1
0
mirror of https://github.com/RPCS3/llvm-mirror.git synced 2024-11-24 19:52:54 +01:00
llvm-mirror/lib/Transforms/Instrumentation/InstrProfiling.cpp
Hiroshi Yamauchi 7e9ad11889 [PGO] Remove the old memop value profiling buckets.
Following up D81682 and D83903, remove the code for the old value profiling
buckets, which have been replaced with the new, extended buckets and disabled by
default.

Also syncing InstrProfData.inc between compiler-rt and llvm.

Differential Revision: https://reviews.llvm.org/D88838
2020-10-15 10:09:49 -07:00

1111 lines
41 KiB
C++

//===-- InstrProfiling.cpp - Frontend instrumentation based profiling -----===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This pass lowers instrprof_* intrinsics emitted by a frontend for profiling.
// It also builds the data structures and initialization code needed for
// updating execution counts and emitting the profile at runtime.
//
//===----------------------------------------------------------------------===//
#include "llvm/Transforms/Instrumentation/InstrProfiling.h"
#include "llvm/ADT/ArrayRef.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/StringRef.h"
#include "llvm/ADT/Triple.h"
#include "llvm/ADT/Twine.h"
#include "llvm/Analysis/BlockFrequencyInfo.h"
#include "llvm/Analysis/BranchProbabilityInfo.h"
#include "llvm/Analysis/LoopInfo.h"
#include "llvm/Analysis/TargetLibraryInfo.h"
#include "llvm/IR/Attributes.h"
#include "llvm/IR/BasicBlock.h"
#include "llvm/IR/Constant.h"
#include "llvm/IR/Constants.h"
#include "llvm/IR/DerivedTypes.h"
#include "llvm/IR/Dominators.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/GlobalValue.h"
#include "llvm/IR/GlobalVariable.h"
#include "llvm/IR/IRBuilder.h"
#include "llvm/IR/Instruction.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/IntrinsicInst.h"
#include "llvm/IR/Module.h"
#include "llvm/IR/Type.h"
#include "llvm/InitializePasses.h"
#include "llvm/Pass.h"
#include "llvm/ProfileData/InstrProf.h"
#include "llvm/Support/Casting.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Error.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Transforms/Utils/BasicBlockUtils.h"
#include "llvm/Transforms/Utils/ModuleUtils.h"
#include "llvm/Transforms/Utils/SSAUpdater.h"
#include <algorithm>
#include <cassert>
#include <cstddef>
#include <cstdint>
#include <string>
using namespace llvm;
#define DEBUG_TYPE "instrprof"
namespace {
cl::opt<bool> DoHashBasedCounterSplit(
"hash-based-counter-split",
cl::desc("Rename counter variable of a comdat function based on cfg hash"),
cl::init(true));
cl::opt<bool> RuntimeCounterRelocation(
"runtime-counter-relocation",
cl::desc("Enable relocating counters at runtime."),
cl::init(false));
cl::opt<bool> ValueProfileStaticAlloc(
"vp-static-alloc",
cl::desc("Do static counter allocation for value profiler"),
cl::init(true));
cl::opt<double> NumCountersPerValueSite(
"vp-counters-per-site",
cl::desc("The average number of profile counters allocated "
"per value profiling site."),
// This is set to a very small value because in real programs, only
// a very small percentage of value sites have non-zero targets, e.g, 1/30.
// For those sites with non-zero profile, the average number of targets
// is usually smaller than 2.
cl::init(1.0));
cl::opt<bool> AtomicCounterUpdateAll(
"instrprof-atomic-counter-update-all", cl::ZeroOrMore,
cl::desc("Make all profile counter updates atomic (for testing only)"),
cl::init(false));
cl::opt<bool> AtomicCounterUpdatePromoted(
"atomic-counter-update-promoted", cl::ZeroOrMore,
cl::desc("Do counter update using atomic fetch add "
" for promoted counters only"),
cl::init(false));
cl::opt<bool> AtomicFirstCounter(
"atomic-first-counter", cl::ZeroOrMore,
cl::desc("Use atomic fetch add for first counter in a function (usually "
"the entry counter)"),
cl::init(false));
// If the option is not specified, the default behavior about whether
// counter promotion is done depends on how instrumentaiton lowering
// pipeline is setup, i.e., the default value of true of this option
// does not mean the promotion will be done by default. Explicitly
// setting this option can override the default behavior.
cl::opt<bool> DoCounterPromotion("do-counter-promotion", cl::ZeroOrMore,
cl::desc("Do counter register promotion"),
cl::init(false));
cl::opt<unsigned> MaxNumOfPromotionsPerLoop(
cl::ZeroOrMore, "max-counter-promotions-per-loop", cl::init(20),
cl::desc("Max number counter promotions per loop to avoid"
" increasing register pressure too much"));
// A debug option
cl::opt<int>
MaxNumOfPromotions(cl::ZeroOrMore, "max-counter-promotions", cl::init(-1),
cl::desc("Max number of allowed counter promotions"));
cl::opt<unsigned> SpeculativeCounterPromotionMaxExiting(
cl::ZeroOrMore, "speculative-counter-promotion-max-exiting", cl::init(3),
cl::desc("The max number of exiting blocks of a loop to allow "
" speculative counter promotion"));
cl::opt<bool> SpeculativeCounterPromotionToLoop(
cl::ZeroOrMore, "speculative-counter-promotion-to-loop", cl::init(false),
cl::desc("When the option is false, if the target block is in a loop, "
"the promotion will be disallowed unless the promoted counter "
" update can be further/iteratively promoted into an acyclic "
" region."));
cl::opt<bool> IterativeCounterPromotion(
cl::ZeroOrMore, "iterative-counter-promotion", cl::init(true),
cl::desc("Allow counter promotion across the whole loop nest."));
cl::opt<bool> SkipRetExitBlock(
cl::ZeroOrMore, "skip-ret-exit-block", cl::init(true),
cl::desc("Suppress counter promotion if exit blocks contain ret."));
class InstrProfilingLegacyPass : public ModulePass {
InstrProfiling InstrProf;
public:
static char ID;
InstrProfilingLegacyPass() : ModulePass(ID) {}
InstrProfilingLegacyPass(const InstrProfOptions &Options, bool IsCS = false)
: ModulePass(ID), InstrProf(Options, IsCS) {
initializeInstrProfilingLegacyPassPass(*PassRegistry::getPassRegistry());
}
StringRef getPassName() const override {
return "Frontend instrumentation-based coverage lowering";
}
bool runOnModule(Module &M) override {
auto GetTLI = [this](Function &F) -> TargetLibraryInfo & {
return this->getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F);
};
return InstrProf.run(M, GetTLI);
}
void getAnalysisUsage(AnalysisUsage &AU) const override {
AU.setPreservesCFG();
AU.addRequired<TargetLibraryInfoWrapperPass>();
}
};
///
/// A helper class to promote one counter RMW operation in the loop
/// into register update.
///
/// RWM update for the counter will be sinked out of the loop after
/// the transformation.
///
class PGOCounterPromoterHelper : public LoadAndStorePromoter {
public:
PGOCounterPromoterHelper(
Instruction *L, Instruction *S, SSAUpdater &SSA, Value *Init,
BasicBlock *PH, ArrayRef<BasicBlock *> ExitBlocks,
ArrayRef<Instruction *> InsertPts,
DenseMap<Loop *, SmallVector<LoadStorePair, 8>> &LoopToCands,
LoopInfo &LI)
: LoadAndStorePromoter({L, S}, SSA), Store(S), ExitBlocks(ExitBlocks),
InsertPts(InsertPts), LoopToCandidates(LoopToCands), LI(LI) {
assert(isa<LoadInst>(L));
assert(isa<StoreInst>(S));
SSA.AddAvailableValue(PH, Init);
}
void doExtraRewritesBeforeFinalDeletion() override {
for (unsigned i = 0, e = ExitBlocks.size(); i != e; ++i) {
BasicBlock *ExitBlock = ExitBlocks[i];
Instruction *InsertPos = InsertPts[i];
// Get LiveIn value into the ExitBlock. If there are multiple
// predecessors, the value is defined by a PHI node in this
// block.
Value *LiveInValue = SSA.GetValueInMiddleOfBlock(ExitBlock);
Value *Addr = cast<StoreInst>(Store)->getPointerOperand();
Type *Ty = LiveInValue->getType();
IRBuilder<> Builder(InsertPos);
if (AtomicCounterUpdatePromoted)
// automic update currently can only be promoted across the current
// loop, not the whole loop nest.
Builder.CreateAtomicRMW(AtomicRMWInst::Add, Addr, LiveInValue,
AtomicOrdering::SequentiallyConsistent);
else {
LoadInst *OldVal = Builder.CreateLoad(Ty, Addr, "pgocount.promoted");
auto *NewVal = Builder.CreateAdd(OldVal, LiveInValue);
auto *NewStore = Builder.CreateStore(NewVal, Addr);
// Now update the parent loop's candidate list:
if (IterativeCounterPromotion) {
auto *TargetLoop = LI.getLoopFor(ExitBlock);
if (TargetLoop)
LoopToCandidates[TargetLoop].emplace_back(OldVal, NewStore);
}
}
}
}
private:
Instruction *Store;
ArrayRef<BasicBlock *> ExitBlocks;
ArrayRef<Instruction *> InsertPts;
DenseMap<Loop *, SmallVector<LoadStorePair, 8>> &LoopToCandidates;
LoopInfo &LI;
};
/// A helper class to do register promotion for all profile counter
/// updates in a loop.
///
class PGOCounterPromoter {
public:
PGOCounterPromoter(
DenseMap<Loop *, SmallVector<LoadStorePair, 8>> &LoopToCands,
Loop &CurLoop, LoopInfo &LI, BlockFrequencyInfo *BFI)
: LoopToCandidates(LoopToCands), ExitBlocks(), InsertPts(), L(CurLoop),
LI(LI), BFI(BFI) {
// Skip collection of ExitBlocks and InsertPts for loops that will not be
// able to have counters promoted.
SmallVector<BasicBlock *, 8> LoopExitBlocks;
SmallPtrSet<BasicBlock *, 8> BlockSet;
L.getExitBlocks(LoopExitBlocks);
if (!isPromotionPossible(&L, LoopExitBlocks))
return;
for (BasicBlock *ExitBlock : LoopExitBlocks) {
if (BlockSet.insert(ExitBlock).second) {
ExitBlocks.push_back(ExitBlock);
InsertPts.push_back(&*ExitBlock->getFirstInsertionPt());
}
}
}
bool run(int64_t *NumPromoted) {
// Skip 'infinite' loops:
if (ExitBlocks.size() == 0)
return false;
// Skip if any of the ExitBlocks contains a ret instruction.
// This is to prevent dumping of incomplete profile -- if the
// the loop is a long running loop and dump is called in the middle
// of the loop, the result profile is incomplete.
// FIXME: add other heuristics to detect long running loops.
if (SkipRetExitBlock) {
for (auto BB : ExitBlocks)
if (dyn_cast<ReturnInst>(BB->getTerminator()) != nullptr)
return false;
}
unsigned MaxProm = getMaxNumOfPromotionsInLoop(&L);
if (MaxProm == 0)
return false;
unsigned Promoted = 0;
for (auto &Cand : LoopToCandidates[&L]) {
SmallVector<PHINode *, 4> NewPHIs;
SSAUpdater SSA(&NewPHIs);
Value *InitVal = ConstantInt::get(Cand.first->getType(), 0);
// If BFI is set, we will use it to guide the promotions.
if (BFI) {
auto *BB = Cand.first->getParent();
auto InstrCount = BFI->getBlockProfileCount(BB);
if (!InstrCount)
continue;
auto PreheaderCount = BFI->getBlockProfileCount(L.getLoopPreheader());
// If the average loop trip count is not greater than 1.5, we skip
// promotion.
if (PreheaderCount &&
(PreheaderCount.getValue() * 3) >= (InstrCount.getValue() * 2))
continue;
}
PGOCounterPromoterHelper Promoter(Cand.first, Cand.second, SSA, InitVal,
L.getLoopPreheader(), ExitBlocks,
InsertPts, LoopToCandidates, LI);
Promoter.run(SmallVector<Instruction *, 2>({Cand.first, Cand.second}));
Promoted++;
if (Promoted >= MaxProm)
break;
(*NumPromoted)++;
if (MaxNumOfPromotions != -1 && *NumPromoted >= MaxNumOfPromotions)
break;
}
LLVM_DEBUG(dbgs() << Promoted << " counters promoted for loop (depth="
<< L.getLoopDepth() << ")\n");
return Promoted != 0;
}
private:
bool allowSpeculativeCounterPromotion(Loop *LP) {
SmallVector<BasicBlock *, 8> ExitingBlocks;
L.getExitingBlocks(ExitingBlocks);
// Not considierered speculative.
if (ExitingBlocks.size() == 1)
return true;
if (ExitingBlocks.size() > SpeculativeCounterPromotionMaxExiting)
return false;
return true;
}
// Check whether the loop satisfies the basic conditions needed to perform
// Counter Promotions.
bool isPromotionPossible(Loop *LP,
const SmallVectorImpl<BasicBlock *> &LoopExitBlocks) {
// We can't insert into a catchswitch.
if (llvm::any_of(LoopExitBlocks, [](BasicBlock *Exit) {
return isa<CatchSwitchInst>(Exit->getTerminator());
}))
return false;
if (!LP->hasDedicatedExits())
return false;
BasicBlock *PH = LP->getLoopPreheader();
if (!PH)
return false;
return true;
}
// Returns the max number of Counter Promotions for LP.
unsigned getMaxNumOfPromotionsInLoop(Loop *LP) {
SmallVector<BasicBlock *, 8> LoopExitBlocks;
LP->getExitBlocks(LoopExitBlocks);
if (!isPromotionPossible(LP, LoopExitBlocks))
return 0;
SmallVector<BasicBlock *, 8> ExitingBlocks;
LP->getExitingBlocks(ExitingBlocks);
// If BFI is set, we do more aggressive promotions based on BFI.
if (BFI)
return (unsigned)-1;
// Not considierered speculative.
if (ExitingBlocks.size() == 1)
return MaxNumOfPromotionsPerLoop;
if (ExitingBlocks.size() > SpeculativeCounterPromotionMaxExiting)
return 0;
// Whether the target block is in a loop does not matter:
if (SpeculativeCounterPromotionToLoop)
return MaxNumOfPromotionsPerLoop;
// Now check the target block:
unsigned MaxProm = MaxNumOfPromotionsPerLoop;
for (auto *TargetBlock : LoopExitBlocks) {
auto *TargetLoop = LI.getLoopFor(TargetBlock);
if (!TargetLoop)
continue;
unsigned MaxPromForTarget = getMaxNumOfPromotionsInLoop(TargetLoop);
unsigned PendingCandsInTarget = LoopToCandidates[TargetLoop].size();
MaxProm =
std::min(MaxProm, std::max(MaxPromForTarget, PendingCandsInTarget) -
PendingCandsInTarget);
}
return MaxProm;
}
DenseMap<Loop *, SmallVector<LoadStorePair, 8>> &LoopToCandidates;
SmallVector<BasicBlock *, 8> ExitBlocks;
SmallVector<Instruction *, 8> InsertPts;
Loop &L;
LoopInfo &LI;
BlockFrequencyInfo *BFI;
};
enum class ValueProfilingCallType {
// Individual values are tracked. Currently used for indiret call target
// profiling.
Default,
// MemOp: the memop size value profiling.
MemOp
};
} // end anonymous namespace
PreservedAnalyses InstrProfiling::run(Module &M, ModuleAnalysisManager &AM) {
FunctionAnalysisManager &FAM =
AM.getResult<FunctionAnalysisManagerModuleProxy>(M).getManager();
auto GetTLI = [&FAM](Function &F) -> TargetLibraryInfo & {
return FAM.getResult<TargetLibraryAnalysis>(F);
};
if (!run(M, GetTLI))
return PreservedAnalyses::all();
return PreservedAnalyses::none();
}
char InstrProfilingLegacyPass::ID = 0;
INITIALIZE_PASS_BEGIN(
InstrProfilingLegacyPass, "instrprof",
"Frontend instrumentation-based coverage lowering.", false, false)
INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
INITIALIZE_PASS_END(
InstrProfilingLegacyPass, "instrprof",
"Frontend instrumentation-based coverage lowering.", false, false)
ModulePass *
llvm::createInstrProfilingLegacyPass(const InstrProfOptions &Options,
bool IsCS) {
return new InstrProfilingLegacyPass(Options, IsCS);
}
static InstrProfIncrementInst *castToIncrementInst(Instruction *Instr) {
InstrProfIncrementInst *Inc = dyn_cast<InstrProfIncrementInstStep>(Instr);
if (Inc)
return Inc;
return dyn_cast<InstrProfIncrementInst>(Instr);
}
bool InstrProfiling::lowerIntrinsics(Function *F) {
bool MadeChange = false;
PromotionCandidates.clear();
for (BasicBlock &BB : *F) {
for (auto I = BB.begin(), E = BB.end(); I != E;) {
auto Instr = I++;
InstrProfIncrementInst *Inc = castToIncrementInst(&*Instr);
if (Inc) {
lowerIncrement(Inc);
MadeChange = true;
} else if (auto *Ind = dyn_cast<InstrProfValueProfileInst>(Instr)) {
lowerValueProfileInst(Ind);
MadeChange = true;
}
}
}
if (!MadeChange)
return false;
promoteCounterLoadStores(F);
return true;
}
bool InstrProfiling::isRuntimeCounterRelocationEnabled() const {
if (RuntimeCounterRelocation.getNumOccurrences() > 0)
return RuntimeCounterRelocation;
return TT.isOSFuchsia();
}
bool InstrProfiling::isCounterPromotionEnabled() const {
if (DoCounterPromotion.getNumOccurrences() > 0)
return DoCounterPromotion;
return Options.DoCounterPromotion;
}
void InstrProfiling::promoteCounterLoadStores(Function *F) {
if (!isCounterPromotionEnabled())
return;
DominatorTree DT(*F);
LoopInfo LI(DT);
DenseMap<Loop *, SmallVector<LoadStorePair, 8>> LoopPromotionCandidates;
std::unique_ptr<BlockFrequencyInfo> BFI;
if (Options.UseBFIInPromotion) {
std::unique_ptr<BranchProbabilityInfo> BPI;
BPI.reset(new BranchProbabilityInfo(*F, LI, &GetTLI(*F)));
BFI.reset(new BlockFrequencyInfo(*F, *BPI, LI));
}
for (const auto &LoadStore : PromotionCandidates) {
auto *CounterLoad = LoadStore.first;
auto *CounterStore = LoadStore.second;
BasicBlock *BB = CounterLoad->getParent();
Loop *ParentLoop = LI.getLoopFor(BB);
if (!ParentLoop)
continue;
LoopPromotionCandidates[ParentLoop].emplace_back(CounterLoad, CounterStore);
}
SmallVector<Loop *, 4> Loops = LI.getLoopsInPreorder();
// Do a post-order traversal of the loops so that counter updates can be
// iteratively hoisted outside the loop nest.
for (auto *Loop : llvm::reverse(Loops)) {
PGOCounterPromoter Promoter(LoopPromotionCandidates, *Loop, LI, BFI.get());
Promoter.run(&TotalCountersPromoted);
}
}
/// Check if the module contains uses of any profiling intrinsics.
static bool containsProfilingIntrinsics(Module &M) {
if (auto *F = M.getFunction(
Intrinsic::getName(llvm::Intrinsic::instrprof_increment)))
if (!F->use_empty())
return true;
if (auto *F = M.getFunction(
Intrinsic::getName(llvm::Intrinsic::instrprof_increment_step)))
if (!F->use_empty())
return true;
if (auto *F = M.getFunction(
Intrinsic::getName(llvm::Intrinsic::instrprof_value_profile)))
if (!F->use_empty())
return true;
return false;
}
bool InstrProfiling::run(
Module &M, std::function<const TargetLibraryInfo &(Function &F)> GetTLI) {
this->M = &M;
this->GetTLI = std::move(GetTLI);
NamesVar = nullptr;
NamesSize = 0;
ProfileDataMap.clear();
UsedVars.clear();
TT = Triple(M.getTargetTriple());
// Emit the runtime hook even if no counters are present.
bool MadeChange = emitRuntimeHook();
// Improve compile time by avoiding linear scans when there is no work.
GlobalVariable *CoverageNamesVar =
M.getNamedGlobal(getCoverageUnusedNamesVarName());
if (!containsProfilingIntrinsics(M) && !CoverageNamesVar)
return MadeChange;
// We did not know how many value sites there would be inside
// the instrumented function. This is counting the number of instrumented
// target value sites to enter it as field in the profile data variable.
for (Function &F : M) {
InstrProfIncrementInst *FirstProfIncInst = nullptr;
for (BasicBlock &BB : F)
for (auto I = BB.begin(), E = BB.end(); I != E; I++)
if (auto *Ind = dyn_cast<InstrProfValueProfileInst>(I))
computeNumValueSiteCounts(Ind);
else if (FirstProfIncInst == nullptr)
FirstProfIncInst = dyn_cast<InstrProfIncrementInst>(I);
// Value profiling intrinsic lowering requires per-function profile data
// variable to be created first.
if (FirstProfIncInst != nullptr)
static_cast<void>(getOrCreateRegionCounters(FirstProfIncInst));
}
for (Function &F : M)
MadeChange |= lowerIntrinsics(&F);
if (CoverageNamesVar) {
lowerCoverageData(CoverageNamesVar);
MadeChange = true;
}
if (!MadeChange)
return false;
emitVNodes();
emitNameData();
emitRegistration();
emitUses();
emitInitialization();
return true;
}
static FunctionCallee getOrInsertValueProfilingCall(
Module &M, const TargetLibraryInfo &TLI,
ValueProfilingCallType CallType = ValueProfilingCallType::Default) {
LLVMContext &Ctx = M.getContext();
auto *ReturnTy = Type::getVoidTy(M.getContext());
AttributeList AL;
if (auto AK = TLI.getExtAttrForI32Param(false))
AL = AL.addParamAttribute(M.getContext(), 2, AK);
assert((CallType == ValueProfilingCallType::Default ||
CallType == ValueProfilingCallType::MemOp) &&
"Must be Default or MemOp");
Type *ParamTypes[] = {
#define VALUE_PROF_FUNC_PARAM(ParamType, ParamName, ParamLLVMType) ParamLLVMType
#include "llvm/ProfileData/InstrProfData.inc"
};
auto *ValueProfilingCallTy =
FunctionType::get(ReturnTy, makeArrayRef(ParamTypes), false);
StringRef FuncName = CallType == ValueProfilingCallType::Default
? getInstrProfValueProfFuncName()
: getInstrProfValueProfMemOpFuncName();
return M.getOrInsertFunction(FuncName, ValueProfilingCallTy, AL);
}
void InstrProfiling::computeNumValueSiteCounts(InstrProfValueProfileInst *Ind) {
GlobalVariable *Name = Ind->getName();
uint64_t ValueKind = Ind->getValueKind()->getZExtValue();
uint64_t Index = Ind->getIndex()->getZExtValue();
auto It = ProfileDataMap.find(Name);
if (It == ProfileDataMap.end()) {
PerFunctionProfileData PD;
PD.NumValueSites[ValueKind] = Index + 1;
ProfileDataMap[Name] = PD;
} else if (It->second.NumValueSites[ValueKind] <= Index)
It->second.NumValueSites[ValueKind] = Index + 1;
}
void InstrProfiling::lowerValueProfileInst(InstrProfValueProfileInst *Ind) {
GlobalVariable *Name = Ind->getName();
auto It = ProfileDataMap.find(Name);
assert(It != ProfileDataMap.end() && It->second.DataVar &&
"value profiling detected in function with no counter incerement");
GlobalVariable *DataVar = It->second.DataVar;
uint64_t ValueKind = Ind->getValueKind()->getZExtValue();
uint64_t Index = Ind->getIndex()->getZExtValue();
for (uint32_t Kind = IPVK_First; Kind < ValueKind; ++Kind)
Index += It->second.NumValueSites[Kind];
IRBuilder<> Builder(Ind);
bool IsMemOpSize = (Ind->getValueKind()->getZExtValue() ==
llvm::InstrProfValueKind::IPVK_MemOPSize);
CallInst *Call = nullptr;
auto *TLI = &GetTLI(*Ind->getFunction());
// To support value profiling calls within Windows exception handlers, funclet
// information contained within operand bundles needs to be copied over to
// the library call. This is required for the IR to be processed by the
// WinEHPrepare pass.
SmallVector<OperandBundleDef, 1> OpBundles;
Ind->getOperandBundlesAsDefs(OpBundles);
if (!IsMemOpSize) {
Value *Args[3] = {Ind->getTargetValue(),
Builder.CreateBitCast(DataVar, Builder.getInt8PtrTy()),
Builder.getInt32(Index)};
Call = Builder.CreateCall(getOrInsertValueProfilingCall(*M, *TLI), Args,
OpBundles);
} else {
Value *Args[3] = {Ind->getTargetValue(),
Builder.CreateBitCast(DataVar, Builder.getInt8PtrTy()),
Builder.getInt32(Index)};
Call = Builder.CreateCall(
getOrInsertValueProfilingCall(*M, *TLI, ValueProfilingCallType::MemOp),
Args, OpBundles);
}
if (auto AK = TLI->getExtAttrForI32Param(false))
Call->addParamAttr(2, AK);
Ind->replaceAllUsesWith(Call);
Ind->eraseFromParent();
}
void InstrProfiling::lowerIncrement(InstrProfIncrementInst *Inc) {
GlobalVariable *Counters = getOrCreateRegionCounters(Inc);
IRBuilder<> Builder(Inc);
uint64_t Index = Inc->getIndex()->getZExtValue();
Value *Addr = Builder.CreateConstInBoundsGEP2_64(Counters->getValueType(),
Counters, 0, Index);
if (isRuntimeCounterRelocationEnabled()) {
Type *Int64Ty = Type::getInt64Ty(M->getContext());
Type *Int64PtrTy = Type::getInt64PtrTy(M->getContext());
Function *Fn = Inc->getParent()->getParent();
Instruction &I = Fn->getEntryBlock().front();
LoadInst *LI = dyn_cast<LoadInst>(&I);
if (!LI) {
IRBuilder<> Builder(&I);
Type *Int64Ty = Type::getInt64Ty(M->getContext());
GlobalVariable *Bias = M->getGlobalVariable(getInstrProfCounterBiasVarName());
if (!Bias) {
Bias = new GlobalVariable(*M, Int64Ty, false, GlobalValue::LinkOnceODRLinkage,
Constant::getNullValue(Int64Ty),
getInstrProfCounterBiasVarName());
Bias->setVisibility(GlobalVariable::HiddenVisibility);
}
LI = Builder.CreateLoad(Int64Ty, Bias);
}
auto *Add = Builder.CreateAdd(Builder.CreatePtrToInt(Addr, Int64Ty), LI);
Addr = Builder.CreateIntToPtr(Add, Int64PtrTy);
}
if (Options.Atomic || AtomicCounterUpdateAll ||
(Index == 0 && AtomicFirstCounter)) {
Builder.CreateAtomicRMW(AtomicRMWInst::Add, Addr, Inc->getStep(),
AtomicOrdering::Monotonic);
} else {
Value *IncStep = Inc->getStep();
Value *Load = Builder.CreateLoad(IncStep->getType(), Addr, "pgocount");
auto *Count = Builder.CreateAdd(Load, Inc->getStep());
auto *Store = Builder.CreateStore(Count, Addr);
if (isCounterPromotionEnabled())
PromotionCandidates.emplace_back(cast<Instruction>(Load), Store);
}
Inc->eraseFromParent();
}
void InstrProfiling::lowerCoverageData(GlobalVariable *CoverageNamesVar) {
ConstantArray *Names =
cast<ConstantArray>(CoverageNamesVar->getInitializer());
for (unsigned I = 0, E = Names->getNumOperands(); I < E; ++I) {
Constant *NC = Names->getOperand(I);
Value *V = NC->stripPointerCasts();
assert(isa<GlobalVariable>(V) && "Missing reference to function name");
GlobalVariable *Name = cast<GlobalVariable>(V);
Name->setLinkage(GlobalValue::PrivateLinkage);
ReferencedNames.push_back(Name);
NC->dropAllReferences();
}
CoverageNamesVar->eraseFromParent();
}
/// Get the name of a profiling variable for a particular function.
static std::string getVarName(InstrProfIncrementInst *Inc, StringRef Prefix) {
StringRef NamePrefix = getInstrProfNameVarPrefix();
StringRef Name = Inc->getName()->getName().substr(NamePrefix.size());
Function *F = Inc->getParent()->getParent();
Module *M = F->getParent();
if (!DoHashBasedCounterSplit || !isIRPGOFlagSet(M) ||
!canRenameComdatFunc(*F))
return (Prefix + Name).str();
uint64_t FuncHash = Inc->getHash()->getZExtValue();
SmallVector<char, 24> HashPostfix;
if (Name.endswith((Twine(".") + Twine(FuncHash)).toStringRef(HashPostfix)))
return (Prefix + Name).str();
return (Prefix + Name + "." + Twine(FuncHash)).str();
}
static inline bool shouldRecordFunctionAddr(Function *F) {
// Check the linkage
bool HasAvailableExternallyLinkage = F->hasAvailableExternallyLinkage();
if (!F->hasLinkOnceLinkage() && !F->hasLocalLinkage() &&
!HasAvailableExternallyLinkage)
return true;
// A function marked 'alwaysinline' with available_externally linkage can't
// have its address taken. Doing so would create an undefined external ref to
// the function, which would fail to link.
if (HasAvailableExternallyLinkage &&
F->hasFnAttribute(Attribute::AlwaysInline))
return false;
// Prohibit function address recording if the function is both internal and
// COMDAT. This avoids the profile data variable referencing internal symbols
// in COMDAT.
if (F->hasLocalLinkage() && F->hasComdat())
return false;
// Check uses of this function for other than direct calls or invokes to it.
// Inline virtual functions have linkeOnceODR linkage. When a key method
// exists, the vtable will only be emitted in the TU where the key method
// is defined. In a TU where vtable is not available, the function won't
// be 'addresstaken'. If its address is not recorded here, the profile data
// with missing address may be picked by the linker leading to missing
// indirect call target info.
return F->hasAddressTaken() || F->hasLinkOnceLinkage();
}
static bool needsRuntimeRegistrationOfSectionRange(const Triple &TT) {
// Don't do this for Darwin. compiler-rt uses linker magic.
if (TT.isOSDarwin())
return false;
// Use linker script magic to get data/cnts/name start/end.
if (TT.isOSLinux() || TT.isOSFreeBSD() || TT.isOSNetBSD() ||
TT.isOSSolaris() || TT.isOSFuchsia() || TT.isPS4CPU() ||
TT.isOSWindows())
return false;
return true;
}
GlobalVariable *
InstrProfiling::getOrCreateRegionCounters(InstrProfIncrementInst *Inc) {
GlobalVariable *NamePtr = Inc->getName();
auto It = ProfileDataMap.find(NamePtr);
PerFunctionProfileData PD;
if (It != ProfileDataMap.end()) {
if (It->second.RegionCounters)
return It->second.RegionCounters;
PD = It->second;
}
// Match the linkage and visibility of the name global. COFF supports using
// comdats with internal symbols, so do that if we can.
Function *Fn = Inc->getParent()->getParent();
GlobalValue::LinkageTypes Linkage = NamePtr->getLinkage();
GlobalValue::VisibilityTypes Visibility = NamePtr->getVisibility();
if (TT.isOSBinFormatCOFF()) {
Linkage = GlobalValue::InternalLinkage;
Visibility = GlobalValue::DefaultVisibility;
}
// Move the name variable to the right section. Place them in a COMDAT group
// if the associated function is a COMDAT. This will make sure that only one
// copy of counters of the COMDAT function will be emitted after linking. Keep
// in mind that this pass may run before the inliner, so we need to create a
// new comdat group for the counters and profiling data. If we use the comdat
// of the parent function, that will result in relocations against discarded
// sections.
bool NeedComdat = needsComdatForCounter(*Fn, *M);
if (NeedComdat) {
if (TT.isOSBinFormatCOFF()) {
// For COFF, put the counters, data, and values each into their own
// comdats. We can't use a group because the Visual C++ linker will
// report duplicate symbol errors if there are multiple external symbols
// with the same name marked IMAGE_COMDAT_SELECT_ASSOCIATIVE.
Linkage = GlobalValue::LinkOnceODRLinkage;
Visibility = GlobalValue::HiddenVisibility;
}
}
std::string DataVarName = getVarName(Inc, getInstrProfDataVarPrefix());
auto MaybeSetComdat = [=](GlobalVariable *GV) {
if (NeedComdat)
GV->setComdat(M->getOrInsertComdat(TT.isOSBinFormatCOFF() ? GV->getName()
: DataVarName));
};
uint64_t NumCounters = Inc->getNumCounters()->getZExtValue();
LLVMContext &Ctx = M->getContext();
ArrayType *CounterTy = ArrayType::get(Type::getInt64Ty(Ctx), NumCounters);
// Create the counters variable.
auto *CounterPtr =
new GlobalVariable(*M, CounterTy, false, Linkage,
Constant::getNullValue(CounterTy),
getVarName(Inc, getInstrProfCountersVarPrefix()));
CounterPtr->setVisibility(Visibility);
CounterPtr->setSection(
getInstrProfSectionName(IPSK_cnts, TT.getObjectFormat()));
CounterPtr->setAlignment(Align(8));
MaybeSetComdat(CounterPtr);
CounterPtr->setLinkage(Linkage);
auto *Int8PtrTy = Type::getInt8PtrTy(Ctx);
// Allocate statically the array of pointers to value profile nodes for
// the current function.
Constant *ValuesPtrExpr = ConstantPointerNull::get(Int8PtrTy);
if (ValueProfileStaticAlloc && !needsRuntimeRegistrationOfSectionRange(TT)) {
uint64_t NS = 0;
for (uint32_t Kind = IPVK_First; Kind <= IPVK_Last; ++Kind)
NS += PD.NumValueSites[Kind];
if (NS) {
ArrayType *ValuesTy = ArrayType::get(Type::getInt64Ty(Ctx), NS);
auto *ValuesVar =
new GlobalVariable(*M, ValuesTy, false, Linkage,
Constant::getNullValue(ValuesTy),
getVarName(Inc, getInstrProfValuesVarPrefix()));
ValuesVar->setVisibility(Visibility);
ValuesVar->setSection(
getInstrProfSectionName(IPSK_vals, TT.getObjectFormat()));
ValuesVar->setAlignment(Align(8));
MaybeSetComdat(ValuesVar);
ValuesPtrExpr =
ConstantExpr::getBitCast(ValuesVar, Type::getInt8PtrTy(Ctx));
}
}
// Create data variable.
auto *Int16Ty = Type::getInt16Ty(Ctx);
auto *Int16ArrayTy = ArrayType::get(Int16Ty, IPVK_Last + 1);
Type *DataTypes[] = {
#define INSTR_PROF_DATA(Type, LLVMType, Name, Init) LLVMType,
#include "llvm/ProfileData/InstrProfData.inc"
};
auto *DataTy = StructType::get(Ctx, makeArrayRef(DataTypes));
Constant *FunctionAddr = shouldRecordFunctionAddr(Fn)
? ConstantExpr::getBitCast(Fn, Int8PtrTy)
: ConstantPointerNull::get(Int8PtrTy);
Constant *Int16ArrayVals[IPVK_Last + 1];
for (uint32_t Kind = IPVK_First; Kind <= IPVK_Last; ++Kind)
Int16ArrayVals[Kind] = ConstantInt::get(Int16Ty, PD.NumValueSites[Kind]);
Constant *DataVals[] = {
#define INSTR_PROF_DATA(Type, LLVMType, Name, Init) Init,
#include "llvm/ProfileData/InstrProfData.inc"
};
auto *Data =
new GlobalVariable(*M, DataTy, false, Linkage,
ConstantStruct::get(DataTy, DataVals), DataVarName);
Data->setVisibility(Visibility);
Data->setSection(getInstrProfSectionName(IPSK_data, TT.getObjectFormat()));
Data->setAlignment(Align(INSTR_PROF_DATA_ALIGNMENT));
MaybeSetComdat(Data);
Data->setLinkage(Linkage);
PD.RegionCounters = CounterPtr;
PD.DataVar = Data;
ProfileDataMap[NamePtr] = PD;
// Mark the data variable as used so that it isn't stripped out.
UsedVars.push_back(Data);
// Now that the linkage set by the FE has been passed to the data and counter
// variables, reset Name variable's linkage and visibility to private so that
// it can be removed later by the compiler.
NamePtr->setLinkage(GlobalValue::PrivateLinkage);
// Collect the referenced names to be used by emitNameData.
ReferencedNames.push_back(NamePtr);
return CounterPtr;
}
void InstrProfiling::emitVNodes() {
if (!ValueProfileStaticAlloc)
return;
// For now only support this on platforms that do
// not require runtime registration to discover
// named section start/end.
if (needsRuntimeRegistrationOfSectionRange(TT))
return;
size_t TotalNS = 0;
for (auto &PD : ProfileDataMap) {
for (uint32_t Kind = IPVK_First; Kind <= IPVK_Last; ++Kind)
TotalNS += PD.second.NumValueSites[Kind];
}
if (!TotalNS)
return;
uint64_t NumCounters = TotalNS * NumCountersPerValueSite;
// Heuristic for small programs with very few total value sites.
// The default value of vp-counters-per-site is chosen based on
// the observation that large apps usually have a low percentage
// of value sites that actually have any profile data, and thus
// the average number of counters per site is low. For small
// apps with very few sites, this may not be true. Bump up the
// number of counters in this case.
#define INSTR_PROF_MIN_VAL_COUNTS 10
if (NumCounters < INSTR_PROF_MIN_VAL_COUNTS)
NumCounters = std::max(INSTR_PROF_MIN_VAL_COUNTS, (int)NumCounters * 2);
auto &Ctx = M->getContext();
Type *VNodeTypes[] = {
#define INSTR_PROF_VALUE_NODE(Type, LLVMType, Name, Init) LLVMType,
#include "llvm/ProfileData/InstrProfData.inc"
};
auto *VNodeTy = StructType::get(Ctx, makeArrayRef(VNodeTypes));
ArrayType *VNodesTy = ArrayType::get(VNodeTy, NumCounters);
auto *VNodesVar = new GlobalVariable(
*M, VNodesTy, false, GlobalValue::PrivateLinkage,
Constant::getNullValue(VNodesTy), getInstrProfVNodesVarName());
VNodesVar->setSection(
getInstrProfSectionName(IPSK_vnodes, TT.getObjectFormat()));
UsedVars.push_back(VNodesVar);
}
void InstrProfiling::emitNameData() {
std::string UncompressedData;
if (ReferencedNames.empty())
return;
std::string CompressedNameStr;
if (Error E = collectPGOFuncNameStrings(ReferencedNames, CompressedNameStr,
DoInstrProfNameCompression)) {
report_fatal_error(toString(std::move(E)), false);
}
auto &Ctx = M->getContext();
auto *NamesVal = ConstantDataArray::getString(
Ctx, StringRef(CompressedNameStr), false);
NamesVar = new GlobalVariable(*M, NamesVal->getType(), true,
GlobalValue::PrivateLinkage, NamesVal,
getInstrProfNamesVarName());
NamesSize = CompressedNameStr.size();
NamesVar->setSection(
getInstrProfSectionName(IPSK_name, TT.getObjectFormat()));
// On COFF, it's important to reduce the alignment down to 1 to prevent the
// linker from inserting padding before the start of the names section or
// between names entries.
NamesVar->setAlignment(Align(1));
UsedVars.push_back(NamesVar);
for (auto *NamePtr : ReferencedNames)
NamePtr->eraseFromParent();
}
void InstrProfiling::emitRegistration() {
if (!needsRuntimeRegistrationOfSectionRange(TT))
return;
// Construct the function.
auto *VoidTy = Type::getVoidTy(M->getContext());
auto *VoidPtrTy = Type::getInt8PtrTy(M->getContext());
auto *Int64Ty = Type::getInt64Ty(M->getContext());
auto *RegisterFTy = FunctionType::get(VoidTy, false);
auto *RegisterF = Function::Create(RegisterFTy, GlobalValue::InternalLinkage,
getInstrProfRegFuncsName(), M);
RegisterF->setUnnamedAddr(GlobalValue::UnnamedAddr::Global);
if (Options.NoRedZone)
RegisterF->addFnAttr(Attribute::NoRedZone);
auto *RuntimeRegisterTy = FunctionType::get(VoidTy, VoidPtrTy, false);
auto *RuntimeRegisterF =
Function::Create(RuntimeRegisterTy, GlobalVariable::ExternalLinkage,
getInstrProfRegFuncName(), M);
IRBuilder<> IRB(BasicBlock::Create(M->getContext(), "", RegisterF));
for (Value *Data : UsedVars)
if (Data != NamesVar && !isa<Function>(Data))
IRB.CreateCall(RuntimeRegisterF, IRB.CreateBitCast(Data, VoidPtrTy));
if (NamesVar) {
Type *ParamTypes[] = {VoidPtrTy, Int64Ty};
auto *NamesRegisterTy =
FunctionType::get(VoidTy, makeArrayRef(ParamTypes), false);
auto *NamesRegisterF =
Function::Create(NamesRegisterTy, GlobalVariable::ExternalLinkage,
getInstrProfNamesRegFuncName(), M);
IRB.CreateCall(NamesRegisterF, {IRB.CreateBitCast(NamesVar, VoidPtrTy),
IRB.getInt64(NamesSize)});
}
IRB.CreateRetVoid();
}
bool InstrProfiling::emitRuntimeHook() {
// We expect the linker to be invoked with -u<hook_var> flag for Linux or
// Fuchsia, in which case there is no need to emit the user function.
if (TT.isOSLinux() || TT.isOSFuchsia())
return false;
// If the module's provided its own runtime, we don't need to do anything.
if (M->getGlobalVariable(getInstrProfRuntimeHookVarName()))
return false;
// Declare an external variable that will pull in the runtime initialization.
auto *Int32Ty = Type::getInt32Ty(M->getContext());
auto *Var =
new GlobalVariable(*M, Int32Ty, false, GlobalValue::ExternalLinkage,
nullptr, getInstrProfRuntimeHookVarName());
// Make a function that uses it.
auto *User = Function::Create(FunctionType::get(Int32Ty, false),
GlobalValue::LinkOnceODRLinkage,
getInstrProfRuntimeHookVarUseFuncName(), M);
User->addFnAttr(Attribute::NoInline);
if (Options.NoRedZone)
User->addFnAttr(Attribute::NoRedZone);
User->setVisibility(GlobalValue::HiddenVisibility);
if (TT.supportsCOMDAT())
User->setComdat(M->getOrInsertComdat(User->getName()));
IRBuilder<> IRB(BasicBlock::Create(M->getContext(), "", User));
auto *Load = IRB.CreateLoad(Int32Ty, Var);
IRB.CreateRet(Load);
// Mark the user variable as used so that it isn't stripped out.
UsedVars.push_back(User);
return true;
}
void InstrProfiling::emitUses() {
if (!UsedVars.empty())
appendToUsed(*M, UsedVars);
}
void InstrProfiling::emitInitialization() {
// Create ProfileFileName variable. Don't don't this for the
// context-sensitive instrumentation lowering: This lowering is after
// LTO/ThinLTO linking. Pass PGOInstrumentationGenCreateVar should
// have already create the variable before LTO/ThinLTO linking.
if (!IsCS)
createProfileFileNameVar(*M, Options.InstrProfileOutput);
Function *RegisterF = M->getFunction(getInstrProfRegFuncsName());
if (!RegisterF)
return;
// Create the initialization function.
auto *VoidTy = Type::getVoidTy(M->getContext());
auto *F = Function::Create(FunctionType::get(VoidTy, false),
GlobalValue::InternalLinkage,
getInstrProfInitFuncName(), M);
F->setUnnamedAddr(GlobalValue::UnnamedAddr::Global);
F->addFnAttr(Attribute::NoInline);
if (Options.NoRedZone)
F->addFnAttr(Attribute::NoRedZone);
// Add the basic block and the necessary calls.
IRBuilder<> IRB(BasicBlock::Create(M->getContext(), "", F));
IRB.CreateCall(RegisterF, {});
IRB.CreateRetVoid();
appendToGlobalCtors(*M, F, 0);
}