1
0
mirror of https://github.com/RPCS3/llvm-mirror.git synced 2024-11-23 11:13:28 +01:00
llvm-mirror/utils/TableGen/CodeEmitterGen.cpp

397 lines
13 KiB
C++

//===- CodeEmitterGen.cpp - Code Emitter Generator ------------------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// CodeEmitterGen uses the descriptions of instructions and their fields to
// construct an automated code emitter: a function that, given a MachineInstr,
// returns the (currently, 32-bit unsigned) value of the instruction.
//
//===----------------------------------------------------------------------===//
#include "CodeGenInstruction.h"
#include "CodeGenTarget.h"
#include "SubtargetFeatureInfo.h"
#include "llvm/ADT/ArrayRef.h"
#include "llvm/ADT/StringExtras.h"
#include "llvm/Support/Casting.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/TableGen/Record.h"
#include "llvm/TableGen/TableGenBackend.h"
#include <cassert>
#include <cstdint>
#include <map>
#include <set>
#include <string>
#include <utility>
#include <vector>
using namespace llvm;
namespace {
class CodeEmitterGen {
RecordKeeper &Records;
public:
CodeEmitterGen(RecordKeeper &R) : Records(R) {}
void run(raw_ostream &o);
private:
int getVariableBit(const std::string &VarName, BitsInit *BI, int bit);
std::string getInstructionCase(Record *R, CodeGenTarget &Target);
void AddCodeToMergeInOperand(Record *R, BitsInit *BI,
const std::string &VarName,
unsigned &NumberedOp,
std::set<unsigned> &NamedOpIndices,
std::string &Case, CodeGenTarget &Target);
};
// If the VarBitInit at position 'bit' matches the specified variable then
// return the variable bit position. Otherwise return -1.
int CodeEmitterGen::getVariableBit(const std::string &VarName,
BitsInit *BI, int bit) {
if (VarBitInit *VBI = dyn_cast<VarBitInit>(BI->getBit(bit))) {
if (VarInit *VI = dyn_cast<VarInit>(VBI->getBitVar()))
if (VI->getName() == VarName)
return VBI->getBitNum();
} else if (VarInit *VI = dyn_cast<VarInit>(BI->getBit(bit))) {
if (VI->getName() == VarName)
return 0;
}
return -1;
}
void CodeEmitterGen::
AddCodeToMergeInOperand(Record *R, BitsInit *BI, const std::string &VarName,
unsigned &NumberedOp,
std::set<unsigned> &NamedOpIndices,
std::string &Case, CodeGenTarget &Target) {
CodeGenInstruction &CGI = Target.getInstruction(R);
// Determine if VarName actually contributes to the Inst encoding.
int bit = BI->getNumBits()-1;
// Scan for a bit that this contributed to.
for (; bit >= 0; ) {
if (getVariableBit(VarName, BI, bit) != -1)
break;
--bit;
}
// If we found no bits, ignore this value, otherwise emit the call to get the
// operand encoding.
if (bit < 0) return;
// If the operand matches by name, reference according to that
// operand number. Non-matching operands are assumed to be in
// order.
unsigned OpIdx;
if (CGI.Operands.hasOperandNamed(VarName, OpIdx)) {
// Get the machine operand number for the indicated operand.
OpIdx = CGI.Operands[OpIdx].MIOperandNo;
assert(!CGI.Operands.isFlatOperandNotEmitted(OpIdx) &&
"Explicitly used operand also marked as not emitted!");
} else {
unsigned NumberOps = CGI.Operands.size();
/// If this operand is not supposed to be emitted by the
/// generated emitter, skip it.
while (NumberedOp < NumberOps &&
(CGI.Operands.isFlatOperandNotEmitted(NumberedOp) ||
(!NamedOpIndices.empty() && NamedOpIndices.count(
CGI.Operands.getSubOperandNumber(NumberedOp).first)))) {
++NumberedOp;
if (NumberedOp >= CGI.Operands.back().MIOperandNo +
CGI.Operands.back().MINumOperands) {
errs() << "Too few operands in record " << R->getName() <<
" (no match for variable " << VarName << "):\n";
errs() << *R;
errs() << '\n';
return;
}
}
OpIdx = NumberedOp++;
}
std::pair<unsigned, unsigned> SO = CGI.Operands.getSubOperandNumber(OpIdx);
std::string &EncoderMethodName = CGI.Operands[SO.first].EncoderMethodName;
// If the source operand has a custom encoder, use it. This will
// get the encoding for all of the suboperands.
if (!EncoderMethodName.empty()) {
// A custom encoder has all of the information for the
// sub-operands, if there are more than one, so only
// query the encoder once per source operand.
if (SO.second == 0) {
Case += " // op: " + VarName + "\n" +
" op = " + EncoderMethodName + "(MI, " + utostr(OpIdx);
Case += ", Fixups, STI";
Case += ");\n";
}
} else {
Case += " // op: " + VarName + "\n" +
" op = getMachineOpValue(MI, MI.getOperand(" + utostr(OpIdx) + ")";
Case += ", Fixups, STI";
Case += ");\n";
}
for (; bit >= 0; ) {
int varBit = getVariableBit(VarName, BI, bit);
// If this bit isn't from a variable, skip it.
if (varBit == -1) {
--bit;
continue;
}
// Figure out the consecutive range of bits covered by this operand, in
// order to generate better encoding code.
int beginInstBit = bit;
int beginVarBit = varBit;
int N = 1;
for (--bit; bit >= 0;) {
varBit = getVariableBit(VarName, BI, bit);
if (varBit == -1 || varBit != (beginVarBit - N)) break;
++N;
--bit;
}
uint64_t opMask = ~(uint64_t)0 >> (64-N);
int opShift = beginVarBit - N + 1;
opMask <<= opShift;
opShift = beginInstBit - beginVarBit;
if (opShift > 0) {
Case += " Value |= (op & UINT64_C(" + utostr(opMask) + ")) << " +
itostr(opShift) + ";\n";
} else if (opShift < 0) {
Case += " Value |= (op & UINT64_C(" + utostr(opMask) + ")) >> " +
itostr(-opShift) + ";\n";
} else {
Case += " Value |= op & UINT64_C(" + utostr(opMask) + ");\n";
}
}
}
std::string CodeEmitterGen::getInstructionCase(Record *R,
CodeGenTarget &Target) {
std::string Case;
BitsInit *BI = R->getValueAsBitsInit("Inst");
const std::vector<RecordVal> &Vals = R->getValues();
unsigned NumberedOp = 0;
std::set<unsigned> NamedOpIndices;
// Collect the set of operand indices that might correspond to named
// operand, and skip these when assigning operands based on position.
if (Target.getInstructionSet()->
getValueAsBit("noNamedPositionallyEncodedOperands")) {
CodeGenInstruction &CGI = Target.getInstruction(R);
for (unsigned i = 0, e = Vals.size(); i != e; ++i) {
unsigned OpIdx;
if (!CGI.Operands.hasOperandNamed(Vals[i].getName(), OpIdx))
continue;
NamedOpIndices.insert(OpIdx);
}
}
// Loop over all of the fields in the instruction, determining which are the
// operands to the instruction.
for (unsigned i = 0, e = Vals.size(); i != e; ++i) {
// Ignore fixed fields in the record, we're looking for values like:
// bits<5> RST = { ?, ?, ?, ?, ? };
if (Vals[i].getPrefix() || Vals[i].getValue()->isComplete())
continue;
AddCodeToMergeInOperand(R, BI, Vals[i].getName(), NumberedOp,
NamedOpIndices, Case, Target);
}
StringRef PostEmitter = R->getValueAsString("PostEncoderMethod");
if (!PostEmitter.empty()) {
Case += " Value = ";
Case += PostEmitter;
Case += "(MI, Value";
Case += ", STI";
Case += ");\n";
}
return Case;
}
void CodeEmitterGen::run(raw_ostream &o) {
CodeGenTarget Target(Records);
std::vector<Record*> Insts = Records.getAllDerivedDefinitions("Instruction");
// For little-endian instruction bit encodings, reverse the bit order
Target.reverseBitsForLittleEndianEncoding();
ArrayRef<const CodeGenInstruction*> NumberedInstructions =
Target.getInstructionsByEnumValue();
// Emit function declaration
o << "uint64_t " << Target.getName();
o << "MCCodeEmitter::getBinaryCodeForInstr(const MCInst &MI,\n"
<< " SmallVectorImpl<MCFixup> &Fixups,\n"
<< " const MCSubtargetInfo &STI) const {\n";
// Emit instruction base values
o << " static const uint64_t InstBits[] = {\n";
for (const CodeGenInstruction *CGI : NumberedInstructions) {
Record *R = CGI->TheDef;
if (R->getValueAsString("Namespace") == "TargetOpcode" ||
R->getValueAsBit("isPseudo")) {
o << " UINT64_C(0),\n";
continue;
}
BitsInit *BI = R->getValueAsBitsInit("Inst");
// Start by filling in fixed values.
uint64_t Value = 0;
for (unsigned i = 0, e = BI->getNumBits(); i != e; ++i) {
if (BitInit *B = dyn_cast<BitInit>(BI->getBit(e-i-1)))
Value |= (uint64_t)B->getValue() << (e-i-1);
}
o << " UINT64_C(" << Value << ")," << '\t' << "// " << R->getName() << "\n";
}
o << " UINT64_C(0)\n };\n";
// Map to accumulate all the cases.
std::map<std::string, std::vector<std::string>> CaseMap;
// Construct all cases statement for each opcode
for (std::vector<Record*>::iterator IC = Insts.begin(), EC = Insts.end();
IC != EC; ++IC) {
Record *R = *IC;
if (R->getValueAsString("Namespace") == "TargetOpcode" ||
R->getValueAsBit("isPseudo"))
continue;
std::string InstName =
(R->getValueAsString("Namespace") + "::" + R->getName()).str();
std::string Case = getInstructionCase(R, Target);
CaseMap[Case].push_back(std::move(InstName));
}
// Emit initial function code
o << " const unsigned opcode = MI.getOpcode();\n"
<< " uint64_t Value = InstBits[opcode];\n"
<< " uint64_t op = 0;\n"
<< " (void)op; // suppress warning\n"
<< " switch (opcode) {\n";
// Emit each case statement
std::map<std::string, std::vector<std::string>>::iterator IE, EE;
for (IE = CaseMap.begin(), EE = CaseMap.end(); IE != EE; ++IE) {
const std::string &Case = IE->first;
std::vector<std::string> &InstList = IE->second;
for (int i = 0, N = InstList.size(); i < N; i++) {
if (i) o << "\n";
o << " case " << InstList[i] << ":";
}
o << " {\n";
o << Case;
o << " break;\n"
<< " }\n";
}
// Default case: unhandled opcode
o << " default:\n"
<< " std::string msg;\n"
<< " raw_string_ostream Msg(msg);\n"
<< " Msg << \"Not supported instr: \" << MI;\n"
<< " report_fatal_error(Msg.str());\n"
<< " }\n"
<< " return Value;\n"
<< "}\n\n";
const auto &All = SubtargetFeatureInfo::getAll(Records);
std::map<Record *, SubtargetFeatureInfo, LessRecordByID> SubtargetFeatures;
SubtargetFeatures.insert(All.begin(), All.end());
o << "#ifdef ENABLE_INSTR_PREDICATE_VERIFIER\n"
<< "#undef ENABLE_INSTR_PREDICATE_VERIFIER\n"
<< "#include <sstream>\n\n";
// Emit the subtarget feature enumeration.
SubtargetFeatureInfo::emitSubtargetFeatureFlagEnumeration(SubtargetFeatures,
o);
// Emit the name table for error messages.
o << "#ifndef NDEBUG\n";
SubtargetFeatureInfo::emitNameTable(SubtargetFeatures, o);
o << "#endif // NDEBUG\n";
// Emit the available features compute function.
SubtargetFeatureInfo::emitComputeAssemblerAvailableFeatures(
Target.getName(), "MCCodeEmitter", "computeAvailableFeatures",
SubtargetFeatures, o);
// Emit the predicate verifier.
o << "void " << Target.getName()
<< "MCCodeEmitter::verifyInstructionPredicates(\n"
<< " const MCInst &Inst, uint64_t AvailableFeatures) const {\n"
<< "#ifndef NDEBUG\n"
<< " static uint64_t RequiredFeatures[] = {\n";
unsigned InstIdx = 0;
for (const CodeGenInstruction *Inst : Target.getInstructionsByEnumValue()) {
o << " ";
for (Record *Predicate : Inst->TheDef->getValueAsListOfDefs("Predicates")) {
const auto &I = SubtargetFeatures.find(Predicate);
if (I != SubtargetFeatures.end())
o << I->second.getEnumName() << " | ";
}
o << "0, // " << Inst->TheDef->getName() << " = " << InstIdx << "\n";
InstIdx++;
}
o << " };\n\n";
o << " assert(Inst.getOpcode() < " << InstIdx << ");\n";
o << " uint64_t MissingFeatures =\n"
<< " (AvailableFeatures & RequiredFeatures[Inst.getOpcode()]) ^\n"
<< " RequiredFeatures[Inst.getOpcode()];\n"
<< " if (MissingFeatures) {\n"
<< " std::ostringstream Msg;\n"
<< " Msg << \"Attempting to emit \" << "
"MCII.getName(Inst.getOpcode()).str()\n"
<< " << \" instruction but the \";\n"
<< " for (unsigned i = 0; i < 8 * sizeof(MissingFeatures); ++i)\n"
<< " if (MissingFeatures & (1ULL << i))\n"
<< " Msg << SubtargetFeatureNames[i] << \" \";\n"
<< " Msg << \"predicate(s) are not met\";\n"
<< " report_fatal_error(Msg.str());\n"
<< " }\n"
<< "#else\n"
<< "// Silence unused variable warning on targets that don't use MCII for "
"other purposes (e.g. BPF).\n"
<< "(void)MCII;\n"
<< "#endif // NDEBUG\n";
o << "}\n";
o << "#endif\n";
}
} // end anonymous namespace
namespace llvm {
void EmitCodeEmitter(RecordKeeper &RK, raw_ostream &OS) {
emitSourceFileHeader("Machine Code Emitter", OS);
CodeEmitterGen(RK).run(OS);
}
} // end namespace llvm