mirror of
https://github.com/RPCS3/llvm-mirror.git
synced 2024-11-23 03:02:36 +01:00
3f557c49c2
This changes adds attribute field for metadata of context profile. Currently we have an inline attribute that indicates whether the leaf frame corresponding to a context profile was inlined in previous build. This will be used to help estimating inlining and be taken into account when trimming context. Changes for that in llvm-profgen will follow. It will also help tuning. Differential Revision: https://reviews.llvm.org/D98823
622 lines
22 KiB
C++
622 lines
22 KiB
C++
//===-- PerfReader.h - perfscript reader -----------------------*- C++ -*-===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#ifndef LLVM_TOOLS_LLVM_PROFGEN_PERFREADER_H
|
|
#define LLVM_TOOLS_LLVM_PROFGEN_PERFREADER_H
|
|
#include "ErrorHandling.h"
|
|
#include "ProfiledBinary.h"
|
|
#include "llvm/Support/Casting.h"
|
|
#include "llvm/Support/CommandLine.h"
|
|
#include "llvm/Support/Regex.h"
|
|
#include <fstream>
|
|
#include <list>
|
|
#include <map>
|
|
#include <vector>
|
|
|
|
using namespace llvm;
|
|
using namespace sampleprof;
|
|
|
|
namespace llvm {
|
|
namespace sampleprof {
|
|
|
|
// Stream based trace line iterator
|
|
class TraceStream {
|
|
std::string CurrentLine;
|
|
std::ifstream Fin;
|
|
bool IsAtEoF = false;
|
|
uint64_t LineNumber = 0;
|
|
|
|
public:
|
|
TraceStream(StringRef Filename) : Fin(Filename.str()) {
|
|
if (!Fin.good())
|
|
exitWithError("Error read input perf script file", Filename);
|
|
advance();
|
|
}
|
|
|
|
StringRef getCurrentLine() {
|
|
assert(!IsAtEoF && "Line iterator reaches the End-of-File!");
|
|
return CurrentLine;
|
|
}
|
|
|
|
uint64_t getLineNumber() { return LineNumber; }
|
|
|
|
bool isAtEoF() { return IsAtEoF; }
|
|
|
|
// Read the next line
|
|
void advance() {
|
|
if (!std::getline(Fin, CurrentLine)) {
|
|
IsAtEoF = true;
|
|
return;
|
|
}
|
|
LineNumber++;
|
|
}
|
|
};
|
|
|
|
// The type of perfscript
|
|
enum PerfScriptType {
|
|
PERF_UNKNOWN = 0,
|
|
PERF_INVALID = 1,
|
|
PERF_LBR = 2, // Only LBR sample
|
|
PERF_LBR_STACK = 3, // Hybrid sample including call stack and LBR stack.
|
|
};
|
|
|
|
// The parsed LBR sample entry.
|
|
struct LBREntry {
|
|
uint64_t Source = 0;
|
|
uint64_t Target = 0;
|
|
// An artificial branch stands for a series of consecutive branches starting
|
|
// from the current binary with a transition through external code and
|
|
// eventually landing back in the current binary.
|
|
bool IsArtificial = false;
|
|
LBREntry(uint64_t S, uint64_t T, bool I)
|
|
: Source(S), Target(T), IsArtificial(I) {}
|
|
};
|
|
|
|
// Hash interface for generic data of type T
|
|
// Data should implement a \fn getHashCode and a \fn isEqual
|
|
// Currently getHashCode is non-virtual to avoid the overhead of calling vtable,
|
|
// i.e we explicitly calculate hash of derived class, assign to base class's
|
|
// HashCode. This also provides the flexibility for calculating the hash code
|
|
// incrementally(like rolling hash) during frame stack unwinding since unwinding
|
|
// only changes the leaf of frame stack. \fn isEqual is a virtual function,
|
|
// which will have perf overhead. In the future, if we redesign a better hash
|
|
// function, then we can just skip this or switch to non-virtual function(like
|
|
// just ignore comparision if hash conflicts probabilities is low)
|
|
template <class T> class Hashable {
|
|
public:
|
|
std::shared_ptr<T> Data;
|
|
Hashable(const std::shared_ptr<T> &D) : Data(D) {}
|
|
|
|
// Hash code generation
|
|
struct Hash {
|
|
uint64_t operator()(const Hashable<T> &Key) const {
|
|
// Don't make it virtual for getHashCode
|
|
assert(Key.Data->getHashCode() && "Should generate HashCode for it!");
|
|
return Key.Data->getHashCode();
|
|
}
|
|
};
|
|
|
|
// Hash equal
|
|
struct Equal {
|
|
bool operator()(const Hashable<T> &LHS, const Hashable<T> &RHS) const {
|
|
// Precisely compare the data, vtable will have overhead.
|
|
return LHS.Data->isEqual(RHS.Data.get());
|
|
}
|
|
};
|
|
|
|
T *getPtr() const { return Data.get(); }
|
|
};
|
|
|
|
// Base class to extend for all types of perf sample
|
|
struct PerfSample {
|
|
uint64_t HashCode = 0;
|
|
|
|
virtual ~PerfSample() = default;
|
|
uint64_t getHashCode() const { return HashCode; }
|
|
virtual bool isEqual(const PerfSample *K) const {
|
|
return HashCode == K->HashCode;
|
|
};
|
|
|
|
// Utilities for LLVM-style RTTI
|
|
enum PerfKind { PK_HybridSample };
|
|
const PerfKind Kind;
|
|
PerfKind getKind() const { return Kind; }
|
|
PerfSample(PerfKind K) : Kind(K){};
|
|
};
|
|
|
|
// The parsed hybrid sample including call stack and LBR stack.
|
|
struct HybridSample : public PerfSample {
|
|
// Profiled binary that current frame address belongs to
|
|
ProfiledBinary *Binary;
|
|
// Call stack recorded in FILO(leaf to root) order
|
|
SmallVector<uint64_t, 16> CallStack;
|
|
// LBR stack recorded in FIFO order
|
|
SmallVector<LBREntry, 16> LBRStack;
|
|
|
|
HybridSample() : PerfSample(PK_HybridSample){};
|
|
static bool classof(const PerfSample *K) {
|
|
return K->getKind() == PK_HybridSample;
|
|
}
|
|
|
|
// Used for sample aggregation
|
|
bool isEqual(const PerfSample *K) const override {
|
|
const HybridSample *Other = dyn_cast<HybridSample>(K);
|
|
if (Other->Binary != Binary)
|
|
return false;
|
|
const SmallVector<uint64_t, 16> &OtherCallStack = Other->CallStack;
|
|
const SmallVector<LBREntry, 16> &OtherLBRStack = Other->LBRStack;
|
|
|
|
if (CallStack.size() != OtherCallStack.size() ||
|
|
LBRStack.size() != OtherLBRStack.size())
|
|
return false;
|
|
|
|
auto Iter = CallStack.begin();
|
|
for (auto Address : OtherCallStack) {
|
|
if (Address != *Iter++)
|
|
return false;
|
|
}
|
|
|
|
for (size_t I = 0; I < OtherLBRStack.size(); I++) {
|
|
if (LBRStack[I].Source != OtherLBRStack[I].Source ||
|
|
LBRStack[I].Target != OtherLBRStack[I].Target)
|
|
return false;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
void genHashCode() {
|
|
// Use simple DJB2 hash
|
|
auto HashCombine = [](uint64_t H, uint64_t V) {
|
|
return ((H << 5) + H) + V;
|
|
};
|
|
uint64_t Hash = 5381;
|
|
Hash = HashCombine(Hash, reinterpret_cast<uint64_t>(Binary));
|
|
for (const auto &Value : CallStack) {
|
|
Hash = HashCombine(Hash, Value);
|
|
}
|
|
for (const auto &Entry : LBRStack) {
|
|
Hash = HashCombine(Hash, Entry.Source);
|
|
Hash = HashCombine(Hash, Entry.Target);
|
|
}
|
|
HashCode = Hash;
|
|
}
|
|
};
|
|
|
|
// After parsing the sample, we record the samples by aggregating them
|
|
// into this counter. The key stores the sample data and the value is
|
|
// the sample repeat times.
|
|
using AggregatedCounter =
|
|
std::unordered_map<Hashable<PerfSample>, uint64_t,
|
|
Hashable<PerfSample>::Hash, Hashable<PerfSample>::Equal>;
|
|
|
|
using SampleVector = SmallVector<std::tuple<uint64_t, uint64_t, uint64_t>, 16>;
|
|
// The state for the unwinder, it doesn't hold the data but only keep the
|
|
// pointer/index of the data, While unwinding, the CallStack is changed
|
|
// dynamicially and will be recorded as the context of the sample
|
|
struct UnwindState {
|
|
// Profiled binary that current frame address belongs to
|
|
const ProfiledBinary *Binary;
|
|
// Call stack trie node
|
|
struct ProfiledFrame {
|
|
const uint64_t Address = 0;
|
|
ProfiledFrame *Parent;
|
|
SampleVector RangeSamples;
|
|
SampleVector BranchSamples;
|
|
std::unordered_map<uint64_t, std::unique_ptr<ProfiledFrame>> Children;
|
|
|
|
ProfiledFrame(uint64_t Addr = 0, ProfiledFrame *P = nullptr)
|
|
: Address(Addr), Parent(P) {}
|
|
ProfiledFrame *getOrCreateChildFrame(uint64_t Address) {
|
|
assert(Address && "Address can't be zero!");
|
|
auto Ret = Children.emplace(
|
|
Address, std::make_unique<ProfiledFrame>(Address, this));
|
|
return Ret.first->second.get();
|
|
}
|
|
void recordRangeCount(uint64_t Start, uint64_t End, uint64_t Count) {
|
|
RangeSamples.emplace_back(std::make_tuple(Start, End, Count));
|
|
}
|
|
void recordBranchCount(uint64_t Source, uint64_t Target, uint64_t Count) {
|
|
BranchSamples.emplace_back(std::make_tuple(Source, Target, Count));
|
|
}
|
|
bool isDummyRoot() { return Address == 0; }
|
|
};
|
|
|
|
ProfiledFrame DummyTrieRoot;
|
|
ProfiledFrame *CurrentLeafFrame;
|
|
// Used to fall through the LBR stack
|
|
uint32_t LBRIndex = 0;
|
|
// Reference to HybridSample.LBRStack
|
|
const SmallVector<LBREntry, 16> &LBRStack;
|
|
// Used to iterate the address range
|
|
InstructionPointer InstPtr;
|
|
UnwindState(const HybridSample *Sample)
|
|
: Binary(Sample->Binary), LBRStack(Sample->LBRStack),
|
|
InstPtr(Sample->Binary, Sample->CallStack.front()) {
|
|
initFrameTrie(Sample->CallStack);
|
|
}
|
|
|
|
bool validateInitialState() {
|
|
uint64_t LBRLeaf = LBRStack[LBRIndex].Target;
|
|
uint64_t LeafAddr = CurrentLeafFrame->Address;
|
|
// When we take a stack sample, ideally the sampling distance between the
|
|
// leaf IP of stack and the last LBR target shouldn't be very large.
|
|
// Use a heuristic size (0x100) to filter out broken records.
|
|
if (LeafAddr < LBRLeaf || LeafAddr >= LBRLeaf + 0x100) {
|
|
WithColor::warning() << "Bogus trace: stack tip = "
|
|
<< format("%#010x", LeafAddr)
|
|
<< ", LBR tip = " << format("%#010x\n", LBRLeaf);
|
|
return false;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
void checkStateConsistency() {
|
|
assert(InstPtr.Address == CurrentLeafFrame->Address &&
|
|
"IP should align with context leaf");
|
|
}
|
|
|
|
const ProfiledBinary *getBinary() const { return Binary; }
|
|
bool hasNextLBR() const { return LBRIndex < LBRStack.size(); }
|
|
uint64_t getCurrentLBRSource() const { return LBRStack[LBRIndex].Source; }
|
|
uint64_t getCurrentLBRTarget() const { return LBRStack[LBRIndex].Target; }
|
|
const LBREntry &getCurrentLBR() const { return LBRStack[LBRIndex]; }
|
|
void advanceLBR() { LBRIndex++; }
|
|
|
|
ProfiledFrame *getParentFrame() { return CurrentLeafFrame->Parent; }
|
|
|
|
void pushFrame(uint64_t Address) {
|
|
CurrentLeafFrame = CurrentLeafFrame->getOrCreateChildFrame(Address);
|
|
}
|
|
|
|
void switchToFrame(uint64_t Address) {
|
|
if (CurrentLeafFrame->Address == Address)
|
|
return;
|
|
CurrentLeafFrame = CurrentLeafFrame->Parent->getOrCreateChildFrame(Address);
|
|
}
|
|
|
|
void popFrame() { CurrentLeafFrame = CurrentLeafFrame->Parent; }
|
|
|
|
void initFrameTrie(const SmallVectorImpl<uint64_t> &CallStack) {
|
|
ProfiledFrame *Cur = &DummyTrieRoot;
|
|
for (auto Address : reverse(CallStack)) {
|
|
Cur = Cur->getOrCreateChildFrame(Address);
|
|
}
|
|
CurrentLeafFrame = Cur;
|
|
}
|
|
|
|
ProfiledFrame *getDummyRootPtr() { return &DummyTrieRoot; }
|
|
};
|
|
|
|
// Base class for sample counter key with context
|
|
struct ContextKey {
|
|
uint64_t HashCode = 0;
|
|
virtual ~ContextKey() = default;
|
|
uint64_t getHashCode() const { return HashCode; }
|
|
virtual bool isEqual(const ContextKey *K) const {
|
|
return HashCode == K->HashCode;
|
|
};
|
|
|
|
// Utilities for LLVM-style RTTI
|
|
enum ContextKind { CK_StringBased, CK_ProbeBased };
|
|
const ContextKind Kind;
|
|
ContextKind getKind() const { return Kind; }
|
|
ContextKey(ContextKind K) : Kind(K){};
|
|
};
|
|
|
|
// String based context id
|
|
struct StringBasedCtxKey : public ContextKey {
|
|
std::string Context;
|
|
bool WasLeafInlined;
|
|
StringBasedCtxKey() : ContextKey(CK_StringBased), WasLeafInlined(false){};
|
|
static bool classof(const ContextKey *K) {
|
|
return K->getKind() == CK_StringBased;
|
|
}
|
|
|
|
bool isEqual(const ContextKey *K) const override {
|
|
const StringBasedCtxKey *Other = dyn_cast<StringBasedCtxKey>(K);
|
|
return Context == Other->Context;
|
|
}
|
|
|
|
void genHashCode() { HashCode = hash_value(Context); }
|
|
};
|
|
|
|
// Probe based context key as the intermediate key of context
|
|
// String based context key will introduce redundant string handling
|
|
// since the callee context is inferred from the context string which
|
|
// need to be splitted by '@' to get the last location frame, so we
|
|
// can just use probe instead and generate the string in the end.
|
|
struct ProbeBasedCtxKey : public ContextKey {
|
|
SmallVector<const PseudoProbe *, 16> Probes;
|
|
|
|
ProbeBasedCtxKey() : ContextKey(CK_ProbeBased) {}
|
|
static bool classof(const ContextKey *K) {
|
|
return K->getKind() == CK_ProbeBased;
|
|
}
|
|
|
|
bool isEqual(const ContextKey *K) const override {
|
|
const ProbeBasedCtxKey *O = dyn_cast<ProbeBasedCtxKey>(K);
|
|
assert(O != nullptr && "Probe based key shouldn't be null in isEqual");
|
|
return std::equal(Probes.begin(), Probes.end(), O->Probes.begin(),
|
|
O->Probes.end());
|
|
}
|
|
|
|
void genHashCode() {
|
|
for (const auto *P : Probes) {
|
|
HashCode = hash_combine(HashCode, P);
|
|
}
|
|
if (HashCode == 0) {
|
|
// Avoid zero value of HashCode when it's an empty list
|
|
HashCode = 1;
|
|
}
|
|
}
|
|
};
|
|
|
|
// The counter of branch samples for one function indexed by the branch,
|
|
// which is represented as the source and target offset pair.
|
|
using BranchSample = std::map<std::pair<uint64_t, uint64_t>, uint64_t>;
|
|
// The counter of range samples for one function indexed by the range,
|
|
// which is represented as the start and end offset pair.
|
|
using RangeSample = std::map<std::pair<uint64_t, uint64_t>, uint64_t>;
|
|
// Wrapper for sample counters including range counter and branch counter
|
|
struct SampleCounter {
|
|
RangeSample RangeCounter;
|
|
BranchSample BranchCounter;
|
|
|
|
void recordRangeCount(uint64_t Start, uint64_t End, uint64_t Repeat) {
|
|
RangeCounter[{Start, End}] += Repeat;
|
|
}
|
|
void recordBranchCount(uint64_t Source, uint64_t Target, uint64_t Repeat) {
|
|
BranchCounter[{Source, Target}] += Repeat;
|
|
}
|
|
};
|
|
|
|
// Sample counter with context to support context-sensitive profile
|
|
using ContextSampleCounterMap =
|
|
std::unordered_map<Hashable<ContextKey>, SampleCounter,
|
|
Hashable<ContextKey>::Hash, Hashable<ContextKey>::Equal>;
|
|
|
|
struct FrameStack {
|
|
SmallVector<uint64_t, 16> Stack;
|
|
const ProfiledBinary *Binary;
|
|
FrameStack(const ProfiledBinary *B) : Binary(B) {}
|
|
bool pushFrame(UnwindState::ProfiledFrame *Cur) {
|
|
Stack.push_back(Cur->Address);
|
|
return true;
|
|
}
|
|
|
|
void popFrame() {
|
|
if (!Stack.empty())
|
|
Stack.pop_back();
|
|
}
|
|
std::shared_ptr<StringBasedCtxKey> getContextKey();
|
|
};
|
|
|
|
struct ProbeStack {
|
|
SmallVector<const PseudoProbe *, 16> Stack;
|
|
const ProfiledBinary *Binary;
|
|
ProbeStack(const ProfiledBinary *B) : Binary(B) {}
|
|
bool pushFrame(UnwindState::ProfiledFrame *Cur) {
|
|
const PseudoProbe *CallProbe = Binary->getCallProbeForAddr(Cur->Address);
|
|
// We may not find a probe for a merged or external callsite.
|
|
// Callsite merging may cause the loss of original probe IDs.
|
|
// Cutting off the context from here since the inliner will
|
|
// not know how to consume a context with unknown callsites.
|
|
if (!CallProbe)
|
|
return false;
|
|
Stack.push_back(CallProbe);
|
|
return true;
|
|
}
|
|
|
|
void popFrame() {
|
|
if (!Stack.empty())
|
|
Stack.pop_back();
|
|
}
|
|
// Use pseudo probe based context key to get the sample counter
|
|
// A context stands for a call path from 'main' to an uninlined
|
|
// callee with all inline frames recovered on that path. The probes
|
|
// belonging to that call path is the probes either originated from
|
|
// the callee or from any functions inlined into the callee. Since
|
|
// pseudo probes are organized in a tri-tree style after decoded,
|
|
// the tree path from the tri-tree root (which is the uninlined
|
|
// callee) to the probe node forms an inline context.
|
|
// Here we use a list of probe(pointer) as the context key to speed up
|
|
// aggregation and the final context string will be generate in
|
|
// ProfileGenerator
|
|
std::shared_ptr<ProbeBasedCtxKey> getContextKey();
|
|
};
|
|
|
|
/*
|
|
As in hybrid sample we have a group of LBRs and the most recent sampling call
|
|
stack, we can walk through those LBRs to infer more call stacks which would be
|
|
used as context for profile. VirtualUnwinder is the class to do the call stack
|
|
unwinding based on LBR state. Two types of unwinding are processd here:
|
|
1) LBR unwinding and 2) linear range unwinding.
|
|
Specifically, for each LBR entry(can be classified into call, return, regular
|
|
branch), LBR unwinding will replay the operation by pushing, popping or
|
|
switching leaf frame towards the call stack and since the initial call stack
|
|
is most recently sampled, the replay should be in anti-execution order, i.e. for
|
|
the regular case, pop the call stack when LBR is call, push frame on call stack
|
|
when LBR is return. After each LBR processed, it also needs to align with the
|
|
next LBR by going through instructions from previous LBR's target to current
|
|
LBR's source, which is the linear unwinding. As instruction from linear range
|
|
can come from different function by inlining, linear unwinding will do the range
|
|
splitting and record counters by the range with same inline context. Over those
|
|
unwinding process we will record each call stack as context id and LBR/linear
|
|
range as sample counter for further CS profile generation.
|
|
*/
|
|
class VirtualUnwinder {
|
|
public:
|
|
VirtualUnwinder(ContextSampleCounterMap *Counter, const ProfiledBinary *B)
|
|
: CtxCounterMap(Counter), Binary(B) {}
|
|
bool unwind(const HybridSample *Sample, uint64_t Repeat);
|
|
|
|
private:
|
|
bool isCallState(UnwindState &State) const {
|
|
// The tail call frame is always missing here in stack sample, we will
|
|
// use a specific tail call tracker to infer it.
|
|
return Binary->addressIsCall(State.getCurrentLBRSource());
|
|
}
|
|
|
|
bool isReturnState(UnwindState &State) const {
|
|
// Simply check addressIsReturn, as ret is always reliable, both for
|
|
// regular call and tail call.
|
|
return Binary->addressIsReturn(State.getCurrentLBRSource());
|
|
}
|
|
|
|
void unwindCall(UnwindState &State);
|
|
void unwindLinear(UnwindState &State, uint64_t Repeat);
|
|
void unwindReturn(UnwindState &State);
|
|
void unwindBranchWithinFrame(UnwindState &State);
|
|
|
|
template <typename T>
|
|
void collectSamplesFromFrame(UnwindState::ProfiledFrame *Cur, T &Stack);
|
|
// Collect each samples on trie node by DFS traversal
|
|
template <typename T>
|
|
void collectSamplesFromFrameTrie(UnwindState::ProfiledFrame *Cur, T &Stack);
|
|
void collectSamplesFromFrameTrie(UnwindState::ProfiledFrame *Cur);
|
|
|
|
void recordRangeCount(uint64_t Start, uint64_t End, UnwindState &State,
|
|
uint64_t Repeat);
|
|
void recordBranchCount(const LBREntry &Branch, UnwindState &State,
|
|
uint64_t Repeat);
|
|
|
|
ContextSampleCounterMap *CtxCounterMap;
|
|
// Profiled binary that current frame address belongs to
|
|
const ProfiledBinary *Binary;
|
|
};
|
|
|
|
// Filename to binary map
|
|
using BinaryMap = StringMap<ProfiledBinary>;
|
|
// Address to binary map for fast look-up
|
|
using AddressBinaryMap = std::map<uint64_t, ProfiledBinary *>;
|
|
// Binary to ContextSampleCounters Map to support multiple binary, we may have
|
|
// same binary loaded at different addresses, they should share the same sample
|
|
// counter
|
|
using BinarySampleCounterMap =
|
|
std::unordered_map<ProfiledBinary *, ContextSampleCounterMap>;
|
|
|
|
// Load binaries and read perf trace to parse the events and samples
|
|
class PerfReader {
|
|
|
|
public:
|
|
PerfReader(cl::list<std::string> &BinaryFilenames,
|
|
cl::list<std::string> &PerfTraceFilenames);
|
|
|
|
// A LBR sample is like:
|
|
// 0x5c6313f/0x5c63170/P/-/-/0 0x5c630e7/0x5c63130/P/-/-/0 ...
|
|
// A heuristic for fast detection by checking whether a
|
|
// leading " 0x" and the '/' exist.
|
|
static bool isLBRSample(StringRef Line) {
|
|
if (!Line.startswith(" 0x"))
|
|
return false;
|
|
if (Line.find('/') != StringRef::npos)
|
|
return true;
|
|
return false;
|
|
}
|
|
|
|
// The raw hybird sample is like
|
|
// e.g.
|
|
// 4005dc # call stack leaf
|
|
// 400634
|
|
// 400684 # call stack root
|
|
// 0x4005c8/0x4005dc/P/-/-/0 0x40062f/0x4005b0/P/-/-/0 ...
|
|
// ... 0x4005c8/0x4005dc/P/-/-/0 # LBR Entries
|
|
// Determine the perfscript contains hybrid samples(call stack + LBRs) by
|
|
// checking whether there is a non-empty call stack immediately followed by
|
|
// a LBR sample
|
|
static PerfScriptType checkPerfScriptType(StringRef FileName) {
|
|
TraceStream TraceIt(FileName);
|
|
uint64_t FrameAddr = 0;
|
|
while (!TraceIt.isAtEoF()) {
|
|
int32_t Count = 0;
|
|
while (!TraceIt.isAtEoF() &&
|
|
!TraceIt.getCurrentLine().ltrim().getAsInteger(16, FrameAddr)) {
|
|
Count++;
|
|
TraceIt.advance();
|
|
}
|
|
if (!TraceIt.isAtEoF()) {
|
|
if (isLBRSample(TraceIt.getCurrentLine())) {
|
|
if (Count > 0)
|
|
return PERF_LBR_STACK;
|
|
else
|
|
return PERF_LBR;
|
|
}
|
|
TraceIt.advance();
|
|
}
|
|
}
|
|
return PERF_INVALID;
|
|
}
|
|
|
|
// The parsed MMap event
|
|
struct MMapEvent {
|
|
uint64_t PID = 0;
|
|
uint64_t BaseAddress = 0;
|
|
uint64_t Size = 0;
|
|
uint64_t Offset = 0;
|
|
StringRef BinaryPath;
|
|
};
|
|
|
|
/// Load symbols and disassemble the code of a give binary.
|
|
/// Also register the binary in the binary table.
|
|
///
|
|
ProfiledBinary &loadBinary(const StringRef BinaryPath,
|
|
bool AllowNameConflict = true);
|
|
void updateBinaryAddress(const MMapEvent &Event);
|
|
PerfScriptType getPerfScriptType() const { return PerfType; }
|
|
// Entry of the reader to parse multiple perf traces
|
|
void parsePerfTraces(cl::list<std::string> &PerfTraceFilenames);
|
|
const BinarySampleCounterMap &getBinarySampleCounters() const {
|
|
return BinarySampleCounters;
|
|
}
|
|
|
|
private:
|
|
/// Validate the command line input
|
|
void validateCommandLine(cl::list<std::string> &BinaryFilenames,
|
|
cl::list<std::string> &PerfTraceFilenames);
|
|
/// Parse a single line of a PERF_RECORD_MMAP2 event looking for a
|
|
/// mapping between the binary name and its memory layout.
|
|
///
|
|
void parseMMap2Event(TraceStream &TraceIt);
|
|
// Parse perf events/samples and do aggregation
|
|
void parseAndAggregateTrace(StringRef Filename);
|
|
// Parse either an MMAP event or a perf sample
|
|
void parseEventOrSample(TraceStream &TraceIt);
|
|
// Parse the hybrid sample including the call and LBR line
|
|
void parseHybridSample(TraceStream &TraceIt);
|
|
// Extract call stack from the perf trace lines
|
|
bool extractCallstack(TraceStream &TraceIt,
|
|
SmallVectorImpl<uint64_t> &CallStack);
|
|
// Extract LBR stack from one perf trace line
|
|
bool extractLBRStack(TraceStream &TraceIt,
|
|
SmallVectorImpl<LBREntry> &LBRStack,
|
|
ProfiledBinary *Binary);
|
|
void checkAndSetPerfType(cl::list<std::string> &PerfTraceFilenames);
|
|
// Post process the profile after trace aggregation, we will do simple range
|
|
// overlap computation for AutoFDO, or unwind for CSSPGO(hybrid sample).
|
|
void generateRawProfile();
|
|
// Unwind the hybrid samples after aggregration
|
|
void unwindSamples();
|
|
void printUnwinderOutput();
|
|
// Helper function for looking up binary in AddressBinaryMap
|
|
ProfiledBinary *getBinary(uint64_t Address);
|
|
|
|
BinaryMap BinaryTable;
|
|
AddressBinaryMap AddrToBinaryMap; // Used by address-based lookup.
|
|
|
|
private:
|
|
BinarySampleCounterMap BinarySampleCounters;
|
|
// Samples with the repeating time generated by the perf reader
|
|
AggregatedCounter AggregatedSamples;
|
|
PerfScriptType PerfType = PERF_UNKNOWN;
|
|
};
|
|
|
|
} // end namespace sampleprof
|
|
} // end namespace llvm
|
|
|
|
#endif
|