph up to date with a function that has been
// modified.
//
/// Unlink the function from this module, returning it.
///
/// Because this removes the function from the module, the call graph node is
/// destroyed. This is only valid if the function does not call any other
/// functions (ie, there are no edges in it's CGN). The easiest way to do
/// this is to dropAllReferences before calling this.
Function *removeFunctionFromModule(CallGraphNode *CGN);
/// Similar to operator[], but this will insert a new CallGraphNode for
/// \c F if one does not already exist.
CallGraphNode *getOrInsertFunction(const Function *F);
};
/// A node in the call graph for a module.
///
/// Typically represents a function in the call graph. There are also special
/// "null" nodes used to represent theoretical entries in the call graph.
class CallGraphNode {
public:
/// A pair of the calling instruction (a call or invoke)
/// and the call graph node being called.
using CallRecord = std::pair<WeakTrackingVH, CallGraphNode *>;
public:
using CalledFunctionsVector = std::vector<CallRecord>;
/// Creates a node for the specified function.
inline CallGraphNode(Function *F) : F(F) {}
CallGraphNode(const CallGraphNode &) = delete;
CallGraphNode &operator=(const CallGraphNode &) = delete;
~CallGraphNode() {
assert(NumReferences == 0 && "Node deleted while references remain");
}
using iterator = std::vector<CallRecord>::iterator;
using const_iterator = std::vector<CallRecord>::const_iterator;
/// Returns the function that this call graph node represents.
Function *getFunction() const { return F; }
inline iterator begin() { return CalledFunctions.begin(); }
inline iterator end() { return CalledFunctions.end(); }
inline const_iterator begin() const { return CalledFunctions.begin(); }
inline const_iterator end() const { return CalledFunctions.end(); }
inline bool empty() const { return CalledFunctions.empty(); }
inline unsigned size() const { return (unsigned)CalledFunctions.size(); }
/// Returns the number of other CallGraphNodes in this CallGraph that
/// reference this node in their callee list.
unsigned getNumReferences() const { return NumReferences; }
/// Returns the i'th called function.
CallGraphNode *operator[](unsigned i) const {
assert(i < CalledFunctions.size() && "Invalid index");
return CalledFunctions[i].second;
}
/// Print out this call graph node.
void dump() const;
void print(raw_ostream &OS) const;
//===---------------------------------------------------------------------
// Methods to keep a call graph up to date with a function that has been
// modified
//
/// Removes all edges from this CallGraphNode to any functions it
/// calls.
void removeAllCalledFunctions() {
while (!CalledFunctions.empty()) {
CalledFunctions.back().second->DropRef();
CalledFunctions.pop_back();
}
}
/// Moves all the callee information from N to this node.
void stealCalledFunctionsFrom(CallGraphNode *N) {
assert(CalledFunctions.empty() &&
"Cannot steal callsite information if I already have some");
std::swap(CalledFunctions, N->CalledFunctions);
}
/// Adds a function to the list of functions called by this one.
void addCalledFunction(CallSite CS, CallGraphNode *M) {
assert(!CS.getInstruction() || !CS.getCalledFunction() ||
!CS.getCalledFunction()->isIntrinsic() ||
!Intrinsic::isLeaf(CS.getCalledFunction()->getIntrinsicID()));
CalledFunctions.emplace_back(CS.getInstruction(), M);
M->AddRef();
}
void removeCallEdge(iterator I) {
I->second->DropRef();
*I = CalledFunctions.back();
CalledFunctions.pop_back();
}
/// Removes the edge in the node for the specified call site.
///
/// Note that this method takes linear time, so it should be used sparingly.
void removeCallEdgeFor(CallSite CS);
/// Removes all call edges from this node to the specified callee
/// function.
///
/// This takes more time to execute than removeCallEdgeTo, so it should not
/// be used unless necessary.
void removeAnyCallEdgeTo(CallGraphNode *Callee);
/// Removes one edge associated with a null callsite from this node to
/// the specified callee function.
void removeOneAbstractEdgeTo(CallGraphNode *Callee);
/// Replaces the edge in the node for the specified call site with a
/// new one.
///
/// Note that this method takes linear time, so it should be used sparingly.
void replaceCallEdge(CallSite CS, CallSite NewCS, CallGraphNode *NewNode);
private:
friend class CallGraph;
Function *F;
std::vector<CallRecord> CalledFunctions;
/// The number of times that this CallGraphNode occurs in the
/// CalledFunctions array of this or other CallGraphNodes.
unsigned NumReferences = 0;
void DropRef() { --NumReferences; }
void AddRef() { ++NumReferences; }
/// A special function that should only be used by the CallGraph class.
void allReferencesDropped() { NumReferences = 0; }
};
/// An analysis pass to compute the \c CallGraph for a \c Module.
///
/// This class implements the concept of an analysis pass used by the \c
/// ModuleAnalysisManager to run an analysis over a module and cache the
/// resulting data.
class CallGraphAnalysis : public AnalysisInfoMixin<CallGraphAnalysis> {
friend AnalysisInfoMixin<CallGraphAnalysis>;
static AnalysisKey Key;
public:
/// A formulaic type to inform clients of the result type.
using Result = CallGraph;
/// Compute the \c CallGraph for the module \c M.
///
/// The real work here is done in the \c CallGraph constructor.
CallGraph run(Module &M, ModuleAnalysisManager &) { return CallGraph(M); }
};
/// Printer pass for the \c CallGraphAnalysis results.
class CallGraphPrinterPass : public PassInfoMixin<CallGraphPrinterPass> {
raw_ostream &OS;
public:
explicit CallGraphPrinterPass(raw_ostream &OS) : OS(OS) {}
PreservedAnalyses run(Module &M, ModuleAnalysisManager &AM);
};
/// The \c ModulePass which wraps up a \c CallGraph and the logic to
/// build it.
///
/// This class exposes both the interface to the call graph container and the
/// module pass which runs over a module of IR and produces the call graph. The
/// call graph interface is entirelly a wrapper around a \c CallGraph object
/// which is stored internally for each module.
class CallGraphWrapperPass : public ModulePass {
std::unique_ptr<CallGraph> G;
public:
static char ID; // Class identification, replacement for typeinfo
CallGraphWrapperPass();
~CallGraphWrapperPass() override;
/// The internal \c CallGraph around which the rest of this interface
/// is wrapped.
const CallGraph &getCallGraph() const { return *G; }
CallGraph &getCallGraph() { return *G; }
using iterator = CallGraph::iterator;
using const_iterator = CallGraph::const_iterator;
/// Returns the module the call graph corresponds to.
Module &getModule() const { return G->getModule(); }
inline iterator begin() { return G->begin(); }
inline iterator end() { return G->end(); }
inline const_iterator begin() const { return G->begin(); }
inline const_iterator end() const { return G->end(); }
/// Returns the call graph node for the provided function.
inline const CallGraphNode *operator[](const Function *F) const {
return (*G)[F];
}
/// Returns the call graph node for the provided function.
inline CallGraphNode *operator[](const Function *F) { return (*G)[F]; }
/// Returns the \c CallGraphNode which is used to represent
/// undetermined calls into the callgraph.
CallGraphNode *getExternalCallingNode() const {
return G->getExternalCallingNode();
}
CallGraphNode *getCallsExternalNode() const {
return G->getCallsExternalNode();
}
//===---------------------------------------------------------------------
// Functions to keep a call graph up to date with a function that has been
// modified.
//
/// Unlink the function from this module, returning it.
///
/// Because this removes the function from the module, the call graph node is
/// destroyed. This is only valid if the function does not call any other
/// functions (ie, there are no edges in it's CGN). The easiest way to do
/// this is to dropAllReferences before calling this.
Function *removeFunctionFromModule(CallGraphNode *CGN) {
return G->removeFunctionFromModule(CGN);
}
/// Similar to operator[], but this will insert a new CallGraphNode for
/// \c F if one does not already exist.
CallGraphNode *getOrInsertFunction(const Function *F) {
return G->getOrInsertFunction(F);
}
//===---------------------------------------------------------------------
// Implementation of the ModulePass interface needed here.
//
void getAnalysisUsage(AnalysisUsage &AU) const override;
bool runOnModule(Module &M) override;
void releaseMemory() override;
void print(raw_ostream &o, const Module *) const override;
void dump() const;
};
//===----------------------------------------------------------------------===//
// GraphTraits specializations for call graphs so that they can be treated as
// graphs by the generic graph algorithms.
//
// Provide graph traits for tranversing call graphs using standard graph
// traversals.
template <> struct GraphTraits<CallGraphNode *> {
using NodeRef = CallGraphNode *;
using CGNPairTy = CallGraphNode::CallRecord;
static NodeRef getEntryNode(CallGraphNode *CGN) { return CGN; }
static CallGraphNode *CGNGetValue(CGNPairTy P) { return P.second; }
using ChildIteratorType =
mapped_iterator<CallGraphNode::iterator, decltype(&CGNGetValue)>;
static ChildIteratorType child_begin(NodeRef N) {
return ChildIteratorType(N->begin(), &CGNGetValue);
}
static ChildIteratorType child_end(NodeRef N) {
return ChildIteratorType(N->end(), &CGNGetValue);
}
};
template <> struct GraphTraits<const CallGraphNode *> {
using NodeRef = const CallGraphNode *;
using CGNPairTy = CallGraphNode::CallRecord;
using EdgeRef = const CallGraphNode::CallRecord &;
static NodeRef getEntryNode(const CallGraphNode *CGN) { return CGN; }
static const CallGraphNode *CGNGetValue(CGNPairTy P) { return P.second; }
using ChildIteratorType =
mapped_iterator<CallGraphNode::const_iterator, decltype(&CGNGetValue)>;
using ChildEdgeIteratorType = CallGraphNode::const_iterator;
static ChildIteratorType child_begin(NodeRef N) {
return ChildIteratorType(N->begin(), &CGNGetValue);
}
static ChildIteratorType child_end(NodeRef N) {
return ChildIteratorType(N->end(), &CGNGetValue);
}
static ChildEdgeIteratorType child_edge_begin(NodeRef N) {
return N->begin();
}
static ChildEdgeIteratorType child_edge_end(NodeRef N) { return N->end(); }
static NodeRef edge_dest(EdgeRef E) { return E.second; }
};
template <>
struct GraphTraits<CallGraph *> : public GraphTraits<CallGraphNode *> {
using PairTy =
std::pair<const Function *const, std::unique_ptr<CallGraphNode>>;
static NodeRef getEntryNode(CallGraph *CGN) {
return CGN->getExternalCallingNode(); // Start at the external node!
}
static CallGraphNode *CGGetValuePtr(const PairTy &P) {
return P.second.get();
}
// nodes_iterator/begin/end - Allow iteration over all nodes in the graph
using nodes_iterator =
mapped_iterator<CallGraph::iterator, decltype(&CGGetValuePtr)>;
static nodes_iterator nodes_begin(CallGraph *CG) {
return nodes_iterator(CG->begin(), &CGGetValuePtr);
}
static nodes_iterator nodes_end(CallGraph *CG) {
return nodes_iterator(CG->end(), &CGGetValuePtr);
}
};
template <>
struct GraphTraits<const CallGraph *> : public GraphTraits<
const CallGraphNode *> {
using PairTy =
std::pair<const Function *const, std::unique_ptr<CallGraphNode>>;
static NodeRef getEntryNode(const CallGraph *CGN) {
return CGN->getExternalCallingNode(); // Start at the external node!
}
static const CallGraphNode *CGGetValuePtr(const PairTy &P) {
return P.second.get();
}
// nodes_iterator/begin/end - Allow iteration over all nodes in the graph
using nodes_iterator =
mapped_iterator<CallGraph::const_iterator, decltype(&CGGetValuePtr)>;
static nodes_iterator nodes_begin(const CallGraph *CG) {
return nodes_iterator(CG->begin(), &CGGetValuePtr);
}
static nodes_iterator nodes_end(const CallGraph *CG) {
return nodes_iterator(CG->end(), &CGGetValuePtr);
}
};
} // end namespace llvm
#endif // LLVM_ANALYSIS_CALLGRAPH_H