mirror of
https://github.com/RPCS3/llvm-mirror.git
synced 2024-11-25 12:12:47 +01:00
1018 lines
37 KiB
C++
1018 lines
37 KiB
C++
//===- llvm/CodeGen/LiveInterval.h - Interval representation ----*- C++ -*-===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file implements the LiveRange and LiveInterval classes. Given some
|
|
// numbering of each the machine instructions an interval [i, j) is said to be a
|
|
// live range for register v if there is no instruction with number j' >= j
|
|
// such that v is live at j' and there is no instruction with number i' < i such
|
|
// that v is live at i'. In this implementation ranges can have holes,
|
|
// i.e. a range might look like [1,20), [50,65), [1000,1001). Each
|
|
// individual segment is represented as an instance of LiveRange::Segment,
|
|
// and the whole range is represented as an instance of LiveRange.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#ifndef LLVM_CODEGEN_LIVEINTERVAL_H
|
|
#define LLVM_CODEGEN_LIVEINTERVAL_H
|
|
|
|
#include "llvm/ADT/ArrayRef.h"
|
|
#include "llvm/ADT/IntEqClasses.h"
|
|
#include "llvm/ADT/STLExtras.h"
|
|
#include "llvm/ADT/SmallVector.h"
|
|
#include "llvm/ADT/iterator_range.h"
|
|
#include "llvm/CodeGen/Register.h"
|
|
#include "llvm/CodeGen/SlotIndexes.h"
|
|
#include "llvm/MC/LaneBitmask.h"
|
|
#include "llvm/Support/Allocator.h"
|
|
#include "llvm/Support/MathExtras.h"
|
|
#include <algorithm>
|
|
#include <cassert>
|
|
#include <cstddef>
|
|
#include <functional>
|
|
#include <memory>
|
|
#include <set>
|
|
#include <tuple>
|
|
#include <utility>
|
|
|
|
namespace llvm {
|
|
|
|
class CoalescerPair;
|
|
class LiveIntervals;
|
|
class MachineRegisterInfo;
|
|
class raw_ostream;
|
|
|
|
/// VNInfo - Value Number Information.
|
|
/// This class holds information about a machine level values, including
|
|
/// definition and use points.
|
|
///
|
|
class VNInfo {
|
|
public:
|
|
using Allocator = BumpPtrAllocator;
|
|
|
|
/// The ID number of this value.
|
|
unsigned id;
|
|
|
|
/// The index of the defining instruction.
|
|
SlotIndex def;
|
|
|
|
/// VNInfo constructor.
|
|
VNInfo(unsigned i, SlotIndex d) : id(i), def(d) {}
|
|
|
|
/// VNInfo constructor, copies values from orig, except for the value number.
|
|
VNInfo(unsigned i, const VNInfo &orig) : id(i), def(orig.def) {}
|
|
|
|
/// Copy from the parameter into this VNInfo.
|
|
void copyFrom(VNInfo &src) {
|
|
def = src.def;
|
|
}
|
|
|
|
/// Returns true if this value is defined by a PHI instruction (or was,
|
|
/// PHI instructions may have been eliminated).
|
|
/// PHI-defs begin at a block boundary, all other defs begin at register or
|
|
/// EC slots.
|
|
bool isPHIDef() const { return def.isBlock(); }
|
|
|
|
/// Returns true if this value is unused.
|
|
bool isUnused() const { return !def.isValid(); }
|
|
|
|
/// Mark this value as unused.
|
|
void markUnused() { def = SlotIndex(); }
|
|
};
|
|
|
|
/// Result of a LiveRange query. This class hides the implementation details
|
|
/// of live ranges, and it should be used as the primary interface for
|
|
/// examining live ranges around instructions.
|
|
class LiveQueryResult {
|
|
VNInfo *const EarlyVal;
|
|
VNInfo *const LateVal;
|
|
const SlotIndex EndPoint;
|
|
const bool Kill;
|
|
|
|
public:
|
|
LiveQueryResult(VNInfo *EarlyVal, VNInfo *LateVal, SlotIndex EndPoint,
|
|
bool Kill)
|
|
: EarlyVal(EarlyVal), LateVal(LateVal), EndPoint(EndPoint), Kill(Kill)
|
|
{}
|
|
|
|
/// Return the value that is live-in to the instruction. This is the value
|
|
/// that will be read by the instruction's use operands. Return NULL if no
|
|
/// value is live-in.
|
|
VNInfo *valueIn() const {
|
|
return EarlyVal;
|
|
}
|
|
|
|
/// Return true if the live-in value is killed by this instruction. This
|
|
/// means that either the live range ends at the instruction, or it changes
|
|
/// value.
|
|
bool isKill() const {
|
|
return Kill;
|
|
}
|
|
|
|
/// Return true if this instruction has a dead def.
|
|
bool isDeadDef() const {
|
|
return EndPoint.isDead();
|
|
}
|
|
|
|
/// Return the value leaving the instruction, if any. This can be a
|
|
/// live-through value, or a live def. A dead def returns NULL.
|
|
VNInfo *valueOut() const {
|
|
return isDeadDef() ? nullptr : LateVal;
|
|
}
|
|
|
|
/// Returns the value alive at the end of the instruction, if any. This can
|
|
/// be a live-through value, a live def or a dead def.
|
|
VNInfo *valueOutOrDead() const {
|
|
return LateVal;
|
|
}
|
|
|
|
/// Return the value defined by this instruction, if any. This includes
|
|
/// dead defs, it is the value created by the instruction's def operands.
|
|
VNInfo *valueDefined() const {
|
|
return EarlyVal == LateVal ? nullptr : LateVal;
|
|
}
|
|
|
|
/// Return the end point of the last live range segment to interact with
|
|
/// the instruction, if any.
|
|
///
|
|
/// The end point is an invalid SlotIndex only if the live range doesn't
|
|
/// intersect the instruction at all.
|
|
///
|
|
/// The end point may be at or past the end of the instruction's basic
|
|
/// block. That means the value was live out of the block.
|
|
SlotIndex endPoint() const {
|
|
return EndPoint;
|
|
}
|
|
};
|
|
|
|
/// This class represents the liveness of a register, stack slot, etc.
|
|
/// It manages an ordered list of Segment objects.
|
|
/// The Segments are organized in a static single assignment form: At places
|
|
/// where a new value is defined or different values reach a CFG join a new
|
|
/// segment with a new value number is used.
|
|
class LiveRange {
|
|
public:
|
|
/// This represents a simple continuous liveness interval for a value.
|
|
/// The start point is inclusive, the end point exclusive. These intervals
|
|
/// are rendered as [start,end).
|
|
struct Segment {
|
|
SlotIndex start; // Start point of the interval (inclusive)
|
|
SlotIndex end; // End point of the interval (exclusive)
|
|
VNInfo *valno = nullptr; // identifier for the value contained in this
|
|
// segment.
|
|
|
|
Segment() = default;
|
|
|
|
Segment(SlotIndex S, SlotIndex E, VNInfo *V)
|
|
: start(S), end(E), valno(V) {
|
|
assert(S < E && "Cannot create empty or backwards segment");
|
|
}
|
|
|
|
/// Return true if the index is covered by this segment.
|
|
bool contains(SlotIndex I) const {
|
|
return start <= I && I < end;
|
|
}
|
|
|
|
/// Return true if the given interval, [S, E), is covered by this segment.
|
|
bool containsInterval(SlotIndex S, SlotIndex E) const {
|
|
assert((S < E) && "Backwards interval?");
|
|
return (start <= S && S < end) && (start < E && E <= end);
|
|
}
|
|
|
|
bool operator<(const Segment &Other) const {
|
|
return std::tie(start, end) < std::tie(Other.start, Other.end);
|
|
}
|
|
bool operator==(const Segment &Other) const {
|
|
return start == Other.start && end == Other.end;
|
|
}
|
|
|
|
bool operator!=(const Segment &Other) const {
|
|
return !(*this == Other);
|
|
}
|
|
|
|
void dump() const;
|
|
};
|
|
|
|
using Segments = SmallVector<Segment, 2>;
|
|
using VNInfoList = SmallVector<VNInfo *, 2>;
|
|
|
|
Segments segments; // the liveness segments
|
|
VNInfoList valnos; // value#'s
|
|
|
|
// The segment set is used temporarily to accelerate initial computation
|
|
// of live ranges of physical registers in computeRegUnitRange.
|
|
// After that the set is flushed to the segment vector and deleted.
|
|
using SegmentSet = std::set<Segment>;
|
|
std::unique_ptr<SegmentSet> segmentSet;
|
|
|
|
using iterator = Segments::iterator;
|
|
using const_iterator = Segments::const_iterator;
|
|
|
|
iterator begin() { return segments.begin(); }
|
|
iterator end() { return segments.end(); }
|
|
|
|
const_iterator begin() const { return segments.begin(); }
|
|
const_iterator end() const { return segments.end(); }
|
|
|
|
using vni_iterator = VNInfoList::iterator;
|
|
using const_vni_iterator = VNInfoList::const_iterator;
|
|
|
|
vni_iterator vni_begin() { return valnos.begin(); }
|
|
vni_iterator vni_end() { return valnos.end(); }
|
|
|
|
const_vni_iterator vni_begin() const { return valnos.begin(); }
|
|
const_vni_iterator vni_end() const { return valnos.end(); }
|
|
|
|
/// Constructs a new LiveRange object.
|
|
LiveRange(bool UseSegmentSet = false)
|
|
: segmentSet(UseSegmentSet ? std::make_unique<SegmentSet>()
|
|
: nullptr) {}
|
|
|
|
/// Constructs a new LiveRange object by copying segments and valnos from
|
|
/// another LiveRange.
|
|
LiveRange(const LiveRange &Other, BumpPtrAllocator &Allocator) {
|
|
assert(Other.segmentSet == nullptr &&
|
|
"Copying of LiveRanges with active SegmentSets is not supported");
|
|
assign(Other, Allocator);
|
|
}
|
|
|
|
/// Copies values numbers and live segments from \p Other into this range.
|
|
void assign(const LiveRange &Other, BumpPtrAllocator &Allocator) {
|
|
if (this == &Other)
|
|
return;
|
|
|
|
assert(Other.segmentSet == nullptr &&
|
|
"Copying of LiveRanges with active SegmentSets is not supported");
|
|
// Duplicate valnos.
|
|
for (const VNInfo *VNI : Other.valnos)
|
|
createValueCopy(VNI, Allocator);
|
|
// Now we can copy segments and remap their valnos.
|
|
for (const Segment &S : Other.segments)
|
|
segments.push_back(Segment(S.start, S.end, valnos[S.valno->id]));
|
|
}
|
|
|
|
/// advanceTo - Advance the specified iterator to point to the Segment
|
|
/// containing the specified position, or end() if the position is past the
|
|
/// end of the range. If no Segment contains this position, but the
|
|
/// position is in a hole, this method returns an iterator pointing to the
|
|
/// Segment immediately after the hole.
|
|
iterator advanceTo(iterator I, SlotIndex Pos) {
|
|
assert(I != end());
|
|
if (Pos >= endIndex())
|
|
return end();
|
|
while (I->end <= Pos) ++I;
|
|
return I;
|
|
}
|
|
|
|
const_iterator advanceTo(const_iterator I, SlotIndex Pos) const {
|
|
assert(I != end());
|
|
if (Pos >= endIndex())
|
|
return end();
|
|
while (I->end <= Pos) ++I;
|
|
return I;
|
|
}
|
|
|
|
/// find - Return an iterator pointing to the first segment that ends after
|
|
/// Pos, or end(). This is the same as advanceTo(begin(), Pos), but faster
|
|
/// when searching large ranges.
|
|
///
|
|
/// If Pos is contained in a Segment, that segment is returned.
|
|
/// If Pos is in a hole, the following Segment is returned.
|
|
/// If Pos is beyond endIndex, end() is returned.
|
|
iterator find(SlotIndex Pos);
|
|
|
|
const_iterator find(SlotIndex Pos) const {
|
|
return const_cast<LiveRange*>(this)->find(Pos);
|
|
}
|
|
|
|
void clear() {
|
|
valnos.clear();
|
|
segments.clear();
|
|
}
|
|
|
|
size_t size() const {
|
|
return segments.size();
|
|
}
|
|
|
|
bool hasAtLeastOneValue() const { return !valnos.empty(); }
|
|
|
|
bool containsOneValue() const { return valnos.size() == 1; }
|
|
|
|
unsigned getNumValNums() const { return (unsigned)valnos.size(); }
|
|
|
|
/// getValNumInfo - Returns pointer to the specified val#.
|
|
///
|
|
inline VNInfo *getValNumInfo(unsigned ValNo) {
|
|
return valnos[ValNo];
|
|
}
|
|
inline const VNInfo *getValNumInfo(unsigned ValNo) const {
|
|
return valnos[ValNo];
|
|
}
|
|
|
|
/// containsValue - Returns true if VNI belongs to this range.
|
|
bool containsValue(const VNInfo *VNI) const {
|
|
return VNI && VNI->id < getNumValNums() && VNI == getValNumInfo(VNI->id);
|
|
}
|
|
|
|
/// getNextValue - Create a new value number and return it. MIIdx specifies
|
|
/// the instruction that defines the value number.
|
|
VNInfo *getNextValue(SlotIndex def, VNInfo::Allocator &VNInfoAllocator) {
|
|
VNInfo *VNI =
|
|
new (VNInfoAllocator) VNInfo((unsigned)valnos.size(), def);
|
|
valnos.push_back(VNI);
|
|
return VNI;
|
|
}
|
|
|
|
/// createDeadDef - Make sure the range has a value defined at Def.
|
|
/// If one already exists, return it. Otherwise allocate a new value and
|
|
/// add liveness for a dead def.
|
|
VNInfo *createDeadDef(SlotIndex Def, VNInfo::Allocator &VNIAlloc);
|
|
|
|
/// Create a def of value @p VNI. Return @p VNI. If there already exists
|
|
/// a definition at VNI->def, the value defined there must be @p VNI.
|
|
VNInfo *createDeadDef(VNInfo *VNI);
|
|
|
|
/// Create a copy of the given value. The new value will be identical except
|
|
/// for the Value number.
|
|
VNInfo *createValueCopy(const VNInfo *orig,
|
|
VNInfo::Allocator &VNInfoAllocator) {
|
|
VNInfo *VNI =
|
|
new (VNInfoAllocator) VNInfo((unsigned)valnos.size(), *orig);
|
|
valnos.push_back(VNI);
|
|
return VNI;
|
|
}
|
|
|
|
/// RenumberValues - Renumber all values in order of appearance and remove
|
|
/// unused values.
|
|
void RenumberValues();
|
|
|
|
/// MergeValueNumberInto - This method is called when two value numbers
|
|
/// are found to be equivalent. This eliminates V1, replacing all
|
|
/// segments with the V1 value number with the V2 value number. This can
|
|
/// cause merging of V1/V2 values numbers and compaction of the value space.
|
|
VNInfo* MergeValueNumberInto(VNInfo *V1, VNInfo *V2);
|
|
|
|
/// Merge all of the live segments of a specific val# in RHS into this live
|
|
/// range as the specified value number. The segments in RHS are allowed
|
|
/// to overlap with segments in the current range, it will replace the
|
|
/// value numbers of the overlaped live segments with the specified value
|
|
/// number.
|
|
void MergeSegmentsInAsValue(const LiveRange &RHS, VNInfo *LHSValNo);
|
|
|
|
/// MergeValueInAsValue - Merge all of the segments of a specific val#
|
|
/// in RHS into this live range as the specified value number.
|
|
/// The segments in RHS are allowed to overlap with segments in the
|
|
/// current range, but only if the overlapping segments have the
|
|
/// specified value number.
|
|
void MergeValueInAsValue(const LiveRange &RHS,
|
|
const VNInfo *RHSValNo, VNInfo *LHSValNo);
|
|
|
|
bool empty() const { return segments.empty(); }
|
|
|
|
/// beginIndex - Return the lowest numbered slot covered.
|
|
SlotIndex beginIndex() const {
|
|
assert(!empty() && "Call to beginIndex() on empty range.");
|
|
return segments.front().start;
|
|
}
|
|
|
|
/// endNumber - return the maximum point of the range of the whole,
|
|
/// exclusive.
|
|
SlotIndex endIndex() const {
|
|
assert(!empty() && "Call to endIndex() on empty range.");
|
|
return segments.back().end;
|
|
}
|
|
|
|
bool expiredAt(SlotIndex index) const {
|
|
return index >= endIndex();
|
|
}
|
|
|
|
bool liveAt(SlotIndex index) const {
|
|
const_iterator r = find(index);
|
|
return r != end() && r->start <= index;
|
|
}
|
|
|
|
/// Return the segment that contains the specified index, or null if there
|
|
/// is none.
|
|
const Segment *getSegmentContaining(SlotIndex Idx) const {
|
|
const_iterator I = FindSegmentContaining(Idx);
|
|
return I == end() ? nullptr : &*I;
|
|
}
|
|
|
|
/// Return the live segment that contains the specified index, or null if
|
|
/// there is none.
|
|
Segment *getSegmentContaining(SlotIndex Idx) {
|
|
iterator I = FindSegmentContaining(Idx);
|
|
return I == end() ? nullptr : &*I;
|
|
}
|
|
|
|
/// getVNInfoAt - Return the VNInfo that is live at Idx, or NULL.
|
|
VNInfo *getVNInfoAt(SlotIndex Idx) const {
|
|
const_iterator I = FindSegmentContaining(Idx);
|
|
return I == end() ? nullptr : I->valno;
|
|
}
|
|
|
|
/// getVNInfoBefore - Return the VNInfo that is live up to but not
|
|
/// necessarilly including Idx, or NULL. Use this to find the reaching def
|
|
/// used by an instruction at this SlotIndex position.
|
|
VNInfo *getVNInfoBefore(SlotIndex Idx) const {
|
|
const_iterator I = FindSegmentContaining(Idx.getPrevSlot());
|
|
return I == end() ? nullptr : I->valno;
|
|
}
|
|
|
|
/// Return an iterator to the segment that contains the specified index, or
|
|
/// end() if there is none.
|
|
iterator FindSegmentContaining(SlotIndex Idx) {
|
|
iterator I = find(Idx);
|
|
return I != end() && I->start <= Idx ? I : end();
|
|
}
|
|
|
|
const_iterator FindSegmentContaining(SlotIndex Idx) const {
|
|
const_iterator I = find(Idx);
|
|
return I != end() && I->start <= Idx ? I : end();
|
|
}
|
|
|
|
/// overlaps - Return true if the intersection of the two live ranges is
|
|
/// not empty.
|
|
bool overlaps(const LiveRange &other) const {
|
|
if (other.empty())
|
|
return false;
|
|
return overlapsFrom(other, other.begin());
|
|
}
|
|
|
|
/// overlaps - Return true if the two ranges have overlapping segments
|
|
/// that are not coalescable according to CP.
|
|
///
|
|
/// Overlapping segments where one range is defined by a coalescable
|
|
/// copy are allowed.
|
|
bool overlaps(const LiveRange &Other, const CoalescerPair &CP,
|
|
const SlotIndexes&) const;
|
|
|
|
/// overlaps - Return true if the live range overlaps an interval specified
|
|
/// by [Start, End).
|
|
bool overlaps(SlotIndex Start, SlotIndex End) const;
|
|
|
|
/// overlapsFrom - Return true if the intersection of the two live ranges
|
|
/// is not empty. The specified iterator is a hint that we can begin
|
|
/// scanning the Other range starting at I.
|
|
bool overlapsFrom(const LiveRange &Other, const_iterator StartPos) const;
|
|
|
|
/// Returns true if all segments of the @p Other live range are completely
|
|
/// covered by this live range.
|
|
/// Adjacent live ranges do not affect the covering:the liverange
|
|
/// [1,5](5,10] covers (3,7].
|
|
bool covers(const LiveRange &Other) const;
|
|
|
|
/// Add the specified Segment to this range, merging segments as
|
|
/// appropriate. This returns an iterator to the inserted segment (which
|
|
/// may have grown since it was inserted).
|
|
iterator addSegment(Segment S);
|
|
|
|
/// Attempt to extend a value defined after @p StartIdx to include @p Use.
|
|
/// Both @p StartIdx and @p Use should be in the same basic block. In case
|
|
/// of subranges, an extension could be prevented by an explicit "undef"
|
|
/// caused by a <def,read-undef> on a non-overlapping lane. The list of
|
|
/// location of such "undefs" should be provided in @p Undefs.
|
|
/// The return value is a pair: the first element is VNInfo of the value
|
|
/// that was extended (possibly nullptr), the second is a boolean value
|
|
/// indicating whether an "undef" was encountered.
|
|
/// If this range is live before @p Use in the basic block that starts at
|
|
/// @p StartIdx, and there is no intervening "undef", extend it to be live
|
|
/// up to @p Use, and return the pair {value, false}. If there is no
|
|
/// segment before @p Use and there is no "undef" between @p StartIdx and
|
|
/// @p Use, return {nullptr, false}. If there is an "undef" before @p Use,
|
|
/// return {nullptr, true}.
|
|
std::pair<VNInfo*,bool> extendInBlock(ArrayRef<SlotIndex> Undefs,
|
|
SlotIndex StartIdx, SlotIndex Kill);
|
|
|
|
/// Simplified version of the above "extendInBlock", which assumes that
|
|
/// no register lanes are undefined by <def,read-undef> operands.
|
|
/// If this range is live before @p Use in the basic block that starts
|
|
/// at @p StartIdx, extend it to be live up to @p Use, and return the
|
|
/// value. If there is no segment before @p Use, return nullptr.
|
|
VNInfo *extendInBlock(SlotIndex StartIdx, SlotIndex Kill);
|
|
|
|
/// join - Join two live ranges (this, and other) together. This applies
|
|
/// mappings to the value numbers in the LHS/RHS ranges as specified. If
|
|
/// the ranges are not joinable, this aborts.
|
|
void join(LiveRange &Other,
|
|
const int *ValNoAssignments,
|
|
const int *RHSValNoAssignments,
|
|
SmallVectorImpl<VNInfo *> &NewVNInfo);
|
|
|
|
/// True iff this segment is a single segment that lies between the
|
|
/// specified boundaries, exclusively. Vregs live across a backedge are not
|
|
/// considered local. The boundaries are expected to lie within an extended
|
|
/// basic block, so vregs that are not live out should contain no holes.
|
|
bool isLocal(SlotIndex Start, SlotIndex End) const {
|
|
return beginIndex() > Start.getBaseIndex() &&
|
|
endIndex() < End.getBoundaryIndex();
|
|
}
|
|
|
|
/// Remove the specified segment from this range. Note that the segment
|
|
/// must be a single Segment in its entirety.
|
|
void removeSegment(SlotIndex Start, SlotIndex End,
|
|
bool RemoveDeadValNo = false);
|
|
|
|
void removeSegment(Segment S, bool RemoveDeadValNo = false) {
|
|
removeSegment(S.start, S.end, RemoveDeadValNo);
|
|
}
|
|
|
|
/// Remove segment pointed to by iterator @p I from this range. This does
|
|
/// not remove dead value numbers.
|
|
iterator removeSegment(iterator I) {
|
|
return segments.erase(I);
|
|
}
|
|
|
|
/// Query Liveness at Idx.
|
|
/// The sub-instruction slot of Idx doesn't matter, only the instruction
|
|
/// it refers to is considered.
|
|
LiveQueryResult Query(SlotIndex Idx) const {
|
|
// Find the segment that enters the instruction.
|
|
const_iterator I = find(Idx.getBaseIndex());
|
|
const_iterator E = end();
|
|
if (I == E)
|
|
return LiveQueryResult(nullptr, nullptr, SlotIndex(), false);
|
|
|
|
// Is this an instruction live-in segment?
|
|
// If Idx is the start index of a basic block, include live-in segments
|
|
// that start at Idx.getBaseIndex().
|
|
VNInfo *EarlyVal = nullptr;
|
|
VNInfo *LateVal = nullptr;
|
|
SlotIndex EndPoint;
|
|
bool Kill = false;
|
|
if (I->start <= Idx.getBaseIndex()) {
|
|
EarlyVal = I->valno;
|
|
EndPoint = I->end;
|
|
// Move to the potentially live-out segment.
|
|
if (SlotIndex::isSameInstr(Idx, I->end)) {
|
|
Kill = true;
|
|
if (++I == E)
|
|
return LiveQueryResult(EarlyVal, LateVal, EndPoint, Kill);
|
|
}
|
|
// Special case: A PHIDef value can have its def in the middle of a
|
|
// segment if the value happens to be live out of the layout
|
|
// predecessor.
|
|
// Such a value is not live-in.
|
|
if (EarlyVal->def == Idx.getBaseIndex())
|
|
EarlyVal = nullptr;
|
|
}
|
|
// I now points to the segment that may be live-through, or defined by
|
|
// this instr. Ignore segments starting after the current instr.
|
|
if (!SlotIndex::isEarlierInstr(Idx, I->start)) {
|
|
LateVal = I->valno;
|
|
EndPoint = I->end;
|
|
}
|
|
return LiveQueryResult(EarlyVal, LateVal, EndPoint, Kill);
|
|
}
|
|
|
|
/// removeValNo - Remove all the segments defined by the specified value#.
|
|
/// Also remove the value# from value# list.
|
|
void removeValNo(VNInfo *ValNo);
|
|
|
|
/// Returns true if the live range is zero length, i.e. no live segments
|
|
/// span instructions. It doesn't pay to spill such a range.
|
|
bool isZeroLength(SlotIndexes *Indexes) const {
|
|
for (const Segment &S : segments)
|
|
if (Indexes->getNextNonNullIndex(S.start).getBaseIndex() <
|
|
S.end.getBaseIndex())
|
|
return false;
|
|
return true;
|
|
}
|
|
|
|
// Returns true if any segment in the live range contains any of the
|
|
// provided slot indexes. Slots which occur in holes between
|
|
// segments will not cause the function to return true.
|
|
bool isLiveAtIndexes(ArrayRef<SlotIndex> Slots) const;
|
|
|
|
bool operator<(const LiveRange& other) const {
|
|
const SlotIndex &thisIndex = beginIndex();
|
|
const SlotIndex &otherIndex = other.beginIndex();
|
|
return thisIndex < otherIndex;
|
|
}
|
|
|
|
/// Returns true if there is an explicit "undef" between @p Begin
|
|
/// @p End.
|
|
bool isUndefIn(ArrayRef<SlotIndex> Undefs, SlotIndex Begin,
|
|
SlotIndex End) const {
|
|
return llvm::any_of(Undefs, [Begin, End](SlotIndex Idx) -> bool {
|
|
return Begin <= Idx && Idx < End;
|
|
});
|
|
}
|
|
|
|
/// Flush segment set into the regular segment vector.
|
|
/// The method is to be called after the live range
|
|
/// has been created, if use of the segment set was
|
|
/// activated in the constructor of the live range.
|
|
void flushSegmentSet();
|
|
|
|
/// Stores indexes from the input index sequence R at which this LiveRange
|
|
/// is live to the output O iterator.
|
|
/// R is a range of _ascending sorted_ _random_ access iterators
|
|
/// to the input indexes. Indexes stored at O are ascending sorted so it
|
|
/// can be used directly in the subsequent search (for example for
|
|
/// subranges). Returns true if found at least one index.
|
|
template <typename Range, typename OutputIt>
|
|
bool findIndexesLiveAt(Range &&R, OutputIt O) const {
|
|
assert(llvm::is_sorted(R));
|
|
auto Idx = R.begin(), EndIdx = R.end();
|
|
auto Seg = segments.begin(), EndSeg = segments.end();
|
|
bool Found = false;
|
|
while (Idx != EndIdx && Seg != EndSeg) {
|
|
// if the Seg is lower find first segment that is above Idx using binary
|
|
// search
|
|
if (Seg->end <= *Idx) {
|
|
Seg = std::upper_bound(
|
|
++Seg, EndSeg, *Idx,
|
|
[=](std::remove_reference_t<decltype(*Idx)> V,
|
|
const std::remove_reference_t<decltype(*Seg)> &S) {
|
|
return V < S.end;
|
|
});
|
|
if (Seg == EndSeg)
|
|
break;
|
|
}
|
|
auto NotLessStart = std::lower_bound(Idx, EndIdx, Seg->start);
|
|
if (NotLessStart == EndIdx)
|
|
break;
|
|
auto NotLessEnd = std::lower_bound(NotLessStart, EndIdx, Seg->end);
|
|
if (NotLessEnd != NotLessStart) {
|
|
Found = true;
|
|
O = std::copy(NotLessStart, NotLessEnd, O);
|
|
}
|
|
Idx = NotLessEnd;
|
|
++Seg;
|
|
}
|
|
return Found;
|
|
}
|
|
|
|
void print(raw_ostream &OS) const;
|
|
void dump() const;
|
|
|
|
/// Walk the range and assert if any invariants fail to hold.
|
|
///
|
|
/// Note that this is a no-op when asserts are disabled.
|
|
#ifdef NDEBUG
|
|
void verify() const {}
|
|
#else
|
|
void verify() const;
|
|
#endif
|
|
|
|
protected:
|
|
/// Append a segment to the list of segments.
|
|
void append(const LiveRange::Segment S);
|
|
|
|
private:
|
|
friend class LiveRangeUpdater;
|
|
void addSegmentToSet(Segment S);
|
|
void markValNoForDeletion(VNInfo *V);
|
|
};
|
|
|
|
inline raw_ostream &operator<<(raw_ostream &OS, const LiveRange &LR) {
|
|
LR.print(OS);
|
|
return OS;
|
|
}
|
|
|
|
/// LiveInterval - This class represents the liveness of a register,
|
|
/// or stack slot.
|
|
class LiveInterval : public LiveRange {
|
|
public:
|
|
using super = LiveRange;
|
|
|
|
/// A live range for subregisters. The LaneMask specifies which parts of the
|
|
/// super register are covered by the interval.
|
|
/// (@sa TargetRegisterInfo::getSubRegIndexLaneMask()).
|
|
class SubRange : public LiveRange {
|
|
public:
|
|
SubRange *Next = nullptr;
|
|
LaneBitmask LaneMask;
|
|
|
|
/// Constructs a new SubRange object.
|
|
SubRange(LaneBitmask LaneMask) : LaneMask(LaneMask) {}
|
|
|
|
/// Constructs a new SubRange object by copying liveness from @p Other.
|
|
SubRange(LaneBitmask LaneMask, const LiveRange &Other,
|
|
BumpPtrAllocator &Allocator)
|
|
: LiveRange(Other, Allocator), LaneMask(LaneMask) {}
|
|
|
|
void print(raw_ostream &OS) const;
|
|
void dump() const;
|
|
};
|
|
|
|
private:
|
|
SubRange *SubRanges = nullptr; ///< Single linked list of subregister live
|
|
/// ranges.
|
|
const Register Reg; // the register or stack slot of this interval.
|
|
float Weight = 0.0; // weight of this interval
|
|
|
|
public:
|
|
Register reg() const { return Reg; }
|
|
float weight() const { return Weight; }
|
|
void incrementWeight(float Inc) { Weight += Inc; }
|
|
void setWeight(float Value) { Weight = Value; }
|
|
|
|
LiveInterval(unsigned Reg, float Weight) : Reg(Reg), Weight(Weight) {}
|
|
|
|
~LiveInterval() {
|
|
clearSubRanges();
|
|
}
|
|
|
|
template<typename T>
|
|
class SingleLinkedListIterator {
|
|
T *P;
|
|
|
|
public:
|
|
SingleLinkedListIterator<T>(T *P) : P(P) {}
|
|
|
|
SingleLinkedListIterator<T> &operator++() {
|
|
P = P->Next;
|
|
return *this;
|
|
}
|
|
SingleLinkedListIterator<T> operator++(int) {
|
|
SingleLinkedListIterator res = *this;
|
|
++*this;
|
|
return res;
|
|
}
|
|
bool operator!=(const SingleLinkedListIterator<T> &Other) const {
|
|
return P != Other.operator->();
|
|
}
|
|
bool operator==(const SingleLinkedListIterator<T> &Other) const {
|
|
return P == Other.operator->();
|
|
}
|
|
T &operator*() const {
|
|
return *P;
|
|
}
|
|
T *operator->() const {
|
|
return P;
|
|
}
|
|
};
|
|
|
|
using subrange_iterator = SingleLinkedListIterator<SubRange>;
|
|
using const_subrange_iterator = SingleLinkedListIterator<const SubRange>;
|
|
|
|
subrange_iterator subrange_begin() {
|
|
return subrange_iterator(SubRanges);
|
|
}
|
|
subrange_iterator subrange_end() {
|
|
return subrange_iterator(nullptr);
|
|
}
|
|
|
|
const_subrange_iterator subrange_begin() const {
|
|
return const_subrange_iterator(SubRanges);
|
|
}
|
|
const_subrange_iterator subrange_end() const {
|
|
return const_subrange_iterator(nullptr);
|
|
}
|
|
|
|
iterator_range<subrange_iterator> subranges() {
|
|
return make_range(subrange_begin(), subrange_end());
|
|
}
|
|
|
|
iterator_range<const_subrange_iterator> subranges() const {
|
|
return make_range(subrange_begin(), subrange_end());
|
|
}
|
|
|
|
/// Creates a new empty subregister live range. The range is added at the
|
|
/// beginning of the subrange list; subrange iterators stay valid.
|
|
SubRange *createSubRange(BumpPtrAllocator &Allocator,
|
|
LaneBitmask LaneMask) {
|
|
SubRange *Range = new (Allocator) SubRange(LaneMask);
|
|
appendSubRange(Range);
|
|
return Range;
|
|
}
|
|
|
|
/// Like createSubRange() but the new range is filled with a copy of the
|
|
/// liveness information in @p CopyFrom.
|
|
SubRange *createSubRangeFrom(BumpPtrAllocator &Allocator,
|
|
LaneBitmask LaneMask,
|
|
const LiveRange &CopyFrom) {
|
|
SubRange *Range = new (Allocator) SubRange(LaneMask, CopyFrom, Allocator);
|
|
appendSubRange(Range);
|
|
return Range;
|
|
}
|
|
|
|
/// Returns true if subregister liveness information is available.
|
|
bool hasSubRanges() const {
|
|
return SubRanges != nullptr;
|
|
}
|
|
|
|
/// Removes all subregister liveness information.
|
|
void clearSubRanges();
|
|
|
|
/// Removes all subranges without any segments (subranges without segments
|
|
/// are not considered valid and should only exist temporarily).
|
|
void removeEmptySubRanges();
|
|
|
|
/// getSize - Returns the sum of sizes of all the LiveRange's.
|
|
///
|
|
unsigned getSize() const;
|
|
|
|
/// isSpillable - Can this interval be spilled?
|
|
bool isSpillable() const { return Weight != huge_valf; }
|
|
|
|
/// markNotSpillable - Mark interval as not spillable
|
|
void markNotSpillable() { Weight = huge_valf; }
|
|
|
|
/// For a given lane mask @p LaneMask, compute indexes at which the
|
|
/// lane is marked undefined by subregister <def,read-undef> definitions.
|
|
void computeSubRangeUndefs(SmallVectorImpl<SlotIndex> &Undefs,
|
|
LaneBitmask LaneMask,
|
|
const MachineRegisterInfo &MRI,
|
|
const SlotIndexes &Indexes) const;
|
|
|
|
/// Refines the subranges to support \p LaneMask. This may only be called
|
|
/// for LI.hasSubrange()==true. Subregister ranges are split or created
|
|
/// until \p LaneMask can be matched exactly. \p Mod is executed on the
|
|
/// matching subranges.
|
|
///
|
|
/// Example:
|
|
/// Given an interval with subranges with lanemasks L0F00, L00F0 and
|
|
/// L000F, refining for mask L0018. Will split the L00F0 lane into
|
|
/// L00E0 and L0010 and the L000F lane into L0007 and L0008. The Mod
|
|
/// function will be applied to the L0010 and L0008 subranges.
|
|
///
|
|
/// \p Indexes and \p TRI are required to clean up the VNIs that
|
|
/// don't define the related lane masks after they get shrunk. E.g.,
|
|
/// when L000F gets split into L0007 and L0008 maybe only a subset
|
|
/// of the VNIs that defined L000F defines L0007.
|
|
///
|
|
/// The clean up of the VNIs need to look at the actual instructions
|
|
/// to decide what is or is not live at a definition point. If the
|
|
/// update of the subranges occurs while the IR does not reflect these
|
|
/// changes, \p ComposeSubRegIdx can be used to specify how the
|
|
/// definition are going to be rewritten.
|
|
/// E.g., let say we want to merge:
|
|
/// V1.sub1:<2 x s32> = COPY V2.sub3:<4 x s32>
|
|
/// We do that by choosing a class where sub1:<2 x s32> and sub3:<4 x s32>
|
|
/// overlap, i.e., by choosing a class where we can find "offset + 1 == 3".
|
|
/// Put differently we align V2's sub3 with V1's sub1:
|
|
/// V2: sub0 sub1 sub2 sub3
|
|
/// V1: <offset> sub0 sub1
|
|
///
|
|
/// This offset will look like a composed subregidx in the the class:
|
|
/// V1.(composed sub2 with sub1):<4 x s32> = COPY V2.sub3:<4 x s32>
|
|
/// => V1.(composed sub2 with sub1):<4 x s32> = COPY V2.sub3:<4 x s32>
|
|
///
|
|
/// Now if we didn't rewrite the uses and def of V1, all the checks for V1
|
|
/// need to account for this offset.
|
|
/// This happens during coalescing where we update the live-ranges while
|
|
/// still having the old IR around because updating the IR on-the-fly
|
|
/// would actually clobber some information on how the live-ranges that
|
|
/// are being updated look like.
|
|
void refineSubRanges(BumpPtrAllocator &Allocator, LaneBitmask LaneMask,
|
|
std::function<void(LiveInterval::SubRange &)> Apply,
|
|
const SlotIndexes &Indexes,
|
|
const TargetRegisterInfo &TRI,
|
|
unsigned ComposeSubRegIdx = 0);
|
|
|
|
bool operator<(const LiveInterval& other) const {
|
|
const SlotIndex &thisIndex = beginIndex();
|
|
const SlotIndex &otherIndex = other.beginIndex();
|
|
return std::tie(thisIndex, Reg) < std::tie(otherIndex, other.Reg);
|
|
}
|
|
|
|
void print(raw_ostream &OS) const;
|
|
void dump() const;
|
|
|
|
/// Walks the interval and assert if any invariants fail to hold.
|
|
///
|
|
/// Note that this is a no-op when asserts are disabled.
|
|
#ifdef NDEBUG
|
|
void verify(const MachineRegisterInfo *MRI = nullptr) const {}
|
|
#else
|
|
void verify(const MachineRegisterInfo *MRI = nullptr) const;
|
|
#endif
|
|
|
|
private:
|
|
/// Appends @p Range to SubRanges list.
|
|
void appendSubRange(SubRange *Range) {
|
|
Range->Next = SubRanges;
|
|
SubRanges = Range;
|
|
}
|
|
|
|
/// Free memory held by SubRange.
|
|
void freeSubRange(SubRange *S);
|
|
};
|
|
|
|
inline raw_ostream &operator<<(raw_ostream &OS,
|
|
const LiveInterval::SubRange &SR) {
|
|
SR.print(OS);
|
|
return OS;
|
|
}
|
|
|
|
inline raw_ostream &operator<<(raw_ostream &OS, const LiveInterval &LI) {
|
|
LI.print(OS);
|
|
return OS;
|
|
}
|
|
|
|
raw_ostream &operator<<(raw_ostream &OS, const LiveRange::Segment &S);
|
|
|
|
inline bool operator<(SlotIndex V, const LiveRange::Segment &S) {
|
|
return V < S.start;
|
|
}
|
|
|
|
inline bool operator<(const LiveRange::Segment &S, SlotIndex V) {
|
|
return S.start < V;
|
|
}
|
|
|
|
/// Helper class for performant LiveRange bulk updates.
|
|
///
|
|
/// Calling LiveRange::addSegment() repeatedly can be expensive on large
|
|
/// live ranges because segments after the insertion point may need to be
|
|
/// shifted. The LiveRangeUpdater class can defer the shifting when adding
|
|
/// many segments in order.
|
|
///
|
|
/// The LiveRange will be in an invalid state until flush() is called.
|
|
class LiveRangeUpdater {
|
|
LiveRange *LR;
|
|
SlotIndex LastStart;
|
|
LiveRange::iterator WriteI;
|
|
LiveRange::iterator ReadI;
|
|
SmallVector<LiveRange::Segment, 16> Spills;
|
|
void mergeSpills();
|
|
|
|
public:
|
|
/// Create a LiveRangeUpdater for adding segments to LR.
|
|
/// LR will temporarily be in an invalid state until flush() is called.
|
|
LiveRangeUpdater(LiveRange *lr = nullptr) : LR(lr) {}
|
|
|
|
~LiveRangeUpdater() { flush(); }
|
|
|
|
/// Add a segment to LR and coalesce when possible, just like
|
|
/// LR.addSegment(). Segments should be added in increasing start order for
|
|
/// best performance.
|
|
void add(LiveRange::Segment);
|
|
|
|
void add(SlotIndex Start, SlotIndex End, VNInfo *VNI) {
|
|
add(LiveRange::Segment(Start, End, VNI));
|
|
}
|
|
|
|
/// Return true if the LR is currently in an invalid state, and flush()
|
|
/// needs to be called.
|
|
bool isDirty() const { return LastStart.isValid(); }
|
|
|
|
/// Flush the updater state to LR so it is valid and contains all added
|
|
/// segments.
|
|
void flush();
|
|
|
|
/// Select a different destination live range.
|
|
void setDest(LiveRange *lr) {
|
|
if (LR != lr && isDirty())
|
|
flush();
|
|
LR = lr;
|
|
}
|
|
|
|
/// Get the current destination live range.
|
|
LiveRange *getDest() const { return LR; }
|
|
|
|
void dump() const;
|
|
void print(raw_ostream&) const;
|
|
};
|
|
|
|
inline raw_ostream &operator<<(raw_ostream &OS, const LiveRangeUpdater &X) {
|
|
X.print(OS);
|
|
return OS;
|
|
}
|
|
|
|
/// ConnectedVNInfoEqClasses - Helper class that can divide VNInfos in a
|
|
/// LiveInterval into equivalence clases of connected components. A
|
|
/// LiveInterval that has multiple connected components can be broken into
|
|
/// multiple LiveIntervals.
|
|
///
|
|
/// Given a LiveInterval that may have multiple connected components, run:
|
|
///
|
|
/// unsigned numComps = ConEQ.Classify(LI);
|
|
/// if (numComps > 1) {
|
|
/// // allocate numComps-1 new LiveIntervals into LIS[1..]
|
|
/// ConEQ.Distribute(LIS);
|
|
/// }
|
|
|
|
class ConnectedVNInfoEqClasses {
|
|
LiveIntervals &LIS;
|
|
IntEqClasses EqClass;
|
|
|
|
public:
|
|
explicit ConnectedVNInfoEqClasses(LiveIntervals &lis) : LIS(lis) {}
|
|
|
|
/// Classify the values in \p LR into connected components.
|
|
/// Returns the number of connected components.
|
|
unsigned Classify(const LiveRange &LR);
|
|
|
|
/// getEqClass - Classify creates equivalence classes numbered 0..N. Return
|
|
/// the equivalence class assigned the VNI.
|
|
unsigned getEqClass(const VNInfo *VNI) const { return EqClass[VNI->id]; }
|
|
|
|
/// Distribute values in \p LI into a separate LiveIntervals
|
|
/// for each connected component. LIV must have an empty LiveInterval for
|
|
/// each additional connected component. The first connected component is
|
|
/// left in \p LI.
|
|
void Distribute(LiveInterval &LI, LiveInterval *LIV[],
|
|
MachineRegisterInfo &MRI);
|
|
};
|
|
|
|
} // end namespace llvm
|
|
|
|
#endif // LLVM_CODEGEN_LIVEINTERVAL_H
|