1
0
mirror of https://github.com/RPCS3/llvm-mirror.git synced 2024-10-20 03:23:01 +02:00
llvm-mirror/lib/Transforms/InstCombine/InstructionCombining.cpp
Florian Hahn 5543ae6955 [InstCombine] Preserve !annotation on newly created instructions.
If the source instruction has !annotation metadata, all instructions
created during combining should also have it. Tell the builder to
add it.

The !annotation system was discussed on llvm-dev as part of
'RFC: Combining Annotation Metadata and Remarks'
(http://lists.llvm.org/pipermail/llvm-dev/2020-November/146393.html)

This patch is based on an earlier patch by Francis Visoiu Mistrih.

Reviewed By: thegameg, lebedev.ri

Differential Revision: https://reviews.llvm.org/D91444
2020-12-17 15:20:23 +00:00

4060 lines
160 KiB
C++

//===- InstructionCombining.cpp - Combine multiple instructions -----------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// InstructionCombining - Combine instructions to form fewer, simple
// instructions. This pass does not modify the CFG. This pass is where
// algebraic simplification happens.
//
// This pass combines things like:
// %Y = add i32 %X, 1
// %Z = add i32 %Y, 1
// into:
// %Z = add i32 %X, 2
//
// This is a simple worklist driven algorithm.
//
// This pass guarantees that the following canonicalizations are performed on
// the program:
// 1. If a binary operator has a constant operand, it is moved to the RHS
// 2. Bitwise operators with constant operands are always grouped so that
// shifts are performed first, then or's, then and's, then xor's.
// 3. Compare instructions are converted from <,>,<=,>= to ==,!= if possible
// 4. All cmp instructions on boolean values are replaced with logical ops
// 5. add X, X is represented as (X*2) => (X << 1)
// 6. Multiplies with a power-of-two constant argument are transformed into
// shifts.
// ... etc.
//
//===----------------------------------------------------------------------===//
#include "InstCombineInternal.h"
#include "llvm-c/Initialization.h"
#include "llvm-c/Transforms/InstCombine.h"
#include "llvm/ADT/APInt.h"
#include "llvm/ADT/ArrayRef.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/None.h"
#include "llvm/ADT/SmallPtrSet.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/ADT/TinyPtrVector.h"
#include "llvm/Analysis/AliasAnalysis.h"
#include "llvm/Analysis/AssumptionCache.h"
#include "llvm/Analysis/BasicAliasAnalysis.h"
#include "llvm/Analysis/BlockFrequencyInfo.h"
#include "llvm/Analysis/CFG.h"
#include "llvm/Analysis/ConstantFolding.h"
#include "llvm/Analysis/EHPersonalities.h"
#include "llvm/Analysis/GlobalsModRef.h"
#include "llvm/Analysis/InstructionSimplify.h"
#include "llvm/Analysis/LazyBlockFrequencyInfo.h"
#include "llvm/Analysis/LoopInfo.h"
#include "llvm/Analysis/MemoryBuiltins.h"
#include "llvm/Analysis/OptimizationRemarkEmitter.h"
#include "llvm/Analysis/ProfileSummaryInfo.h"
#include "llvm/Analysis/TargetFolder.h"
#include "llvm/Analysis/TargetLibraryInfo.h"
#include "llvm/Analysis/TargetTransformInfo.h"
#include "llvm/Analysis/ValueTracking.h"
#include "llvm/Analysis/VectorUtils.h"
#include "llvm/IR/BasicBlock.h"
#include "llvm/IR/CFG.h"
#include "llvm/IR/Constant.h"
#include "llvm/IR/Constants.h"
#include "llvm/IR/DIBuilder.h"
#include "llvm/IR/DataLayout.h"
#include "llvm/IR/DerivedTypes.h"
#include "llvm/IR/Dominators.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/GetElementPtrTypeIterator.h"
#include "llvm/IR/IRBuilder.h"
#include "llvm/IR/InstrTypes.h"
#include "llvm/IR/Instruction.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/IntrinsicInst.h"
#include "llvm/IR/Intrinsics.h"
#include "llvm/IR/LegacyPassManager.h"
#include "llvm/IR/Metadata.h"
#include "llvm/IR/Operator.h"
#include "llvm/IR/PassManager.h"
#include "llvm/IR/PatternMatch.h"
#include "llvm/IR/Type.h"
#include "llvm/IR/Use.h"
#include "llvm/IR/User.h"
#include "llvm/IR/Value.h"
#include "llvm/IR/ValueHandle.h"
#include "llvm/InitializePasses.h"
#include "llvm/Pass.h"
#include "llvm/Support/CBindingWrapping.h"
#include "llvm/Support/Casting.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Compiler.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/DebugCounter.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/KnownBits.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/Transforms/InstCombine/InstCombine.h"
#include "llvm/Transforms/InstCombine/InstCombineWorklist.h"
#include "llvm/Transforms/Utils/Local.h"
#include <algorithm>
#include <cassert>
#include <cstdint>
#include <memory>
#include <string>
#include <utility>
using namespace llvm;
using namespace llvm::PatternMatch;
#define DEBUG_TYPE "instcombine"
STATISTIC(NumWorklistIterations,
"Number of instruction combining iterations performed");
STATISTIC(NumCombined , "Number of insts combined");
STATISTIC(NumConstProp, "Number of constant folds");
STATISTIC(NumDeadInst , "Number of dead inst eliminated");
STATISTIC(NumSunkInst , "Number of instructions sunk");
STATISTIC(NumExpand, "Number of expansions");
STATISTIC(NumFactor , "Number of factorizations");
STATISTIC(NumReassoc , "Number of reassociations");
DEBUG_COUNTER(VisitCounter, "instcombine-visit",
"Controls which instructions are visited");
// FIXME: these limits eventually should be as low as 2.
static constexpr unsigned InstCombineDefaultMaxIterations = 1000;
#ifndef NDEBUG
static constexpr unsigned InstCombineDefaultInfiniteLoopThreshold = 100;
#else
static constexpr unsigned InstCombineDefaultInfiniteLoopThreshold = 1000;
#endif
static cl::opt<bool>
EnableCodeSinking("instcombine-code-sinking", cl::desc("Enable code sinking"),
cl::init(true));
static cl::opt<unsigned> LimitMaxIterations(
"instcombine-max-iterations",
cl::desc("Limit the maximum number of instruction combining iterations"),
cl::init(InstCombineDefaultMaxIterations));
static cl::opt<unsigned> InfiniteLoopDetectionThreshold(
"instcombine-infinite-loop-threshold",
cl::desc("Number of instruction combining iterations considered an "
"infinite loop"),
cl::init(InstCombineDefaultInfiniteLoopThreshold), cl::Hidden);
static cl::opt<unsigned>
MaxArraySize("instcombine-maxarray-size", cl::init(1024),
cl::desc("Maximum array size considered when doing a combine"));
// FIXME: Remove this flag when it is no longer necessary to convert
// llvm.dbg.declare to avoid inaccurate debug info. Setting this to false
// increases variable availability at the cost of accuracy. Variables that
// cannot be promoted by mem2reg or SROA will be described as living in memory
// for their entire lifetime. However, passes like DSE and instcombine can
// delete stores to the alloca, leading to misleading and inaccurate debug
// information. This flag can be removed when those passes are fixed.
static cl::opt<unsigned> ShouldLowerDbgDeclare("instcombine-lower-dbg-declare",
cl::Hidden, cl::init(true));
Optional<Instruction *>
InstCombiner::targetInstCombineIntrinsic(IntrinsicInst &II) {
// Handle target specific intrinsics
if (II.getCalledFunction()->isTargetIntrinsic()) {
return TTI.instCombineIntrinsic(*this, II);
}
return None;
}
Optional<Value *> InstCombiner::targetSimplifyDemandedUseBitsIntrinsic(
IntrinsicInst &II, APInt DemandedMask, KnownBits &Known,
bool &KnownBitsComputed) {
// Handle target specific intrinsics
if (II.getCalledFunction()->isTargetIntrinsic()) {
return TTI.simplifyDemandedUseBitsIntrinsic(*this, II, DemandedMask, Known,
KnownBitsComputed);
}
return None;
}
Optional<Value *> InstCombiner::targetSimplifyDemandedVectorEltsIntrinsic(
IntrinsicInst &II, APInt DemandedElts, APInt &UndefElts, APInt &UndefElts2,
APInt &UndefElts3,
std::function<void(Instruction *, unsigned, APInt, APInt &)>
SimplifyAndSetOp) {
// Handle target specific intrinsics
if (II.getCalledFunction()->isTargetIntrinsic()) {
return TTI.simplifyDemandedVectorEltsIntrinsic(
*this, II, DemandedElts, UndefElts, UndefElts2, UndefElts3,
SimplifyAndSetOp);
}
return None;
}
Value *InstCombinerImpl::EmitGEPOffset(User *GEP) {
return llvm::EmitGEPOffset(&Builder, DL, GEP);
}
/// Return true if it is desirable to convert an integer computation from a
/// given bit width to a new bit width.
/// We don't want to convert from a legal to an illegal type or from a smaller
/// to a larger illegal type. A width of '1' is always treated as a legal type
/// because i1 is a fundamental type in IR, and there are many specialized
/// optimizations for i1 types. Widths of 8, 16 or 32 are equally treated as
/// legal to convert to, in order to open up more combining opportunities.
/// NOTE: this treats i8, i16 and i32 specially, due to them being so common
/// from frontend languages.
bool InstCombinerImpl::shouldChangeType(unsigned FromWidth,
unsigned ToWidth) const {
bool FromLegal = FromWidth == 1 || DL.isLegalInteger(FromWidth);
bool ToLegal = ToWidth == 1 || DL.isLegalInteger(ToWidth);
// Convert to widths of 8, 16 or 32 even if they are not legal types. Only
// shrink types, to prevent infinite loops.
if (ToWidth < FromWidth && (ToWidth == 8 || ToWidth == 16 || ToWidth == 32))
return true;
// If this is a legal integer from type, and the result would be an illegal
// type, don't do the transformation.
if (FromLegal && !ToLegal)
return false;
// Otherwise, if both are illegal, do not increase the size of the result. We
// do allow things like i160 -> i64, but not i64 -> i160.
if (!FromLegal && !ToLegal && ToWidth > FromWidth)
return false;
return true;
}
/// Return true if it is desirable to convert a computation from 'From' to 'To'.
/// We don't want to convert from a legal to an illegal type or from a smaller
/// to a larger illegal type. i1 is always treated as a legal type because it is
/// a fundamental type in IR, and there are many specialized optimizations for
/// i1 types.
bool InstCombinerImpl::shouldChangeType(Type *From, Type *To) const {
// TODO: This could be extended to allow vectors. Datalayout changes might be
// needed to properly support that.
if (!From->isIntegerTy() || !To->isIntegerTy())
return false;
unsigned FromWidth = From->getPrimitiveSizeInBits();
unsigned ToWidth = To->getPrimitiveSizeInBits();
return shouldChangeType(FromWidth, ToWidth);
}
// Return true, if No Signed Wrap should be maintained for I.
// The No Signed Wrap flag can be kept if the operation "B (I.getOpcode) C",
// where both B and C should be ConstantInts, results in a constant that does
// not overflow. This function only handles the Add and Sub opcodes. For
// all other opcodes, the function conservatively returns false.
static bool maintainNoSignedWrap(BinaryOperator &I, Value *B, Value *C) {
auto *OBO = dyn_cast<OverflowingBinaryOperator>(&I);
if (!OBO || !OBO->hasNoSignedWrap())
return false;
// We reason about Add and Sub Only.
Instruction::BinaryOps Opcode = I.getOpcode();
if (Opcode != Instruction::Add && Opcode != Instruction::Sub)
return false;
const APInt *BVal, *CVal;
if (!match(B, m_APInt(BVal)) || !match(C, m_APInt(CVal)))
return false;
bool Overflow = false;
if (Opcode == Instruction::Add)
(void)BVal->sadd_ov(*CVal, Overflow);
else
(void)BVal->ssub_ov(*CVal, Overflow);
return !Overflow;
}
static bool hasNoUnsignedWrap(BinaryOperator &I) {
auto *OBO = dyn_cast<OverflowingBinaryOperator>(&I);
return OBO && OBO->hasNoUnsignedWrap();
}
static bool hasNoSignedWrap(BinaryOperator &I) {
auto *OBO = dyn_cast<OverflowingBinaryOperator>(&I);
return OBO && OBO->hasNoSignedWrap();
}
/// Conservatively clears subclassOptionalData after a reassociation or
/// commutation. We preserve fast-math flags when applicable as they can be
/// preserved.
static void ClearSubclassDataAfterReassociation(BinaryOperator &I) {
FPMathOperator *FPMO = dyn_cast<FPMathOperator>(&I);
if (!FPMO) {
I.clearSubclassOptionalData();
return;
}
FastMathFlags FMF = I.getFastMathFlags();
I.clearSubclassOptionalData();
I.setFastMathFlags(FMF);
}
/// Combine constant operands of associative operations either before or after a
/// cast to eliminate one of the associative operations:
/// (op (cast (op X, C2)), C1) --> (cast (op X, op (C1, C2)))
/// (op (cast (op X, C2)), C1) --> (op (cast X), op (C1, C2))
static bool simplifyAssocCastAssoc(BinaryOperator *BinOp1,
InstCombinerImpl &IC) {
auto *Cast = dyn_cast<CastInst>(BinOp1->getOperand(0));
if (!Cast || !Cast->hasOneUse())
return false;
// TODO: Enhance logic for other casts and remove this check.
auto CastOpcode = Cast->getOpcode();
if (CastOpcode != Instruction::ZExt)
return false;
// TODO: Enhance logic for other BinOps and remove this check.
if (!BinOp1->isBitwiseLogicOp())
return false;
auto AssocOpcode = BinOp1->getOpcode();
auto *BinOp2 = dyn_cast<BinaryOperator>(Cast->getOperand(0));
if (!BinOp2 || !BinOp2->hasOneUse() || BinOp2->getOpcode() != AssocOpcode)
return false;
Constant *C1, *C2;
if (!match(BinOp1->getOperand(1), m_Constant(C1)) ||
!match(BinOp2->getOperand(1), m_Constant(C2)))
return false;
// TODO: This assumes a zext cast.
// Eg, if it was a trunc, we'd cast C1 to the source type because casting C2
// to the destination type might lose bits.
// Fold the constants together in the destination type:
// (op (cast (op X, C2)), C1) --> (op (cast X), FoldedC)
Type *DestTy = C1->getType();
Constant *CastC2 = ConstantExpr::getCast(CastOpcode, C2, DestTy);
Constant *FoldedC = ConstantExpr::get(AssocOpcode, C1, CastC2);
IC.replaceOperand(*Cast, 0, BinOp2->getOperand(0));
IC.replaceOperand(*BinOp1, 1, FoldedC);
return true;
}
/// This performs a few simplifications for operators that are associative or
/// commutative:
///
/// Commutative operators:
///
/// 1. Order operands such that they are listed from right (least complex) to
/// left (most complex). This puts constants before unary operators before
/// binary operators.
///
/// Associative operators:
///
/// 2. Transform: "(A op B) op C" ==> "A op (B op C)" if "B op C" simplifies.
/// 3. Transform: "A op (B op C)" ==> "(A op B) op C" if "A op B" simplifies.
///
/// Associative and commutative operators:
///
/// 4. Transform: "(A op B) op C" ==> "(C op A) op B" if "C op A" simplifies.
/// 5. Transform: "A op (B op C)" ==> "B op (C op A)" if "C op A" simplifies.
/// 6. Transform: "(A op C1) op (B op C2)" ==> "(A op B) op (C1 op C2)"
/// if C1 and C2 are constants.
bool InstCombinerImpl::SimplifyAssociativeOrCommutative(BinaryOperator &I) {
Instruction::BinaryOps Opcode = I.getOpcode();
bool Changed = false;
do {
// Order operands such that they are listed from right (least complex) to
// left (most complex). This puts constants before unary operators before
// binary operators.
if (I.isCommutative() && getComplexity(I.getOperand(0)) <
getComplexity(I.getOperand(1)))
Changed = !I.swapOperands();
BinaryOperator *Op0 = dyn_cast<BinaryOperator>(I.getOperand(0));
BinaryOperator *Op1 = dyn_cast<BinaryOperator>(I.getOperand(1));
if (I.isAssociative()) {
// Transform: "(A op B) op C" ==> "A op (B op C)" if "B op C" simplifies.
if (Op0 && Op0->getOpcode() == Opcode) {
Value *A = Op0->getOperand(0);
Value *B = Op0->getOperand(1);
Value *C = I.getOperand(1);
// Does "B op C" simplify?
if (Value *V = SimplifyBinOp(Opcode, B, C, SQ.getWithInstruction(&I))) {
// It simplifies to V. Form "A op V".
replaceOperand(I, 0, A);
replaceOperand(I, 1, V);
bool IsNUW = hasNoUnsignedWrap(I) && hasNoUnsignedWrap(*Op0);
bool IsNSW = maintainNoSignedWrap(I, B, C) && hasNoSignedWrap(*Op0);
// Conservatively clear all optional flags since they may not be
// preserved by the reassociation. Reset nsw/nuw based on the above
// analysis.
ClearSubclassDataAfterReassociation(I);
// Note: this is only valid because SimplifyBinOp doesn't look at
// the operands to Op0.
if (IsNUW)
I.setHasNoUnsignedWrap(true);
if (IsNSW)
I.setHasNoSignedWrap(true);
Changed = true;
++NumReassoc;
continue;
}
}
// Transform: "A op (B op C)" ==> "(A op B) op C" if "A op B" simplifies.
if (Op1 && Op1->getOpcode() == Opcode) {
Value *A = I.getOperand(0);
Value *B = Op1->getOperand(0);
Value *C = Op1->getOperand(1);
// Does "A op B" simplify?
if (Value *V = SimplifyBinOp(Opcode, A, B, SQ.getWithInstruction(&I))) {
// It simplifies to V. Form "V op C".
replaceOperand(I, 0, V);
replaceOperand(I, 1, C);
// Conservatively clear the optional flags, since they may not be
// preserved by the reassociation.
ClearSubclassDataAfterReassociation(I);
Changed = true;
++NumReassoc;
continue;
}
}
}
if (I.isAssociative() && I.isCommutative()) {
if (simplifyAssocCastAssoc(&I, *this)) {
Changed = true;
++NumReassoc;
continue;
}
// Transform: "(A op B) op C" ==> "(C op A) op B" if "C op A" simplifies.
if (Op0 && Op0->getOpcode() == Opcode) {
Value *A = Op0->getOperand(0);
Value *B = Op0->getOperand(1);
Value *C = I.getOperand(1);
// Does "C op A" simplify?
if (Value *V = SimplifyBinOp(Opcode, C, A, SQ.getWithInstruction(&I))) {
// It simplifies to V. Form "V op B".
replaceOperand(I, 0, V);
replaceOperand(I, 1, B);
// Conservatively clear the optional flags, since they may not be
// preserved by the reassociation.
ClearSubclassDataAfterReassociation(I);
Changed = true;
++NumReassoc;
continue;
}
}
// Transform: "A op (B op C)" ==> "B op (C op A)" if "C op A" simplifies.
if (Op1 && Op1->getOpcode() == Opcode) {
Value *A = I.getOperand(0);
Value *B = Op1->getOperand(0);
Value *C = Op1->getOperand(1);
// Does "C op A" simplify?
if (Value *V = SimplifyBinOp(Opcode, C, A, SQ.getWithInstruction(&I))) {
// It simplifies to V. Form "B op V".
replaceOperand(I, 0, B);
replaceOperand(I, 1, V);
// Conservatively clear the optional flags, since they may not be
// preserved by the reassociation.
ClearSubclassDataAfterReassociation(I);
Changed = true;
++NumReassoc;
continue;
}
}
// Transform: "(A op C1) op (B op C2)" ==> "(A op B) op (C1 op C2)"
// if C1 and C2 are constants.
Value *A, *B;
Constant *C1, *C2;
if (Op0 && Op1 &&
Op0->getOpcode() == Opcode && Op1->getOpcode() == Opcode &&
match(Op0, m_OneUse(m_BinOp(m_Value(A), m_Constant(C1)))) &&
match(Op1, m_OneUse(m_BinOp(m_Value(B), m_Constant(C2))))) {
bool IsNUW = hasNoUnsignedWrap(I) &&
hasNoUnsignedWrap(*Op0) &&
hasNoUnsignedWrap(*Op1);
BinaryOperator *NewBO = (IsNUW && Opcode == Instruction::Add) ?
BinaryOperator::CreateNUW(Opcode, A, B) :
BinaryOperator::Create(Opcode, A, B);
if (isa<FPMathOperator>(NewBO)) {
FastMathFlags Flags = I.getFastMathFlags();
Flags &= Op0->getFastMathFlags();
Flags &= Op1->getFastMathFlags();
NewBO->setFastMathFlags(Flags);
}
InsertNewInstWith(NewBO, I);
NewBO->takeName(Op1);
replaceOperand(I, 0, NewBO);
replaceOperand(I, 1, ConstantExpr::get(Opcode, C1, C2));
// Conservatively clear the optional flags, since they may not be
// preserved by the reassociation.
ClearSubclassDataAfterReassociation(I);
if (IsNUW)
I.setHasNoUnsignedWrap(true);
Changed = true;
continue;
}
}
// No further simplifications.
return Changed;
} while (true);
}
/// Return whether "X LOp (Y ROp Z)" is always equal to
/// "(X LOp Y) ROp (X LOp Z)".
static bool leftDistributesOverRight(Instruction::BinaryOps LOp,
Instruction::BinaryOps ROp) {
// X & (Y | Z) <--> (X & Y) | (X & Z)
// X & (Y ^ Z) <--> (X & Y) ^ (X & Z)
if (LOp == Instruction::And)
return ROp == Instruction::Or || ROp == Instruction::Xor;
// X | (Y & Z) <--> (X | Y) & (X | Z)
if (LOp == Instruction::Or)
return ROp == Instruction::And;
// X * (Y + Z) <--> (X * Y) + (X * Z)
// X * (Y - Z) <--> (X * Y) - (X * Z)
if (LOp == Instruction::Mul)
return ROp == Instruction::Add || ROp == Instruction::Sub;
return false;
}
/// Return whether "(X LOp Y) ROp Z" is always equal to
/// "(X ROp Z) LOp (Y ROp Z)".
static bool rightDistributesOverLeft(Instruction::BinaryOps LOp,
Instruction::BinaryOps ROp) {
if (Instruction::isCommutative(ROp))
return leftDistributesOverRight(ROp, LOp);
// (X {&|^} Y) >> Z <--> (X >> Z) {&|^} (Y >> Z) for all shifts.
return Instruction::isBitwiseLogicOp(LOp) && Instruction::isShift(ROp);
// TODO: It would be nice to handle division, aka "(X + Y)/Z = X/Z + Y/Z",
// but this requires knowing that the addition does not overflow and other
// such subtleties.
}
/// This function returns identity value for given opcode, which can be used to
/// factor patterns like (X * 2) + X ==> (X * 2) + (X * 1) ==> X * (2 + 1).
static Value *getIdentityValue(Instruction::BinaryOps Opcode, Value *V) {
if (isa<Constant>(V))
return nullptr;
return ConstantExpr::getBinOpIdentity(Opcode, V->getType());
}
/// This function predicates factorization using distributive laws. By default,
/// it just returns the 'Op' inputs. But for special-cases like
/// 'add(shl(X, 5), ...)', this function will have TopOpcode == Instruction::Add
/// and Op = shl(X, 5). The 'shl' is treated as the more general 'mul X, 32' to
/// allow more factorization opportunities.
static Instruction::BinaryOps
getBinOpsForFactorization(Instruction::BinaryOps TopOpcode, BinaryOperator *Op,
Value *&LHS, Value *&RHS) {
assert(Op && "Expected a binary operator");
LHS = Op->getOperand(0);
RHS = Op->getOperand(1);
if (TopOpcode == Instruction::Add || TopOpcode == Instruction::Sub) {
Constant *C;
if (match(Op, m_Shl(m_Value(), m_Constant(C)))) {
// X << C --> X * (1 << C)
RHS = ConstantExpr::getShl(ConstantInt::get(Op->getType(), 1), C);
return Instruction::Mul;
}
// TODO: We can add other conversions e.g. shr => div etc.
}
return Op->getOpcode();
}
/// This tries to simplify binary operations by factorizing out common terms
/// (e. g. "(A*B)+(A*C)" -> "A*(B+C)").
Value *InstCombinerImpl::tryFactorization(BinaryOperator &I,
Instruction::BinaryOps InnerOpcode,
Value *A, Value *B, Value *C,
Value *D) {
assert(A && B && C && D && "All values must be provided");
Value *V = nullptr;
Value *SimplifiedInst = nullptr;
Value *LHS = I.getOperand(0), *RHS = I.getOperand(1);
Instruction::BinaryOps TopLevelOpcode = I.getOpcode();
// Does "X op' Y" always equal "Y op' X"?
bool InnerCommutative = Instruction::isCommutative(InnerOpcode);
// Does "X op' (Y op Z)" always equal "(X op' Y) op (X op' Z)"?
if (leftDistributesOverRight(InnerOpcode, TopLevelOpcode))
// Does the instruction have the form "(A op' B) op (A op' D)" or, in the
// commutative case, "(A op' B) op (C op' A)"?
if (A == C || (InnerCommutative && A == D)) {
if (A != C)
std::swap(C, D);
// Consider forming "A op' (B op D)".
// If "B op D" simplifies then it can be formed with no cost.
V = SimplifyBinOp(TopLevelOpcode, B, D, SQ.getWithInstruction(&I));
// If "B op D" doesn't simplify then only go on if both of the existing
// operations "A op' B" and "C op' D" will be zapped as no longer used.
if (!V && LHS->hasOneUse() && RHS->hasOneUse())
V = Builder.CreateBinOp(TopLevelOpcode, B, D, RHS->getName());
if (V) {
SimplifiedInst = Builder.CreateBinOp(InnerOpcode, A, V);
}
}
// Does "(X op Y) op' Z" always equal "(X op' Z) op (Y op' Z)"?
if (!SimplifiedInst && rightDistributesOverLeft(TopLevelOpcode, InnerOpcode))
// Does the instruction have the form "(A op' B) op (C op' B)" or, in the
// commutative case, "(A op' B) op (B op' D)"?
if (B == D || (InnerCommutative && B == C)) {
if (B != D)
std::swap(C, D);
// Consider forming "(A op C) op' B".
// If "A op C" simplifies then it can be formed with no cost.
V = SimplifyBinOp(TopLevelOpcode, A, C, SQ.getWithInstruction(&I));
// If "A op C" doesn't simplify then only go on if both of the existing
// operations "A op' B" and "C op' D" will be zapped as no longer used.
if (!V && LHS->hasOneUse() && RHS->hasOneUse())
V = Builder.CreateBinOp(TopLevelOpcode, A, C, LHS->getName());
if (V) {
SimplifiedInst = Builder.CreateBinOp(InnerOpcode, V, B);
}
}
if (SimplifiedInst) {
++NumFactor;
SimplifiedInst->takeName(&I);
// Check if we can add NSW/NUW flags to SimplifiedInst. If so, set them.
if (BinaryOperator *BO = dyn_cast<BinaryOperator>(SimplifiedInst)) {
if (isa<OverflowingBinaryOperator>(SimplifiedInst)) {
bool HasNSW = false;
bool HasNUW = false;
if (isa<OverflowingBinaryOperator>(&I)) {
HasNSW = I.hasNoSignedWrap();
HasNUW = I.hasNoUnsignedWrap();
}
if (auto *LOBO = dyn_cast<OverflowingBinaryOperator>(LHS)) {
HasNSW &= LOBO->hasNoSignedWrap();
HasNUW &= LOBO->hasNoUnsignedWrap();
}
if (auto *ROBO = dyn_cast<OverflowingBinaryOperator>(RHS)) {
HasNSW &= ROBO->hasNoSignedWrap();
HasNUW &= ROBO->hasNoUnsignedWrap();
}
if (TopLevelOpcode == Instruction::Add &&
InnerOpcode == Instruction::Mul) {
// We can propagate 'nsw' if we know that
// %Y = mul nsw i16 %X, C
// %Z = add nsw i16 %Y, %X
// =>
// %Z = mul nsw i16 %X, C+1
//
// iff C+1 isn't INT_MIN
const APInt *CInt;
if (match(V, m_APInt(CInt))) {
if (!CInt->isMinSignedValue())
BO->setHasNoSignedWrap(HasNSW);
}
// nuw can be propagated with any constant or nuw value.
BO->setHasNoUnsignedWrap(HasNUW);
}
}
}
}
return SimplifiedInst;
}
/// This tries to simplify binary operations which some other binary operation
/// distributes over either by factorizing out common terms
/// (eg "(A*B)+(A*C)" -> "A*(B+C)") or expanding out if this results in
/// simplifications (eg: "A & (B | C) -> (A&B) | (A&C)" if this is a win).
/// Returns the simplified value, or null if it didn't simplify.
Value *InstCombinerImpl::SimplifyUsingDistributiveLaws(BinaryOperator &I) {
Value *LHS = I.getOperand(0), *RHS = I.getOperand(1);
BinaryOperator *Op0 = dyn_cast<BinaryOperator>(LHS);
BinaryOperator *Op1 = dyn_cast<BinaryOperator>(RHS);
Instruction::BinaryOps TopLevelOpcode = I.getOpcode();
{
// Factorization.
Value *A, *B, *C, *D;
Instruction::BinaryOps LHSOpcode, RHSOpcode;
if (Op0)
LHSOpcode = getBinOpsForFactorization(TopLevelOpcode, Op0, A, B);
if (Op1)
RHSOpcode = getBinOpsForFactorization(TopLevelOpcode, Op1, C, D);
// The instruction has the form "(A op' B) op (C op' D)". Try to factorize
// a common term.
if (Op0 && Op1 && LHSOpcode == RHSOpcode)
if (Value *V = tryFactorization(I, LHSOpcode, A, B, C, D))
return V;
// The instruction has the form "(A op' B) op (C)". Try to factorize common
// term.
if (Op0)
if (Value *Ident = getIdentityValue(LHSOpcode, RHS))
if (Value *V = tryFactorization(I, LHSOpcode, A, B, RHS, Ident))
return V;
// The instruction has the form "(B) op (C op' D)". Try to factorize common
// term.
if (Op1)
if (Value *Ident = getIdentityValue(RHSOpcode, LHS))
if (Value *V = tryFactorization(I, RHSOpcode, LHS, Ident, C, D))
return V;
}
// Expansion.
if (Op0 && rightDistributesOverLeft(Op0->getOpcode(), TopLevelOpcode)) {
// The instruction has the form "(A op' B) op C". See if expanding it out
// to "(A op C) op' (B op C)" results in simplifications.
Value *A = Op0->getOperand(0), *B = Op0->getOperand(1), *C = RHS;
Instruction::BinaryOps InnerOpcode = Op0->getOpcode(); // op'
// Disable the use of undef because it's not safe to distribute undef.
auto SQDistributive = SQ.getWithInstruction(&I).getWithoutUndef();
Value *L = SimplifyBinOp(TopLevelOpcode, A, C, SQDistributive);
Value *R = SimplifyBinOp(TopLevelOpcode, B, C, SQDistributive);
// Do "A op C" and "B op C" both simplify?
if (L && R) {
// They do! Return "L op' R".
++NumExpand;
C = Builder.CreateBinOp(InnerOpcode, L, R);
C->takeName(&I);
return C;
}
// Does "A op C" simplify to the identity value for the inner opcode?
if (L && L == ConstantExpr::getBinOpIdentity(InnerOpcode, L->getType())) {
// They do! Return "B op C".
++NumExpand;
C = Builder.CreateBinOp(TopLevelOpcode, B, C);
C->takeName(&I);
return C;
}
// Does "B op C" simplify to the identity value for the inner opcode?
if (R && R == ConstantExpr::getBinOpIdentity(InnerOpcode, R->getType())) {
// They do! Return "A op C".
++NumExpand;
C = Builder.CreateBinOp(TopLevelOpcode, A, C);
C->takeName(&I);
return C;
}
}
if (Op1 && leftDistributesOverRight(TopLevelOpcode, Op1->getOpcode())) {
// The instruction has the form "A op (B op' C)". See if expanding it out
// to "(A op B) op' (A op C)" results in simplifications.
Value *A = LHS, *B = Op1->getOperand(0), *C = Op1->getOperand(1);
Instruction::BinaryOps InnerOpcode = Op1->getOpcode(); // op'
// Disable the use of undef because it's not safe to distribute undef.
auto SQDistributive = SQ.getWithInstruction(&I).getWithoutUndef();
Value *L = SimplifyBinOp(TopLevelOpcode, A, B, SQDistributive);
Value *R = SimplifyBinOp(TopLevelOpcode, A, C, SQDistributive);
// Do "A op B" and "A op C" both simplify?
if (L && R) {
// They do! Return "L op' R".
++NumExpand;
A = Builder.CreateBinOp(InnerOpcode, L, R);
A->takeName(&I);
return A;
}
// Does "A op B" simplify to the identity value for the inner opcode?
if (L && L == ConstantExpr::getBinOpIdentity(InnerOpcode, L->getType())) {
// They do! Return "A op C".
++NumExpand;
A = Builder.CreateBinOp(TopLevelOpcode, A, C);
A->takeName(&I);
return A;
}
// Does "A op C" simplify to the identity value for the inner opcode?
if (R && R == ConstantExpr::getBinOpIdentity(InnerOpcode, R->getType())) {
// They do! Return "A op B".
++NumExpand;
A = Builder.CreateBinOp(TopLevelOpcode, A, B);
A->takeName(&I);
return A;
}
}
return SimplifySelectsFeedingBinaryOp(I, LHS, RHS);
}
Value *InstCombinerImpl::SimplifySelectsFeedingBinaryOp(BinaryOperator &I,
Value *LHS,
Value *RHS) {
Value *A, *B, *C, *D, *E, *F;
bool LHSIsSelect = match(LHS, m_Select(m_Value(A), m_Value(B), m_Value(C)));
bool RHSIsSelect = match(RHS, m_Select(m_Value(D), m_Value(E), m_Value(F)));
if (!LHSIsSelect && !RHSIsSelect)
return nullptr;
FastMathFlags FMF;
BuilderTy::FastMathFlagGuard Guard(Builder);
if (isa<FPMathOperator>(&I)) {
FMF = I.getFastMathFlags();
Builder.setFastMathFlags(FMF);
}
Instruction::BinaryOps Opcode = I.getOpcode();
SimplifyQuery Q = SQ.getWithInstruction(&I);
Value *Cond, *True = nullptr, *False = nullptr;
if (LHSIsSelect && RHSIsSelect && A == D) {
// (A ? B : C) op (A ? E : F) -> A ? (B op E) : (C op F)
Cond = A;
True = SimplifyBinOp(Opcode, B, E, FMF, Q);
False = SimplifyBinOp(Opcode, C, F, FMF, Q);
if (LHS->hasOneUse() && RHS->hasOneUse()) {
if (False && !True)
True = Builder.CreateBinOp(Opcode, B, E);
else if (True && !False)
False = Builder.CreateBinOp(Opcode, C, F);
}
} else if (LHSIsSelect && LHS->hasOneUse()) {
// (A ? B : C) op Y -> A ? (B op Y) : (C op Y)
Cond = A;
True = SimplifyBinOp(Opcode, B, RHS, FMF, Q);
False = SimplifyBinOp(Opcode, C, RHS, FMF, Q);
} else if (RHSIsSelect && RHS->hasOneUse()) {
// X op (D ? E : F) -> D ? (X op E) : (X op F)
Cond = D;
True = SimplifyBinOp(Opcode, LHS, E, FMF, Q);
False = SimplifyBinOp(Opcode, LHS, F, FMF, Q);
}
if (!True || !False)
return nullptr;
Value *SI = Builder.CreateSelect(Cond, True, False);
SI->takeName(&I);
return SI;
}
/// Given a 'sub' instruction, return the RHS of the instruction if the LHS is a
/// constant zero (which is the 'negate' form).
Value *InstCombinerImpl::dyn_castNegVal(Value *V) const {
Value *NegV;
if (match(V, m_Neg(m_Value(NegV))))
return NegV;
// Constants can be considered to be negated values if they can be folded.
if (ConstantInt *C = dyn_cast<ConstantInt>(V))
return ConstantExpr::getNeg(C);
if (ConstantDataVector *C = dyn_cast<ConstantDataVector>(V))
if (C->getType()->getElementType()->isIntegerTy())
return ConstantExpr::getNeg(C);
if (ConstantVector *CV = dyn_cast<ConstantVector>(V)) {
for (unsigned i = 0, e = CV->getNumOperands(); i != e; ++i) {
Constant *Elt = CV->getAggregateElement(i);
if (!Elt)
return nullptr;
if (isa<UndefValue>(Elt))
continue;
if (!isa<ConstantInt>(Elt))
return nullptr;
}
return ConstantExpr::getNeg(CV);
}
return nullptr;
}
static Value *foldOperationIntoSelectOperand(Instruction &I, Value *SO,
InstCombiner::BuilderTy &Builder) {
if (auto *Cast = dyn_cast<CastInst>(&I))
return Builder.CreateCast(Cast->getOpcode(), SO, I.getType());
assert(I.isBinaryOp() && "Unexpected opcode for select folding");
// Figure out if the constant is the left or the right argument.
bool ConstIsRHS = isa<Constant>(I.getOperand(1));
Constant *ConstOperand = cast<Constant>(I.getOperand(ConstIsRHS));
if (auto *SOC = dyn_cast<Constant>(SO)) {
if (ConstIsRHS)
return ConstantExpr::get(I.getOpcode(), SOC, ConstOperand);
return ConstantExpr::get(I.getOpcode(), ConstOperand, SOC);
}
Value *Op0 = SO, *Op1 = ConstOperand;
if (!ConstIsRHS)
std::swap(Op0, Op1);
auto *BO = cast<BinaryOperator>(&I);
Value *RI = Builder.CreateBinOp(BO->getOpcode(), Op0, Op1,
SO->getName() + ".op");
auto *FPInst = dyn_cast<Instruction>(RI);
if (FPInst && isa<FPMathOperator>(FPInst))
FPInst->copyFastMathFlags(BO);
return RI;
}
Instruction *InstCombinerImpl::FoldOpIntoSelect(Instruction &Op,
SelectInst *SI) {
// Don't modify shared select instructions.
if (!SI->hasOneUse())
return nullptr;
Value *TV = SI->getTrueValue();
Value *FV = SI->getFalseValue();
if (!(isa<Constant>(TV) || isa<Constant>(FV)))
return nullptr;
// Bool selects with constant operands can be folded to logical ops.
if (SI->getType()->isIntOrIntVectorTy(1))
return nullptr;
// If it's a bitcast involving vectors, make sure it has the same number of
// elements on both sides.
if (auto *BC = dyn_cast<BitCastInst>(&Op)) {
VectorType *DestTy = dyn_cast<VectorType>(BC->getDestTy());
VectorType *SrcTy = dyn_cast<VectorType>(BC->getSrcTy());
// Verify that either both or neither are vectors.
if ((SrcTy == nullptr) != (DestTy == nullptr))
return nullptr;
// If vectors, verify that they have the same number of elements.
if (SrcTy && SrcTy->getElementCount() != DestTy->getElementCount())
return nullptr;
}
// Test if a CmpInst instruction is used exclusively by a select as
// part of a minimum or maximum operation. If so, refrain from doing
// any other folding. This helps out other analyses which understand
// non-obfuscated minimum and maximum idioms, such as ScalarEvolution
// and CodeGen. And in this case, at least one of the comparison
// operands has at least one user besides the compare (the select),
// which would often largely negate the benefit of folding anyway.
if (auto *CI = dyn_cast<CmpInst>(SI->getCondition())) {
if (CI->hasOneUse()) {
Value *Op0 = CI->getOperand(0), *Op1 = CI->getOperand(1);
// FIXME: This is a hack to avoid infinite looping with min/max patterns.
// We have to ensure that vector constants that only differ with
// undef elements are treated as equivalent.
auto areLooselyEqual = [](Value *A, Value *B) {
if (A == B)
return true;
// Test for vector constants.
Constant *ConstA, *ConstB;
if (!match(A, m_Constant(ConstA)) || !match(B, m_Constant(ConstB)))
return false;
// TODO: Deal with FP constants?
if (!A->getType()->isIntOrIntVectorTy() || A->getType() != B->getType())
return false;
// Compare for equality including undefs as equal.
auto *Cmp = ConstantExpr::getCompare(ICmpInst::ICMP_EQ, ConstA, ConstB);
const APInt *C;
return match(Cmp, m_APIntAllowUndef(C)) && C->isOneValue();
};
if ((areLooselyEqual(TV, Op0) && areLooselyEqual(FV, Op1)) ||
(areLooselyEqual(FV, Op0) && areLooselyEqual(TV, Op1)))
return nullptr;
}
}
Value *NewTV = foldOperationIntoSelectOperand(Op, TV, Builder);
Value *NewFV = foldOperationIntoSelectOperand(Op, FV, Builder);
return SelectInst::Create(SI->getCondition(), NewTV, NewFV, "", nullptr, SI);
}
static Value *foldOperationIntoPhiValue(BinaryOperator *I, Value *InV,
InstCombiner::BuilderTy &Builder) {
bool ConstIsRHS = isa<Constant>(I->getOperand(1));
Constant *C = cast<Constant>(I->getOperand(ConstIsRHS));
if (auto *InC = dyn_cast<Constant>(InV)) {
if (ConstIsRHS)
return ConstantExpr::get(I->getOpcode(), InC, C);
return ConstantExpr::get(I->getOpcode(), C, InC);
}
Value *Op0 = InV, *Op1 = C;
if (!ConstIsRHS)
std::swap(Op0, Op1);
Value *RI = Builder.CreateBinOp(I->getOpcode(), Op0, Op1, "phi.bo");
auto *FPInst = dyn_cast<Instruction>(RI);
if (FPInst && isa<FPMathOperator>(FPInst))
FPInst->copyFastMathFlags(I);
return RI;
}
Instruction *InstCombinerImpl::foldOpIntoPhi(Instruction &I, PHINode *PN) {
unsigned NumPHIValues = PN->getNumIncomingValues();
if (NumPHIValues == 0)
return nullptr;
// We normally only transform phis with a single use. However, if a PHI has
// multiple uses and they are all the same operation, we can fold *all* of the
// uses into the PHI.
if (!PN->hasOneUse()) {
// Walk the use list for the instruction, comparing them to I.
for (User *U : PN->users()) {
Instruction *UI = cast<Instruction>(U);
if (UI != &I && !I.isIdenticalTo(UI))
return nullptr;
}
// Otherwise, we can replace *all* users with the new PHI we form.
}
// Check to see if all of the operands of the PHI are simple constants
// (constantint/constantfp/undef). If there is one non-constant value,
// remember the BB it is in. If there is more than one or if *it* is a PHI,
// bail out. We don't do arbitrary constant expressions here because moving
// their computation can be expensive without a cost model.
BasicBlock *NonConstBB = nullptr;
for (unsigned i = 0; i != NumPHIValues; ++i) {
Value *InVal = PN->getIncomingValue(i);
// If I is a freeze instruction, count undef as a non-constant.
if (isa<Constant>(InVal) && !isa<ConstantExpr>(InVal) &&
(!isa<FreezeInst>(I) || isGuaranteedNotToBeUndefOrPoison(InVal)))
continue;
if (isa<PHINode>(InVal)) return nullptr; // Itself a phi.
if (NonConstBB) return nullptr; // More than one non-const value.
NonConstBB = PN->getIncomingBlock(i);
// If the InVal is an invoke at the end of the pred block, then we can't
// insert a computation after it without breaking the edge.
if (isa<InvokeInst>(InVal))
if (cast<Instruction>(InVal)->getParent() == NonConstBB)
return nullptr;
// If the incoming non-constant value is in I's block, we will remove one
// instruction, but insert another equivalent one, leading to infinite
// instcombine.
if (isPotentiallyReachable(I.getParent(), NonConstBB, &DT, LI))
return nullptr;
}
// If there is exactly one non-constant value, we can insert a copy of the
// operation in that block. However, if this is a critical edge, we would be
// inserting the computation on some other paths (e.g. inside a loop). Only
// do this if the pred block is unconditionally branching into the phi block.
// Also, make sure that the pred block is not dead code.
if (NonConstBB != nullptr) {
BranchInst *BI = dyn_cast<BranchInst>(NonConstBB->getTerminator());
if (!BI || !BI->isUnconditional() || !DT.isReachableFromEntry(NonConstBB))
return nullptr;
}
// Okay, we can do the transformation: create the new PHI node.
PHINode *NewPN = PHINode::Create(I.getType(), PN->getNumIncomingValues());
InsertNewInstBefore(NewPN, *PN);
NewPN->takeName(PN);
// If we are going to have to insert a new computation, do so right before the
// predecessor's terminator.
if (NonConstBB)
Builder.SetInsertPoint(NonConstBB->getTerminator());
// Next, add all of the operands to the PHI.
if (SelectInst *SI = dyn_cast<SelectInst>(&I)) {
// We only currently try to fold the condition of a select when it is a phi,
// not the true/false values.
Value *TrueV = SI->getTrueValue();
Value *FalseV = SI->getFalseValue();
BasicBlock *PhiTransBB = PN->getParent();
for (unsigned i = 0; i != NumPHIValues; ++i) {
BasicBlock *ThisBB = PN->getIncomingBlock(i);
Value *TrueVInPred = TrueV->DoPHITranslation(PhiTransBB, ThisBB);
Value *FalseVInPred = FalseV->DoPHITranslation(PhiTransBB, ThisBB);
Value *InV = nullptr;
// Beware of ConstantExpr: it may eventually evaluate to getNullValue,
// even if currently isNullValue gives false.
Constant *InC = dyn_cast<Constant>(PN->getIncomingValue(i));
// For vector constants, we cannot use isNullValue to fold into
// FalseVInPred versus TrueVInPred. When we have individual nonzero
// elements in the vector, we will incorrectly fold InC to
// `TrueVInPred`.
if (InC && !isa<ConstantExpr>(InC) && isa<ConstantInt>(InC))
InV = InC->isNullValue() ? FalseVInPred : TrueVInPred;
else {
// Generate the select in the same block as PN's current incoming block.
// Note: ThisBB need not be the NonConstBB because vector constants
// which are constants by definition are handled here.
// FIXME: This can lead to an increase in IR generation because we might
// generate selects for vector constant phi operand, that could not be
// folded to TrueVInPred or FalseVInPred as done for ConstantInt. For
// non-vector phis, this transformation was always profitable because
// the select would be generated exactly once in the NonConstBB.
Builder.SetInsertPoint(ThisBB->getTerminator());
InV = Builder.CreateSelect(PN->getIncomingValue(i), TrueVInPred,
FalseVInPred, "phi.sel");
}
NewPN->addIncoming(InV, ThisBB);
}
} else if (CmpInst *CI = dyn_cast<CmpInst>(&I)) {
Constant *C = cast<Constant>(I.getOperand(1));
for (unsigned i = 0; i != NumPHIValues; ++i) {
Value *InV = nullptr;
if (auto *InC = dyn_cast<Constant>(PN->getIncomingValue(i)))
InV = ConstantExpr::getCompare(CI->getPredicate(), InC, C);
else
InV = Builder.CreateCmp(CI->getPredicate(), PN->getIncomingValue(i),
C, "phi.cmp");
NewPN->addIncoming(InV, PN->getIncomingBlock(i));
}
} else if (auto *BO = dyn_cast<BinaryOperator>(&I)) {
for (unsigned i = 0; i != NumPHIValues; ++i) {
Value *InV = foldOperationIntoPhiValue(BO, PN->getIncomingValue(i),
Builder);
NewPN->addIncoming(InV, PN->getIncomingBlock(i));
}
} else if (isa<FreezeInst>(&I)) {
for (unsigned i = 0; i != NumPHIValues; ++i) {
Value *InV;
if (NonConstBB == PN->getIncomingBlock(i))
InV = Builder.CreateFreeze(PN->getIncomingValue(i), "phi.fr");
else
InV = PN->getIncomingValue(i);
NewPN->addIncoming(InV, PN->getIncomingBlock(i));
}
} else {
CastInst *CI = cast<CastInst>(&I);
Type *RetTy = CI->getType();
for (unsigned i = 0; i != NumPHIValues; ++i) {
Value *InV;
if (Constant *InC = dyn_cast<Constant>(PN->getIncomingValue(i)))
InV = ConstantExpr::getCast(CI->getOpcode(), InC, RetTy);
else
InV = Builder.CreateCast(CI->getOpcode(), PN->getIncomingValue(i),
I.getType(), "phi.cast");
NewPN->addIncoming(InV, PN->getIncomingBlock(i));
}
}
for (auto UI = PN->user_begin(), E = PN->user_end(); UI != E;) {
Instruction *User = cast<Instruction>(*UI++);
if (User == &I) continue;
replaceInstUsesWith(*User, NewPN);
eraseInstFromFunction(*User);
}
return replaceInstUsesWith(I, NewPN);
}
Instruction *InstCombinerImpl::foldBinOpIntoSelectOrPhi(BinaryOperator &I) {
if (!isa<Constant>(I.getOperand(1)))
return nullptr;
if (auto *Sel = dyn_cast<SelectInst>(I.getOperand(0))) {
if (Instruction *NewSel = FoldOpIntoSelect(I, Sel))
return NewSel;
} else if (auto *PN = dyn_cast<PHINode>(I.getOperand(0))) {
if (Instruction *NewPhi = foldOpIntoPhi(I, PN))
return NewPhi;
}
return nullptr;
}
/// Given a pointer type and a constant offset, determine whether or not there
/// is a sequence of GEP indices into the pointed type that will land us at the
/// specified offset. If so, fill them into NewIndices and return the resultant
/// element type, otherwise return null.
Type *
InstCombinerImpl::FindElementAtOffset(PointerType *PtrTy, int64_t Offset,
SmallVectorImpl<Value *> &NewIndices) {
Type *Ty = PtrTy->getElementType();
if (!Ty->isSized())
return nullptr;
// Start with the index over the outer type. Note that the type size
// might be zero (even if the offset isn't zero) if the indexed type
// is something like [0 x {int, int}]
Type *IndexTy = DL.getIndexType(PtrTy);
int64_t FirstIdx = 0;
if (int64_t TySize = DL.getTypeAllocSize(Ty)) {
FirstIdx = Offset/TySize;
Offset -= FirstIdx*TySize;
// Handle hosts where % returns negative instead of values [0..TySize).
if (Offset < 0) {
--FirstIdx;
Offset += TySize;
assert(Offset >= 0);
}
assert((uint64_t)Offset < (uint64_t)TySize && "Out of range offset");
}
NewIndices.push_back(ConstantInt::get(IndexTy, FirstIdx));
// Index into the types. If we fail, set OrigBase to null.
while (Offset) {
// Indexing into tail padding between struct/array elements.
if (uint64_t(Offset * 8) >= DL.getTypeSizeInBits(Ty))
return nullptr;
if (StructType *STy = dyn_cast<StructType>(Ty)) {
const StructLayout *SL = DL.getStructLayout(STy);
assert(Offset < (int64_t)SL->getSizeInBytes() &&
"Offset must stay within the indexed type");
unsigned Elt = SL->getElementContainingOffset(Offset);
NewIndices.push_back(ConstantInt::get(Type::getInt32Ty(Ty->getContext()),
Elt));
Offset -= SL->getElementOffset(Elt);
Ty = STy->getElementType(Elt);
} else if (ArrayType *AT = dyn_cast<ArrayType>(Ty)) {
uint64_t EltSize = DL.getTypeAllocSize(AT->getElementType());
assert(EltSize && "Cannot index into a zero-sized array");
NewIndices.push_back(ConstantInt::get(IndexTy,Offset/EltSize));
Offset %= EltSize;
Ty = AT->getElementType();
} else {
// Otherwise, we can't index into the middle of this atomic type, bail.
return nullptr;
}
}
return Ty;
}
static bool shouldMergeGEPs(GEPOperator &GEP, GEPOperator &Src) {
// If this GEP has only 0 indices, it is the same pointer as
// Src. If Src is not a trivial GEP too, don't combine
// the indices.
if (GEP.hasAllZeroIndices() && !Src.hasAllZeroIndices() &&
!Src.hasOneUse())
return false;
return true;
}
/// Return a value X such that Val = X * Scale, or null if none.
/// If the multiplication is known not to overflow, then NoSignedWrap is set.
Value *InstCombinerImpl::Descale(Value *Val, APInt Scale, bool &NoSignedWrap) {
assert(isa<IntegerType>(Val->getType()) && "Can only descale integers!");
assert(cast<IntegerType>(Val->getType())->getBitWidth() ==
Scale.getBitWidth() && "Scale not compatible with value!");
// If Val is zero or Scale is one then Val = Val * Scale.
if (match(Val, m_Zero()) || Scale == 1) {
NoSignedWrap = true;
return Val;
}
// If Scale is zero then it does not divide Val.
if (Scale.isMinValue())
return nullptr;
// Look through chains of multiplications, searching for a constant that is
// divisible by Scale. For example, descaling X*(Y*(Z*4)) by a factor of 4
// will find the constant factor 4 and produce X*(Y*Z). Descaling X*(Y*8) by
// a factor of 4 will produce X*(Y*2). The principle of operation is to bore
// down from Val:
//
// Val = M1 * X || Analysis starts here and works down
// M1 = M2 * Y || Doesn't descend into terms with more
// M2 = Z * 4 \/ than one use
//
// Then to modify a term at the bottom:
//
// Val = M1 * X
// M1 = Z * Y || Replaced M2 with Z
//
// Then to work back up correcting nsw flags.
// Op - the term we are currently analyzing. Starts at Val then drills down.
// Replaced with its descaled value before exiting from the drill down loop.
Value *Op = Val;
// Parent - initially null, but after drilling down notes where Op came from.
// In the example above, Parent is (Val, 0) when Op is M1, because M1 is the
// 0'th operand of Val.
std::pair<Instruction *, unsigned> Parent;
// Set if the transform requires a descaling at deeper levels that doesn't
// overflow.
bool RequireNoSignedWrap = false;
// Log base 2 of the scale. Negative if not a power of 2.
int32_t logScale = Scale.exactLogBase2();
for (;; Op = Parent.first->getOperand(Parent.second)) { // Drill down
if (ConstantInt *CI = dyn_cast<ConstantInt>(Op)) {
// If Op is a constant divisible by Scale then descale to the quotient.
APInt Quotient(Scale), Remainder(Scale); // Init ensures right bitwidth.
APInt::sdivrem(CI->getValue(), Scale, Quotient, Remainder);
if (!Remainder.isMinValue())
// Not divisible by Scale.
return nullptr;
// Replace with the quotient in the parent.
Op = ConstantInt::get(CI->getType(), Quotient);
NoSignedWrap = true;
break;
}
if (BinaryOperator *BO = dyn_cast<BinaryOperator>(Op)) {
if (BO->getOpcode() == Instruction::Mul) {
// Multiplication.
NoSignedWrap = BO->hasNoSignedWrap();
if (RequireNoSignedWrap && !NoSignedWrap)
return nullptr;
// There are three cases for multiplication: multiplication by exactly
// the scale, multiplication by a constant different to the scale, and
// multiplication by something else.
Value *LHS = BO->getOperand(0);
Value *RHS = BO->getOperand(1);
if (ConstantInt *CI = dyn_cast<ConstantInt>(RHS)) {
// Multiplication by a constant.
if (CI->getValue() == Scale) {
// Multiplication by exactly the scale, replace the multiplication
// by its left-hand side in the parent.
Op = LHS;
break;
}
// Otherwise drill down into the constant.
if (!Op->hasOneUse())
return nullptr;
Parent = std::make_pair(BO, 1);
continue;
}
// Multiplication by something else. Drill down into the left-hand side
// since that's where the reassociate pass puts the good stuff.
if (!Op->hasOneUse())
return nullptr;
Parent = std::make_pair(BO, 0);
continue;
}
if (logScale > 0 && BO->getOpcode() == Instruction::Shl &&
isa<ConstantInt>(BO->getOperand(1))) {
// Multiplication by a power of 2.
NoSignedWrap = BO->hasNoSignedWrap();
if (RequireNoSignedWrap && !NoSignedWrap)
return nullptr;
Value *LHS = BO->getOperand(0);
int32_t Amt = cast<ConstantInt>(BO->getOperand(1))->
getLimitedValue(Scale.getBitWidth());
// Op = LHS << Amt.
if (Amt == logScale) {
// Multiplication by exactly the scale, replace the multiplication
// by its left-hand side in the parent.
Op = LHS;
break;
}
if (Amt < logScale || !Op->hasOneUse())
return nullptr;
// Multiplication by more than the scale. Reduce the multiplying amount
// by the scale in the parent.
Parent = std::make_pair(BO, 1);
Op = ConstantInt::get(BO->getType(), Amt - logScale);
break;
}
}
if (!Op->hasOneUse())
return nullptr;
if (CastInst *Cast = dyn_cast<CastInst>(Op)) {
if (Cast->getOpcode() == Instruction::SExt) {
// Op is sign-extended from a smaller type, descale in the smaller type.
unsigned SmallSize = Cast->getSrcTy()->getPrimitiveSizeInBits();
APInt SmallScale = Scale.trunc(SmallSize);
// Suppose Op = sext X, and we descale X as Y * SmallScale. We want to
// descale Op as (sext Y) * Scale. In order to have
// sext (Y * SmallScale) = (sext Y) * Scale
// some conditions need to hold however: SmallScale must sign-extend to
// Scale and the multiplication Y * SmallScale should not overflow.
if (SmallScale.sext(Scale.getBitWidth()) != Scale)
// SmallScale does not sign-extend to Scale.
return nullptr;
assert(SmallScale.exactLogBase2() == logScale);
// Require that Y * SmallScale must not overflow.
RequireNoSignedWrap = true;
// Drill down through the cast.
Parent = std::make_pair(Cast, 0);
Scale = SmallScale;
continue;
}
if (Cast->getOpcode() == Instruction::Trunc) {
// Op is truncated from a larger type, descale in the larger type.
// Suppose Op = trunc X, and we descale X as Y * sext Scale. Then
// trunc (Y * sext Scale) = (trunc Y) * Scale
// always holds. However (trunc Y) * Scale may overflow even if
// trunc (Y * sext Scale) does not, so nsw flags need to be cleared
// from this point up in the expression (see later).
if (RequireNoSignedWrap)
return nullptr;
// Drill down through the cast.
unsigned LargeSize = Cast->getSrcTy()->getPrimitiveSizeInBits();
Parent = std::make_pair(Cast, 0);
Scale = Scale.sext(LargeSize);
if (logScale + 1 == (int32_t)Cast->getType()->getPrimitiveSizeInBits())
logScale = -1;
assert(Scale.exactLogBase2() == logScale);
continue;
}
}
// Unsupported expression, bail out.
return nullptr;
}
// If Op is zero then Val = Op * Scale.
if (match(Op, m_Zero())) {
NoSignedWrap = true;
return Op;
}
// We know that we can successfully descale, so from here on we can safely
// modify the IR. Op holds the descaled version of the deepest term in the
// expression. NoSignedWrap is 'true' if multiplying Op by Scale is known
// not to overflow.
if (!Parent.first)
// The expression only had one term.
return Op;
// Rewrite the parent using the descaled version of its operand.
assert(Parent.first->hasOneUse() && "Drilled down when more than one use!");
assert(Op != Parent.first->getOperand(Parent.second) &&
"Descaling was a no-op?");
replaceOperand(*Parent.first, Parent.second, Op);
Worklist.push(Parent.first);
// Now work back up the expression correcting nsw flags. The logic is based
// on the following observation: if X * Y is known not to overflow as a signed
// multiplication, and Y is replaced by a value Z with smaller absolute value,
// then X * Z will not overflow as a signed multiplication either. As we work
// our way up, having NoSignedWrap 'true' means that the descaled value at the
// current level has strictly smaller absolute value than the original.
Instruction *Ancestor = Parent.first;
do {
if (BinaryOperator *BO = dyn_cast<BinaryOperator>(Ancestor)) {
// If the multiplication wasn't nsw then we can't say anything about the
// value of the descaled multiplication, and we have to clear nsw flags
// from this point on up.
bool OpNoSignedWrap = BO->hasNoSignedWrap();
NoSignedWrap &= OpNoSignedWrap;
if (NoSignedWrap != OpNoSignedWrap) {
BO->setHasNoSignedWrap(NoSignedWrap);
Worklist.push(Ancestor);
}
} else if (Ancestor->getOpcode() == Instruction::Trunc) {
// The fact that the descaled input to the trunc has smaller absolute
// value than the original input doesn't tell us anything useful about
// the absolute values of the truncations.
NoSignedWrap = false;
}
assert((Ancestor->getOpcode() != Instruction::SExt || NoSignedWrap) &&
"Failed to keep proper track of nsw flags while drilling down?");
if (Ancestor == Val)
// Got to the top, all done!
return Val;
// Move up one level in the expression.
assert(Ancestor->hasOneUse() && "Drilled down when more than one use!");
Ancestor = Ancestor->user_back();
} while (true);
}
Instruction *InstCombinerImpl::foldVectorBinop(BinaryOperator &Inst) {
if (!isa<VectorType>(Inst.getType()))
return nullptr;
BinaryOperator::BinaryOps Opcode = Inst.getOpcode();
Value *LHS = Inst.getOperand(0), *RHS = Inst.getOperand(1);
assert(cast<VectorType>(LHS->getType())->getElementCount() ==
cast<VectorType>(Inst.getType())->getElementCount());
assert(cast<VectorType>(RHS->getType())->getElementCount() ==
cast<VectorType>(Inst.getType())->getElementCount());
// If both operands of the binop are vector concatenations, then perform the
// narrow binop on each pair of the source operands followed by concatenation
// of the results.
Value *L0, *L1, *R0, *R1;
ArrayRef<int> Mask;
if (match(LHS, m_Shuffle(m_Value(L0), m_Value(L1), m_Mask(Mask))) &&
match(RHS, m_Shuffle(m_Value(R0), m_Value(R1), m_SpecificMask(Mask))) &&
LHS->hasOneUse() && RHS->hasOneUse() &&
cast<ShuffleVectorInst>(LHS)->isConcat() &&
cast<ShuffleVectorInst>(RHS)->isConcat()) {
// This transform does not have the speculative execution constraint as
// below because the shuffle is a concatenation. The new binops are
// operating on exactly the same elements as the existing binop.
// TODO: We could ease the mask requirement to allow different undef lanes,
// but that requires an analysis of the binop-with-undef output value.
Value *NewBO0 = Builder.CreateBinOp(Opcode, L0, R0);
if (auto *BO = dyn_cast<BinaryOperator>(NewBO0))
BO->copyIRFlags(&Inst);
Value *NewBO1 = Builder.CreateBinOp(Opcode, L1, R1);
if (auto *BO = dyn_cast<BinaryOperator>(NewBO1))
BO->copyIRFlags(&Inst);
return new ShuffleVectorInst(NewBO0, NewBO1, Mask);
}
// It may not be safe to reorder shuffles and things like div, urem, etc.
// because we may trap when executing those ops on unknown vector elements.
// See PR20059.
if (!isSafeToSpeculativelyExecute(&Inst))
return nullptr;
auto createBinOpShuffle = [&](Value *X, Value *Y, ArrayRef<int> M) {
Value *XY = Builder.CreateBinOp(Opcode, X, Y);
if (auto *BO = dyn_cast<BinaryOperator>(XY))
BO->copyIRFlags(&Inst);
return new ShuffleVectorInst(XY, UndefValue::get(XY->getType()), M);
};
// If both arguments of the binary operation are shuffles that use the same
// mask and shuffle within a single vector, move the shuffle after the binop.
Value *V1, *V2;
if (match(LHS, m_Shuffle(m_Value(V1), m_Undef(), m_Mask(Mask))) &&
match(RHS, m_Shuffle(m_Value(V2), m_Undef(), m_SpecificMask(Mask))) &&
V1->getType() == V2->getType() &&
(LHS->hasOneUse() || RHS->hasOneUse() || LHS == RHS)) {
// Op(shuffle(V1, Mask), shuffle(V2, Mask)) -> shuffle(Op(V1, V2), Mask)
return createBinOpShuffle(V1, V2, Mask);
}
// If both arguments of a commutative binop are select-shuffles that use the
// same mask with commuted operands, the shuffles are unnecessary.
if (Inst.isCommutative() &&
match(LHS, m_Shuffle(m_Value(V1), m_Value(V2), m_Mask(Mask))) &&
match(RHS,
m_Shuffle(m_Specific(V2), m_Specific(V1), m_SpecificMask(Mask)))) {
auto *LShuf = cast<ShuffleVectorInst>(LHS);
auto *RShuf = cast<ShuffleVectorInst>(RHS);
// TODO: Allow shuffles that contain undefs in the mask?
// That is legal, but it reduces undef knowledge.
// TODO: Allow arbitrary shuffles by shuffling after binop?
// That might be legal, but we have to deal with poison.
if (LShuf->isSelect() &&
!is_contained(LShuf->getShuffleMask(), UndefMaskElem) &&
RShuf->isSelect() &&
!is_contained(RShuf->getShuffleMask(), UndefMaskElem)) {
// Example:
// LHS = shuffle V1, V2, <0, 5, 6, 3>
// RHS = shuffle V2, V1, <0, 5, 6, 3>
// LHS + RHS --> (V10+V20, V21+V11, V22+V12, V13+V23) --> V1 + V2
Instruction *NewBO = BinaryOperator::Create(Opcode, V1, V2);
NewBO->copyIRFlags(&Inst);
return NewBO;
}
}
// If one argument is a shuffle within one vector and the other is a constant,
// try moving the shuffle after the binary operation. This canonicalization
// intends to move shuffles closer to other shuffles and binops closer to
// other binops, so they can be folded. It may also enable demanded elements
// transforms.
Constant *C;
auto *InstVTy = dyn_cast<FixedVectorType>(Inst.getType());
if (InstVTy &&
match(&Inst,
m_c_BinOp(m_OneUse(m_Shuffle(m_Value(V1), m_Undef(), m_Mask(Mask))),
m_Constant(C))) &&
!isa<ConstantExpr>(C) &&
cast<FixedVectorType>(V1->getType())->getNumElements() <=
InstVTy->getNumElements()) {
assert(InstVTy->getScalarType() == V1->getType()->getScalarType() &&
"Shuffle should not change scalar type");
// Find constant NewC that has property:
// shuffle(NewC, ShMask) = C
// If such constant does not exist (example: ShMask=<0,0> and C=<1,2>)
// reorder is not possible. A 1-to-1 mapping is not required. Example:
// ShMask = <1,1,2,2> and C = <5,5,6,6> --> NewC = <undef,5,6,undef>
bool ConstOp1 = isa<Constant>(RHS);
ArrayRef<int> ShMask = Mask;
unsigned SrcVecNumElts =
cast<FixedVectorType>(V1->getType())->getNumElements();
UndefValue *UndefScalar = UndefValue::get(C->getType()->getScalarType());
SmallVector<Constant *, 16> NewVecC(SrcVecNumElts, UndefScalar);
bool MayChange = true;
unsigned NumElts = InstVTy->getNumElements();
for (unsigned I = 0; I < NumElts; ++I) {
Constant *CElt = C->getAggregateElement(I);
if (ShMask[I] >= 0) {
assert(ShMask[I] < (int)NumElts && "Not expecting narrowing shuffle");
Constant *NewCElt = NewVecC[ShMask[I]];
// Bail out if:
// 1. The constant vector contains a constant expression.
// 2. The shuffle needs an element of the constant vector that can't
// be mapped to a new constant vector.
// 3. This is a widening shuffle that copies elements of V1 into the
// extended elements (extending with undef is allowed).
if (!CElt || (!isa<UndefValue>(NewCElt) && NewCElt != CElt) ||
I >= SrcVecNumElts) {
MayChange = false;
break;
}
NewVecC[ShMask[I]] = CElt;
}
// If this is a widening shuffle, we must be able to extend with undef
// elements. If the original binop does not produce an undef in the high
// lanes, then this transform is not safe.
// Similarly for undef lanes due to the shuffle mask, we can only
// transform binops that preserve undef.
// TODO: We could shuffle those non-undef constant values into the
// result by using a constant vector (rather than an undef vector)
// as operand 1 of the new binop, but that might be too aggressive
// for target-independent shuffle creation.
if (I >= SrcVecNumElts || ShMask[I] < 0) {
Constant *MaybeUndef =
ConstOp1 ? ConstantExpr::get(Opcode, UndefScalar, CElt)
: ConstantExpr::get(Opcode, CElt, UndefScalar);
if (!isa<UndefValue>(MaybeUndef)) {
MayChange = false;
break;
}
}
}
if (MayChange) {
Constant *NewC = ConstantVector::get(NewVecC);
// It may not be safe to execute a binop on a vector with undef elements
// because the entire instruction can be folded to undef or create poison
// that did not exist in the original code.
if (Inst.isIntDivRem() || (Inst.isShift() && ConstOp1))
NewC = getSafeVectorConstantForBinop(Opcode, NewC, ConstOp1);
// Op(shuffle(V1, Mask), C) -> shuffle(Op(V1, NewC), Mask)
// Op(C, shuffle(V1, Mask)) -> shuffle(Op(NewC, V1), Mask)
Value *NewLHS = ConstOp1 ? V1 : NewC;
Value *NewRHS = ConstOp1 ? NewC : V1;
return createBinOpShuffle(NewLHS, NewRHS, Mask);
}
}
// Try to reassociate to sink a splat shuffle after a binary operation.
if (Inst.isAssociative() && Inst.isCommutative()) {
// Canonicalize shuffle operand as LHS.
if (isa<ShuffleVectorInst>(RHS))
std::swap(LHS, RHS);
Value *X;
ArrayRef<int> MaskC;
int SplatIndex;
BinaryOperator *BO;
if (!match(LHS,
m_OneUse(m_Shuffle(m_Value(X), m_Undef(), m_Mask(MaskC)))) ||
!match(MaskC, m_SplatOrUndefMask(SplatIndex)) ||
X->getType() != Inst.getType() || !match(RHS, m_OneUse(m_BinOp(BO))) ||
BO->getOpcode() != Opcode)
return nullptr;
// FIXME: This may not be safe if the analysis allows undef elements. By
// moving 'Y' before the splat shuffle, we are implicitly assuming
// that it is not undef/poison at the splat index.
Value *Y, *OtherOp;
if (isSplatValue(BO->getOperand(0), SplatIndex)) {
Y = BO->getOperand(0);
OtherOp = BO->getOperand(1);
} else if (isSplatValue(BO->getOperand(1), SplatIndex)) {
Y = BO->getOperand(1);
OtherOp = BO->getOperand(0);
} else {
return nullptr;
}
// X and Y are splatted values, so perform the binary operation on those
// values followed by a splat followed by the 2nd binary operation:
// bo (splat X), (bo Y, OtherOp) --> bo (splat (bo X, Y)), OtherOp
Value *NewBO = Builder.CreateBinOp(Opcode, X, Y);
SmallVector<int, 8> NewMask(MaskC.size(), SplatIndex);
Value *NewSplat = Builder.CreateShuffleVector(NewBO, NewMask);
Instruction *R = BinaryOperator::Create(Opcode, NewSplat, OtherOp);
// Intersect FMF on both new binops. Other (poison-generating) flags are
// dropped to be safe.
if (isa<FPMathOperator>(R)) {
R->copyFastMathFlags(&Inst);
R->andIRFlags(BO);
}
if (auto *NewInstBO = dyn_cast<BinaryOperator>(NewBO))
NewInstBO->copyIRFlags(R);
return R;
}
return nullptr;
}
/// Try to narrow the width of a binop if at least 1 operand is an extend of
/// of a value. This requires a potentially expensive known bits check to make
/// sure the narrow op does not overflow.
Instruction *InstCombinerImpl::narrowMathIfNoOverflow(BinaryOperator &BO) {
// We need at least one extended operand.
Value *Op0 = BO.getOperand(0), *Op1 = BO.getOperand(1);
// If this is a sub, we swap the operands since we always want an extension
// on the RHS. The LHS can be an extension or a constant.
if (BO.getOpcode() == Instruction::Sub)
std::swap(Op0, Op1);
Value *X;
bool IsSext = match(Op0, m_SExt(m_Value(X)));
if (!IsSext && !match(Op0, m_ZExt(m_Value(X))))
return nullptr;
// If both operands are the same extension from the same source type and we
// can eliminate at least one (hasOneUse), this might work.
CastInst::CastOps CastOpc = IsSext ? Instruction::SExt : Instruction::ZExt;
Value *Y;
if (!(match(Op1, m_ZExtOrSExt(m_Value(Y))) && X->getType() == Y->getType() &&
cast<Operator>(Op1)->getOpcode() == CastOpc &&
(Op0->hasOneUse() || Op1->hasOneUse()))) {
// If that did not match, see if we have a suitable constant operand.
// Truncating and extending must produce the same constant.
Constant *WideC;
if (!Op0->hasOneUse() || !match(Op1, m_Constant(WideC)))
return nullptr;
Constant *NarrowC = ConstantExpr::getTrunc(WideC, X->getType());
if (ConstantExpr::getCast(CastOpc, NarrowC, BO.getType()) != WideC)
return nullptr;
Y = NarrowC;
}
// Swap back now that we found our operands.
if (BO.getOpcode() == Instruction::Sub)
std::swap(X, Y);
// Both operands have narrow versions. Last step: the math must not overflow
// in the narrow width.
if (!willNotOverflow(BO.getOpcode(), X, Y, BO, IsSext))
return nullptr;
// bo (ext X), (ext Y) --> ext (bo X, Y)
// bo (ext X), C --> ext (bo X, C')
Value *NarrowBO = Builder.CreateBinOp(BO.getOpcode(), X, Y, "narrow");
if (auto *NewBinOp = dyn_cast<BinaryOperator>(NarrowBO)) {
if (IsSext)
NewBinOp->setHasNoSignedWrap();
else
NewBinOp->setHasNoUnsignedWrap();
}
return CastInst::Create(CastOpc, NarrowBO, BO.getType());
}
static bool isMergedGEPInBounds(GEPOperator &GEP1, GEPOperator &GEP2) {
// At least one GEP must be inbounds.
if (!GEP1.isInBounds() && !GEP2.isInBounds())
return false;
return (GEP1.isInBounds() || GEP1.hasAllZeroIndices()) &&
(GEP2.isInBounds() || GEP2.hasAllZeroIndices());
}
/// Thread a GEP operation with constant indices through the constant true/false
/// arms of a select.
static Instruction *foldSelectGEP(GetElementPtrInst &GEP,
InstCombiner::BuilderTy &Builder) {
if (!GEP.hasAllConstantIndices())
return nullptr;
Instruction *Sel;
Value *Cond;
Constant *TrueC, *FalseC;
if (!match(GEP.getPointerOperand(), m_Instruction(Sel)) ||
!match(Sel,
m_Select(m_Value(Cond), m_Constant(TrueC), m_Constant(FalseC))))
return nullptr;
// gep (select Cond, TrueC, FalseC), IndexC --> select Cond, TrueC', FalseC'
// Propagate 'inbounds' and metadata from existing instructions.
// Note: using IRBuilder to create the constants for efficiency.
SmallVector<Value *, 4> IndexC(GEP.idx_begin(), GEP.idx_end());
bool IsInBounds = GEP.isInBounds();
Value *NewTrueC = IsInBounds ? Builder.CreateInBoundsGEP(TrueC, IndexC)
: Builder.CreateGEP(TrueC, IndexC);
Value *NewFalseC = IsInBounds ? Builder.CreateInBoundsGEP(FalseC, IndexC)
: Builder.CreateGEP(FalseC, IndexC);
return SelectInst::Create(Cond, NewTrueC, NewFalseC, "", nullptr, Sel);
}
Instruction *InstCombinerImpl::visitGetElementPtrInst(GetElementPtrInst &GEP) {
SmallVector<Value*, 8> Ops(GEP.op_begin(), GEP.op_end());
Type *GEPType = GEP.getType();
Type *GEPEltType = GEP.getSourceElementType();
bool IsGEPSrcEleScalable = isa<ScalableVectorType>(GEPEltType);
if (Value *V = SimplifyGEPInst(GEPEltType, Ops, SQ.getWithInstruction(&GEP)))
return replaceInstUsesWith(GEP, V);
// For vector geps, use the generic demanded vector support.
// Skip if GEP return type is scalable. The number of elements is unknown at
// compile-time.
if (auto *GEPFVTy = dyn_cast<FixedVectorType>(GEPType)) {
auto VWidth = GEPFVTy->getNumElements();
APInt UndefElts(VWidth, 0);
APInt AllOnesEltMask(APInt::getAllOnesValue(VWidth));
if (Value *V = SimplifyDemandedVectorElts(&GEP, AllOnesEltMask,
UndefElts)) {
if (V != &GEP)
return replaceInstUsesWith(GEP, V);
return &GEP;
}
// TODO: 1) Scalarize splat operands, 2) scalarize entire instruction if
// possible (decide on canonical form for pointer broadcast), 3) exploit
// undef elements to decrease demanded bits
}
Value *PtrOp = GEP.getOperand(0);
// Eliminate unneeded casts for indices, and replace indices which displace
// by multiples of a zero size type with zero.
bool MadeChange = false;
// Index width may not be the same width as pointer width.
// Data layout chooses the right type based on supported integer types.
Type *NewScalarIndexTy =
DL.getIndexType(GEP.getPointerOperandType()->getScalarType());
gep_type_iterator GTI = gep_type_begin(GEP);
for (User::op_iterator I = GEP.op_begin() + 1, E = GEP.op_end(); I != E;
++I, ++GTI) {
// Skip indices into struct types.
if (GTI.isStruct())
continue;
Type *IndexTy = (*I)->getType();
Type *NewIndexType =
IndexTy->isVectorTy()
? VectorType::get(NewScalarIndexTy,
cast<VectorType>(IndexTy)->getElementCount())
: NewScalarIndexTy;
// If the element type has zero size then any index over it is equivalent
// to an index of zero, so replace it with zero if it is not zero already.
Type *EltTy = GTI.getIndexedType();
if (EltTy->isSized() && DL.getTypeAllocSize(EltTy).isZero())
if (!isa<Constant>(*I) || !match(I->get(), m_Zero())) {
*I = Constant::getNullValue(NewIndexType);
MadeChange = true;
}
if (IndexTy != NewIndexType) {
// If we are using a wider index than needed for this platform, shrink
// it to what we need. If narrower, sign-extend it to what we need.
// This explicit cast can make subsequent optimizations more obvious.
*I = Builder.CreateIntCast(*I, NewIndexType, true);
MadeChange = true;
}
}
if (MadeChange)
return &GEP;
// Check to see if the inputs to the PHI node are getelementptr instructions.
if (auto *PN = dyn_cast<PHINode>(PtrOp)) {
auto *Op1 = dyn_cast<GetElementPtrInst>(PN->getOperand(0));
if (!Op1)
return nullptr;
// Don't fold a GEP into itself through a PHI node. This can only happen
// through the back-edge of a loop. Folding a GEP into itself means that
// the value of the previous iteration needs to be stored in the meantime,
// thus requiring an additional register variable to be live, but not
// actually achieving anything (the GEP still needs to be executed once per
// loop iteration).
if (Op1 == &GEP)
return nullptr;
int DI = -1;
for (auto I = PN->op_begin()+1, E = PN->op_end(); I !=E; ++I) {
auto *Op2 = dyn_cast<GetElementPtrInst>(*I);
if (!Op2 || Op1->getNumOperands() != Op2->getNumOperands())
return nullptr;
// As for Op1 above, don't try to fold a GEP into itself.
if (Op2 == &GEP)
return nullptr;
// Keep track of the type as we walk the GEP.
Type *CurTy = nullptr;
for (unsigned J = 0, F = Op1->getNumOperands(); J != F; ++J) {
if (Op1->getOperand(J)->getType() != Op2->getOperand(J)->getType())
return nullptr;
if (Op1->getOperand(J) != Op2->getOperand(J)) {
if (DI == -1) {
// We have not seen any differences yet in the GEPs feeding the
// PHI yet, so we record this one if it is allowed to be a
// variable.
// The first two arguments can vary for any GEP, the rest have to be
// static for struct slots
if (J > 1) {
assert(CurTy && "No current type?");
if (CurTy->isStructTy())
return nullptr;
}
DI = J;
} else {
// The GEP is different by more than one input. While this could be
// extended to support GEPs that vary by more than one variable it
// doesn't make sense since it greatly increases the complexity and
// would result in an R+R+R addressing mode which no backend
// directly supports and would need to be broken into several
// simpler instructions anyway.
return nullptr;
}
}
// Sink down a layer of the type for the next iteration.
if (J > 0) {
if (J == 1) {
CurTy = Op1->getSourceElementType();
} else {
CurTy =
GetElementPtrInst::getTypeAtIndex(CurTy, Op1->getOperand(J));
}
}
}
}
// If not all GEPs are identical we'll have to create a new PHI node.
// Check that the old PHI node has only one use so that it will get
// removed.
if (DI != -1 && !PN->hasOneUse())
return nullptr;
auto *NewGEP = cast<GetElementPtrInst>(Op1->clone());
if (DI == -1) {
// All the GEPs feeding the PHI are identical. Clone one down into our
// BB so that it can be merged with the current GEP.
} else {
// All the GEPs feeding the PHI differ at a single offset. Clone a GEP
// into the current block so it can be merged, and create a new PHI to
// set that index.
PHINode *NewPN;
{
IRBuilderBase::InsertPointGuard Guard(Builder);
Builder.SetInsertPoint(PN);
NewPN = Builder.CreatePHI(Op1->getOperand(DI)->getType(),
PN->getNumOperands());
}
for (auto &I : PN->operands())
NewPN->addIncoming(cast<GEPOperator>(I)->getOperand(DI),
PN->getIncomingBlock(I));
NewGEP->setOperand(DI, NewPN);
}
GEP.getParent()->getInstList().insert(
GEP.getParent()->getFirstInsertionPt(), NewGEP);
replaceOperand(GEP, 0, NewGEP);
PtrOp = NewGEP;
}
// Combine Indices - If the source pointer to this getelementptr instruction
// is a getelementptr instruction, combine the indices of the two
// getelementptr instructions into a single instruction.
if (auto *Src = dyn_cast<GEPOperator>(PtrOp)) {
if (!shouldMergeGEPs(*cast<GEPOperator>(&GEP), *Src))
return nullptr;
// Try to reassociate loop invariant GEP chains to enable LICM.
if (LI && Src->getNumOperands() == 2 && GEP.getNumOperands() == 2 &&
Src->hasOneUse()) {
if (Loop *L = LI->getLoopFor(GEP.getParent())) {
Value *GO1 = GEP.getOperand(1);
Value *SO1 = Src->getOperand(1);
// Reassociate the two GEPs if SO1 is variant in the loop and GO1 is
// invariant: this breaks the dependence between GEPs and allows LICM
// to hoist the invariant part out of the loop.
if (L->isLoopInvariant(GO1) && !L->isLoopInvariant(SO1)) {
// We have to be careful here.
// We have something like:
// %src = getelementptr <ty>, <ty>* %base, <ty> %idx
// %gep = getelementptr <ty>, <ty>* %src, <ty> %idx2
// If we just swap idx & idx2 then we could inadvertantly
// change %src from a vector to a scalar, or vice versa.
// Cases:
// 1) %base a scalar & idx a scalar & idx2 a vector
// => Swapping idx & idx2 turns %src into a vector type.
// 2) %base a scalar & idx a vector & idx2 a scalar
// => Swapping idx & idx2 turns %src in a scalar type
// 3) %base, %idx, and %idx2 are scalars
// => %src & %gep are scalars
// => swapping idx & idx2 is safe
// 4) %base a vector
// => %src is a vector
// => swapping idx & idx2 is safe.
auto *SO0 = Src->getOperand(0);
auto *SO0Ty = SO0->getType();
if (!isa<VectorType>(GEPType) || // case 3
isa<VectorType>(SO0Ty)) { // case 4
Src->setOperand(1, GO1);
GEP.setOperand(1, SO1);
return &GEP;
} else {
// Case 1 or 2
// -- have to recreate %src & %gep
// put NewSrc at same location as %src
Builder.SetInsertPoint(cast<Instruction>(PtrOp));
auto *NewSrc = cast<GetElementPtrInst>(
Builder.CreateGEP(GEPEltType, SO0, GO1, Src->getName()));
NewSrc->setIsInBounds(Src->isInBounds());
auto *NewGEP = GetElementPtrInst::Create(GEPEltType, NewSrc, {SO1});
NewGEP->setIsInBounds(GEP.isInBounds());
return NewGEP;
}
}
}
}
// Note that if our source is a gep chain itself then we wait for that
// chain to be resolved before we perform this transformation. This
// avoids us creating a TON of code in some cases.
if (auto *SrcGEP = dyn_cast<GEPOperator>(Src->getOperand(0)))
if (SrcGEP->getNumOperands() == 2 && shouldMergeGEPs(*Src, *SrcGEP))
return nullptr; // Wait until our source is folded to completion.
SmallVector<Value*, 8> Indices;
// Find out whether the last index in the source GEP is a sequential idx.
bool EndsWithSequential = false;
for (gep_type_iterator I = gep_type_begin(*Src), E = gep_type_end(*Src);
I != E; ++I)
EndsWithSequential = I.isSequential();
// Can we combine the two pointer arithmetics offsets?
if (EndsWithSequential) {
// Replace: gep (gep %P, long B), long A, ...
// With: T = long A+B; gep %P, T, ...
Value *SO1 = Src->getOperand(Src->getNumOperands()-1);
Value *GO1 = GEP.getOperand(1);
// If they aren't the same type, then the input hasn't been processed
// by the loop above yet (which canonicalizes sequential index types to
// intptr_t). Just avoid transforming this until the input has been
// normalized.
if (SO1->getType() != GO1->getType())
return nullptr;
Value *Sum =
SimplifyAddInst(GO1, SO1, false, false, SQ.getWithInstruction(&GEP));
// Only do the combine when we are sure the cost after the
// merge is never more than that before the merge.
if (Sum == nullptr)
return nullptr;
// Update the GEP in place if possible.
if (Src->getNumOperands() == 2) {
GEP.setIsInBounds(isMergedGEPInBounds(*Src, *cast<GEPOperator>(&GEP)));
replaceOperand(GEP, 0, Src->getOperand(0));
replaceOperand(GEP, 1, Sum);
return &GEP;
}
Indices.append(Src->op_begin()+1, Src->op_end()-1);
Indices.push_back(Sum);
Indices.append(GEP.op_begin()+2, GEP.op_end());
} else if (isa<Constant>(*GEP.idx_begin()) &&
cast<Constant>(*GEP.idx_begin())->isNullValue() &&
Src->getNumOperands() != 1) {
// Otherwise we can do the fold if the first index of the GEP is a zero
Indices.append(Src->op_begin()+1, Src->op_end());
Indices.append(GEP.idx_begin()+1, GEP.idx_end());
}
if (!Indices.empty())
return isMergedGEPInBounds(*Src, *cast<GEPOperator>(&GEP))
? GetElementPtrInst::CreateInBounds(
Src->getSourceElementType(), Src->getOperand(0), Indices,
GEP.getName())
: GetElementPtrInst::Create(Src->getSourceElementType(),
Src->getOperand(0), Indices,
GEP.getName());
}
// Skip if GEP source element type is scalable. The type alloc size is unknown
// at compile-time.
if (GEP.getNumIndices() == 1 && !IsGEPSrcEleScalable) {
unsigned AS = GEP.getPointerAddressSpace();
if (GEP.getOperand(1)->getType()->getScalarSizeInBits() ==
DL.getIndexSizeInBits(AS)) {
uint64_t TyAllocSize = DL.getTypeAllocSize(GEPEltType).getFixedSize();
bool Matched = false;
uint64_t C;
Value *V = nullptr;
if (TyAllocSize == 1) {
V = GEP.getOperand(1);
Matched = true;
} else if (match(GEP.getOperand(1),
m_AShr(m_Value(V), m_ConstantInt(C)))) {
if (TyAllocSize == 1ULL << C)
Matched = true;
} else if (match(GEP.getOperand(1),
m_SDiv(m_Value(V), m_ConstantInt(C)))) {
if (TyAllocSize == C)
Matched = true;
}
if (Matched) {
// Canonicalize (gep i8* X, -(ptrtoint Y))
// to (inttoptr (sub (ptrtoint X), (ptrtoint Y)))
// The GEP pattern is emitted by the SCEV expander for certain kinds of
// pointer arithmetic.
if (match(V, m_Neg(m_PtrToInt(m_Value())))) {
Operator *Index = cast<Operator>(V);
Value *PtrToInt = Builder.CreatePtrToInt(PtrOp, Index->getType());
Value *NewSub = Builder.CreateSub(PtrToInt, Index->getOperand(1));
return CastInst::Create(Instruction::IntToPtr, NewSub, GEPType);
}
// Canonicalize (gep i8* X, (ptrtoint Y)-(ptrtoint X))
// to (bitcast Y)
Value *Y;
if (match(V, m_Sub(m_PtrToInt(m_Value(Y)),
m_PtrToInt(m_Specific(GEP.getOperand(0))))))
return CastInst::CreatePointerBitCastOrAddrSpaceCast(Y, GEPType);
}
}
}
// We do not handle pointer-vector geps here.
if (GEPType->isVectorTy())
return nullptr;
// Handle gep(bitcast x) and gep(gep x, 0, 0, 0).
Value *StrippedPtr = PtrOp->stripPointerCasts();
PointerType *StrippedPtrTy = cast<PointerType>(StrippedPtr->getType());
if (StrippedPtr != PtrOp) {
bool HasZeroPointerIndex = false;
Type *StrippedPtrEltTy = StrippedPtrTy->getElementType();
if (auto *C = dyn_cast<ConstantInt>(GEP.getOperand(1)))
HasZeroPointerIndex = C->isZero();
// Transform: GEP (bitcast [10 x i8]* X to [0 x i8]*), i32 0, ...
// into : GEP [10 x i8]* X, i32 0, ...
//
// Likewise, transform: GEP (bitcast i8* X to [0 x i8]*), i32 0, ...
// into : GEP i8* X, ...
//
// This occurs when the program declares an array extern like "int X[];"
if (HasZeroPointerIndex) {
if (auto *CATy = dyn_cast<ArrayType>(GEPEltType)) {
// GEP (bitcast i8* X to [0 x i8]*), i32 0, ... ?
if (CATy->getElementType() == StrippedPtrEltTy) {
// -> GEP i8* X, ...
SmallVector<Value*, 8> Idx(GEP.idx_begin()+1, GEP.idx_end());
GetElementPtrInst *Res = GetElementPtrInst::Create(
StrippedPtrEltTy, StrippedPtr, Idx, GEP.getName());
Res->setIsInBounds(GEP.isInBounds());
if (StrippedPtrTy->getAddressSpace() == GEP.getAddressSpace())
return Res;
// Insert Res, and create an addrspacecast.
// e.g.,
// GEP (addrspacecast i8 addrspace(1)* X to [0 x i8]*), i32 0, ...
// ->
// %0 = GEP i8 addrspace(1)* X, ...
// addrspacecast i8 addrspace(1)* %0 to i8*
return new AddrSpaceCastInst(Builder.Insert(Res), GEPType);
}
if (auto *XATy = dyn_cast<ArrayType>(StrippedPtrEltTy)) {
// GEP (bitcast [10 x i8]* X to [0 x i8]*), i32 0, ... ?
if (CATy->getElementType() == XATy->getElementType()) {
// -> GEP [10 x i8]* X, i32 0, ...
// At this point, we know that the cast source type is a pointer
// to an array of the same type as the destination pointer
// array. Because the array type is never stepped over (there
// is a leading zero) we can fold the cast into this GEP.
if (StrippedPtrTy->getAddressSpace() == GEP.getAddressSpace()) {
GEP.setSourceElementType(XATy);
return replaceOperand(GEP, 0, StrippedPtr);
}
// Cannot replace the base pointer directly because StrippedPtr's
// address space is different. Instead, create a new GEP followed by
// an addrspacecast.
// e.g.,
// GEP (addrspacecast [10 x i8] addrspace(1)* X to [0 x i8]*),
// i32 0, ...
// ->
// %0 = GEP [10 x i8] addrspace(1)* X, ...
// addrspacecast i8 addrspace(1)* %0 to i8*
SmallVector<Value*, 8> Idx(GEP.idx_begin(), GEP.idx_end());
Value *NewGEP =
GEP.isInBounds()
? Builder.CreateInBoundsGEP(StrippedPtrEltTy, StrippedPtr,
Idx, GEP.getName())
: Builder.CreateGEP(StrippedPtrEltTy, StrippedPtr, Idx,
GEP.getName());
return new AddrSpaceCastInst(NewGEP, GEPType);
}
}
}
} else if (GEP.getNumOperands() == 2 && !IsGEPSrcEleScalable) {
// Skip if GEP source element type is scalable. The type alloc size is
// unknown at compile-time.
// Transform things like: %t = getelementptr i32*
// bitcast ([2 x i32]* %str to i32*), i32 %V into: %t1 = getelementptr [2
// x i32]* %str, i32 0, i32 %V; bitcast
if (StrippedPtrEltTy->isArrayTy() &&
DL.getTypeAllocSize(StrippedPtrEltTy->getArrayElementType()) ==
DL.getTypeAllocSize(GEPEltType)) {
Type *IdxType = DL.getIndexType(GEPType);
Value *Idx[2] = { Constant::getNullValue(IdxType), GEP.getOperand(1) };
Value *NewGEP =
GEP.isInBounds()
? Builder.CreateInBoundsGEP(StrippedPtrEltTy, StrippedPtr, Idx,
GEP.getName())
: Builder.CreateGEP(StrippedPtrEltTy, StrippedPtr, Idx,
GEP.getName());
// V and GEP are both pointer types --> BitCast
return CastInst::CreatePointerBitCastOrAddrSpaceCast(NewGEP, GEPType);
}
// Transform things like:
// %V = mul i64 %N, 4
// %t = getelementptr i8* bitcast (i32* %arr to i8*), i32 %V
// into: %t1 = getelementptr i32* %arr, i32 %N; bitcast
if (GEPEltType->isSized() && StrippedPtrEltTy->isSized()) {
// Check that changing the type amounts to dividing the index by a scale
// factor.
uint64_t ResSize = DL.getTypeAllocSize(GEPEltType).getFixedSize();
uint64_t SrcSize = DL.getTypeAllocSize(StrippedPtrEltTy).getFixedSize();
if (ResSize && SrcSize % ResSize == 0) {
Value *Idx = GEP.getOperand(1);
unsigned BitWidth = Idx->getType()->getPrimitiveSizeInBits();
uint64_t Scale = SrcSize / ResSize;
// Earlier transforms ensure that the index has the right type
// according to Data Layout, which considerably simplifies the
// logic by eliminating implicit casts.
assert(Idx->getType() == DL.getIndexType(GEPType) &&
"Index type does not match the Data Layout preferences");
bool NSW;
if (Value *NewIdx = Descale(Idx, APInt(BitWidth, Scale), NSW)) {
// Successfully decomposed Idx as NewIdx * Scale, form a new GEP.
// If the multiplication NewIdx * Scale may overflow then the new
// GEP may not be "inbounds".
Value *NewGEP =
GEP.isInBounds() && NSW
? Builder.CreateInBoundsGEP(StrippedPtrEltTy, StrippedPtr,
NewIdx, GEP.getName())
: Builder.CreateGEP(StrippedPtrEltTy, StrippedPtr, NewIdx,
GEP.getName());
// The NewGEP must be pointer typed, so must the old one -> BitCast
return CastInst::CreatePointerBitCastOrAddrSpaceCast(NewGEP,
GEPType);
}
}
}
// Similarly, transform things like:
// getelementptr i8* bitcast ([100 x double]* X to i8*), i32 %tmp
// (where tmp = 8*tmp2) into:
// getelementptr [100 x double]* %arr, i32 0, i32 %tmp2; bitcast
if (GEPEltType->isSized() && StrippedPtrEltTy->isSized() &&
StrippedPtrEltTy->isArrayTy()) {
// Check that changing to the array element type amounts to dividing the
// index by a scale factor.
uint64_t ResSize = DL.getTypeAllocSize(GEPEltType).getFixedSize();
uint64_t ArrayEltSize =
DL.getTypeAllocSize(StrippedPtrEltTy->getArrayElementType())
.getFixedSize();
if (ResSize && ArrayEltSize % ResSize == 0) {
Value *Idx = GEP.getOperand(1);
unsigned BitWidth = Idx->getType()->getPrimitiveSizeInBits();
uint64_t Scale = ArrayEltSize / ResSize;
// Earlier transforms ensure that the index has the right type
// according to the Data Layout, which considerably simplifies
// the logic by eliminating implicit casts.
assert(Idx->getType() == DL.getIndexType(GEPType) &&
"Index type does not match the Data Layout preferences");
bool NSW;
if (Value *NewIdx = Descale(Idx, APInt(BitWidth, Scale), NSW)) {
// Successfully decomposed Idx as NewIdx * Scale, form a new GEP.
// If the multiplication NewIdx * Scale may overflow then the new
// GEP may not be "inbounds".
Type *IndTy = DL.getIndexType(GEPType);
Value *Off[2] = {Constant::getNullValue(IndTy), NewIdx};
Value *NewGEP =
GEP.isInBounds() && NSW
? Builder.CreateInBoundsGEP(StrippedPtrEltTy, StrippedPtr,
Off, GEP.getName())
: Builder.CreateGEP(StrippedPtrEltTy, StrippedPtr, Off,
GEP.getName());
// The NewGEP must be pointer typed, so must the old one -> BitCast
return CastInst::CreatePointerBitCastOrAddrSpaceCast(NewGEP,
GEPType);
}
}
}
}
}
// addrspacecast between types is canonicalized as a bitcast, then an
// addrspacecast. To take advantage of the below bitcast + struct GEP, look
// through the addrspacecast.
Value *ASCStrippedPtrOp = PtrOp;
if (auto *ASC = dyn_cast<AddrSpaceCastInst>(PtrOp)) {
// X = bitcast A addrspace(1)* to B addrspace(1)*
// Y = addrspacecast A addrspace(1)* to B addrspace(2)*
// Z = gep Y, <...constant indices...>
// Into an addrspacecasted GEP of the struct.
if (auto *BC = dyn_cast<BitCastInst>(ASC->getOperand(0)))
ASCStrippedPtrOp = BC;
}
if (auto *BCI = dyn_cast<BitCastInst>(ASCStrippedPtrOp)) {
Value *SrcOp = BCI->getOperand(0);
PointerType *SrcType = cast<PointerType>(BCI->getSrcTy());
Type *SrcEltType = SrcType->getElementType();
// GEP directly using the source operand if this GEP is accessing an element
// of a bitcasted pointer to vector or array of the same dimensions:
// gep (bitcast <c x ty>* X to [c x ty]*), Y, Z --> gep X, Y, Z
// gep (bitcast [c x ty]* X to <c x ty>*), Y, Z --> gep X, Y, Z
auto areMatchingArrayAndVecTypes = [](Type *ArrTy, Type *VecTy,
const DataLayout &DL) {
auto *VecVTy = cast<FixedVectorType>(VecTy);
return ArrTy->getArrayElementType() == VecVTy->getElementType() &&
ArrTy->getArrayNumElements() == VecVTy->getNumElements() &&
DL.getTypeAllocSize(ArrTy) == DL.getTypeAllocSize(VecTy);
};
if (GEP.getNumOperands() == 3 &&
((GEPEltType->isArrayTy() && isa<FixedVectorType>(SrcEltType) &&
areMatchingArrayAndVecTypes(GEPEltType, SrcEltType, DL)) ||
(isa<FixedVectorType>(GEPEltType) && SrcEltType->isArrayTy() &&
areMatchingArrayAndVecTypes(SrcEltType, GEPEltType, DL)))) {
// Create a new GEP here, as using `setOperand()` followed by
// `setSourceElementType()` won't actually update the type of the
// existing GEP Value. Causing issues if this Value is accessed when
// constructing an AddrSpaceCastInst
Value *NGEP =
GEP.isInBounds()
? Builder.CreateInBoundsGEP(SrcEltType, SrcOp, {Ops[1], Ops[2]})
: Builder.CreateGEP(SrcEltType, SrcOp, {Ops[1], Ops[2]});
NGEP->takeName(&GEP);
// Preserve GEP address space to satisfy users
if (NGEP->getType()->getPointerAddressSpace() != GEP.getAddressSpace())
return new AddrSpaceCastInst(NGEP, GEPType);
return replaceInstUsesWith(GEP, NGEP);
}
// See if we can simplify:
// X = bitcast A* to B*
// Y = gep X, <...constant indices...>
// into a gep of the original struct. This is important for SROA and alias
// analysis of unions. If "A" is also a bitcast, wait for A/X to be merged.
unsigned OffsetBits = DL.getIndexTypeSizeInBits(GEPType);
APInt Offset(OffsetBits, 0);
if (!isa<BitCastInst>(SrcOp) && GEP.accumulateConstantOffset(DL, Offset)) {
// If this GEP instruction doesn't move the pointer, just replace the GEP
// with a bitcast of the real input to the dest type.
if (!Offset) {
// If the bitcast is of an allocation, and the allocation will be
// converted to match the type of the cast, don't touch this.
if (isa<AllocaInst>(SrcOp) || isAllocationFn(SrcOp, &TLI)) {
// See if the bitcast simplifies, if so, don't nuke this GEP yet.
if (Instruction *I = visitBitCast(*BCI)) {
if (I != BCI) {
I->takeName(BCI);
BCI->getParent()->getInstList().insert(BCI->getIterator(), I);
replaceInstUsesWith(*BCI, I);
}
return &GEP;
}
}
if (SrcType->getPointerAddressSpace() != GEP.getAddressSpace())
return new AddrSpaceCastInst(SrcOp, GEPType);
return new BitCastInst(SrcOp, GEPType);
}
// Otherwise, if the offset is non-zero, we need to find out if there is a
// field at Offset in 'A's type. If so, we can pull the cast through the
// GEP.
SmallVector<Value*, 8> NewIndices;
if (FindElementAtOffset(SrcType, Offset.getSExtValue(), NewIndices)) {
Value *NGEP =
GEP.isInBounds()
? Builder.CreateInBoundsGEP(SrcEltType, SrcOp, NewIndices)
: Builder.CreateGEP(SrcEltType, SrcOp, NewIndices);
if (NGEP->getType() == GEPType)
return replaceInstUsesWith(GEP, NGEP);
NGEP->takeName(&GEP);
if (NGEP->getType()->getPointerAddressSpace() != GEP.getAddressSpace())
return new AddrSpaceCastInst(NGEP, GEPType);
return new BitCastInst(NGEP, GEPType);
}
}
}
if (!GEP.isInBounds()) {
unsigned IdxWidth =
DL.getIndexSizeInBits(PtrOp->getType()->getPointerAddressSpace());
APInt BasePtrOffset(IdxWidth, 0);
Value *UnderlyingPtrOp =
PtrOp->stripAndAccumulateInBoundsConstantOffsets(DL,
BasePtrOffset);
if (auto *AI = dyn_cast<AllocaInst>(UnderlyingPtrOp)) {
if (GEP.accumulateConstantOffset(DL, BasePtrOffset) &&
BasePtrOffset.isNonNegative()) {
APInt AllocSize(
IdxWidth,
DL.getTypeAllocSize(AI->getAllocatedType()).getKnownMinSize());
if (BasePtrOffset.ule(AllocSize)) {
return GetElementPtrInst::CreateInBounds(
GEP.getSourceElementType(), PtrOp, makeArrayRef(Ops).slice(1),
GEP.getName());
}
}
}
}
if (Instruction *R = foldSelectGEP(GEP, Builder))
return R;
return nullptr;
}
static bool isNeverEqualToUnescapedAlloc(Value *V, const TargetLibraryInfo *TLI,
Instruction *AI) {
if (isa<ConstantPointerNull>(V))
return true;
if (auto *LI = dyn_cast<LoadInst>(V))
return isa<GlobalVariable>(LI->getPointerOperand());
// Two distinct allocations will never be equal.
// We rely on LookThroughBitCast in isAllocLikeFn being false, since looking
// through bitcasts of V can cause
// the result statement below to be true, even when AI and V (ex:
// i8* ->i32* ->i8* of AI) are the same allocations.
return isAllocLikeFn(V, TLI) && V != AI;
}
static bool isAllocSiteRemovable(Instruction *AI,
SmallVectorImpl<WeakTrackingVH> &Users,
const TargetLibraryInfo *TLI) {
SmallVector<Instruction*, 4> Worklist;
Worklist.push_back(AI);
do {
Instruction *PI = Worklist.pop_back_val();
for (User *U : PI->users()) {
Instruction *I = cast<Instruction>(U);
switch (I->getOpcode()) {
default:
// Give up the moment we see something we can't handle.
return false;
case Instruction::AddrSpaceCast:
case Instruction::BitCast:
case Instruction::GetElementPtr:
Users.emplace_back(I);
Worklist.push_back(I);
continue;
case Instruction::ICmp: {
ICmpInst *ICI = cast<ICmpInst>(I);
// We can fold eq/ne comparisons with null to false/true, respectively.
// We also fold comparisons in some conditions provided the alloc has
// not escaped (see isNeverEqualToUnescapedAlloc).
if (!ICI->isEquality())
return false;
unsigned OtherIndex = (ICI->getOperand(0) == PI) ? 1 : 0;
if (!isNeverEqualToUnescapedAlloc(ICI->getOperand(OtherIndex), TLI, AI))
return false;
Users.emplace_back(I);
continue;
}
case Instruction::Call:
// Ignore no-op and store intrinsics.
if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
switch (II->getIntrinsicID()) {
default:
return false;
case Intrinsic::memmove:
case Intrinsic::memcpy:
case Intrinsic::memset: {
MemIntrinsic *MI = cast<MemIntrinsic>(II);
if (MI->isVolatile() || MI->getRawDest() != PI)
return false;
LLVM_FALLTHROUGH;
}
case Intrinsic::assume:
case Intrinsic::invariant_start:
case Intrinsic::invariant_end:
case Intrinsic::lifetime_start:
case Intrinsic::lifetime_end:
case Intrinsic::objectsize:
Users.emplace_back(I);
continue;
}
}
if (isFreeCall(I, TLI)) {
Users.emplace_back(I);
continue;
}
return false;
case Instruction::Store: {
StoreInst *SI = cast<StoreInst>(I);
if (SI->isVolatile() || SI->getPointerOperand() != PI)
return false;
Users.emplace_back(I);
continue;
}
}
llvm_unreachable("missing a return?");
}
} while (!Worklist.empty());
return true;
}
Instruction *InstCombinerImpl::visitAllocSite(Instruction &MI) {
// If we have a malloc call which is only used in any amount of comparisons to
// null and free calls, delete the calls and replace the comparisons with true
// or false as appropriate.
// This is based on the principle that we can substitute our own allocation
// function (which will never return null) rather than knowledge of the
// specific function being called. In some sense this can change the permitted
// outputs of a program (when we convert a malloc to an alloca, the fact that
// the allocation is now on the stack is potentially visible, for example),
// but we believe in a permissible manner.
SmallVector<WeakTrackingVH, 64> Users;
// If we are removing an alloca with a dbg.declare, insert dbg.value calls
// before each store.
SmallVector<DbgVariableIntrinsic *, 8> DVIs;
std::unique_ptr<DIBuilder> DIB;
if (isa<AllocaInst>(MI)) {
findDbgUsers(DVIs, &MI);
DIB.reset(new DIBuilder(*MI.getModule(), /*AllowUnresolved=*/false));
}
if (isAllocSiteRemovable(&MI, Users, &TLI)) {
for (unsigned i = 0, e = Users.size(); i != e; ++i) {
// Lowering all @llvm.objectsize calls first because they may
// use a bitcast/GEP of the alloca we are removing.
if (!Users[i])
continue;
Instruction *I = cast<Instruction>(&*Users[i]);
if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
if (II->getIntrinsicID() == Intrinsic::objectsize) {
Value *Result =
lowerObjectSizeCall(II, DL, &TLI, /*MustSucceed=*/true);
replaceInstUsesWith(*I, Result);
eraseInstFromFunction(*I);
Users[i] = nullptr; // Skip examining in the next loop.
}
}
}
for (unsigned i = 0, e = Users.size(); i != e; ++i) {
if (!Users[i])
continue;
Instruction *I = cast<Instruction>(&*Users[i]);
if (ICmpInst *C = dyn_cast<ICmpInst>(I)) {
replaceInstUsesWith(*C,
ConstantInt::get(Type::getInt1Ty(C->getContext()),
C->isFalseWhenEqual()));
} else if (auto *SI = dyn_cast<StoreInst>(I)) {
for (auto *DVI : DVIs)
if (DVI->isAddressOfVariable())
ConvertDebugDeclareToDebugValue(DVI, SI, *DIB);
} else {
// Casts, GEP, or anything else: we're about to delete this instruction,
// so it can not have any valid uses.
replaceInstUsesWith(*I, UndefValue::get(I->getType()));
}
eraseInstFromFunction(*I);
}
if (InvokeInst *II = dyn_cast<InvokeInst>(&MI)) {
// Replace invoke with a NOP intrinsic to maintain the original CFG
Module *M = II->getModule();
Function *F = Intrinsic::getDeclaration(M, Intrinsic::donothing);
InvokeInst::Create(F, II->getNormalDest(), II->getUnwindDest(),
None, "", II->getParent());
}
// Remove debug intrinsics which describe the value contained within the
// alloca. In addition to removing dbg.{declare,addr} which simply point to
// the alloca, remove dbg.value(<alloca>, ..., DW_OP_deref)'s as well, e.g.:
//
// ```
// define void @foo(i32 %0) {
// %a = alloca i32 ; Deleted.
// store i32 %0, i32* %a
// dbg.value(i32 %0, "arg0") ; Not deleted.
// dbg.value(i32* %a, "arg0", DW_OP_deref) ; Deleted.
// call void @trivially_inlinable_no_op(i32* %a)
// ret void
// }
// ```
//
// This may not be required if we stop describing the contents of allocas
// using dbg.value(<alloca>, ..., DW_OP_deref), but we currently do this in
// the LowerDbgDeclare utility.
//
// If there is a dead store to `%a` in @trivially_inlinable_no_op, the
// "arg0" dbg.value may be stale after the call. However, failing to remove
// the DW_OP_deref dbg.value causes large gaps in location coverage.
for (auto *DVI : DVIs)
if (DVI->isAddressOfVariable() || DVI->getExpression()->startsWithDeref())
DVI->eraseFromParent();
return eraseInstFromFunction(MI);
}
return nullptr;
}
/// Move the call to free before a NULL test.
///
/// Check if this free is accessed after its argument has been test
/// against NULL (property 0).
/// If yes, it is legal to move this call in its predecessor block.
///
/// The move is performed only if the block containing the call to free
/// will be removed, i.e.:
/// 1. it has only one predecessor P, and P has two successors
/// 2. it contains the call, noops, and an unconditional branch
/// 3. its successor is the same as its predecessor's successor
///
/// The profitability is out-of concern here and this function should
/// be called only if the caller knows this transformation would be
/// profitable (e.g., for code size).
static Instruction *tryToMoveFreeBeforeNullTest(CallInst &FI,
const DataLayout &DL) {
Value *Op = FI.getArgOperand(0);
BasicBlock *FreeInstrBB = FI.getParent();
BasicBlock *PredBB = FreeInstrBB->getSinglePredecessor();
// Validate part of constraint #1: Only one predecessor
// FIXME: We can extend the number of predecessor, but in that case, we
// would duplicate the call to free in each predecessor and it may
// not be profitable even for code size.
if (!PredBB)
return nullptr;
// Validate constraint #2: Does this block contains only the call to
// free, noops, and an unconditional branch?
BasicBlock *SuccBB;
Instruction *FreeInstrBBTerminator = FreeInstrBB->getTerminator();
if (!match(FreeInstrBBTerminator, m_UnconditionalBr(SuccBB)))
return nullptr;
// If there are only 2 instructions in the block, at this point,
// this is the call to free and unconditional.
// If there are more than 2 instructions, check that they are noops
// i.e., they won't hurt the performance of the generated code.
if (FreeInstrBB->size() != 2) {
for (const Instruction &Inst : FreeInstrBB->instructionsWithoutDebug()) {
if (&Inst == &FI || &Inst == FreeInstrBBTerminator)
continue;
auto *Cast = dyn_cast<CastInst>(&Inst);
if (!Cast || !Cast->isNoopCast(DL))
return nullptr;
}
}
// Validate the rest of constraint #1 by matching on the pred branch.
Instruction *TI = PredBB->getTerminator();
BasicBlock *TrueBB, *FalseBB;
ICmpInst::Predicate Pred;
if (!match(TI, m_Br(m_ICmp(Pred,
m_CombineOr(m_Specific(Op),
m_Specific(Op->stripPointerCasts())),
m_Zero()),
TrueBB, FalseBB)))
return nullptr;
if (Pred != ICmpInst::ICMP_EQ && Pred != ICmpInst::ICMP_NE)
return nullptr;
// Validate constraint #3: Ensure the null case just falls through.
if (SuccBB != (Pred == ICmpInst::ICMP_EQ ? TrueBB : FalseBB))
return nullptr;
assert(FreeInstrBB == (Pred == ICmpInst::ICMP_EQ ? FalseBB : TrueBB) &&
"Broken CFG: missing edge from predecessor to successor");
// At this point, we know that everything in FreeInstrBB can be moved
// before TI.
for (BasicBlock::iterator It = FreeInstrBB->begin(), End = FreeInstrBB->end();
It != End;) {
Instruction &Instr = *It++;
if (&Instr == FreeInstrBBTerminator)
break;
Instr.moveBefore(TI);
}
assert(FreeInstrBB->size() == 1 &&
"Only the branch instruction should remain");
return &FI;
}
Instruction *InstCombinerImpl::visitFree(CallInst &FI) {
Value *Op = FI.getArgOperand(0);
// free undef -> unreachable.
if (isa<UndefValue>(Op)) {
// Leave a marker since we can't modify the CFG here.
CreateNonTerminatorUnreachable(&FI);
return eraseInstFromFunction(FI);
}
// If we have 'free null' delete the instruction. This can happen in stl code
// when lots of inlining happens.
if (isa<ConstantPointerNull>(Op))
return eraseInstFromFunction(FI);
// If we optimize for code size, try to move the call to free before the null
// test so that simplify cfg can remove the empty block and dead code
// elimination the branch. I.e., helps to turn something like:
// if (foo) free(foo);
// into
// free(foo);
//
// Note that we can only do this for 'free' and not for any flavor of
// 'operator delete'; there is no 'operator delete' symbol for which we are
// permitted to invent a call, even if we're passing in a null pointer.
if (MinimizeSize) {
LibFunc Func;
if (TLI.getLibFunc(FI, Func) && TLI.has(Func) && Func == LibFunc_free)
if (Instruction *I = tryToMoveFreeBeforeNullTest(FI, DL))
return I;
}
return nullptr;
}
static bool isMustTailCall(Value *V) {
if (auto *CI = dyn_cast<CallInst>(V))
return CI->isMustTailCall();
return false;
}
Instruction *InstCombinerImpl::visitReturnInst(ReturnInst &RI) {
if (RI.getNumOperands() == 0) // ret void
return nullptr;
Value *ResultOp = RI.getOperand(0);
Type *VTy = ResultOp->getType();
if (!VTy->isIntegerTy() || isa<Constant>(ResultOp))
return nullptr;
// Don't replace result of musttail calls.
if (isMustTailCall(ResultOp))
return nullptr;
// There might be assume intrinsics dominating this return that completely
// determine the value. If so, constant fold it.
KnownBits Known = computeKnownBits(ResultOp, 0, &RI);
if (Known.isConstant())
return replaceOperand(RI, 0,
Constant::getIntegerValue(VTy, Known.getConstant()));
return nullptr;
}
Instruction *InstCombinerImpl::visitUnreachableInst(UnreachableInst &I) {
// Try to remove the previous instruction if it must lead to unreachable.
// This includes instructions like stores and "llvm.assume" that may not get
// removed by simple dead code elimination.
Instruction *Prev = I.getPrevNonDebugInstruction();
if (Prev && !Prev->isEHPad() &&
isGuaranteedToTransferExecutionToSuccessor(Prev)) {
// Temporarily disable removal of volatile stores preceding unreachable,
// pending a potential LangRef change permitting volatile stores to trap.
// TODO: Either remove this code, or properly integrate the check into
// isGuaranteedToTransferExecutionToSuccessor().
if (auto *SI = dyn_cast<StoreInst>(Prev))
if (SI->isVolatile())
return nullptr;
// A value may still have uses before we process it here (for example, in
// another unreachable block), so convert those to undef.
replaceInstUsesWith(*Prev, UndefValue::get(Prev->getType()));
eraseInstFromFunction(*Prev);
return &I;
}
return nullptr;
}
Instruction *InstCombinerImpl::visitUnconditionalBranchInst(BranchInst &BI) {
assert(BI.isUnconditional() && "Only for unconditional branches.");
// If this store is the second-to-last instruction in the basic block
// (excluding debug info and bitcasts of pointers) and if the block ends with
// an unconditional branch, try to move the store to the successor block.
auto GetLastSinkableStore = [](BasicBlock::iterator BBI) {
auto IsNoopInstrForStoreMerging = [](BasicBlock::iterator BBI) {
return isa<DbgInfoIntrinsic>(BBI) ||
(isa<BitCastInst>(BBI) && BBI->getType()->isPointerTy());
};
BasicBlock::iterator FirstInstr = BBI->getParent()->begin();
do {
if (BBI != FirstInstr)
--BBI;
} while (BBI != FirstInstr && IsNoopInstrForStoreMerging(BBI));
return dyn_cast<StoreInst>(BBI);
};
if (StoreInst *SI = GetLastSinkableStore(BasicBlock::iterator(BI)))
if (mergeStoreIntoSuccessor(*SI))
return &BI;
return nullptr;
}
Instruction *InstCombinerImpl::visitBranchInst(BranchInst &BI) {
if (BI.isUnconditional())
return visitUnconditionalBranchInst(BI);
// Change br (not X), label True, label False to: br X, label False, True
Value *X = nullptr;
if (match(&BI, m_Br(m_Not(m_Value(X)), m_BasicBlock(), m_BasicBlock())) &&
!isa<Constant>(X)) {
// Swap Destinations and condition...
BI.swapSuccessors();
return replaceOperand(BI, 0, X);
}
// If the condition is irrelevant, remove the use so that other
// transforms on the condition become more effective.
if (!isa<ConstantInt>(BI.getCondition()) &&
BI.getSuccessor(0) == BI.getSuccessor(1))
return replaceOperand(
BI, 0, ConstantInt::getFalse(BI.getCondition()->getType()));
// Canonicalize, for example, fcmp_one -> fcmp_oeq.
CmpInst::Predicate Pred;
if (match(&BI, m_Br(m_OneUse(m_FCmp(Pred, m_Value(), m_Value())),
m_BasicBlock(), m_BasicBlock())) &&
!isCanonicalPredicate(Pred)) {
// Swap destinations and condition.
CmpInst *Cond = cast<CmpInst>(BI.getCondition());
Cond->setPredicate(CmpInst::getInversePredicate(Pred));
BI.swapSuccessors();
Worklist.push(Cond);
return &BI;
}
return nullptr;
}
Instruction *InstCombinerImpl::visitSwitchInst(SwitchInst &SI) {
Value *Cond = SI.getCondition();
Value *Op0;
ConstantInt *AddRHS;
if (match(Cond, m_Add(m_Value(Op0), m_ConstantInt(AddRHS)))) {
// Change 'switch (X+4) case 1:' into 'switch (X) case -3'.
for (auto Case : SI.cases()) {
Constant *NewCase = ConstantExpr::getSub(Case.getCaseValue(), AddRHS);
assert(isa<ConstantInt>(NewCase) &&
"Result of expression should be constant");
Case.setValue(cast<ConstantInt>(NewCase));
}
return replaceOperand(SI, 0, Op0);
}
KnownBits Known = computeKnownBits(Cond, 0, &SI);
unsigned LeadingKnownZeros = Known.countMinLeadingZeros();
unsigned LeadingKnownOnes = Known.countMinLeadingOnes();
// Compute the number of leading bits we can ignore.
// TODO: A better way to determine this would use ComputeNumSignBits().
for (auto &C : SI.cases()) {
LeadingKnownZeros = std::min(
LeadingKnownZeros, C.getCaseValue()->getValue().countLeadingZeros());
LeadingKnownOnes = std::min(
LeadingKnownOnes, C.getCaseValue()->getValue().countLeadingOnes());
}
unsigned NewWidth = Known.getBitWidth() - std::max(LeadingKnownZeros, LeadingKnownOnes);
// Shrink the condition operand if the new type is smaller than the old type.
// But do not shrink to a non-standard type, because backend can't generate
// good code for that yet.
// TODO: We can make it aggressive again after fixing PR39569.
if (NewWidth > 0 && NewWidth < Known.getBitWidth() &&
shouldChangeType(Known.getBitWidth(), NewWidth)) {
IntegerType *Ty = IntegerType::get(SI.getContext(), NewWidth);
Builder.SetInsertPoint(&SI);
Value *NewCond = Builder.CreateTrunc(Cond, Ty, "trunc");
for (auto Case : SI.cases()) {
APInt TruncatedCase = Case.getCaseValue()->getValue().trunc(NewWidth);
Case.setValue(ConstantInt::get(SI.getContext(), TruncatedCase));
}
return replaceOperand(SI, 0, NewCond);
}
return nullptr;
}
Instruction *InstCombinerImpl::visitExtractValueInst(ExtractValueInst &EV) {
Value *Agg = EV.getAggregateOperand();
if (!EV.hasIndices())
return replaceInstUsesWith(EV, Agg);
if (Value *V = SimplifyExtractValueInst(Agg, EV.getIndices(),
SQ.getWithInstruction(&EV)))
return replaceInstUsesWith(EV, V);
if (InsertValueInst *IV = dyn_cast<InsertValueInst>(Agg)) {
// We're extracting from an insertvalue instruction, compare the indices
const unsigned *exti, *exte, *insi, *inse;
for (exti = EV.idx_begin(), insi = IV->idx_begin(),
exte = EV.idx_end(), inse = IV->idx_end();
exti != exte && insi != inse;
++exti, ++insi) {
if (*insi != *exti)
// The insert and extract both reference distinctly different elements.
// This means the extract is not influenced by the insert, and we can
// replace the aggregate operand of the extract with the aggregate
// operand of the insert. i.e., replace
// %I = insertvalue { i32, { i32 } } %A, { i32 } { i32 42 }, 1
// %E = extractvalue { i32, { i32 } } %I, 0
// with
// %E = extractvalue { i32, { i32 } } %A, 0
return ExtractValueInst::Create(IV->getAggregateOperand(),
EV.getIndices());
}
if (exti == exte && insi == inse)
// Both iterators are at the end: Index lists are identical. Replace
// %B = insertvalue { i32, { i32 } } %A, i32 42, 1, 0
// %C = extractvalue { i32, { i32 } } %B, 1, 0
// with "i32 42"
return replaceInstUsesWith(EV, IV->getInsertedValueOperand());
if (exti == exte) {
// The extract list is a prefix of the insert list. i.e. replace
// %I = insertvalue { i32, { i32 } } %A, i32 42, 1, 0
// %E = extractvalue { i32, { i32 } } %I, 1
// with
// %X = extractvalue { i32, { i32 } } %A, 1
// %E = insertvalue { i32 } %X, i32 42, 0
// by switching the order of the insert and extract (though the
// insertvalue should be left in, since it may have other uses).
Value *NewEV = Builder.CreateExtractValue(IV->getAggregateOperand(),
EV.getIndices());
return InsertValueInst::Create(NewEV, IV->getInsertedValueOperand(),
makeArrayRef(insi, inse));
}
if (insi == inse)
// The insert list is a prefix of the extract list
// We can simply remove the common indices from the extract and make it
// operate on the inserted value instead of the insertvalue result.
// i.e., replace
// %I = insertvalue { i32, { i32 } } %A, { i32 } { i32 42 }, 1
// %E = extractvalue { i32, { i32 } } %I, 1, 0
// with
// %E extractvalue { i32 } { i32 42 }, 0
return ExtractValueInst::Create(IV->getInsertedValueOperand(),
makeArrayRef(exti, exte));
}
if (WithOverflowInst *WO = dyn_cast<WithOverflowInst>(Agg)) {
// We're extracting from an overflow intrinsic, see if we're the only user,
// which allows us to simplify multiple result intrinsics to simpler
// things that just get one value.
if (WO->hasOneUse()) {
// Check if we're grabbing only the result of a 'with overflow' intrinsic
// and replace it with a traditional binary instruction.
if (*EV.idx_begin() == 0) {
Instruction::BinaryOps BinOp = WO->getBinaryOp();
Value *LHS = WO->getLHS(), *RHS = WO->getRHS();
replaceInstUsesWith(*WO, UndefValue::get(WO->getType()));
eraseInstFromFunction(*WO);
return BinaryOperator::Create(BinOp, LHS, RHS);
}
// If the normal result of the add is dead, and the RHS is a constant,
// we can transform this into a range comparison.
// overflow = uadd a, -4 --> overflow = icmp ugt a, 3
if (WO->getIntrinsicID() == Intrinsic::uadd_with_overflow)
if (ConstantInt *CI = dyn_cast<ConstantInt>(WO->getRHS()))
return new ICmpInst(ICmpInst::ICMP_UGT, WO->getLHS(),
ConstantExpr::getNot(CI));
}
}
if (LoadInst *L = dyn_cast<LoadInst>(Agg))
// If the (non-volatile) load only has one use, we can rewrite this to a
// load from a GEP. This reduces the size of the load. If a load is used
// only by extractvalue instructions then this either must have been
// optimized before, or it is a struct with padding, in which case we
// don't want to do the transformation as it loses padding knowledge.
if (L->isSimple() && L->hasOneUse()) {
// extractvalue has integer indices, getelementptr has Value*s. Convert.
SmallVector<Value*, 4> Indices;
// Prefix an i32 0 since we need the first element.
Indices.push_back(Builder.getInt32(0));
for (ExtractValueInst::idx_iterator I = EV.idx_begin(), E = EV.idx_end();
I != E; ++I)
Indices.push_back(Builder.getInt32(*I));
// We need to insert these at the location of the old load, not at that of
// the extractvalue.
Builder.SetInsertPoint(L);
Value *GEP = Builder.CreateInBoundsGEP(L->getType(),
L->getPointerOperand(), Indices);
Instruction *NL = Builder.CreateLoad(EV.getType(), GEP);
// Whatever aliasing information we had for the orignal load must also
// hold for the smaller load, so propagate the annotations.
AAMDNodes Nodes;
L->getAAMetadata(Nodes);
NL->setAAMetadata(Nodes);
// Returning the load directly will cause the main loop to insert it in
// the wrong spot, so use replaceInstUsesWith().
return replaceInstUsesWith(EV, NL);
}
// We could simplify extracts from other values. Note that nested extracts may
// already be simplified implicitly by the above: extract (extract (insert) )
// will be translated into extract ( insert ( extract ) ) first and then just
// the value inserted, if appropriate. Similarly for extracts from single-use
// loads: extract (extract (load)) will be translated to extract (load (gep))
// and if again single-use then via load (gep (gep)) to load (gep).
// However, double extracts from e.g. function arguments or return values
// aren't handled yet.
return nullptr;
}
/// Return 'true' if the given typeinfo will match anything.
static bool isCatchAll(EHPersonality Personality, Constant *TypeInfo) {
switch (Personality) {
case EHPersonality::GNU_C:
case EHPersonality::GNU_C_SjLj:
case EHPersonality::Rust:
// The GCC C EH and Rust personality only exists to support cleanups, so
// it's not clear what the semantics of catch clauses are.
return false;
case EHPersonality::Unknown:
return false;
case EHPersonality::GNU_Ada:
// While __gnat_all_others_value will match any Ada exception, it doesn't
// match foreign exceptions (or didn't, before gcc-4.7).
return false;
case EHPersonality::GNU_CXX:
case EHPersonality::GNU_CXX_SjLj:
case EHPersonality::GNU_ObjC:
case EHPersonality::MSVC_X86SEH:
case EHPersonality::MSVC_TableSEH:
case EHPersonality::MSVC_CXX:
case EHPersonality::CoreCLR:
case EHPersonality::Wasm_CXX:
case EHPersonality::XL_CXX:
return TypeInfo->isNullValue();
}
llvm_unreachable("invalid enum");
}
static bool shorter_filter(const Value *LHS, const Value *RHS) {
return
cast<ArrayType>(LHS->getType())->getNumElements()
<
cast<ArrayType>(RHS->getType())->getNumElements();
}
Instruction *InstCombinerImpl::visitLandingPadInst(LandingPadInst &LI) {
// The logic here should be correct for any real-world personality function.
// However if that turns out not to be true, the offending logic can always
// be conditioned on the personality function, like the catch-all logic is.
EHPersonality Personality =
classifyEHPersonality(LI.getParent()->getParent()->getPersonalityFn());
// Simplify the list of clauses, eg by removing repeated catch clauses
// (these are often created by inlining).
bool MakeNewInstruction = false; // If true, recreate using the following:
SmallVector<Constant *, 16> NewClauses; // - Clauses for the new instruction;
bool CleanupFlag = LI.isCleanup(); // - The new instruction is a cleanup.
SmallPtrSet<Value *, 16> AlreadyCaught; // Typeinfos known caught already.
for (unsigned i = 0, e = LI.getNumClauses(); i != e; ++i) {
bool isLastClause = i + 1 == e;
if (LI.isCatch(i)) {
// A catch clause.
Constant *CatchClause = LI.getClause(i);
Constant *TypeInfo = CatchClause->stripPointerCasts();
// If we already saw this clause, there is no point in having a second
// copy of it.
if (AlreadyCaught.insert(TypeInfo).second) {
// This catch clause was not already seen.
NewClauses.push_back(CatchClause);
} else {
// Repeated catch clause - drop the redundant copy.
MakeNewInstruction = true;
}
// If this is a catch-all then there is no point in keeping any following
// clauses or marking the landingpad as having a cleanup.
if (isCatchAll(Personality, TypeInfo)) {
if (!isLastClause)
MakeNewInstruction = true;
CleanupFlag = false;
break;
}
} else {
// A filter clause. If any of the filter elements were already caught
// then they can be dropped from the filter. It is tempting to try to
// exploit the filter further by saying that any typeinfo that does not
// occur in the filter can't be caught later (and thus can be dropped).
// However this would be wrong, since typeinfos can match without being
// equal (for example if one represents a C++ class, and the other some
// class derived from it).
assert(LI.isFilter(i) && "Unsupported landingpad clause!");
Constant *FilterClause = LI.getClause(i);
ArrayType *FilterType = cast<ArrayType>(FilterClause->getType());
unsigned NumTypeInfos = FilterType->getNumElements();
// An empty filter catches everything, so there is no point in keeping any
// following clauses or marking the landingpad as having a cleanup. By
// dealing with this case here the following code is made a bit simpler.
if (!NumTypeInfos) {
NewClauses.push_back(FilterClause);
if (!isLastClause)
MakeNewInstruction = true;
CleanupFlag = false;
break;
}
bool MakeNewFilter = false; // If true, make a new filter.
SmallVector<Constant *, 16> NewFilterElts; // New elements.
if (isa<ConstantAggregateZero>(FilterClause)) {
// Not an empty filter - it contains at least one null typeinfo.
assert(NumTypeInfos > 0 && "Should have handled empty filter already!");
Constant *TypeInfo =
Constant::getNullValue(FilterType->getElementType());
// If this typeinfo is a catch-all then the filter can never match.
if (isCatchAll(Personality, TypeInfo)) {
// Throw the filter away.
MakeNewInstruction = true;
continue;
}
// There is no point in having multiple copies of this typeinfo, so
// discard all but the first copy if there is more than one.
NewFilterElts.push_back(TypeInfo);
if (NumTypeInfos > 1)
MakeNewFilter = true;
} else {
ConstantArray *Filter = cast<ConstantArray>(FilterClause);
SmallPtrSet<Value *, 16> SeenInFilter; // For uniquing the elements.
NewFilterElts.reserve(NumTypeInfos);
// Remove any filter elements that were already caught or that already
// occurred in the filter. While there, see if any of the elements are
// catch-alls. If so, the filter can be discarded.
bool SawCatchAll = false;
for (unsigned j = 0; j != NumTypeInfos; ++j) {
Constant *Elt = Filter->getOperand(j);
Constant *TypeInfo = Elt->stripPointerCasts();
if (isCatchAll(Personality, TypeInfo)) {
// This element is a catch-all. Bail out, noting this fact.
SawCatchAll = true;
break;
}
// Even if we've seen a type in a catch clause, we don't want to
// remove it from the filter. An unexpected type handler may be
// set up for a call site which throws an exception of the same
// type caught. In order for the exception thrown by the unexpected
// handler to propagate correctly, the filter must be correctly
// described for the call site.
//
// Example:
//
// void unexpected() { throw 1;}
// void foo() throw (int) {
// std::set_unexpected(unexpected);
// try {
// throw 2.0;
// } catch (int i) {}
// }
// There is no point in having multiple copies of the same typeinfo in
// a filter, so only add it if we didn't already.
if (SeenInFilter.insert(TypeInfo).second)
NewFilterElts.push_back(cast<Constant>(Elt));
}
// A filter containing a catch-all cannot match anything by definition.
if (SawCatchAll) {
// Throw the filter away.
MakeNewInstruction = true;
continue;
}
// If we dropped something from the filter, make a new one.
if (NewFilterElts.size() < NumTypeInfos)
MakeNewFilter = true;
}
if (MakeNewFilter) {
FilterType = ArrayType::get(FilterType->getElementType(),
NewFilterElts.size());
FilterClause = ConstantArray::get(FilterType, NewFilterElts);
MakeNewInstruction = true;
}
NewClauses.push_back(FilterClause);
// If the new filter is empty then it will catch everything so there is
// no point in keeping any following clauses or marking the landingpad
// as having a cleanup. The case of the original filter being empty was
// already handled above.
if (MakeNewFilter && !NewFilterElts.size()) {
assert(MakeNewInstruction && "New filter but not a new instruction!");
CleanupFlag = false;
break;
}
}
}
// If several filters occur in a row then reorder them so that the shortest
// filters come first (those with the smallest number of elements). This is
// advantageous because shorter filters are more likely to match, speeding up
// unwinding, but mostly because it increases the effectiveness of the other
// filter optimizations below.
for (unsigned i = 0, e = NewClauses.size(); i + 1 < e; ) {
unsigned j;
// Find the maximal 'j' s.t. the range [i, j) consists entirely of filters.
for (j = i; j != e; ++j)
if (!isa<ArrayType>(NewClauses[j]->getType()))
break;
// Check whether the filters are already sorted by length. We need to know
// if sorting them is actually going to do anything so that we only make a
// new landingpad instruction if it does.
for (unsigned k = i; k + 1 < j; ++k)
if (shorter_filter(NewClauses[k+1], NewClauses[k])) {
// Not sorted, so sort the filters now. Doing an unstable sort would be
// correct too but reordering filters pointlessly might confuse users.
std::stable_sort(NewClauses.begin() + i, NewClauses.begin() + j,
shorter_filter);
MakeNewInstruction = true;
break;
}
// Look for the next batch of filters.
i = j + 1;
}
// If typeinfos matched if and only if equal, then the elements of a filter L
// that occurs later than a filter F could be replaced by the intersection of
// the elements of F and L. In reality two typeinfos can match without being
// equal (for example if one represents a C++ class, and the other some class
// derived from it) so it would be wrong to perform this transform in general.
// However the transform is correct and useful if F is a subset of L. In that
// case L can be replaced by F, and thus removed altogether since repeating a
// filter is pointless. So here we look at all pairs of filters F and L where
// L follows F in the list of clauses, and remove L if every element of F is
// an element of L. This can occur when inlining C++ functions with exception
// specifications.
for (unsigned i = 0; i + 1 < NewClauses.size(); ++i) {
// Examine each filter in turn.
Value *Filter = NewClauses[i];
ArrayType *FTy = dyn_cast<ArrayType>(Filter->getType());
if (!FTy)
// Not a filter - skip it.
continue;
unsigned FElts = FTy->getNumElements();
// Examine each filter following this one. Doing this backwards means that
// we don't have to worry about filters disappearing under us when removed.
for (unsigned j = NewClauses.size() - 1; j != i; --j) {
Value *LFilter = NewClauses[j];
ArrayType *LTy = dyn_cast<ArrayType>(LFilter->getType());
if (!LTy)
// Not a filter - skip it.
continue;
// If Filter is a subset of LFilter, i.e. every element of Filter is also
// an element of LFilter, then discard LFilter.
SmallVectorImpl<Constant *>::iterator J = NewClauses.begin() + j;
// If Filter is empty then it is a subset of LFilter.
if (!FElts) {
// Discard LFilter.
NewClauses.erase(J);
MakeNewInstruction = true;
// Move on to the next filter.
continue;
}
unsigned LElts = LTy->getNumElements();
// If Filter is longer than LFilter then it cannot be a subset of it.
if (FElts > LElts)
// Move on to the next filter.
continue;
// At this point we know that LFilter has at least one element.
if (isa<ConstantAggregateZero>(LFilter)) { // LFilter only contains zeros.
// Filter is a subset of LFilter iff Filter contains only zeros (as we
// already know that Filter is not longer than LFilter).
if (isa<ConstantAggregateZero>(Filter)) {
assert(FElts <= LElts && "Should have handled this case earlier!");
// Discard LFilter.
NewClauses.erase(J);
MakeNewInstruction = true;
}
// Move on to the next filter.
continue;
}
ConstantArray *LArray = cast<ConstantArray>(LFilter);
if (isa<ConstantAggregateZero>(Filter)) { // Filter only contains zeros.
// Since Filter is non-empty and contains only zeros, it is a subset of
// LFilter iff LFilter contains a zero.
assert(FElts > 0 && "Should have eliminated the empty filter earlier!");
for (unsigned l = 0; l != LElts; ++l)
if (LArray->getOperand(l)->isNullValue()) {
// LFilter contains a zero - discard it.
NewClauses.erase(J);
MakeNewInstruction = true;
break;
}
// Move on to the next filter.
continue;
}
// At this point we know that both filters are ConstantArrays. Loop over
// operands to see whether every element of Filter is also an element of
// LFilter. Since filters tend to be short this is probably faster than
// using a method that scales nicely.
ConstantArray *FArray = cast<ConstantArray>(Filter);
bool AllFound = true;
for (unsigned f = 0; f != FElts; ++f) {
Value *FTypeInfo = FArray->getOperand(f)->stripPointerCasts();
AllFound = false;
for (unsigned l = 0; l != LElts; ++l) {
Value *LTypeInfo = LArray->getOperand(l)->stripPointerCasts();
if (LTypeInfo == FTypeInfo) {
AllFound = true;
break;
}
}
if (!AllFound)
break;
}
if (AllFound) {
// Discard LFilter.
NewClauses.erase(J);
MakeNewInstruction = true;
}
// Move on to the next filter.
}
}
// If we changed any of the clauses, replace the old landingpad instruction
// with a new one.
if (MakeNewInstruction) {
LandingPadInst *NLI = LandingPadInst::Create(LI.getType(),
NewClauses.size());
for (unsigned i = 0, e = NewClauses.size(); i != e; ++i)
NLI->addClause(NewClauses[i]);
// A landing pad with no clauses must have the cleanup flag set. It is
// theoretically possible, though highly unlikely, that we eliminated all
// clauses. If so, force the cleanup flag to true.
if (NewClauses.empty())
CleanupFlag = true;
NLI->setCleanup(CleanupFlag);
return NLI;
}
// Even if none of the clauses changed, we may nonetheless have understood
// that the cleanup flag is pointless. Clear it if so.
if (LI.isCleanup() != CleanupFlag) {
assert(!CleanupFlag && "Adding a cleanup, not removing one?!");
LI.setCleanup(CleanupFlag);
return &LI;
}
return nullptr;
}
Instruction *InstCombinerImpl::visitFreeze(FreezeInst &I) {
Value *Op0 = I.getOperand(0);
if (Value *V = SimplifyFreezeInst(Op0, SQ.getWithInstruction(&I)))
return replaceInstUsesWith(I, V);
// freeze (phi const, x) --> phi const, (freeze x)
if (auto *PN = dyn_cast<PHINode>(Op0)) {
if (Instruction *NV = foldOpIntoPhi(I, PN))
return NV;
}
if (match(Op0, m_Undef())) {
// If I is freeze(undef), see its uses and fold it to the best constant.
// - or: pick -1
// - select's condition: pick the value that leads to choosing a constant
// - other ops: pick 0
Constant *BestValue = nullptr;
Constant *NullValue = Constant::getNullValue(I.getType());
for (const auto *U : I.users()) {
Constant *C = NullValue;
if (match(U, m_Or(m_Value(), m_Value())))
C = Constant::getAllOnesValue(I.getType());
else if (const auto *SI = dyn_cast<SelectInst>(U)) {
if (SI->getCondition() == &I) {
APInt CondVal(1, isa<Constant>(SI->getFalseValue()) ? 0 : 1);
C = Constant::getIntegerValue(I.getType(), CondVal);
}
}
if (!BestValue)
BestValue = C;
else if (BestValue != C)
BestValue = NullValue;
}
return replaceInstUsesWith(I, BestValue);
}
return nullptr;
}
/// Try to move the specified instruction from its current block into the
/// beginning of DestBlock, which can only happen if it's safe to move the
/// instruction past all of the instructions between it and the end of its
/// block.
static bool TryToSinkInstruction(Instruction *I, BasicBlock *DestBlock) {
assert(I->getSingleUndroppableUse() && "Invariants didn't hold!");
BasicBlock *SrcBlock = I->getParent();
// Cannot move control-flow-involving, volatile loads, vaarg, etc.
if (isa<PHINode>(I) || I->isEHPad() || I->mayHaveSideEffects() ||
I->isTerminator())
return false;
// Do not sink static or dynamic alloca instructions. Static allocas must
// remain in the entry block, and dynamic allocas must not be sunk in between
// a stacksave / stackrestore pair, which would incorrectly shorten its
// lifetime.
if (isa<AllocaInst>(I))
return false;
// Do not sink into catchswitch blocks.
if (isa<CatchSwitchInst>(DestBlock->getTerminator()))
return false;
// Do not sink convergent call instructions.
if (auto *CI = dyn_cast<CallInst>(I)) {
if (CI->isConvergent())
return false;
}
// We can only sink load instructions if there is nothing between the load and
// the end of block that could change the value.
if (I->mayReadFromMemory()) {
// We don't want to do any sophisticated alias analysis, so we only check
// the instructions after I in I's parent block if we try to sink to its
// successor block.
if (DestBlock->getUniquePredecessor() != I->getParent())
return false;
for (BasicBlock::iterator Scan = I->getIterator(),
E = I->getParent()->end();
Scan != E; ++Scan)
if (Scan->mayWriteToMemory())
return false;
}
I->dropDroppableUses([DestBlock](const Use *U) {
if (auto *I = dyn_cast<Instruction>(U->getUser()))
return I->getParent() != DestBlock;
return true;
});
/// FIXME: We could remove droppable uses that are not dominated by
/// the new position.
BasicBlock::iterator InsertPos = DestBlock->getFirstInsertionPt();
I->moveBefore(&*InsertPos);
++NumSunkInst;
// Also sink all related debug uses from the source basic block. Otherwise we
// get debug use before the def. Attempt to salvage debug uses first, to
// maximise the range variables have location for. If we cannot salvage, then
// mark the location undef: we know it was supposed to receive a new location
// here, but that computation has been sunk.
SmallVector<DbgVariableIntrinsic *, 2> DbgUsers;
findDbgUsers(DbgUsers, I);
// Update the arguments of a dbg.declare instruction, so that it
// does not point into a sunk instruction.
auto updateDbgDeclare = [&I](DbgVariableIntrinsic *DII) {
if (!isa<DbgDeclareInst>(DII))
return false;
if (isa<CastInst>(I))
DII->setOperand(
0, MetadataAsValue::get(I->getContext(),
ValueAsMetadata::get(I->getOperand(0))));
return true;
};
SmallVector<DbgVariableIntrinsic *, 2> DIIClones;
for (auto User : DbgUsers) {
// A dbg.declare instruction should not be cloned, since there can only be
// one per variable fragment. It should be left in the original place
// because the sunk instruction is not an alloca (otherwise we could not be
// here).
if (User->getParent() != SrcBlock || updateDbgDeclare(User))
continue;
DIIClones.emplace_back(cast<DbgVariableIntrinsic>(User->clone()));
LLVM_DEBUG(dbgs() << "CLONE: " << *DIIClones.back() << '\n');
}
// Perform salvaging without the clones, then sink the clones.
if (!DIIClones.empty()) {
salvageDebugInfoForDbgValues(*I, DbgUsers);
for (auto &DIIClone : DIIClones) {
DIIClone->insertBefore(&*InsertPos);
LLVM_DEBUG(dbgs() << "SINK: " << *DIIClone << '\n');
}
}
return true;
}
bool InstCombinerImpl::run() {
while (!Worklist.isEmpty()) {
// Walk deferred instructions in reverse order, and push them to the
// worklist, which means they'll end up popped from the worklist in-order.
while (Instruction *I = Worklist.popDeferred()) {
// Check to see if we can DCE the instruction. We do this already here to
// reduce the number of uses and thus allow other folds to trigger.
// Note that eraseInstFromFunction() may push additional instructions on
// the deferred worklist, so this will DCE whole instruction chains.
if (isInstructionTriviallyDead(I, &TLI)) {
eraseInstFromFunction(*I);
++NumDeadInst;
continue;
}
Worklist.push(I);
}
Instruction *I = Worklist.removeOne();
if (I == nullptr) continue; // skip null values.
// Check to see if we can DCE the instruction.
if (isInstructionTriviallyDead(I, &TLI)) {
eraseInstFromFunction(*I);
++NumDeadInst;
continue;
}
if (!DebugCounter::shouldExecute(VisitCounter))
continue;
// Instruction isn't dead, see if we can constant propagate it.
if (!I->use_empty() &&
(I->getNumOperands() == 0 || isa<Constant>(I->getOperand(0)))) {
if (Constant *C = ConstantFoldInstruction(I, DL, &TLI)) {
LLVM_DEBUG(dbgs() << "IC: ConstFold to: " << *C << " from: " << *I
<< '\n');
// Add operands to the worklist.
replaceInstUsesWith(*I, C);
++NumConstProp;
if (isInstructionTriviallyDead(I, &TLI))
eraseInstFromFunction(*I);
MadeIRChange = true;
continue;
}
}
// See if we can trivially sink this instruction to its user if we can
// prove that the successor is not executed more frequently than our block.
if (EnableCodeSinking)
if (Use *SingleUse = I->getSingleUndroppableUse()) {
BasicBlock *BB = I->getParent();
Instruction *UserInst = cast<Instruction>(SingleUse->getUser());
BasicBlock *UserParent;
// Get the block the use occurs in.
if (PHINode *PN = dyn_cast<PHINode>(UserInst))
UserParent = PN->getIncomingBlock(*SingleUse);
else
UserParent = UserInst->getParent();
// Try sinking to another block. If that block is unreachable, then do
// not bother. SimplifyCFG should handle it.
if (UserParent != BB && DT.isReachableFromEntry(UserParent)) {
// See if the user is one of our successors that has only one
// predecessor, so that we don't have to split the critical edge.
bool ShouldSink = UserParent->getUniquePredecessor() == BB;
// Another option where we can sink is a block that ends with a
// terminator that does not pass control to other block (such as
// return or unreachable). In this case:
// - I dominates the User (by SSA form);
// - the User will be executed at most once.
// So sinking I down to User is always profitable or neutral.
if (!ShouldSink) {
auto *Term = UserParent->getTerminator();
ShouldSink = isa<ReturnInst>(Term) || isa<UnreachableInst>(Term);
}
if (ShouldSink) {
assert(DT.dominates(BB, UserParent) &&
"Dominance relation broken?");
// Okay, the CFG is simple enough, try to sink this instruction.
if (TryToSinkInstruction(I, UserParent)) {
LLVM_DEBUG(dbgs() << "IC: Sink: " << *I << '\n');
MadeIRChange = true;
// We'll add uses of the sunk instruction below, but since sinking
// can expose opportunities for it's *operands* add them to the
// worklist
for (Use &U : I->operands())
if (Instruction *OpI = dyn_cast<Instruction>(U.get()))
Worklist.push(OpI);
}
}
}
}
// Now that we have an instruction, try combining it to simplify it.
Builder.SetInsertPoint(I);
Builder.CollectMetadataToCopy(
I, {LLVMContext::MD_dbg, LLVMContext::MD_annotation});
#ifndef NDEBUG
std::string OrigI;
#endif
LLVM_DEBUG(raw_string_ostream SS(OrigI); I->print(SS); OrigI = SS.str(););
LLVM_DEBUG(dbgs() << "IC: Visiting: " << OrigI << '\n');
if (Instruction *Result = visit(*I)) {
++NumCombined;
// Should we replace the old instruction with a new one?
if (Result != I) {
LLVM_DEBUG(dbgs() << "IC: Old = " << *I << '\n'
<< " New = " << *Result << '\n');
Result->copyMetadata(*I,
{LLVMContext::MD_dbg, LLVMContext::MD_annotation});
// Everything uses the new instruction now.
I->replaceAllUsesWith(Result);
// Move the name to the new instruction first.
Result->takeName(I);
// Insert the new instruction into the basic block...
BasicBlock *InstParent = I->getParent();
BasicBlock::iterator InsertPos = I->getIterator();
// Are we replace a PHI with something that isn't a PHI, or vice versa?
if (isa<PHINode>(Result) != isa<PHINode>(I)) {
// We need to fix up the insertion point.
if (isa<PHINode>(I)) // PHI -> Non-PHI
InsertPos = InstParent->getFirstInsertionPt();
else // Non-PHI -> PHI
InsertPos = InstParent->getFirstNonPHI()->getIterator();
}
InstParent->getInstList().insert(InsertPos, Result);
// Push the new instruction and any users onto the worklist.
Worklist.pushUsersToWorkList(*Result);
Worklist.push(Result);
eraseInstFromFunction(*I);
} else {
LLVM_DEBUG(dbgs() << "IC: Mod = " << OrigI << '\n'
<< " New = " << *I << '\n');
// If the instruction was modified, it's possible that it is now dead.
// if so, remove it.
if (isInstructionTriviallyDead(I, &TLI)) {
eraseInstFromFunction(*I);
} else {
Worklist.pushUsersToWorkList(*I);
Worklist.push(I);
}
}
MadeIRChange = true;
}
}
Worklist.zap();
return MadeIRChange;
}
/// Populate the IC worklist from a function, by walking it in depth-first
/// order and adding all reachable code to the worklist.
///
/// This has a couple of tricks to make the code faster and more powerful. In
/// particular, we constant fold and DCE instructions as we go, to avoid adding
/// them to the worklist (this significantly speeds up instcombine on code where
/// many instructions are dead or constant). Additionally, if we find a branch
/// whose condition is a known constant, we only visit the reachable successors.
static bool prepareICWorklistFromFunction(Function &F, const DataLayout &DL,
const TargetLibraryInfo *TLI,
InstCombineWorklist &ICWorklist) {
bool MadeIRChange = false;
SmallPtrSet<BasicBlock *, 32> Visited;
SmallVector<BasicBlock*, 256> Worklist;
Worklist.push_back(&F.front());
SmallVector<Instruction*, 128> InstrsForInstCombineWorklist;
DenseMap<Constant *, Constant *> FoldedConstants;
do {
BasicBlock *BB = Worklist.pop_back_val();
// We have now visited this block! If we've already been here, ignore it.
if (!Visited.insert(BB).second)
continue;
for (BasicBlock::iterator BBI = BB->begin(), E = BB->end(); BBI != E; ) {
Instruction *Inst = &*BBI++;
// ConstantProp instruction if trivially constant.
if (!Inst->use_empty() &&
(Inst->getNumOperands() == 0 || isa<Constant>(Inst->getOperand(0))))
if (Constant *C = ConstantFoldInstruction(Inst, DL, TLI)) {
LLVM_DEBUG(dbgs() << "IC: ConstFold to: " << *C << " from: " << *Inst
<< '\n');
Inst->replaceAllUsesWith(C);
++NumConstProp;
if (isInstructionTriviallyDead(Inst, TLI))
Inst->eraseFromParent();
MadeIRChange = true;
continue;
}
// See if we can constant fold its operands.
for (Use &U : Inst->operands()) {
if (!isa<ConstantVector>(U) && !isa<ConstantExpr>(U))
continue;
auto *C = cast<Constant>(U);
Constant *&FoldRes = FoldedConstants[C];
if (!FoldRes)
FoldRes = ConstantFoldConstant(C, DL, TLI);
if (FoldRes != C) {
LLVM_DEBUG(dbgs() << "IC: ConstFold operand of: " << *Inst
<< "\n Old = " << *C
<< "\n New = " << *FoldRes << '\n');
U = FoldRes;
MadeIRChange = true;
}
}
// Skip processing debug intrinsics in InstCombine. Processing these call instructions
// consumes non-trivial amount of time and provides no value for the optimization.
if (!isa<DbgInfoIntrinsic>(Inst))
InstrsForInstCombineWorklist.push_back(Inst);
}
// Recursively visit successors. If this is a branch or switch on a
// constant, only visit the reachable successor.
Instruction *TI = BB->getTerminator();
if (BranchInst *BI = dyn_cast<BranchInst>(TI)) {
if (BI->isConditional() && isa<ConstantInt>(BI->getCondition())) {
bool CondVal = cast<ConstantInt>(BI->getCondition())->getZExtValue();
BasicBlock *ReachableBB = BI->getSuccessor(!CondVal);
Worklist.push_back(ReachableBB);
continue;
}
} else if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
if (ConstantInt *Cond = dyn_cast<ConstantInt>(SI->getCondition())) {
Worklist.push_back(SI->findCaseValue(Cond)->getCaseSuccessor());
continue;
}
}
for (BasicBlock *SuccBB : successors(TI))
Worklist.push_back(SuccBB);
} while (!Worklist.empty());
// Remove instructions inside unreachable blocks. This prevents the
// instcombine code from having to deal with some bad special cases, and
// reduces use counts of instructions.
for (BasicBlock &BB : F) {
if (Visited.count(&BB))
continue;
unsigned NumDeadInstInBB;
unsigned NumDeadDbgInstInBB;
std::tie(NumDeadInstInBB, NumDeadDbgInstInBB) =
removeAllNonTerminatorAndEHPadInstructions(&BB);
MadeIRChange |= NumDeadInstInBB + NumDeadDbgInstInBB > 0;
NumDeadInst += NumDeadInstInBB;
}
// Once we've found all of the instructions to add to instcombine's worklist,
// add them in reverse order. This way instcombine will visit from the top
// of the function down. This jives well with the way that it adds all uses
// of instructions to the worklist after doing a transformation, thus avoiding
// some N^2 behavior in pathological cases.
ICWorklist.reserve(InstrsForInstCombineWorklist.size());
for (Instruction *Inst : reverse(InstrsForInstCombineWorklist)) {
// DCE instruction if trivially dead. As we iterate in reverse program
// order here, we will clean up whole chains of dead instructions.
if (isInstructionTriviallyDead(Inst, TLI)) {
++NumDeadInst;
LLVM_DEBUG(dbgs() << "IC: DCE: " << *Inst << '\n');
salvageDebugInfo(*Inst);
Inst->eraseFromParent();
MadeIRChange = true;
continue;
}
ICWorklist.push(Inst);
}
return MadeIRChange;
}
static bool combineInstructionsOverFunction(
Function &F, InstCombineWorklist &Worklist, AliasAnalysis *AA,
AssumptionCache &AC, TargetLibraryInfo &TLI, TargetTransformInfo &TTI,
DominatorTree &DT, OptimizationRemarkEmitter &ORE, BlockFrequencyInfo *BFI,
ProfileSummaryInfo *PSI, unsigned MaxIterations, LoopInfo *LI) {
auto &DL = F.getParent()->getDataLayout();
MaxIterations = std::min(MaxIterations, LimitMaxIterations.getValue());
/// Builder - This is an IRBuilder that automatically inserts new
/// instructions into the worklist when they are created.
IRBuilder<TargetFolder, IRBuilderCallbackInserter> Builder(
F.getContext(), TargetFolder(DL),
IRBuilderCallbackInserter([&Worklist, &AC](Instruction *I) {
Worklist.add(I);
if (match(I, m_Intrinsic<Intrinsic::assume>()))
AC.registerAssumption(cast<CallInst>(I));
}));
// Lower dbg.declare intrinsics otherwise their value may be clobbered
// by instcombiner.
bool MadeIRChange = false;
if (ShouldLowerDbgDeclare)
MadeIRChange = LowerDbgDeclare(F);
// Iterate while there is work to do.
unsigned Iteration = 0;
while (true) {
++NumWorklistIterations;
++Iteration;
if (Iteration > InfiniteLoopDetectionThreshold) {
report_fatal_error(
"Instruction Combining seems stuck in an infinite loop after " +
Twine(InfiniteLoopDetectionThreshold) + " iterations.");
}
if (Iteration > MaxIterations) {
LLVM_DEBUG(dbgs() << "\n\n[IC] Iteration limit #" << MaxIterations
<< " on " << F.getName()
<< " reached; stopping before reaching a fixpoint\n");
break;
}
LLVM_DEBUG(dbgs() << "\n\nINSTCOMBINE ITERATION #" << Iteration << " on "
<< F.getName() << "\n");
MadeIRChange |= prepareICWorklistFromFunction(F, DL, &TLI, Worklist);
InstCombinerImpl IC(Worklist, Builder, F.hasMinSize(), AA, AC, TLI, TTI, DT,
ORE, BFI, PSI, DL, LI);
IC.MaxArraySizeForCombine = MaxArraySize;
if (!IC.run())
break;
MadeIRChange = true;
}
return MadeIRChange;
}
InstCombinePass::InstCombinePass() : MaxIterations(LimitMaxIterations) {}
InstCombinePass::InstCombinePass(unsigned MaxIterations)
: MaxIterations(MaxIterations) {}
PreservedAnalyses InstCombinePass::run(Function &F,
FunctionAnalysisManager &AM) {
auto &AC = AM.getResult<AssumptionAnalysis>(F);
auto &DT = AM.getResult<DominatorTreeAnalysis>(F);
auto &TLI = AM.getResult<TargetLibraryAnalysis>(F);
auto &ORE = AM.getResult<OptimizationRemarkEmitterAnalysis>(F);
auto &TTI = AM.getResult<TargetIRAnalysis>(F);
auto *LI = AM.getCachedResult<LoopAnalysis>(F);
auto *AA = &AM.getResult<AAManager>(F);
auto &MAMProxy = AM.getResult<ModuleAnalysisManagerFunctionProxy>(F);
ProfileSummaryInfo *PSI =
MAMProxy.getCachedResult<ProfileSummaryAnalysis>(*F.getParent());
auto *BFI = (PSI && PSI->hasProfileSummary()) ?
&AM.getResult<BlockFrequencyAnalysis>(F) : nullptr;
if (!combineInstructionsOverFunction(F, Worklist, AA, AC, TLI, TTI, DT, ORE,
BFI, PSI, MaxIterations, LI))
// No changes, all analyses are preserved.
return PreservedAnalyses::all();
// Mark all the analyses that instcombine updates as preserved.
PreservedAnalyses PA;
PA.preserveSet<CFGAnalyses>();
PA.preserve<AAManager>();
PA.preserve<BasicAA>();
PA.preserve<GlobalsAA>();
return PA;
}
void InstructionCombiningPass::getAnalysisUsage(AnalysisUsage &AU) const {
AU.setPreservesCFG();
AU.addRequired<AAResultsWrapperPass>();
AU.addRequired<AssumptionCacheTracker>();
AU.addRequired<TargetLibraryInfoWrapperPass>();
AU.addRequired<TargetTransformInfoWrapperPass>();
AU.addRequired<DominatorTreeWrapperPass>();
AU.addRequired<OptimizationRemarkEmitterWrapperPass>();
AU.addPreserved<DominatorTreeWrapperPass>();
AU.addPreserved<AAResultsWrapperPass>();
AU.addPreserved<BasicAAWrapperPass>();
AU.addPreserved<GlobalsAAWrapperPass>();
AU.addRequired<ProfileSummaryInfoWrapperPass>();
LazyBlockFrequencyInfoPass::getLazyBFIAnalysisUsage(AU);
}
bool InstructionCombiningPass::runOnFunction(Function &F) {
if (skipFunction(F))
return false;
// Required analyses.
auto AA = &getAnalysis<AAResultsWrapperPass>().getAAResults();
auto &AC = getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F);
auto &TLI = getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F);
auto &TTI = getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F);
auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree();
auto &ORE = getAnalysis<OptimizationRemarkEmitterWrapperPass>().getORE();
// Optional analyses.
auto *LIWP = getAnalysisIfAvailable<LoopInfoWrapperPass>();
auto *LI = LIWP ? &LIWP->getLoopInfo() : nullptr;
ProfileSummaryInfo *PSI =
&getAnalysis<ProfileSummaryInfoWrapperPass>().getPSI();
BlockFrequencyInfo *BFI =
(PSI && PSI->hasProfileSummary()) ?
&getAnalysis<LazyBlockFrequencyInfoPass>().getBFI() :
nullptr;
return combineInstructionsOverFunction(F, Worklist, AA, AC, TLI, TTI, DT, ORE,
BFI, PSI, MaxIterations, LI);
}
char InstructionCombiningPass::ID = 0;
InstructionCombiningPass::InstructionCombiningPass()
: FunctionPass(ID), MaxIterations(InstCombineDefaultMaxIterations) {
initializeInstructionCombiningPassPass(*PassRegistry::getPassRegistry());
}
InstructionCombiningPass::InstructionCombiningPass(unsigned MaxIterations)
: FunctionPass(ID), MaxIterations(MaxIterations) {
initializeInstructionCombiningPassPass(*PassRegistry::getPassRegistry());
}
INITIALIZE_PASS_BEGIN(InstructionCombiningPass, "instcombine",
"Combine redundant instructions", false, false)
INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
INITIALIZE_PASS_DEPENDENCY(GlobalsAAWrapperPass)
INITIALIZE_PASS_DEPENDENCY(OptimizationRemarkEmitterWrapperPass)
INITIALIZE_PASS_DEPENDENCY(LazyBlockFrequencyInfoPass)
INITIALIZE_PASS_DEPENDENCY(ProfileSummaryInfoWrapperPass)
INITIALIZE_PASS_END(InstructionCombiningPass, "instcombine",
"Combine redundant instructions", false, false)
// Initialization Routines
void llvm::initializeInstCombine(PassRegistry &Registry) {
initializeInstructionCombiningPassPass(Registry);
}
void LLVMInitializeInstCombine(LLVMPassRegistryRef R) {
initializeInstructionCombiningPassPass(*unwrap(R));
}
FunctionPass *llvm::createInstructionCombiningPass() {
return new InstructionCombiningPass();
}
FunctionPass *llvm::createInstructionCombiningPass(unsigned MaxIterations) {
return new InstructionCombiningPass(MaxIterations);
}
void LLVMAddInstructionCombiningPass(LLVMPassManagerRef PM) {
unwrap(PM)->add(createInstructionCombiningPass());
}