mirror of
https://github.com/RPCS3/llvm-mirror.git
synced 2025-02-01 05:01:59 +01:00
233ed83478
Summary: Targets often have instructions that can sign-extend certain cases faster than the equivalent shift-left/arithmetic-shift-right. Such cases can be identified by matching a shift-left/shift-right pair but there are some issues with this in the context of combines. For example, suppose you can sign-extend 8-bit up to 32-bit with a target extend instruction. %1:_(s32) = G_SHL %0:_(s32), i32 24 # (I've inlined the G_CONSTANT for brevity) %2:_(s32) = G_ASHR %1:_(s32), i32 24 %3:_(s32) = G_ASHR %2:_(s32), i32 1 would reasonably combine to: %1:_(s32) = G_SHL %0:_(s32), i32 24 %2:_(s32) = G_ASHR %1:_(s32), i32 25 which no longer matches the special case. If your shifts and extend are equal cost, this would break even as a pair of shifts but if your shift is more expensive than the extend then it's cheaper as: %2:_(s32) = G_SEXT_INREG %0:_(s32), i32 8 %3:_(s32) = G_ASHR %2:_(s32), i32 1 It's possible to match the shift-pair in ISel and emit an extend and ashr. However, this is far from the only way to break this shift pair and make it hard to match the extends. Another example is that with the right known-zeros, this: %1:_(s32) = G_SHL %0:_(s32), i32 24 %2:_(s32) = G_ASHR %1:_(s32), i32 24 %3:_(s32) = G_MUL %2:_(s32), i32 2 can become: %1:_(s32) = G_SHL %0:_(s32), i32 24 %2:_(s32) = G_ASHR %1:_(s32), i32 23 All upstream targets have been configured to lower it to the current G_SHL,G_ASHR pair but will likely want to make it legal in some cases to handle their faster cases. To follow-up: Provide a way to legalize based on the constant. At the moment, I'm thinking that the best way to achieve this is to provide the MI in LegalityQuery but that opens the door to breaking core principles of the legalizer (legality is not context sensitive). That said, it's worth noting that looking at other instructions and acting on that information doesn't violate this principle in itself. It's only a violation if, at the end of legalization, a pass that checks legality without being able to see the context would say an instruction might not be legal. That's a fairly subtle distinction so to give a concrete example, saying %2 in: %1 = G_CONSTANT 16 %2 = G_SEXT_INREG %0, %1 is legal is in violation of that principle if the legality of %2 depends on %1 being constant and/or being 16. However, legalizing to either: %2 = G_SEXT_INREG %0, 16 or: %1 = G_CONSTANT 16 %2:_(s32) = G_SHL %0, %1 %3:_(s32) = G_ASHR %2, %1 depending on whether %1 is constant and 16 does not violate that principle since both outputs are genuinely legal. Reviewers: bogner, aditya_nandakumar, volkan, aemerson, paquette, arsenm Subscribers: sdardis, jvesely, wdng, nhaehnle, rovka, kristof.beyls, javed.absar, hiraditya, jrtc27, atanasyan, Petar.Avramovic, llvm-commits Tags: #llvm Differential Revision: https://reviews.llvm.org/D61289 llvm-svn: 368487
474 lines
19 KiB
C++
474 lines
19 KiB
C++
//===- ARMLegalizerInfo.cpp --------------------------------------*- C++ -*-==//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
/// \file
|
|
/// This file implements the targeting of the Machinelegalizer class for ARM.
|
|
/// \todo This should be generated by TableGen.
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "ARMLegalizerInfo.h"
|
|
#include "ARMCallLowering.h"
|
|
#include "ARMSubtarget.h"
|
|
#include "llvm/CodeGen/GlobalISel/LegalizerHelper.h"
|
|
#include "llvm/CodeGen/LowLevelType.h"
|
|
#include "llvm/CodeGen/MachineRegisterInfo.h"
|
|
#include "llvm/CodeGen/TargetOpcodes.h"
|
|
#include "llvm/CodeGen/ValueTypes.h"
|
|
#include "llvm/IR/DerivedTypes.h"
|
|
#include "llvm/IR/Type.h"
|
|
|
|
using namespace llvm;
|
|
using namespace LegalizeActions;
|
|
|
|
/// FIXME: The following static functions are SizeChangeStrategy functions
|
|
/// that are meant to temporarily mimic the behaviour of the old legalization
|
|
/// based on doubling/halving non-legal types as closely as possible. This is
|
|
/// not entirly possible as only legalizing the types that are exactly a power
|
|
/// of 2 times the size of the legal types would require specifying all those
|
|
/// sizes explicitly.
|
|
/// In practice, not specifying those isn't a problem, and the below functions
|
|
/// should disappear quickly as we add support for legalizing non-power-of-2
|
|
/// sized types further.
|
|
static void
|
|
addAndInterleaveWithUnsupported(LegalizerInfo::SizeAndActionsVec &result,
|
|
const LegalizerInfo::SizeAndActionsVec &v) {
|
|
for (unsigned i = 0; i < v.size(); ++i) {
|
|
result.push_back(v[i]);
|
|
if (i + 1 < v[i].first && i + 1 < v.size() &&
|
|
v[i + 1].first != v[i].first + 1)
|
|
result.push_back({v[i].first + 1, Unsupported});
|
|
}
|
|
}
|
|
|
|
static LegalizerInfo::SizeAndActionsVec
|
|
widen_8_16(const LegalizerInfo::SizeAndActionsVec &v) {
|
|
assert(v.size() >= 1);
|
|
assert(v[0].first > 17);
|
|
LegalizerInfo::SizeAndActionsVec result = {{1, Unsupported},
|
|
{8, WidenScalar},
|
|
{9, Unsupported},
|
|
{16, WidenScalar},
|
|
{17, Unsupported}};
|
|
addAndInterleaveWithUnsupported(result, v);
|
|
auto Largest = result.back().first;
|
|
result.push_back({Largest + 1, Unsupported});
|
|
return result;
|
|
}
|
|
|
|
static bool AEABI(const ARMSubtarget &ST) {
|
|
return ST.isTargetAEABI() || ST.isTargetGNUAEABI() || ST.isTargetMuslAEABI();
|
|
}
|
|
|
|
ARMLegalizerInfo::ARMLegalizerInfo(const ARMSubtarget &ST) {
|
|
using namespace TargetOpcode;
|
|
|
|
const LLT p0 = LLT::pointer(0, 32);
|
|
|
|
const LLT s1 = LLT::scalar(1);
|
|
const LLT s8 = LLT::scalar(8);
|
|
const LLT s16 = LLT::scalar(16);
|
|
const LLT s32 = LLT::scalar(32);
|
|
const LLT s64 = LLT::scalar(64);
|
|
|
|
if (ST.isThumb1Only()) {
|
|
// Thumb1 is not supported yet.
|
|
computeTables();
|
|
verify(*ST.getInstrInfo());
|
|
return;
|
|
}
|
|
|
|
getActionDefinitionsBuilder({G_SEXT, G_ZEXT, G_ANYEXT})
|
|
.legalForCartesianProduct({s8, s16, s32}, {s1, s8, s16});
|
|
|
|
getActionDefinitionsBuilder(G_SEXT_INREG).lower();
|
|
|
|
getActionDefinitionsBuilder({G_MUL, G_AND, G_OR, G_XOR})
|
|
.legalFor({s32})
|
|
.minScalar(0, s32);
|
|
|
|
if (ST.hasNEON())
|
|
getActionDefinitionsBuilder({G_ADD, G_SUB})
|
|
.legalFor({s32, s64})
|
|
.minScalar(0, s32);
|
|
else
|
|
getActionDefinitionsBuilder({G_ADD, G_SUB})
|
|
.legalFor({s32})
|
|
.minScalar(0, s32);
|
|
|
|
getActionDefinitionsBuilder({G_ASHR, G_LSHR, G_SHL})
|
|
.legalFor({{s32, s32}})
|
|
.minScalar(0, s32)
|
|
.clampScalar(1, s32, s32);
|
|
|
|
bool HasHWDivide = (!ST.isThumb() && ST.hasDivideInARMMode()) ||
|
|
(ST.isThumb() && ST.hasDivideInThumbMode());
|
|
if (HasHWDivide)
|
|
getActionDefinitionsBuilder({G_SDIV, G_UDIV})
|
|
.legalFor({s32})
|
|
.clampScalar(0, s32, s32);
|
|
else
|
|
getActionDefinitionsBuilder({G_SDIV, G_UDIV})
|
|
.libcallFor({s32})
|
|
.clampScalar(0, s32, s32);
|
|
|
|
for (unsigned Op : {G_SREM, G_UREM}) {
|
|
setLegalizeScalarToDifferentSizeStrategy(Op, 0, widen_8_16);
|
|
if (HasHWDivide)
|
|
setAction({Op, s32}, Lower);
|
|
else if (AEABI(ST))
|
|
setAction({Op, s32}, Custom);
|
|
else
|
|
setAction({Op, s32}, Libcall);
|
|
}
|
|
|
|
getActionDefinitionsBuilder(G_INTTOPTR)
|
|
.legalFor({{p0, s32}})
|
|
.minScalar(1, s32);
|
|
getActionDefinitionsBuilder(G_PTRTOINT)
|
|
.legalFor({{s32, p0}})
|
|
.minScalar(0, s32);
|
|
|
|
getActionDefinitionsBuilder(G_CONSTANT)
|
|
.legalFor({s32, p0})
|
|
.clampScalar(0, s32, s32);
|
|
|
|
getActionDefinitionsBuilder(G_ICMP)
|
|
.legalForCartesianProduct({s1}, {s32, p0})
|
|
.minScalar(1, s32);
|
|
|
|
getActionDefinitionsBuilder(G_SELECT)
|
|
.legalForCartesianProduct({s32, p0}, {s1})
|
|
.minScalar(0, s32);
|
|
|
|
// We're keeping these builders around because we'll want to add support for
|
|
// floating point to them.
|
|
auto &LoadStoreBuilder = getActionDefinitionsBuilder({G_LOAD, G_STORE})
|
|
.legalForTypesWithMemDesc({{s1, p0, 8, 8},
|
|
{s8, p0, 8, 8},
|
|
{s16, p0, 16, 8},
|
|
{s32, p0, 32, 8},
|
|
{p0, p0, 32, 8}})
|
|
.unsupportedIfMemSizeNotPow2();
|
|
|
|
getActionDefinitionsBuilder(G_FRAME_INDEX).legalFor({p0});
|
|
getActionDefinitionsBuilder(G_GLOBAL_VALUE).legalFor({p0});
|
|
|
|
auto &PhiBuilder =
|
|
getActionDefinitionsBuilder(G_PHI)
|
|
.legalFor({s32, p0})
|
|
.minScalar(0, s32);
|
|
|
|
getActionDefinitionsBuilder(G_GEP)
|
|
.legalFor({{p0, s32}})
|
|
.minScalar(1, s32);
|
|
|
|
getActionDefinitionsBuilder(G_BRCOND).legalFor({s1});
|
|
|
|
if (!ST.useSoftFloat() && ST.hasVFP2Base()) {
|
|
getActionDefinitionsBuilder(
|
|
{G_FADD, G_FSUB, G_FMUL, G_FDIV, G_FCONSTANT, G_FNEG})
|
|
.legalFor({s32, s64});
|
|
|
|
LoadStoreBuilder
|
|
.legalForTypesWithMemDesc({{s64, p0, 64, 32}})
|
|
.maxScalar(0, s32);
|
|
PhiBuilder.legalFor({s64});
|
|
|
|
getActionDefinitionsBuilder(G_FCMP).legalForCartesianProduct({s1},
|
|
{s32, s64});
|
|
|
|
getActionDefinitionsBuilder(G_MERGE_VALUES).legalFor({{s64, s32}});
|
|
getActionDefinitionsBuilder(G_UNMERGE_VALUES).legalFor({{s32, s64}});
|
|
|
|
getActionDefinitionsBuilder(G_FPEXT).legalFor({{s64, s32}});
|
|
getActionDefinitionsBuilder(G_FPTRUNC).legalFor({{s32, s64}});
|
|
|
|
getActionDefinitionsBuilder({G_FPTOSI, G_FPTOUI})
|
|
.legalForCartesianProduct({s32}, {s32, s64});
|
|
getActionDefinitionsBuilder({G_SITOFP, G_UITOFP})
|
|
.legalForCartesianProduct({s32, s64}, {s32});
|
|
} else {
|
|
getActionDefinitionsBuilder({G_FADD, G_FSUB, G_FMUL, G_FDIV})
|
|
.libcallFor({s32, s64});
|
|
|
|
LoadStoreBuilder.maxScalar(0, s32);
|
|
|
|
for (auto Ty : {s32, s64})
|
|
setAction({G_FNEG, Ty}, Lower);
|
|
|
|
getActionDefinitionsBuilder(G_FCONSTANT).customFor({s32, s64});
|
|
|
|
getActionDefinitionsBuilder(G_FCMP).customForCartesianProduct({s1},
|
|
{s32, s64});
|
|
|
|
if (AEABI(ST))
|
|
setFCmpLibcallsAEABI();
|
|
else
|
|
setFCmpLibcallsGNU();
|
|
|
|
getActionDefinitionsBuilder(G_FPEXT).libcallFor({{s64, s32}});
|
|
getActionDefinitionsBuilder(G_FPTRUNC).libcallFor({{s32, s64}});
|
|
|
|
getActionDefinitionsBuilder({G_FPTOSI, G_FPTOUI})
|
|
.libcallForCartesianProduct({s32}, {s32, s64});
|
|
getActionDefinitionsBuilder({G_SITOFP, G_UITOFP})
|
|
.libcallForCartesianProduct({s32, s64}, {s32});
|
|
}
|
|
|
|
if (!ST.useSoftFloat() && ST.hasVFP4Base())
|
|
getActionDefinitionsBuilder(G_FMA).legalFor({s32, s64});
|
|
else
|
|
getActionDefinitionsBuilder(G_FMA).libcallFor({s32, s64});
|
|
|
|
getActionDefinitionsBuilder({G_FREM, G_FPOW}).libcallFor({s32, s64});
|
|
|
|
if (ST.hasV5TOps()) {
|
|
getActionDefinitionsBuilder(G_CTLZ)
|
|
.legalFor({s32, s32})
|
|
.clampScalar(1, s32, s32)
|
|
.clampScalar(0, s32, s32);
|
|
getActionDefinitionsBuilder(G_CTLZ_ZERO_UNDEF)
|
|
.lowerFor({s32, s32})
|
|
.clampScalar(1, s32, s32)
|
|
.clampScalar(0, s32, s32);
|
|
} else {
|
|
getActionDefinitionsBuilder(G_CTLZ_ZERO_UNDEF)
|
|
.libcallFor({s32, s32})
|
|
.clampScalar(1, s32, s32)
|
|
.clampScalar(0, s32, s32);
|
|
getActionDefinitionsBuilder(G_CTLZ)
|
|
.lowerFor({s32, s32})
|
|
.clampScalar(1, s32, s32)
|
|
.clampScalar(0, s32, s32);
|
|
}
|
|
|
|
computeTables();
|
|
verify(*ST.getInstrInfo());
|
|
}
|
|
|
|
void ARMLegalizerInfo::setFCmpLibcallsAEABI() {
|
|
// FCMP_TRUE and FCMP_FALSE don't need libcalls, they should be
|
|
// default-initialized.
|
|
FCmp32Libcalls.resize(CmpInst::LAST_FCMP_PREDICATE + 1);
|
|
FCmp32Libcalls[CmpInst::FCMP_OEQ] = {
|
|
{RTLIB::OEQ_F32, CmpInst::BAD_ICMP_PREDICATE}};
|
|
FCmp32Libcalls[CmpInst::FCMP_OGE] = {
|
|
{RTLIB::OGE_F32, CmpInst::BAD_ICMP_PREDICATE}};
|
|
FCmp32Libcalls[CmpInst::FCMP_OGT] = {
|
|
{RTLIB::OGT_F32, CmpInst::BAD_ICMP_PREDICATE}};
|
|
FCmp32Libcalls[CmpInst::FCMP_OLE] = {
|
|
{RTLIB::OLE_F32, CmpInst::BAD_ICMP_PREDICATE}};
|
|
FCmp32Libcalls[CmpInst::FCMP_OLT] = {
|
|
{RTLIB::OLT_F32, CmpInst::BAD_ICMP_PREDICATE}};
|
|
FCmp32Libcalls[CmpInst::FCMP_ORD] = {{RTLIB::O_F32, CmpInst::ICMP_EQ}};
|
|
FCmp32Libcalls[CmpInst::FCMP_UGE] = {{RTLIB::OLT_F32, CmpInst::ICMP_EQ}};
|
|
FCmp32Libcalls[CmpInst::FCMP_UGT] = {{RTLIB::OLE_F32, CmpInst::ICMP_EQ}};
|
|
FCmp32Libcalls[CmpInst::FCMP_ULE] = {{RTLIB::OGT_F32, CmpInst::ICMP_EQ}};
|
|
FCmp32Libcalls[CmpInst::FCMP_ULT] = {{RTLIB::OGE_F32, CmpInst::ICMP_EQ}};
|
|
FCmp32Libcalls[CmpInst::FCMP_UNE] = {{RTLIB::UNE_F32, CmpInst::ICMP_EQ}};
|
|
FCmp32Libcalls[CmpInst::FCMP_UNO] = {
|
|
{RTLIB::UO_F32, CmpInst::BAD_ICMP_PREDICATE}};
|
|
FCmp32Libcalls[CmpInst::FCMP_ONE] = {
|
|
{RTLIB::OGT_F32, CmpInst::BAD_ICMP_PREDICATE},
|
|
{RTLIB::OLT_F32, CmpInst::BAD_ICMP_PREDICATE}};
|
|
FCmp32Libcalls[CmpInst::FCMP_UEQ] = {
|
|
{RTLIB::OEQ_F32, CmpInst::BAD_ICMP_PREDICATE},
|
|
{RTLIB::UO_F32, CmpInst::BAD_ICMP_PREDICATE}};
|
|
|
|
FCmp64Libcalls.resize(CmpInst::LAST_FCMP_PREDICATE + 1);
|
|
FCmp64Libcalls[CmpInst::FCMP_OEQ] = {
|
|
{RTLIB::OEQ_F64, CmpInst::BAD_ICMP_PREDICATE}};
|
|
FCmp64Libcalls[CmpInst::FCMP_OGE] = {
|
|
{RTLIB::OGE_F64, CmpInst::BAD_ICMP_PREDICATE}};
|
|
FCmp64Libcalls[CmpInst::FCMP_OGT] = {
|
|
{RTLIB::OGT_F64, CmpInst::BAD_ICMP_PREDICATE}};
|
|
FCmp64Libcalls[CmpInst::FCMP_OLE] = {
|
|
{RTLIB::OLE_F64, CmpInst::BAD_ICMP_PREDICATE}};
|
|
FCmp64Libcalls[CmpInst::FCMP_OLT] = {
|
|
{RTLIB::OLT_F64, CmpInst::BAD_ICMP_PREDICATE}};
|
|
FCmp64Libcalls[CmpInst::FCMP_ORD] = {{RTLIB::O_F64, CmpInst::ICMP_EQ}};
|
|
FCmp64Libcalls[CmpInst::FCMP_UGE] = {{RTLIB::OLT_F64, CmpInst::ICMP_EQ}};
|
|
FCmp64Libcalls[CmpInst::FCMP_UGT] = {{RTLIB::OLE_F64, CmpInst::ICMP_EQ}};
|
|
FCmp64Libcalls[CmpInst::FCMP_ULE] = {{RTLIB::OGT_F64, CmpInst::ICMP_EQ}};
|
|
FCmp64Libcalls[CmpInst::FCMP_ULT] = {{RTLIB::OGE_F64, CmpInst::ICMP_EQ}};
|
|
FCmp64Libcalls[CmpInst::FCMP_UNE] = {{RTLIB::UNE_F64, CmpInst::ICMP_EQ}};
|
|
FCmp64Libcalls[CmpInst::FCMP_UNO] = {
|
|
{RTLIB::UO_F64, CmpInst::BAD_ICMP_PREDICATE}};
|
|
FCmp64Libcalls[CmpInst::FCMP_ONE] = {
|
|
{RTLIB::OGT_F64, CmpInst::BAD_ICMP_PREDICATE},
|
|
{RTLIB::OLT_F64, CmpInst::BAD_ICMP_PREDICATE}};
|
|
FCmp64Libcalls[CmpInst::FCMP_UEQ] = {
|
|
{RTLIB::OEQ_F64, CmpInst::BAD_ICMP_PREDICATE},
|
|
{RTLIB::UO_F64, CmpInst::BAD_ICMP_PREDICATE}};
|
|
}
|
|
|
|
void ARMLegalizerInfo::setFCmpLibcallsGNU() {
|
|
// FCMP_TRUE and FCMP_FALSE don't need libcalls, they should be
|
|
// default-initialized.
|
|
FCmp32Libcalls.resize(CmpInst::LAST_FCMP_PREDICATE + 1);
|
|
FCmp32Libcalls[CmpInst::FCMP_OEQ] = {{RTLIB::OEQ_F32, CmpInst::ICMP_EQ}};
|
|
FCmp32Libcalls[CmpInst::FCMP_OGE] = {{RTLIB::OGE_F32, CmpInst::ICMP_SGE}};
|
|
FCmp32Libcalls[CmpInst::FCMP_OGT] = {{RTLIB::OGT_F32, CmpInst::ICMP_SGT}};
|
|
FCmp32Libcalls[CmpInst::FCMP_OLE] = {{RTLIB::OLE_F32, CmpInst::ICMP_SLE}};
|
|
FCmp32Libcalls[CmpInst::FCMP_OLT] = {{RTLIB::OLT_F32, CmpInst::ICMP_SLT}};
|
|
FCmp32Libcalls[CmpInst::FCMP_ORD] = {{RTLIB::O_F32, CmpInst::ICMP_EQ}};
|
|
FCmp32Libcalls[CmpInst::FCMP_UGE] = {{RTLIB::OLT_F32, CmpInst::ICMP_SGE}};
|
|
FCmp32Libcalls[CmpInst::FCMP_UGT] = {{RTLIB::OLE_F32, CmpInst::ICMP_SGT}};
|
|
FCmp32Libcalls[CmpInst::FCMP_ULE] = {{RTLIB::OGT_F32, CmpInst::ICMP_SLE}};
|
|
FCmp32Libcalls[CmpInst::FCMP_ULT] = {{RTLIB::OGE_F32, CmpInst::ICMP_SLT}};
|
|
FCmp32Libcalls[CmpInst::FCMP_UNE] = {{RTLIB::UNE_F32, CmpInst::ICMP_NE}};
|
|
FCmp32Libcalls[CmpInst::FCMP_UNO] = {{RTLIB::UO_F32, CmpInst::ICMP_NE}};
|
|
FCmp32Libcalls[CmpInst::FCMP_ONE] = {{RTLIB::OGT_F32, CmpInst::ICMP_SGT},
|
|
{RTLIB::OLT_F32, CmpInst::ICMP_SLT}};
|
|
FCmp32Libcalls[CmpInst::FCMP_UEQ] = {{RTLIB::OEQ_F32, CmpInst::ICMP_EQ},
|
|
{RTLIB::UO_F32, CmpInst::ICMP_NE}};
|
|
|
|
FCmp64Libcalls.resize(CmpInst::LAST_FCMP_PREDICATE + 1);
|
|
FCmp64Libcalls[CmpInst::FCMP_OEQ] = {{RTLIB::OEQ_F64, CmpInst::ICMP_EQ}};
|
|
FCmp64Libcalls[CmpInst::FCMP_OGE] = {{RTLIB::OGE_F64, CmpInst::ICMP_SGE}};
|
|
FCmp64Libcalls[CmpInst::FCMP_OGT] = {{RTLIB::OGT_F64, CmpInst::ICMP_SGT}};
|
|
FCmp64Libcalls[CmpInst::FCMP_OLE] = {{RTLIB::OLE_F64, CmpInst::ICMP_SLE}};
|
|
FCmp64Libcalls[CmpInst::FCMP_OLT] = {{RTLIB::OLT_F64, CmpInst::ICMP_SLT}};
|
|
FCmp64Libcalls[CmpInst::FCMP_ORD] = {{RTLIB::O_F64, CmpInst::ICMP_EQ}};
|
|
FCmp64Libcalls[CmpInst::FCMP_UGE] = {{RTLIB::OLT_F64, CmpInst::ICMP_SGE}};
|
|
FCmp64Libcalls[CmpInst::FCMP_UGT] = {{RTLIB::OLE_F64, CmpInst::ICMP_SGT}};
|
|
FCmp64Libcalls[CmpInst::FCMP_ULE] = {{RTLIB::OGT_F64, CmpInst::ICMP_SLE}};
|
|
FCmp64Libcalls[CmpInst::FCMP_ULT] = {{RTLIB::OGE_F64, CmpInst::ICMP_SLT}};
|
|
FCmp64Libcalls[CmpInst::FCMP_UNE] = {{RTLIB::UNE_F64, CmpInst::ICMP_NE}};
|
|
FCmp64Libcalls[CmpInst::FCMP_UNO] = {{RTLIB::UO_F64, CmpInst::ICMP_NE}};
|
|
FCmp64Libcalls[CmpInst::FCMP_ONE] = {{RTLIB::OGT_F64, CmpInst::ICMP_SGT},
|
|
{RTLIB::OLT_F64, CmpInst::ICMP_SLT}};
|
|
FCmp64Libcalls[CmpInst::FCMP_UEQ] = {{RTLIB::OEQ_F64, CmpInst::ICMP_EQ},
|
|
{RTLIB::UO_F64, CmpInst::ICMP_NE}};
|
|
}
|
|
|
|
ARMLegalizerInfo::FCmpLibcallsList
|
|
ARMLegalizerInfo::getFCmpLibcalls(CmpInst::Predicate Predicate,
|
|
unsigned Size) const {
|
|
assert(CmpInst::isFPPredicate(Predicate) && "Unsupported FCmp predicate");
|
|
if (Size == 32)
|
|
return FCmp32Libcalls[Predicate];
|
|
if (Size == 64)
|
|
return FCmp64Libcalls[Predicate];
|
|
llvm_unreachable("Unsupported size for FCmp predicate");
|
|
}
|
|
|
|
bool ARMLegalizerInfo::legalizeCustom(MachineInstr &MI,
|
|
MachineRegisterInfo &MRI,
|
|
MachineIRBuilder &MIRBuilder,
|
|
GISelChangeObserver &Observer) const {
|
|
using namespace TargetOpcode;
|
|
|
|
MIRBuilder.setInstr(MI);
|
|
LLVMContext &Ctx = MIRBuilder.getMF().getFunction().getContext();
|
|
|
|
switch (MI.getOpcode()) {
|
|
default:
|
|
return false;
|
|
case G_SREM:
|
|
case G_UREM: {
|
|
Register OriginalResult = MI.getOperand(0).getReg();
|
|
auto Size = MRI.getType(OriginalResult).getSizeInBits();
|
|
if (Size != 32)
|
|
return false;
|
|
|
|
auto Libcall =
|
|
MI.getOpcode() == G_SREM ? RTLIB::SDIVREM_I32 : RTLIB::UDIVREM_I32;
|
|
|
|
// Our divmod libcalls return a struct containing the quotient and the
|
|
// remainder. Create a new, unused register for the quotient and use the
|
|
// destination of the original instruction for the remainder.
|
|
Type *ArgTy = Type::getInt32Ty(Ctx);
|
|
StructType *RetTy = StructType::get(Ctx, {ArgTy, ArgTy}, /* Packed */ true);
|
|
Register RetRegs[] = {MRI.createGenericVirtualRegister(LLT::scalar(32)),
|
|
OriginalResult};
|
|
auto Status = createLibcall(MIRBuilder, Libcall, {RetRegs, RetTy},
|
|
{{MI.getOperand(1).getReg(), ArgTy},
|
|
{MI.getOperand(2).getReg(), ArgTy}});
|
|
if (Status != LegalizerHelper::Legalized)
|
|
return false;
|
|
break;
|
|
}
|
|
case G_FCMP: {
|
|
assert(MRI.getType(MI.getOperand(2).getReg()) ==
|
|
MRI.getType(MI.getOperand(3).getReg()) &&
|
|
"Mismatched operands for G_FCMP");
|
|
auto OpSize = MRI.getType(MI.getOperand(2).getReg()).getSizeInBits();
|
|
|
|
auto OriginalResult = MI.getOperand(0).getReg();
|
|
auto Predicate =
|
|
static_cast<CmpInst::Predicate>(MI.getOperand(1).getPredicate());
|
|
auto Libcalls = getFCmpLibcalls(Predicate, OpSize);
|
|
|
|
if (Libcalls.empty()) {
|
|
assert((Predicate == CmpInst::FCMP_TRUE ||
|
|
Predicate == CmpInst::FCMP_FALSE) &&
|
|
"Predicate needs libcalls, but none specified");
|
|
MIRBuilder.buildConstant(OriginalResult,
|
|
Predicate == CmpInst::FCMP_TRUE ? 1 : 0);
|
|
MI.eraseFromParent();
|
|
return true;
|
|
}
|
|
|
|
assert((OpSize == 32 || OpSize == 64) && "Unsupported operand size");
|
|
auto *ArgTy = OpSize == 32 ? Type::getFloatTy(Ctx) : Type::getDoubleTy(Ctx);
|
|
auto *RetTy = Type::getInt32Ty(Ctx);
|
|
|
|
SmallVector<Register, 2> Results;
|
|
for (auto Libcall : Libcalls) {
|
|
auto LibcallResult = MRI.createGenericVirtualRegister(LLT::scalar(32));
|
|
auto Status =
|
|
createLibcall(MIRBuilder, Libcall.LibcallID, {LibcallResult, RetTy},
|
|
{{MI.getOperand(2).getReg(), ArgTy},
|
|
{MI.getOperand(3).getReg(), ArgTy}});
|
|
|
|
if (Status != LegalizerHelper::Legalized)
|
|
return false;
|
|
|
|
auto ProcessedResult =
|
|
Libcalls.size() == 1
|
|
? OriginalResult
|
|
: MRI.createGenericVirtualRegister(MRI.getType(OriginalResult));
|
|
|
|
// We have a result, but we need to transform it into a proper 1-bit 0 or
|
|
// 1, taking into account the different peculiarities of the values
|
|
// returned by the comparison functions.
|
|
CmpInst::Predicate ResultPred = Libcall.Predicate;
|
|
if (ResultPred == CmpInst::BAD_ICMP_PREDICATE) {
|
|
// We have a nice 0 or 1, and we just need to truncate it back to 1 bit
|
|
// to keep the types consistent.
|
|
MIRBuilder.buildTrunc(ProcessedResult, LibcallResult);
|
|
} else {
|
|
// We need to compare against 0.
|
|
assert(CmpInst::isIntPredicate(ResultPred) && "Unsupported predicate");
|
|
auto Zero = MRI.createGenericVirtualRegister(LLT::scalar(32));
|
|
MIRBuilder.buildConstant(Zero, 0);
|
|
MIRBuilder.buildICmp(ResultPred, ProcessedResult, LibcallResult, Zero);
|
|
}
|
|
Results.push_back(ProcessedResult);
|
|
}
|
|
|
|
if (Results.size() != 1) {
|
|
assert(Results.size() == 2 && "Unexpected number of results");
|
|
MIRBuilder.buildOr(OriginalResult, Results[0], Results[1]);
|
|
}
|
|
break;
|
|
}
|
|
case G_FCONSTANT: {
|
|
// Convert to integer constants, while preserving the binary representation.
|
|
auto AsInteger =
|
|
MI.getOperand(1).getFPImm()->getValueAPF().bitcastToAPInt();
|
|
MIRBuilder.buildConstant(MI.getOperand(0).getReg(),
|
|
*ConstantInt::get(Ctx, AsInteger));
|
|
break;
|
|
}
|
|
}
|
|
|
|
MI.eraseFromParent();
|
|
return true;
|
|
}
|