1
0
mirror of https://github.com/RPCS3/llvm-mirror.git synced 2024-11-24 19:52:54 +01:00
llvm-mirror/lib/Transforms/Vectorize/VectorCombine.cpp
Artem Belevich c59b73d34c [VectorCombine] Avoid crossing address space boundaries.
We can not bitcast pointers across different address spaces, and VectorCombine
should be careful when it attempts to find the original source of the loaded
data.

Differential Revision: https://reviews.llvm.org/D89577
2020-10-16 13:19:31 -07:00

785 lines
32 KiB
C++

//===------- VectorCombine.cpp - Optimize partial vector operations -------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This pass optimizes scalar/vector interactions using target cost models. The
// transforms implemented here may not fit in traditional loop-based or SLP
// vectorization passes.
//
//===----------------------------------------------------------------------===//
#include "llvm/Transforms/Vectorize/VectorCombine.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/Analysis/BasicAliasAnalysis.h"
#include "llvm/Analysis/GlobalsModRef.h"
#include "llvm/Analysis/Loads.h"
#include "llvm/Analysis/TargetTransformInfo.h"
#include "llvm/Analysis/ValueTracking.h"
#include "llvm/Analysis/VectorUtils.h"
#include "llvm/IR/Dominators.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/IRBuilder.h"
#include "llvm/IR/PatternMatch.h"
#include "llvm/InitializePasses.h"
#include "llvm/Pass.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Transforms/Utils/Local.h"
#include "llvm/Transforms/Vectorize.h"
using namespace llvm;
using namespace llvm::PatternMatch;
#define DEBUG_TYPE "vector-combine"
STATISTIC(NumVecLoad, "Number of vector loads formed");
STATISTIC(NumVecCmp, "Number of vector compares formed");
STATISTIC(NumVecBO, "Number of vector binops formed");
STATISTIC(NumVecCmpBO, "Number of vector compare + binop formed");
STATISTIC(NumShufOfBitcast, "Number of shuffles moved after bitcast");
STATISTIC(NumScalarBO, "Number of scalar binops formed");
STATISTIC(NumScalarCmp, "Number of scalar compares formed");
static cl::opt<bool> DisableVectorCombine(
"disable-vector-combine", cl::init(false), cl::Hidden,
cl::desc("Disable all vector combine transforms"));
static cl::opt<bool> DisableBinopExtractShuffle(
"disable-binop-extract-shuffle", cl::init(false), cl::Hidden,
cl::desc("Disable binop extract to shuffle transforms"));
static const unsigned InvalidIndex = std::numeric_limits<unsigned>::max();
namespace {
class VectorCombine {
public:
VectorCombine(Function &F, const TargetTransformInfo &TTI,
const DominatorTree &DT)
: F(F), Builder(F.getContext()), TTI(TTI), DT(DT) {}
bool run();
private:
Function &F;
IRBuilder<> Builder;
const TargetTransformInfo &TTI;
const DominatorTree &DT;
bool vectorizeLoadInsert(Instruction &I);
ExtractElementInst *getShuffleExtract(ExtractElementInst *Ext0,
ExtractElementInst *Ext1,
unsigned PreferredExtractIndex) const;
bool isExtractExtractCheap(ExtractElementInst *Ext0, ExtractElementInst *Ext1,
unsigned Opcode,
ExtractElementInst *&ConvertToShuffle,
unsigned PreferredExtractIndex);
void foldExtExtCmp(ExtractElementInst *Ext0, ExtractElementInst *Ext1,
Instruction &I);
void foldExtExtBinop(ExtractElementInst *Ext0, ExtractElementInst *Ext1,
Instruction &I);
bool foldExtractExtract(Instruction &I);
bool foldBitcastShuf(Instruction &I);
bool scalarizeBinopOrCmp(Instruction &I);
bool foldExtractedCmps(Instruction &I);
};
} // namespace
static void replaceValue(Value &Old, Value &New) {
Old.replaceAllUsesWith(&New);
New.takeName(&Old);
}
bool VectorCombine::vectorizeLoadInsert(Instruction &I) {
// Match insert into fixed vector of scalar load.
auto *Ty = dyn_cast<FixedVectorType>(I.getType());
Value *Scalar;
if (!Ty || !match(&I, m_InsertElt(m_Undef(), m_Value(Scalar), m_ZeroInt())) ||
!Scalar->hasOneUse())
return false;
// Do not vectorize scalar load (widening) if atomic/volatile or under
// asan/hwasan/memtag/tsan. The widened load may load data from dirty regions
// or create data races non-existent in the source.
auto *Load = dyn_cast<LoadInst>(Scalar);
if (!Load || !Load->isSimple() ||
Load->getFunction()->hasFnAttribute(Attribute::SanitizeMemTag) ||
mustSuppressSpeculation(*Load))
return false;
// TODO: Extend this to match GEP with constant offsets.
Value *PtrOp = Load->getPointerOperand()->stripPointerCasts();
assert(isa<PointerType>(PtrOp->getType()) && "Expected a pointer type");
unsigned AS = Load->getPointerAddressSpace();
// If original AS != Load's AS, we can't bitcast the original pointer and have
// to use Load's operand instead. Ideally we would want to strip pointer casts
// without changing AS, but there's no API to do that ATM.
if (AS != PtrOp->getType()->getPointerAddressSpace())
PtrOp = Load->getPointerOperand();
Type *ScalarTy = Scalar->getType();
uint64_t ScalarSize = ScalarTy->getPrimitiveSizeInBits();
unsigned MinVectorSize = TTI.getMinVectorRegisterBitWidth();
if (!ScalarSize || !MinVectorSize || MinVectorSize % ScalarSize != 0)
return false;
// Check safety of replacing the scalar load with a larger vector load.
unsigned MinVecNumElts = MinVectorSize / ScalarSize;
auto *MinVecTy = VectorType::get(ScalarTy, MinVecNumElts, false);
Align Alignment = Load->getAlign();
const DataLayout &DL = I.getModule()->getDataLayout();
if (!isSafeToLoadUnconditionally(PtrOp, MinVecTy, Alignment, DL, Load, &DT))
return false;
// Original pattern: insertelt undef, load [free casts of] ScalarPtr, 0
int OldCost = TTI.getMemoryOpCost(Instruction::Load, ScalarTy, Alignment, AS);
APInt DemandedElts = APInt::getOneBitSet(MinVecNumElts, 0);
OldCost += TTI.getScalarizationOverhead(MinVecTy, DemandedElts, true, false);
// New pattern: load VecPtr
int NewCost = TTI.getMemoryOpCost(Instruction::Load, MinVecTy, Alignment, AS);
// We can aggressively convert to the vector form because the backend can
// invert this transform if it does not result in a performance win.
if (OldCost < NewCost)
return false;
// It is safe and potentially profitable to load a vector directly:
// inselt undef, load Scalar, 0 --> load VecPtr
IRBuilder<> Builder(Load);
Value *CastedPtr = Builder.CreateBitCast(PtrOp, MinVecTy->getPointerTo(AS));
Value *VecLd = Builder.CreateAlignedLoad(MinVecTy, CastedPtr, Alignment);
// If the insert type does not match the target's minimum vector type,
// use an identity shuffle to shrink/grow the vector.
if (Ty != MinVecTy) {
unsigned OutputNumElts = Ty->getNumElements();
SmallVector<int, 16> Mask(OutputNumElts, UndefMaskElem);
for (unsigned i = 0; i < OutputNumElts && i < MinVecNumElts; ++i)
Mask[i] = i;
VecLd = Builder.CreateShuffleVector(VecLd, Mask);
}
replaceValue(I, *VecLd);
++NumVecLoad;
return true;
}
/// Determine which, if any, of the inputs should be replaced by a shuffle
/// followed by extract from a different index.
ExtractElementInst *VectorCombine::getShuffleExtract(
ExtractElementInst *Ext0, ExtractElementInst *Ext1,
unsigned PreferredExtractIndex = InvalidIndex) const {
assert(isa<ConstantInt>(Ext0->getIndexOperand()) &&
isa<ConstantInt>(Ext1->getIndexOperand()) &&
"Expected constant extract indexes");
unsigned Index0 = cast<ConstantInt>(Ext0->getIndexOperand())->getZExtValue();
unsigned Index1 = cast<ConstantInt>(Ext1->getIndexOperand())->getZExtValue();
// If the extract indexes are identical, no shuffle is needed.
if (Index0 == Index1)
return nullptr;
Type *VecTy = Ext0->getVectorOperand()->getType();
assert(VecTy == Ext1->getVectorOperand()->getType() && "Need matching types");
int Cost0 = TTI.getVectorInstrCost(Ext0->getOpcode(), VecTy, Index0);
int Cost1 = TTI.getVectorInstrCost(Ext1->getOpcode(), VecTy, Index1);
// We are extracting from 2 different indexes, so one operand must be shuffled
// before performing a vector operation and/or extract. The more expensive
// extract will be replaced by a shuffle.
if (Cost0 > Cost1)
return Ext0;
if (Cost1 > Cost0)
return Ext1;
// If the costs are equal and there is a preferred extract index, shuffle the
// opposite operand.
if (PreferredExtractIndex == Index0)
return Ext1;
if (PreferredExtractIndex == Index1)
return Ext0;
// Otherwise, replace the extract with the higher index.
return Index0 > Index1 ? Ext0 : Ext1;
}
/// Compare the relative costs of 2 extracts followed by scalar operation vs.
/// vector operation(s) followed by extract. Return true if the existing
/// instructions are cheaper than a vector alternative. Otherwise, return false
/// and if one of the extracts should be transformed to a shufflevector, set
/// \p ConvertToShuffle to that extract instruction.
bool VectorCombine::isExtractExtractCheap(ExtractElementInst *Ext0,
ExtractElementInst *Ext1,
unsigned Opcode,
ExtractElementInst *&ConvertToShuffle,
unsigned PreferredExtractIndex) {
assert(isa<ConstantInt>(Ext0->getOperand(1)) &&
isa<ConstantInt>(Ext1->getOperand(1)) &&
"Expected constant extract indexes");
Type *ScalarTy = Ext0->getType();
auto *VecTy = cast<VectorType>(Ext0->getOperand(0)->getType());
int ScalarOpCost, VectorOpCost;
// Get cost estimates for scalar and vector versions of the operation.
bool IsBinOp = Instruction::isBinaryOp(Opcode);
if (IsBinOp) {
ScalarOpCost = TTI.getArithmeticInstrCost(Opcode, ScalarTy);
VectorOpCost = TTI.getArithmeticInstrCost(Opcode, VecTy);
} else {
assert((Opcode == Instruction::ICmp || Opcode == Instruction::FCmp) &&
"Expected a compare");
ScalarOpCost = TTI.getCmpSelInstrCost(Opcode, ScalarTy,
CmpInst::makeCmpResultType(ScalarTy));
VectorOpCost = TTI.getCmpSelInstrCost(Opcode, VecTy,
CmpInst::makeCmpResultType(VecTy));
}
// Get cost estimates for the extract elements. These costs will factor into
// both sequences.
unsigned Ext0Index = cast<ConstantInt>(Ext0->getOperand(1))->getZExtValue();
unsigned Ext1Index = cast<ConstantInt>(Ext1->getOperand(1))->getZExtValue();
int Extract0Cost =
TTI.getVectorInstrCost(Instruction::ExtractElement, VecTy, Ext0Index);
int Extract1Cost =
TTI.getVectorInstrCost(Instruction::ExtractElement, VecTy, Ext1Index);
// A more expensive extract will always be replaced by a splat shuffle.
// For example, if Ext0 is more expensive:
// opcode (extelt V0, Ext0), (ext V1, Ext1) -->
// extelt (opcode (splat V0, Ext0), V1), Ext1
// TODO: Evaluate whether that always results in lowest cost. Alternatively,
// check the cost of creating a broadcast shuffle and shuffling both
// operands to element 0.
int CheapExtractCost = std::min(Extract0Cost, Extract1Cost);
// Extra uses of the extracts mean that we include those costs in the
// vector total because those instructions will not be eliminated.
int OldCost, NewCost;
if (Ext0->getOperand(0) == Ext1->getOperand(0) && Ext0Index == Ext1Index) {
// Handle a special case. If the 2 extracts are identical, adjust the
// formulas to account for that. The extra use charge allows for either the
// CSE'd pattern or an unoptimized form with identical values:
// opcode (extelt V, C), (extelt V, C) --> extelt (opcode V, V), C
bool HasUseTax = Ext0 == Ext1 ? !Ext0->hasNUses(2)
: !Ext0->hasOneUse() || !Ext1->hasOneUse();
OldCost = CheapExtractCost + ScalarOpCost;
NewCost = VectorOpCost + CheapExtractCost + HasUseTax * CheapExtractCost;
} else {
// Handle the general case. Each extract is actually a different value:
// opcode (extelt V0, C0), (extelt V1, C1) --> extelt (opcode V0, V1), C
OldCost = Extract0Cost + Extract1Cost + ScalarOpCost;
NewCost = VectorOpCost + CheapExtractCost +
!Ext0->hasOneUse() * Extract0Cost +
!Ext1->hasOneUse() * Extract1Cost;
}
ConvertToShuffle = getShuffleExtract(Ext0, Ext1, PreferredExtractIndex);
if (ConvertToShuffle) {
if (IsBinOp && DisableBinopExtractShuffle)
return true;
// If we are extracting from 2 different indexes, then one operand must be
// shuffled before performing the vector operation. The shuffle mask is
// undefined except for 1 lane that is being translated to the remaining
// extraction lane. Therefore, it is a splat shuffle. Ex:
// ShufMask = { undef, undef, 0, undef }
// TODO: The cost model has an option for a "broadcast" shuffle
// (splat-from-element-0), but no option for a more general splat.
NewCost +=
TTI.getShuffleCost(TargetTransformInfo::SK_PermuteSingleSrc, VecTy);
}
// Aggressively form a vector op if the cost is equal because the transform
// may enable further optimization.
// Codegen can reverse this transform (scalarize) if it was not profitable.
return OldCost < NewCost;
}
/// Create a shuffle that translates (shifts) 1 element from the input vector
/// to a new element location.
static Value *createShiftShuffle(Value *Vec, unsigned OldIndex,
unsigned NewIndex, IRBuilder<> &Builder) {
// The shuffle mask is undefined except for 1 lane that is being translated
// to the new element index. Example for OldIndex == 2 and NewIndex == 0:
// ShufMask = { 2, undef, undef, undef }
auto *VecTy = cast<FixedVectorType>(Vec->getType());
SmallVector<int, 32> ShufMask(VecTy->getNumElements(), UndefMaskElem);
ShufMask[NewIndex] = OldIndex;
return Builder.CreateShuffleVector(Vec, ShufMask, "shift");
}
/// Given an extract element instruction with constant index operand, shuffle
/// the source vector (shift the scalar element) to a NewIndex for extraction.
/// Return null if the input can be constant folded, so that we are not creating
/// unnecessary instructions.
static ExtractElementInst *translateExtract(ExtractElementInst *ExtElt,
unsigned NewIndex,
IRBuilder<> &Builder) {
// If the extract can be constant-folded, this code is unsimplified. Defer
// to other passes to handle that.
Value *X = ExtElt->getVectorOperand();
Value *C = ExtElt->getIndexOperand();
assert(isa<ConstantInt>(C) && "Expected a constant index operand");
if (isa<Constant>(X))
return nullptr;
Value *Shuf = createShiftShuffle(X, cast<ConstantInt>(C)->getZExtValue(),
NewIndex, Builder);
return cast<ExtractElementInst>(Builder.CreateExtractElement(Shuf, NewIndex));
}
/// Try to reduce extract element costs by converting scalar compares to vector
/// compares followed by extract.
/// cmp (ext0 V0, C), (ext1 V1, C)
void VectorCombine::foldExtExtCmp(ExtractElementInst *Ext0,
ExtractElementInst *Ext1, Instruction &I) {
assert(isa<CmpInst>(&I) && "Expected a compare");
assert(cast<ConstantInt>(Ext0->getIndexOperand())->getZExtValue() ==
cast<ConstantInt>(Ext1->getIndexOperand())->getZExtValue() &&
"Expected matching constant extract indexes");
// cmp Pred (extelt V0, C), (extelt V1, C) --> extelt (cmp Pred V0, V1), C
++NumVecCmp;
CmpInst::Predicate Pred = cast<CmpInst>(&I)->getPredicate();
Value *V0 = Ext0->getVectorOperand(), *V1 = Ext1->getVectorOperand();
Value *VecCmp = Builder.CreateCmp(Pred, V0, V1);
Value *NewExt = Builder.CreateExtractElement(VecCmp, Ext0->getIndexOperand());
replaceValue(I, *NewExt);
}
/// Try to reduce extract element costs by converting scalar binops to vector
/// binops followed by extract.
/// bo (ext0 V0, C), (ext1 V1, C)
void VectorCombine::foldExtExtBinop(ExtractElementInst *Ext0,
ExtractElementInst *Ext1, Instruction &I) {
assert(isa<BinaryOperator>(&I) && "Expected a binary operator");
assert(cast<ConstantInt>(Ext0->getIndexOperand())->getZExtValue() ==
cast<ConstantInt>(Ext1->getIndexOperand())->getZExtValue() &&
"Expected matching constant extract indexes");
// bo (extelt V0, C), (extelt V1, C) --> extelt (bo V0, V1), C
++NumVecBO;
Value *V0 = Ext0->getVectorOperand(), *V1 = Ext1->getVectorOperand();
Value *VecBO =
Builder.CreateBinOp(cast<BinaryOperator>(&I)->getOpcode(), V0, V1);
// All IR flags are safe to back-propagate because any potential poison
// created in unused vector elements is discarded by the extract.
if (auto *VecBOInst = dyn_cast<Instruction>(VecBO))
VecBOInst->copyIRFlags(&I);
Value *NewExt = Builder.CreateExtractElement(VecBO, Ext0->getIndexOperand());
replaceValue(I, *NewExt);
}
/// Match an instruction with extracted vector operands.
bool VectorCombine::foldExtractExtract(Instruction &I) {
// It is not safe to transform things like div, urem, etc. because we may
// create undefined behavior when executing those on unknown vector elements.
if (!isSafeToSpeculativelyExecute(&I))
return false;
Instruction *I0, *I1;
CmpInst::Predicate Pred = CmpInst::BAD_ICMP_PREDICATE;
if (!match(&I, m_Cmp(Pred, m_Instruction(I0), m_Instruction(I1))) &&
!match(&I, m_BinOp(m_Instruction(I0), m_Instruction(I1))))
return false;
Value *V0, *V1;
uint64_t C0, C1;
if (!match(I0, m_ExtractElt(m_Value(V0), m_ConstantInt(C0))) ||
!match(I1, m_ExtractElt(m_Value(V1), m_ConstantInt(C1))) ||
V0->getType() != V1->getType())
return false;
// If the scalar value 'I' is going to be re-inserted into a vector, then try
// to create an extract to that same element. The extract/insert can be
// reduced to a "select shuffle".
// TODO: If we add a larger pattern match that starts from an insert, this
// probably becomes unnecessary.
auto *Ext0 = cast<ExtractElementInst>(I0);
auto *Ext1 = cast<ExtractElementInst>(I1);
uint64_t InsertIndex = InvalidIndex;
if (I.hasOneUse())
match(I.user_back(),
m_InsertElt(m_Value(), m_Value(), m_ConstantInt(InsertIndex)));
ExtractElementInst *ExtractToChange;
if (isExtractExtractCheap(Ext0, Ext1, I.getOpcode(), ExtractToChange,
InsertIndex))
return false;
if (ExtractToChange) {
unsigned CheapExtractIdx = ExtractToChange == Ext0 ? C1 : C0;
ExtractElementInst *NewExtract =
translateExtract(ExtractToChange, CheapExtractIdx, Builder);
if (!NewExtract)
return false;
if (ExtractToChange == Ext0)
Ext0 = NewExtract;
else
Ext1 = NewExtract;
}
if (Pred != CmpInst::BAD_ICMP_PREDICATE)
foldExtExtCmp(Ext0, Ext1, I);
else
foldExtExtBinop(Ext0, Ext1, I);
return true;
}
/// If this is a bitcast of a shuffle, try to bitcast the source vector to the
/// destination type followed by shuffle. This can enable further transforms by
/// moving bitcasts or shuffles together.
bool VectorCombine::foldBitcastShuf(Instruction &I) {
Value *V;
ArrayRef<int> Mask;
if (!match(&I, m_BitCast(
m_OneUse(m_Shuffle(m_Value(V), m_Undef(), m_Mask(Mask))))))
return false;
// 1) Do not fold bitcast shuffle for scalable type. First, shuffle cost for
// scalable type is unknown; Second, we cannot reason if the narrowed shuffle
// mask for scalable type is a splat or not.
// 2) Disallow non-vector casts and length-changing shuffles.
// TODO: We could allow any shuffle.
auto *DestTy = dyn_cast<FixedVectorType>(I.getType());
auto *SrcTy = dyn_cast<FixedVectorType>(V->getType());
if (!SrcTy || !DestTy || I.getOperand(0)->getType() != SrcTy)
return false;
// The new shuffle must not cost more than the old shuffle. The bitcast is
// moved ahead of the shuffle, so assume that it has the same cost as before.
if (TTI.getShuffleCost(TargetTransformInfo::SK_PermuteSingleSrc, DestTy) >
TTI.getShuffleCost(TargetTransformInfo::SK_PermuteSingleSrc, SrcTy))
return false;
unsigned DestNumElts = DestTy->getNumElements();
unsigned SrcNumElts = SrcTy->getNumElements();
SmallVector<int, 16> NewMask;
if (SrcNumElts <= DestNumElts) {
// The bitcast is from wide to narrow/equal elements. The shuffle mask can
// always be expanded to the equivalent form choosing narrower elements.
assert(DestNumElts % SrcNumElts == 0 && "Unexpected shuffle mask");
unsigned ScaleFactor = DestNumElts / SrcNumElts;
narrowShuffleMaskElts(ScaleFactor, Mask, NewMask);
} else {
// The bitcast is from narrow elements to wide elements. The shuffle mask
// must choose consecutive elements to allow casting first.
assert(SrcNumElts % DestNumElts == 0 && "Unexpected shuffle mask");
unsigned ScaleFactor = SrcNumElts / DestNumElts;
if (!widenShuffleMaskElts(ScaleFactor, Mask, NewMask))
return false;
}
// bitcast (shuf V, MaskC) --> shuf (bitcast V), MaskC'
++NumShufOfBitcast;
Value *CastV = Builder.CreateBitCast(V, DestTy);
Value *Shuf = Builder.CreateShuffleVector(CastV, NewMask);
replaceValue(I, *Shuf);
return true;
}
/// Match a vector binop or compare instruction with at least one inserted
/// scalar operand and convert to scalar binop/cmp followed by insertelement.
bool VectorCombine::scalarizeBinopOrCmp(Instruction &I) {
CmpInst::Predicate Pred = CmpInst::BAD_ICMP_PREDICATE;
Value *Ins0, *Ins1;
if (!match(&I, m_BinOp(m_Value(Ins0), m_Value(Ins1))) &&
!match(&I, m_Cmp(Pred, m_Value(Ins0), m_Value(Ins1))))
return false;
// Do not convert the vector condition of a vector select into a scalar
// condition. That may cause problems for codegen because of differences in
// boolean formats and register-file transfers.
// TODO: Can we account for that in the cost model?
bool IsCmp = Pred != CmpInst::Predicate::BAD_ICMP_PREDICATE;
if (IsCmp)
for (User *U : I.users())
if (match(U, m_Select(m_Specific(&I), m_Value(), m_Value())))
return false;
// Match against one or both scalar values being inserted into constant
// vectors:
// vec_op VecC0, (inselt VecC1, V1, Index)
// vec_op (inselt VecC0, V0, Index), VecC1
// vec_op (inselt VecC0, V0, Index), (inselt VecC1, V1, Index)
// TODO: Deal with mismatched index constants and variable indexes?
Constant *VecC0 = nullptr, *VecC1 = nullptr;
Value *V0 = nullptr, *V1 = nullptr;
uint64_t Index0 = 0, Index1 = 0;
if (!match(Ins0, m_InsertElt(m_Constant(VecC0), m_Value(V0),
m_ConstantInt(Index0))) &&
!match(Ins0, m_Constant(VecC0)))
return false;
if (!match(Ins1, m_InsertElt(m_Constant(VecC1), m_Value(V1),
m_ConstantInt(Index1))) &&
!match(Ins1, m_Constant(VecC1)))
return false;
bool IsConst0 = !V0;
bool IsConst1 = !V1;
if (IsConst0 && IsConst1)
return false;
if (!IsConst0 && !IsConst1 && Index0 != Index1)
return false;
// Bail for single insertion if it is a load.
// TODO: Handle this once getVectorInstrCost can cost for load/stores.
auto *I0 = dyn_cast_or_null<Instruction>(V0);
auto *I1 = dyn_cast_or_null<Instruction>(V1);
if ((IsConst0 && I1 && I1->mayReadFromMemory()) ||
(IsConst1 && I0 && I0->mayReadFromMemory()))
return false;
uint64_t Index = IsConst0 ? Index1 : Index0;
Type *ScalarTy = IsConst0 ? V1->getType() : V0->getType();
Type *VecTy = I.getType();
assert(VecTy->isVectorTy() &&
(IsConst0 || IsConst1 || V0->getType() == V1->getType()) &&
(ScalarTy->isIntegerTy() || ScalarTy->isFloatingPointTy() ||
ScalarTy->isPointerTy()) &&
"Unexpected types for insert element into binop or cmp");
unsigned Opcode = I.getOpcode();
int ScalarOpCost, VectorOpCost;
if (IsCmp) {
ScalarOpCost = TTI.getCmpSelInstrCost(Opcode, ScalarTy);
VectorOpCost = TTI.getCmpSelInstrCost(Opcode, VecTy);
} else {
ScalarOpCost = TTI.getArithmeticInstrCost(Opcode, ScalarTy);
VectorOpCost = TTI.getArithmeticInstrCost(Opcode, VecTy);
}
// Get cost estimate for the insert element. This cost will factor into
// both sequences.
int InsertCost =
TTI.getVectorInstrCost(Instruction::InsertElement, VecTy, Index);
int OldCost = (IsConst0 ? 0 : InsertCost) + (IsConst1 ? 0 : InsertCost) +
VectorOpCost;
int NewCost = ScalarOpCost + InsertCost +
(IsConst0 ? 0 : !Ins0->hasOneUse() * InsertCost) +
(IsConst1 ? 0 : !Ins1->hasOneUse() * InsertCost);
// We want to scalarize unless the vector variant actually has lower cost.
if (OldCost < NewCost)
return false;
// vec_op (inselt VecC0, V0, Index), (inselt VecC1, V1, Index) -->
// inselt NewVecC, (scalar_op V0, V1), Index
if (IsCmp)
++NumScalarCmp;
else
++NumScalarBO;
// For constant cases, extract the scalar element, this should constant fold.
if (IsConst0)
V0 = ConstantExpr::getExtractElement(VecC0, Builder.getInt64(Index));
if (IsConst1)
V1 = ConstantExpr::getExtractElement(VecC1, Builder.getInt64(Index));
Value *Scalar =
IsCmp ? Builder.CreateCmp(Pred, V0, V1)
: Builder.CreateBinOp((Instruction::BinaryOps)Opcode, V0, V1);
Scalar->setName(I.getName() + ".scalar");
// All IR flags are safe to back-propagate. There is no potential for extra
// poison to be created by the scalar instruction.
if (auto *ScalarInst = dyn_cast<Instruction>(Scalar))
ScalarInst->copyIRFlags(&I);
// Fold the vector constants in the original vectors into a new base vector.
Constant *NewVecC = IsCmp ? ConstantExpr::getCompare(Pred, VecC0, VecC1)
: ConstantExpr::get(Opcode, VecC0, VecC1);
Value *Insert = Builder.CreateInsertElement(NewVecC, Scalar, Index);
replaceValue(I, *Insert);
return true;
}
/// Try to combine a scalar binop + 2 scalar compares of extracted elements of
/// a vector into vector operations followed by extract. Note: The SLP pass
/// may miss this pattern because of implementation problems.
bool VectorCombine::foldExtractedCmps(Instruction &I) {
// We are looking for a scalar binop of booleans.
// binop i1 (cmp Pred I0, C0), (cmp Pred I1, C1)
if (!I.isBinaryOp() || !I.getType()->isIntegerTy(1))
return false;
// The compare predicates should match, and each compare should have a
// constant operand.
// TODO: Relax the one-use constraints.
Value *B0 = I.getOperand(0), *B1 = I.getOperand(1);
Instruction *I0, *I1;
Constant *C0, *C1;
CmpInst::Predicate P0, P1;
if (!match(B0, m_OneUse(m_Cmp(P0, m_Instruction(I0), m_Constant(C0)))) ||
!match(B1, m_OneUse(m_Cmp(P1, m_Instruction(I1), m_Constant(C1)))) ||
P0 != P1)
return false;
// The compare operands must be extracts of the same vector with constant
// extract indexes.
// TODO: Relax the one-use constraints.
Value *X;
uint64_t Index0, Index1;
if (!match(I0, m_OneUse(m_ExtractElt(m_Value(X), m_ConstantInt(Index0)))) ||
!match(I1, m_OneUse(m_ExtractElt(m_Specific(X), m_ConstantInt(Index1)))))
return false;
auto *Ext0 = cast<ExtractElementInst>(I0);
auto *Ext1 = cast<ExtractElementInst>(I1);
ExtractElementInst *ConvertToShuf = getShuffleExtract(Ext0, Ext1);
if (!ConvertToShuf)
return false;
// The original scalar pattern is:
// binop i1 (cmp Pred (ext X, Index0), C0), (cmp Pred (ext X, Index1), C1)
CmpInst::Predicate Pred = P0;
unsigned CmpOpcode = CmpInst::isFPPredicate(Pred) ? Instruction::FCmp
: Instruction::ICmp;
auto *VecTy = dyn_cast<FixedVectorType>(X->getType());
if (!VecTy)
return false;
int OldCost = TTI.getVectorInstrCost(Ext0->getOpcode(), VecTy, Index0);
OldCost += TTI.getVectorInstrCost(Ext1->getOpcode(), VecTy, Index1);
OldCost += TTI.getCmpSelInstrCost(CmpOpcode, I0->getType()) * 2;
OldCost += TTI.getArithmeticInstrCost(I.getOpcode(), I.getType());
// The proposed vector pattern is:
// vcmp = cmp Pred X, VecC
// ext (binop vNi1 vcmp, (shuffle vcmp, Index1)), Index0
int CheapIndex = ConvertToShuf == Ext0 ? Index1 : Index0;
int ExpensiveIndex = ConvertToShuf == Ext0 ? Index0 : Index1;
auto *CmpTy = cast<FixedVectorType>(CmpInst::makeCmpResultType(X->getType()));
int NewCost = TTI.getCmpSelInstrCost(CmpOpcode, X->getType());
NewCost +=
TTI.getShuffleCost(TargetTransformInfo::SK_PermuteSingleSrc, CmpTy);
NewCost += TTI.getArithmeticInstrCost(I.getOpcode(), CmpTy);
NewCost += TTI.getVectorInstrCost(Ext0->getOpcode(), CmpTy, CheapIndex);
// Aggressively form vector ops if the cost is equal because the transform
// may enable further optimization.
// Codegen can reverse this transform (scalarize) if it was not profitable.
if (OldCost < NewCost)
return false;
// Create a vector constant from the 2 scalar constants.
SmallVector<Constant *, 32> CmpC(VecTy->getNumElements(),
UndefValue::get(VecTy->getElementType()));
CmpC[Index0] = C0;
CmpC[Index1] = C1;
Value *VCmp = Builder.CreateCmp(Pred, X, ConstantVector::get(CmpC));
Value *Shuf = createShiftShuffle(VCmp, ExpensiveIndex, CheapIndex, Builder);
Value *VecLogic = Builder.CreateBinOp(cast<BinaryOperator>(I).getOpcode(),
VCmp, Shuf);
Value *NewExt = Builder.CreateExtractElement(VecLogic, CheapIndex);
replaceValue(I, *NewExt);
++NumVecCmpBO;
return true;
}
/// This is the entry point for all transforms. Pass manager differences are
/// handled in the callers of this function.
bool VectorCombine::run() {
if (DisableVectorCombine)
return false;
// Don't attempt vectorization if the target does not support vectors.
if (!TTI.getNumberOfRegisters(TTI.getRegisterClassForType(/*Vector*/ true)))
return false;
bool MadeChange = false;
for (BasicBlock &BB : F) {
// Ignore unreachable basic blocks.
if (!DT.isReachableFromEntry(&BB))
continue;
// Do not delete instructions under here and invalidate the iterator.
// Walk the block forwards to enable simple iterative chains of transforms.
// TODO: It could be more efficient to remove dead instructions
// iteratively in this loop rather than waiting until the end.
for (Instruction &I : BB) {
if (isa<DbgInfoIntrinsic>(I))
continue;
Builder.SetInsertPoint(&I);
MadeChange |= vectorizeLoadInsert(I);
MadeChange |= foldExtractExtract(I);
MadeChange |= foldBitcastShuf(I);
MadeChange |= scalarizeBinopOrCmp(I);
MadeChange |= foldExtractedCmps(I);
}
}
// We're done with transforms, so remove dead instructions.
if (MadeChange)
for (BasicBlock &BB : F)
SimplifyInstructionsInBlock(&BB);
return MadeChange;
}
// Pass manager boilerplate below here.
namespace {
class VectorCombineLegacyPass : public FunctionPass {
public:
static char ID;
VectorCombineLegacyPass() : FunctionPass(ID) {
initializeVectorCombineLegacyPassPass(*PassRegistry::getPassRegistry());
}
void getAnalysisUsage(AnalysisUsage &AU) const override {
AU.addRequired<DominatorTreeWrapperPass>();
AU.addRequired<TargetTransformInfoWrapperPass>();
AU.setPreservesCFG();
AU.addPreserved<DominatorTreeWrapperPass>();
AU.addPreserved<GlobalsAAWrapperPass>();
AU.addPreserved<AAResultsWrapperPass>();
AU.addPreserved<BasicAAWrapperPass>();
FunctionPass::getAnalysisUsage(AU);
}
bool runOnFunction(Function &F) override {
if (skipFunction(F))
return false;
auto &TTI = getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F);
auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree();
VectorCombine Combiner(F, TTI, DT);
return Combiner.run();
}
};
} // namespace
char VectorCombineLegacyPass::ID = 0;
INITIALIZE_PASS_BEGIN(VectorCombineLegacyPass, "vector-combine",
"Optimize scalar/vector ops", false,
false)
INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
INITIALIZE_PASS_END(VectorCombineLegacyPass, "vector-combine",
"Optimize scalar/vector ops", false, false)
Pass *llvm::createVectorCombinePass() {
return new VectorCombineLegacyPass();
}
PreservedAnalyses VectorCombinePass::run(Function &F,
FunctionAnalysisManager &FAM) {
TargetTransformInfo &TTI = FAM.getResult<TargetIRAnalysis>(F);
DominatorTree &DT = FAM.getResult<DominatorTreeAnalysis>(F);
VectorCombine Combiner(F, TTI, DT);
if (!Combiner.run())
return PreservedAnalyses::all();
PreservedAnalyses PA;
PA.preserveSet<CFGAnalyses>();
PA.preserve<GlobalsAA>();
PA.preserve<AAManager>();
PA.preserve<BasicAA>();
return PA;
}