1
0
mirror of https://github.com/RPCS3/llvm-mirror.git synced 2024-10-20 19:42:54 +02:00
llvm-mirror/lib/DebugInfo/MSF/MappedBlockStream.cpp
Zachary Turner 00fd9be463 [BinaryStream] Support growable streams.
The existing library assumed that a stream's length would never
change.  This makes some things simpler, but it's not flexible
enough for what we need, especially for writable streams where
what you really want is for each call to write to actually append.

llvm-svn: 319070
2017-11-27 18:48:37 +00:00

423 lines
16 KiB
C++

//===- MappedBlockStream.cpp - Reads stream data from an MSF file ---------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
#include "llvm/DebugInfo/MSF/MappedBlockStream.h"
#include "llvm/ADT/ArrayRef.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/DebugInfo/MSF/MSFCommon.h"
#include "llvm/Support/BinaryStreamWriter.h"
#include "llvm/Support/Endian.h"
#include "llvm/Support/Error.h"
#include "llvm/Support/MathExtras.h"
#include <algorithm>
#include <cassert>
#include <cstdint>
#include <cstring>
#include <utility>
#include <vector>
using namespace llvm;
using namespace llvm::msf;
namespace {
template <typename Base> class MappedBlockStreamImpl : public Base {
public:
template <typename... Args>
MappedBlockStreamImpl(Args &&... Params)
: Base(std::forward<Args>(Params)...) {}
};
} // end anonymous namespace
using Interval = std::pair<uint32_t, uint32_t>;
static Interval intersect(const Interval &I1, const Interval &I2) {
return std::make_pair(std::max(I1.first, I2.first),
std::min(I1.second, I2.second));
}
MappedBlockStream::MappedBlockStream(uint32_t BlockSize,
const MSFStreamLayout &Layout,
BinaryStreamRef MsfData,
BumpPtrAllocator &Allocator)
: BlockSize(BlockSize), StreamLayout(Layout), MsfData(MsfData),
Allocator(Allocator) {}
std::unique_ptr<MappedBlockStream> MappedBlockStream::createStream(
uint32_t BlockSize, const MSFStreamLayout &Layout, BinaryStreamRef MsfData,
BumpPtrAllocator &Allocator) {
return llvm::make_unique<MappedBlockStreamImpl<MappedBlockStream>>(
BlockSize, Layout, MsfData, Allocator);
}
std::unique_ptr<MappedBlockStream> MappedBlockStream::createIndexedStream(
const MSFLayout &Layout, BinaryStreamRef MsfData, uint32_t StreamIndex,
BumpPtrAllocator &Allocator) {
assert(StreamIndex < Layout.StreamMap.size() && "Invalid stream index");
MSFStreamLayout SL;
SL.Blocks = Layout.StreamMap[StreamIndex];
SL.Length = Layout.StreamSizes[StreamIndex];
return llvm::make_unique<MappedBlockStreamImpl<MappedBlockStream>>(
Layout.SB->BlockSize, SL, MsfData, Allocator);
}
std::unique_ptr<MappedBlockStream>
MappedBlockStream::createDirectoryStream(const MSFLayout &Layout,
BinaryStreamRef MsfData,
BumpPtrAllocator &Allocator) {
MSFStreamLayout SL;
SL.Blocks = Layout.DirectoryBlocks;
SL.Length = Layout.SB->NumDirectoryBytes;
return createStream(Layout.SB->BlockSize, SL, MsfData, Allocator);
}
std::unique_ptr<MappedBlockStream>
MappedBlockStream::createFpmStream(const MSFLayout &Layout,
BinaryStreamRef MsfData,
BumpPtrAllocator &Allocator) {
MSFStreamLayout SL(getFpmStreamLayout(Layout));
return createStream(Layout.SB->BlockSize, SL, MsfData, Allocator);
}
Error MappedBlockStream::readBytes(uint32_t Offset, uint32_t Size,
ArrayRef<uint8_t> &Buffer) {
// Make sure we aren't trying to read beyond the end of the stream.
if (auto EC = checkOffsetForRead(Offset, Size))
return EC;
if (tryReadContiguously(Offset, Size, Buffer))
return Error::success();
auto CacheIter = CacheMap.find(Offset);
if (CacheIter != CacheMap.end()) {
// Try to find an alloc that was large enough for this request.
for (auto &Entry : CacheIter->second) {
if (Entry.size() >= Size) {
Buffer = Entry.slice(0, Size);
return Error::success();
}
}
}
// We couldn't find a buffer that started at the correct offset (the most
// common scenario). Try to see if there is a buffer that starts at some
// other offset but overlaps the desired range.
for (auto &CacheItem : CacheMap) {
Interval RequestExtent = std::make_pair(Offset, Offset + Size);
// We already checked this one on the fast path above.
if (CacheItem.first == Offset)
continue;
// If the initial extent of the cached item is beyond the ending extent
// of the request, there is no overlap.
if (CacheItem.first >= Offset + Size)
continue;
// We really only have to check the last item in the list, since we append
// in order of increasing length.
if (CacheItem.second.empty())
continue;
auto CachedAlloc = CacheItem.second.back();
// If the initial extent of the request is beyond the ending extent of
// the cached item, there is no overlap.
Interval CachedExtent =
std::make_pair(CacheItem.first, CacheItem.first + CachedAlloc.size());
if (RequestExtent.first >= CachedExtent.first + CachedExtent.second)
continue;
Interval Intersection = intersect(CachedExtent, RequestExtent);
// Only use this if the entire request extent is contained in the cached
// extent.
if (Intersection != RequestExtent)
continue;
uint32_t CacheRangeOffset =
AbsoluteDifference(CachedExtent.first, Intersection.first);
Buffer = CachedAlloc.slice(CacheRangeOffset, Size);
return Error::success();
}
// Otherwise allocate a large enough buffer in the pool, memcpy the data
// into it, and return an ArrayRef to that. Do not touch existing pool
// allocations, as existing clients may be holding a pointer which must
// not be invalidated.
uint8_t *WriteBuffer = static_cast<uint8_t *>(Allocator.Allocate(Size, 8));
if (auto EC = readBytes(Offset, MutableArrayRef<uint8_t>(WriteBuffer, Size)))
return EC;
if (CacheIter != CacheMap.end()) {
CacheIter->second.emplace_back(WriteBuffer, Size);
} else {
std::vector<CacheEntry> List;
List.emplace_back(WriteBuffer, Size);
CacheMap.insert(std::make_pair(Offset, List));
}
Buffer = ArrayRef<uint8_t>(WriteBuffer, Size);
return Error::success();
}
Error MappedBlockStream::readLongestContiguousChunk(uint32_t Offset,
ArrayRef<uint8_t> &Buffer) {
// Make sure we aren't trying to read beyond the end of the stream.
if (auto EC = checkOffsetForRead(Offset, 1))
return EC;
uint32_t First = Offset / BlockSize;
uint32_t Last = First;
while (Last < getNumBlocks() - 1) {
if (StreamLayout.Blocks[Last] != StreamLayout.Blocks[Last + 1] - 1)
break;
++Last;
}
uint32_t OffsetInFirstBlock = Offset % BlockSize;
uint32_t BytesFromFirstBlock = BlockSize - OffsetInFirstBlock;
uint32_t BlockSpan = Last - First + 1;
uint32_t ByteSpan = BytesFromFirstBlock + (BlockSpan - 1) * BlockSize;
ArrayRef<uint8_t> BlockData;
uint32_t MsfOffset = blockToOffset(StreamLayout.Blocks[First], BlockSize);
if (auto EC = MsfData.readBytes(MsfOffset, BlockSize, BlockData))
return EC;
BlockData = BlockData.drop_front(OffsetInFirstBlock);
Buffer = ArrayRef<uint8_t>(BlockData.data(), ByteSpan);
return Error::success();
}
uint32_t MappedBlockStream::getLength() { return StreamLayout.Length; }
bool MappedBlockStream::tryReadContiguously(uint32_t Offset, uint32_t Size,
ArrayRef<uint8_t> &Buffer) {
if (Size == 0) {
Buffer = ArrayRef<uint8_t>();
return true;
}
// Attempt to fulfill the request with a reference directly into the stream.
// This can work even if the request crosses a block boundary, provided that
// all subsequent blocks are contiguous. For example, a 10k read with a 4k
// block size can be filled with a reference if, from the starting offset,
// 3 blocks in a row are contiguous.
uint32_t BlockNum = Offset / BlockSize;
uint32_t OffsetInBlock = Offset % BlockSize;
uint32_t BytesFromFirstBlock = std::min(Size, BlockSize - OffsetInBlock);
uint32_t NumAdditionalBlocks =
alignTo(Size - BytesFromFirstBlock, BlockSize) / BlockSize;
uint32_t RequiredContiguousBlocks = NumAdditionalBlocks + 1;
uint32_t E = StreamLayout.Blocks[BlockNum];
for (uint32_t I = 0; I < RequiredContiguousBlocks; ++I, ++E) {
if (StreamLayout.Blocks[I + BlockNum] != E)
return false;
}
// Read out the entire block where the requested offset starts. Then drop
// bytes from the beginning so that the actual starting byte lines up with
// the requested starting byte. Then, since we know this is a contiguous
// cross-block span, explicitly resize the ArrayRef to cover the entire
// request length.
ArrayRef<uint8_t> BlockData;
uint32_t FirstBlockAddr = StreamLayout.Blocks[BlockNum];
uint32_t MsfOffset = blockToOffset(FirstBlockAddr, BlockSize);
if (auto EC = MsfData.readBytes(MsfOffset, BlockSize, BlockData)) {
consumeError(std::move(EC));
return false;
}
BlockData = BlockData.drop_front(OffsetInBlock);
Buffer = ArrayRef<uint8_t>(BlockData.data(), Size);
return true;
}
Error MappedBlockStream::readBytes(uint32_t Offset,
MutableArrayRef<uint8_t> Buffer) {
uint32_t BlockNum = Offset / BlockSize;
uint32_t OffsetInBlock = Offset % BlockSize;
// Make sure we aren't trying to read beyond the end of the stream.
if (auto EC = checkOffsetForRead(Offset, Buffer.size()))
return EC;
uint32_t BytesLeft = Buffer.size();
uint32_t BytesWritten = 0;
uint8_t *WriteBuffer = Buffer.data();
while (BytesLeft > 0) {
uint32_t StreamBlockAddr = StreamLayout.Blocks[BlockNum];
ArrayRef<uint8_t> BlockData;
uint32_t Offset = blockToOffset(StreamBlockAddr, BlockSize);
if (auto EC = MsfData.readBytes(Offset, BlockSize, BlockData))
return EC;
const uint8_t *ChunkStart = BlockData.data() + OffsetInBlock;
uint32_t BytesInChunk = std::min(BytesLeft, BlockSize - OffsetInBlock);
::memcpy(WriteBuffer + BytesWritten, ChunkStart, BytesInChunk);
BytesWritten += BytesInChunk;
BytesLeft -= BytesInChunk;
++BlockNum;
OffsetInBlock = 0;
}
return Error::success();
}
void MappedBlockStream::invalidateCache() { CacheMap.shrink_and_clear(); }
void MappedBlockStream::fixCacheAfterWrite(uint32_t Offset,
ArrayRef<uint8_t> Data) const {
// If this write overlapped a read which previously came from the pool,
// someone may still be holding a pointer to that alloc which is now invalid.
// Compute the overlapping range and update the cache entry, so any
// outstanding buffers are automatically updated.
for (const auto &MapEntry : CacheMap) {
// If the end of the written extent precedes the beginning of the cached
// extent, ignore this map entry.
if (Offset + Data.size() < MapEntry.first)
continue;
for (const auto &Alloc : MapEntry.second) {
// If the end of the cached extent precedes the beginning of the written
// extent, ignore this alloc.
if (MapEntry.first + Alloc.size() < Offset)
continue;
// If we get here, they are guaranteed to overlap.
Interval WriteInterval = std::make_pair(Offset, Offset + Data.size());
Interval CachedInterval =
std::make_pair(MapEntry.first, MapEntry.first + Alloc.size());
// If they overlap, we need to write the new data into the overlapping
// range.
auto Intersection = intersect(WriteInterval, CachedInterval);
assert(Intersection.first <= Intersection.second);
uint32_t Length = Intersection.second - Intersection.first;
uint32_t SrcOffset =
AbsoluteDifference(WriteInterval.first, Intersection.first);
uint32_t DestOffset =
AbsoluteDifference(CachedInterval.first, Intersection.first);
::memcpy(Alloc.data() + DestOffset, Data.data() + SrcOffset, Length);
}
}
}
WritableMappedBlockStream::WritableMappedBlockStream(
uint32_t BlockSize, const MSFStreamLayout &Layout,
WritableBinaryStreamRef MsfData, BumpPtrAllocator &Allocator)
: ReadInterface(BlockSize, Layout, MsfData, Allocator),
WriteInterface(MsfData) {}
std::unique_ptr<WritableMappedBlockStream>
WritableMappedBlockStream::createStream(uint32_t BlockSize,
const MSFStreamLayout &Layout,
WritableBinaryStreamRef MsfData,
BumpPtrAllocator &Allocator) {
return llvm::make_unique<MappedBlockStreamImpl<WritableMappedBlockStream>>(
BlockSize, Layout, MsfData, Allocator);
}
std::unique_ptr<WritableMappedBlockStream>
WritableMappedBlockStream::createIndexedStream(const MSFLayout &Layout,
WritableBinaryStreamRef MsfData,
uint32_t StreamIndex,
BumpPtrAllocator &Allocator) {
assert(StreamIndex < Layout.StreamMap.size() && "Invalid stream index");
MSFStreamLayout SL;
SL.Blocks = Layout.StreamMap[StreamIndex];
SL.Length = Layout.StreamSizes[StreamIndex];
return createStream(Layout.SB->BlockSize, SL, MsfData, Allocator);
}
std::unique_ptr<WritableMappedBlockStream>
WritableMappedBlockStream::createDirectoryStream(
const MSFLayout &Layout, WritableBinaryStreamRef MsfData,
BumpPtrAllocator &Allocator) {
MSFStreamLayout SL;
SL.Blocks = Layout.DirectoryBlocks;
SL.Length = Layout.SB->NumDirectoryBytes;
return createStream(Layout.SB->BlockSize, SL, MsfData, Allocator);
}
std::unique_ptr<WritableMappedBlockStream>
WritableMappedBlockStream::createFpmStream(const MSFLayout &Layout,
WritableBinaryStreamRef MsfData,
BumpPtrAllocator &Allocator,
bool AltFpm) {
// We only want to give the user a stream containing the bytes of the FPM that
// are actually valid, but we want to initialize all of the bytes, even those
// that come from reserved FPM blocks where the entire block is unused. To do
// this, we first create the full layout, which gives us a stream with all
// bytes and all blocks, and initialize everything to 0xFF (all blocks in the
// file are unused). Then we create the minimal layout (which contains only a
// subset of the bytes previously initialized), and return that to the user.
MSFStreamLayout MinLayout(getFpmStreamLayout(Layout, false, AltFpm));
MSFStreamLayout FullLayout(getFpmStreamLayout(Layout, true, AltFpm));
auto Result =
createStream(Layout.SB->BlockSize, FullLayout, MsfData, Allocator);
if (!Result)
return Result;
std::vector<uint8_t> InitData(Layout.SB->BlockSize, 0xFF);
BinaryStreamWriter Initializer(*Result);
while (Initializer.bytesRemaining() > 0)
cantFail(Initializer.writeBytes(InitData));
return createStream(Layout.SB->BlockSize, MinLayout, MsfData, Allocator);
}
Error WritableMappedBlockStream::readBytes(uint32_t Offset, uint32_t Size,
ArrayRef<uint8_t> &Buffer) {
return ReadInterface.readBytes(Offset, Size, Buffer);
}
Error WritableMappedBlockStream::readLongestContiguousChunk(
uint32_t Offset, ArrayRef<uint8_t> &Buffer) {
return ReadInterface.readLongestContiguousChunk(Offset, Buffer);
}
uint32_t WritableMappedBlockStream::getLength() {
return ReadInterface.getLength();
}
Error WritableMappedBlockStream::writeBytes(uint32_t Offset,
ArrayRef<uint8_t> Buffer) {
// Make sure we aren't trying to write beyond the end of the stream.
if (auto EC = checkOffsetForWrite(Offset, Buffer.size()))
return EC;
uint32_t BlockNum = Offset / getBlockSize();
uint32_t OffsetInBlock = Offset % getBlockSize();
uint32_t BytesLeft = Buffer.size();
uint32_t BytesWritten = 0;
while (BytesLeft > 0) {
uint32_t StreamBlockAddr = getStreamLayout().Blocks[BlockNum];
uint32_t BytesToWriteInChunk =
std::min(BytesLeft, getBlockSize() - OffsetInBlock);
const uint8_t *Chunk = Buffer.data() + BytesWritten;
ArrayRef<uint8_t> ChunkData(Chunk, BytesToWriteInChunk);
uint32_t MsfOffset = blockToOffset(StreamBlockAddr, getBlockSize());
MsfOffset += OffsetInBlock;
if (auto EC = WriteInterface.writeBytes(MsfOffset, ChunkData))
return EC;
BytesLeft -= BytesToWriteInChunk;
BytesWritten += BytesToWriteInChunk;
++BlockNum;
OffsetInBlock = 0;
}
ReadInterface.fixCacheAfterWrite(Offset, Buffer);
return Error::success();
}
Error WritableMappedBlockStream::commit() { return WriteInterface.commit(); }